
HAL Id: ensl-00814278
https://ens-lyon.hal.science/ensl-00814278v1

Submitted on 16 Apr 2013 (v1), last revised 11 Dec 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extracting Herbrand trees in classical realizability using
forcing

Lionel Rieg

To cite this version:
Lionel Rieg. Extracting Herbrand trees in classical realizability using forcing. Computer Science
Logic 2013, Simona Ronchi Della Rocca, Sep 2013, Turin, Italy. pp.15, �10.4230/LIPIcs.CSL.2013.i�.
�ensl-00814278v1�

https://ens-lyon.hal.science/ensl-00814278v1
https://hal.archives-ouvertes.fr

Extracting Herbrand trees in classical realizability

using forcing∗

Lionel Rieg1

1 LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA), ENS de Lyon, Université de Lyon

46 allée d’Italie, 69364 LYON, FRANCE

lionel.rieg@ens-lyon.fr

Abstract

Krivine presented in [9] a methodology to combine Cohen’s forcing with the theory of classical realizabil-
ity and showed that the forcing condition can be seen as a reference that is not subject to backtracks. The
underlying classical program transformation was then analyzed by Miquel [11] in a fully typed setting in
classical higher-order arithmetic (PAω+).

As a case study of this methodology, we present a method to extract a Herbrand tree from a classi-
cal realizer of inconsistency, following the ideas underlying the compactness theorem and the proof of
Herbrand’s theorem. Unlike the traditional proof based on Kőnig’s lemma (using a fixed enumeration of
atomic formulas), our method is based on the introduction of a particular Cohen real. It is formalized as
a proof in PAω+, making explicit the construction of generic sets in this framework in the particular case
where the set of forcing conditions is arithmetical. We then analyze the algorithmic content of this proof.

1998 ACM Subject Classification F.4.1 Lambda-calculus and related system

Keywords and phrases classical realizability, forcing, Curry-Howard correspondence, Herbrand trees

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Forcing is a model transformation initially invented by Cohen [1, 2] to prove the relative consistency
of the negation of the continuum hypothesis with respect to the axioms of Zermelo-Fraenkel (ZF)
set theory. From a model-theoretic point of view, forcing is a technique to extend a given model
of ZF—the base model—into a larger model—the generic extension—generated around the base
model from a new set with good properties: the generic filter G. From a proof-theoretic point of
view, forcing can be presented as a logical translation that maps formulas expressing properties of the
extended model into formulas expressing (more complex) properties of the base model. Through this
translation, the properties of the (fictitious) generic set G (in the extended universe) are reduced to the
properties of the forcing poset C (in the base universe) that parametrizes the whole construction.

Recently, Krivine studied [9] Cohen forcing in the framework of the proofs-as-programs cor-
respondence in classical logic [5, 13, 3] and showed how to combine it with the theory of classi-
cal realizability [8]. In particular, he discovered a program translation (independent from typing
derivations) that captures the computational contents of the logical translation underlying forcing.
Surprisingly, this program transformation acts as a state passing style translation where the forcing
condition is treated as a memory cell that is protected from the backtracks performed by control
operators such as callcc [5] —thus opening an intriguing connection between forcing and imperative
programming. Reformulating this work in classical higher-order arithmetic (PAω+) and analyzing

∗ This work was supported by the ANR project RÉCRÉ.

© Lionel Rieg;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Extracting Herbrand trees in classical realizability using forcing

the corresponding program transformation, Miquel [11, 12] introduced an extension of the Krivine
Abstract Machine (KAM) devoted to execution of proofs by forcing—the KFAM—where the forcing
condition is explicitly treated as a memory cell in the context of the execution of a proof by forcing.

These analogies naturally suggest that Cohen forcing can be used not only to prove relative
consistency results, but also to write computationally more efficient (classical) proofs by exploiting
the imperative flavor of the forcing condition.

In this paper, we propose to instantiate this technique on one example, namely the extraction of
a Herbrand tree (see section 2) from a validity proof of an existential formula ∃~x. F(~x) where F(~x)
is quantifier-free. Our extraction procedure is based on a proof of a mix between compactness and
Herbrand’s theorem using the method of forcing. The key ingredient of this proof by reductio ad

absurdum is the introduction of a Cohen real (using forcing) that represents the infinite branch leading
to a contradiction. From a computational point of view, we shall see that the corresponding program
uses the forcing condition to store the tree under construction, thus protecting it from the backtracks
induced by classical reasoning. However, the interest of this approach is that since the conclusion
of our semantic variant of Herbrand’s theorem is Σ0

1, any proof (program) of the translation of the
conclusion (through the forcing translation) can be turned into a proof (program) of the conclusion
itself. From this, it is then possible to apply standard witness extraction techniques in classical
realizability [10] to extract the desired Herbrand tree.

Contribution of the paper

This work follows on from [9] and [11]. The contributions are the following:
The extension of the program transformation underlying forcing to a generic filter G (in the case
where the forcing sort is a system T sort and its relativization predicate is invariant under forcing).
A proof of a semantic variant of Herbrand’s theorem (containing compactness) by forcing where
the contradictory interpretation is introduced in the extended universe as a Cohen real.
A formalization of this proof in the formal system PAω+ which, through the forcing transformation,
gives an extraction process for Herbrand trees.
An analysis of the computational content of this extraction process in classical realizability.

2 Herbrand trees

2.1 The notion of Herbrand tree

Throughout this paper we are interested in the following problem.
Let ∃~x.F(~x) be a purely existential formula, where F(~x) is quantifier-tree. (In what follows, we

work in a given countable first-order language, and write Term and Atom the countable sets of closed
terms and of closed atomic formulas, respectively.) Let us now assume that the formula ∃~x.F(~x) is
true in all models, and actually in all syntactic models, where variables are interpreted by closed terms

t ∈ Term. From this information, we know that there is a function H : (Atom→ Bool)→
−−−−→
Term that

associates to every syntactic interpretation ρ : Atom→ Bool a tuple of closed terms H(ρ) = ~t ∈
−−−−→
Term

such that ρ |= F(~t) (i.e. a ‘witness’ for the formula ∃~x.F(~x) in the interpretation ρ).
However, the information provided by the function H is twice infinite: it is infinite in depth since

each interpretation ρ : Atom→ Bool is (a priori) infinite, and it is infinite in width since the set of all
such interpretations has the power of continuum. Nevertheless, the compactness theorem combined
with Herbrand’s theorem says that we can compact the information given by the a priori infinite
function H into a finite tree, that is called a Herbrand tree:

◮ Definition 2.1 (Herbrand tree). A Herbrand tree is a finite binary tree H such that:

Lionel Rieg 3

The inner nodes of H are labeled with atomic formulas a ∈ Atom, so that every branch of the tree
represents a partial interpretation (going left means ‘true’, going right means ‘false’).

Every leaf of H contains a witness for the corresponding branch, that is a tuple ~t ∈
−−−−→
Term such that

ρ |= F(~t) for every (total) interpretation ρ that extends that partial interpretation of the branch.

◮ Theorem 2.2. If the formula ∃x.F(~x) is true in all (syntactic) models, then it has a Herbrand tree.

The aim of this paper is to describe a method to effectively extract a Herbrand tree from a proof
(actually a classical realizer) of the proposition expressing that ‘the formula ∃x.F(~x) holds in all
syntactic models’. Since the latter proposition is directly implied by the formula ∃x.F(~x) itself (using
the trivial implication of the completeness theorem), we will thus get a method to effectively extract a
Herbrand tree from a proof/realizer of the formula ∃x.F(~x).

2.2 Extracting Herbrand trees effectively

In the framework of the Curry-Howard correspondence, the natural method to extract Herbrand trees
is to use a classical realizer t0 obtained from a formal proof of Theorem 2.2. By applying t0 to a
realizer u of the premise of Theorem 2.2, we get a realizer of the Σ0

1-formula expressing the existence
of a Herbrand tree for the formula ∃x.F(~x), from which we can retrieve the desired Herbrand tree
using standard classical extraction techniques [10].

Given an enumeration (ai)i∈N of the closed in-
stances of the atomic formulas appearing in F(~x),
let us consider the infinite binary tree whose 2i

nodes at depth i are labeled with the atom ai.
Any infinite branch in this infinite tree is an in-
terpretation ρ, because all atoms appear along
it. From our assumption, we know that there is

a tuple ~t ∈
−−−−→
Term such that ρ |= F(~t). But since

the calculation of the truth value of the closed
formula F(~t) only relies on a finite subset of ρ,

a0

a1

a2

a3

...
...

a3

...
...

a2

a3

...
...

a3

...
...

a1

a2

a3

.

.

.
...

a3

...
...

a2

a3

...
...

a3

...
...

we can cut the branch along ρ at some depth d, putting a leaf labeled with ~t. Doing this in all branches
simultaneously, we thus get a finite tree (by weak Kőnig’s lemma), which is by construction a Herbrand tree.

Figure 1 A proof of Theorem 2.2 by enumerating the atoms

However, the efficiency of the extracted code highly depends on the proof of Theorem 2.2. In
particular, the traditional proof of this theorem (Fig. 1), that relies on a fixed enumeration of all atoms,
is not well suited to this task, since it gives terribly poor performances on formulas F(~x) involving
atoms that appear late in the chosen enumeration. What we want is a proof/realizer of Theorem 2.2
that chooses the atoms labeling the nodes only in function of the realizer of its premise.

In what follows, we present a novel proof of Theorem 2.2 that is tailored for this purpose, and
that relies on the forcing techniques developed in [9, 11, 12]. In this case, the forcing condition is a
Cohen real which behaves as a generic valuation, i.e. it represents all infinite branch at once. As we
will see in section 6, it is computationally a scheduler that will extend the tree under construction on
request, depending on the atoms required by the realizer of the premise. It will scan the whole tree
and schedule pending branches until the full Herbrand tree is built.

3 The higher-order arithmetic PAω+

In this section, we recall PAω+, the formal proof system in which this work takes place. It is a
presentation of classical higher-order arithmetic with explicit (classical) proof terms, inspired by

4 Extracting Herbrand trees in classical realizability using forcing

Church’s theory of simple types. It features an extra congruence on terms, in the spirit of deduction
modulo [4]. This section is a summary of the presentation of PAω+ in [11]. We refer the reader to it
for more details and proofs of the results stated here.

3.1 Syntax

System PAω+ distinguishes three kinds of syntactic entities: sorts (or kinds), higher-order terms, and
proof terms, whose grammar is recalled in Fig 2.

Sorts τ, σ ::= ι | o | τ→ σ

Higher-order terms M,N, A, B ::= xτ | λxτ.M | MN | 0 | S | recτ
| A⇒ B | ∀xτ. A | M �τ N 7→ A

Proof-terms t, u ::= x | λx. t | tu | callcc

Figure 2 Syntax of PAω+

3.1.1 Sorts and higher-order terms

Sorts are simple types formed from the two basic sorts ι (the sort of individuals) and o (the sort of
propositions). Higher-order terms — which we will call terms for short — are simply-typed λ-terms
(à la Church) that are intended to represent mathematical objects that inhabit sorts.

Higher-order terms of sort ι, that are called individuals, are formed using the two constructors 0
(of sort ι), S (of sort ι→ ι) and the family of recursors recτ (of sort τ→ (ι→ τ→ τ)→ ι→ τ).

Higher-order terms of sort o, that are called propositions (and written A, B, C, etc. in what follows),
are formed using implication A⇒ B (where A and B are propositions), universal quantification ∀xτ. A
(where A is a proposition possibly depending on the variable xτ) and a new connective M �τ N 7→ A

called an equational implication (where M and N are of sort τ and where A is a proposition). This
new connective must be thought of as a kind of implication, but giving more compact proof terms.
It makes the computational contents of the forcing translation more transparent, but it is logically
equivalent to the usual implication M =τ N ⇒ A, via the proof terms:

λxy. y x : (M � N 7→ A)⇒ (M = N ⇒ A), λx. x (λy. y) : (M = N ⇒ A)⇒ (M � N 7→ A)

(See fig. 4 for a definition of the proof system.)
As usual, application is left associative whereas implication and equational implication are

both right associative and have same precedence: A ⇒ M � N 7→ B ⇒ C ⇒ D has to be read
as A ⇒ (M � N 7→ (B ⇒ (C ⇒ D))). Logical connectives (absurdity, negation, conjunction,
disjunction) are defined using the standard second-order encodings, as well as Leibniz equality,
letting: x =τ y := ∀Zτ→o.Z x⇒ Z y. Existential quantification (possibly combined with conjunctions)
is encoded classically using De Morgan laws: ∃xτ. A1 & . . .& Ak := ¬(∀xτ. A1 ⇒ . . . ⇒ Ak ⇒ ⊥).
We will often omit the sort annotation τ to ease reading when this does not hinder understanding.

3.1.2 System T is a fragment of PAω+

Gödel’s system T can be recovered from PAω+ as the subsystem where we restrict sorts to be T -sorts,
that is sorts built with ι as the only base sort. This constraint casts out all logical constructions and
limits the term construction rules exactly to those of system T. Recall that the expressiveness of
system T is exactly the functions which are provably total in first-order arithmetic, which includes
(and exceeds) all primitive recursive functions.

Lionel Rieg 5

3.2 Proof system

3.2.1 Congruence

The proof system PAω+ differs from higher-order arithmetic by the addition of a congruence ≃E to
the proof system. This allows to reason modulo some equivalence on higher-order terms (hence on
propositions) without polluting the proof terms with computationally irrelevant parts.

This congruence contains the usual βηι-conversion, some semantic equivalences on propositions
(mostly commutations) and an equational theory E. This equational theory is a finite set of equations
E = M1 = N1, . . . ,Mk = Nk, where Mi and Ni are higher-order terms of the same sort (that E
considers equal). Some rules for the congruence ≃E are given in Fig. 3.

(M = N) ∈ E
M ≃E N

M ≃E N P ≃E Q A ≃E,M=P B

M � P 7→ A ≃E N � Q 7→ B

M � M 7→ A ≃E A A⇒ M � N 7→ B ≃E M � N 7→ A⇒ B

x < FV(M,N)
∀xτ.M � N 7→ A ≃E M � N 7→ ∀xτ. A

Figure 3 Some inference rules for the relation ≃E

3.2.2 Proof terms and deduction rules

Proof terms (Fig. 2) are pure λ-terms enriched with an extra constant callcc; they are formed from a
set of proof variables (notation: x, y, z, etc.) distinct from higher-order term variables.

The deduction system of PAω+ is defined around a typing judgment of the form E;Γ ⊢ t : A,
where E is an equational theory and Γ a context, that is: a finite set of bindings of distinct proof
variables xi to propositions Ai. The deduction rules, given in Fig 4, are the ones of higher-order
arithmetic, with slight modifications to deal with the congruence and equational implication.

E;Γ, x : A ⊢ x : A

E;Γ ⊢ t : A
A ≃E A′

E;Γ ⊢ t : A′ E;Γ ⊢ callcc : ((A⇒ B)⇒ A)⇒ A

E;Γ, x : A ⊢ t : B

E;Γ ⊢ λx. t : A⇒ B

E;Γ ⊢ t : A⇒ B E;Γ ⊢ u : A

E;Γ ⊢ t u : B

E,M = N;Γ ⊢ t : A

E;Γ ⊢ t : M �τ N 7→ A

E;Γ ⊢ t : M �τ M 7→ A

E;Γ ⊢ t : A

E;Γ ⊢ t : A
x < FV(Γ)

E;Γ ⊢ t : ∀xτ. A

E;Γ ⊢ t : ∀xτ. A

E;Γ ⊢ t : A[Nτ/xτ]

Figure 4 Deduction rules for PAω+

◮ Remarks.

1. The only deduction rules that alter proof terms are the axiom, Peirce’s law, and the introduction
and elimination rules of implication. The remaining rules do not affect proof terms and are said to
be computationally transparent.

2. The proof system of PAω+ enjoys no normalization property since the proposition ⊤ defined by
⊤ := λxy. x �o λxy. y 7→ ⊥ acts as a type of all proof terms. Nevertheless, the system is correct
w.r.t. the intended classical realizability semantics (see section 3.4).

3. This proof system allows full classical reasoning thanks to Pierce’s law. Arithmetical reasoning
(including reasoning by induction) can be recovered by relativizing all quantifications over the
sort ι using the predicate x ∈ N := ∀Zo.Z 0⇒ (∀yι.Z y⇒ Z (S y))⇒ Z x (see below).

6 Extracting Herbrand trees in classical realizability using forcing

3.3 Sets and datatypes

In PAω+, a set is given by a sort τ together with a relativization predicate P of sort τ→ o expressing
membership in the set. For instance, the set of total relations between individuals is given by the sort
ι→ ι→ o and the predicate Tot R := ∀xι.∃yι.R x y.

Because the sort τ can be inferred from the sort of P, we will identify sets with their relativization
predicates. For convenience, we use the suggestive notations x ∈ P (resp. ∀x ∈ P. A, ∃x ∈ P. A) for
P x (resp. ∀x. P x⇒ A, ∃x. x ∈ P & A). In what follows, datatypes will be represented as particular
sets based on the sort τ ≡ ι and whose relativization predicate P is invariant under forcing (see section
4.2). For instance, the datatypes of Booleans and natural numbers are given by

x ∈ Bool := ∀Zι→o.Z 0⇒ Z 1⇒ Z x x ∈ N := ∀Zι→o.Z 0⇒
(

∀yι.Z y⇒ Z (S y)
)

⇒ Z x

(The proof of their invariance under forcing is delayed until section 5.5.) We also consider two
abstract datatypes Term and Atom representing ground terms and atomic formulas (whose exact
implementation is irrelevant). More generally, inductive datatypes are defined by implementing
constructors as suitable functions from individuals to individuals and by defining the corresponding
predicate by well-known second-order encodings. For instance, the datatype of binary trees

t, t′ := Leaf ~v | Node a t t′ where ~v ∈ Term, a ∈ Atom

is given by two injective functions Leafι→ι and Nodeι→ι→ι→ι whose ranges do not overlap (the actual
implementation is irrelevant here) and the corresponding relativization predicate t ∈ Tree is

∀Zι→o. (∀~v ∈ Term .Z (Leaf ~v)) ⇒ (∀tι1tι2 a ∈ Atom .Z t1 ⇒ Z t2 ⇒ Z (Node a t1 t2)) ⇒ Z t .

We also introduce the inductive datatype Comp of quantifier-free formulas built above Atom:

c, c′ := y | a | c⇛ c′ where a ∈ Atom

This presentation based on implication is more suited to classical realizability (see below), but Comp
is nothing but the free Boolean algebra generated by Atom.

3.4 Realizability semantics

System PAω+ has a classical realizability semantics in the spirit of Krivine’s [8] that is fully described
in [11, 12]. This semantics is based on Krivine’s λc-calculus (that contains all proof terms of PAω+)
and parametrized by a fixed set of processes (the pole of the realizability model). According to this
semantics, every (closed) proof term t of a (closed) proposition A is a realizer of A (written t
 A),
and this independently from the choice of the pole. In the particular case where the pole is empty,
the realizability model collapses to a Tarski model of PAω+, from which we deduce the logical
consistency of the system. This classical realizability semantics also provides simple methods to
extract witnesses from realizers (and thus from proofs) of Σ0

1-propositions [10].

4 The Forcing Transformation

4.1 Forcing in PAω+

This section is a reformulation of Cohen’s theory of forcing (developed for ZF set theory) in the
framework of PAω+. Here, we see forcing as a translation of facts about objects living in an extended

universe (where sorts intuitively contain much more inhabitants) to facts about objects living in the
base universe. Technically, we shall first present forcing as a translation from system PAω+ to itself.

Lionel Rieg 7

(σ→ τ)∗ := σ∗ → τ∗ ι∗ := ι o∗ := κ → o

(xτ)∗ := xτ
∗

0∗ := 0 (∀xτ. A)∗ := λrκ.∀xτ
∗

. A∗ r

λxτ.M := λxτ
∗

.M∗ S ∗ := S (M � N 7→ A)∗ := λrκ.M∗ � N∗ 7→ A∗ r

(M N)∗ := M∗ N∗ rec∗τ := recτ∗ (A⇒ B)∗ := λrκ.∀qκ∀(r′)κ. r � qr′ 7→

(∀sκ.C[qs]⇒ A∗ s)⇒ B∗ r′

x∗ := x (λx. t)∗ := γ1(λx. t∗[(β3y)/y][(β4 x)/x]) y , x

(t u)∗ := γ3 t∗ u∗ callcc∗ := λcx. callcc(λk. x (α14 c) (γ4 k))

β3 := λxc. x (α9 c) β4 := λxc. x (α10 c) γ1 := λxcy. x y (α6 c) γ3 := λxyc. x (α11c) y γ4 := λxcy. x (y (α15c))

Figure 5 The forcing translations τ 7→ τ∗, M 7→ M∗ and t 7→ t∗

But in section 4.3, we will see how to add a generic filter G to system PAω+, so that forcing will be
actually a translation from system PAω+ +G to system PAω+. We follow here the presentation of
[11, 12], where the reader may find all missing proofs.

4.1.1 Definition of a forcing structure

As in [9, 11], we introduce the set of conditions as an upward closed subset C of a meet-semilattice
(κ, ·, 1). (Any poset with a greatest element can be presented in this way.) Formally:

◮ Definition 4.1 (Forcing structure). A forcing structure is given by:
a set C : κ → o of well-formed forcing conditions (p ∈ C being usually written C[p]),
an operation · of sort κ → κ → κ to form the meet of two conditions (denoted by juxtaposition),
a greatest condition 1,
nine closed proof terms representing the axioms that must be satisfied by the forcing structure:

α0 : C[1] α1 : ∀pκqκ.C[pq]⇒ C[p] α2 : ∀pκqκ.C[pq]⇒ C[q]

α3 : ∀pκqκ.C[pq]⇒ C[qp] α4 : ∀pκ.C[p]⇒ C[pp] α5 : ∀pκqκrκ.C[(pq)r]⇒ C[p(qr)]

α6 : ∀pκqκrκ.C[p(qr)]⇒ C[(pq)r] α7 : ∀pκ.C[p]⇒ C[p1] α8 : ∀pκ.C[p]⇒ C[1p]

(This set of axioms is not minimal, since α2, α6 and α8 can be defined from the others combinators.)
The above axioms basically express that the set C is upward-closed w.r.t. the pre-ordering p ≤ q

(‘p is stronger than q’) defined by p ≤ q := ∀rκ.C[pr]⇒ C[qr]. From this definition of the preorder
p ≤ q, we easily check that pq is the meet of p and q and that 1 is the greatest element. On the other
hand, all the elements of κ outside C are equivalent w.r.t. the ordering ≤; they intuitively represent an
‘inconsistent condition’ stronger than all well-formed conditions.

In what follows, we will also need the following derived combinators:

α9 := α3 ◦ α1 ◦ α6 ◦ α3 : ∀pqr.C[pqr]⇒ C[pr] α10 := α2 ◦ α5 : ∀pqr.C[pqr]⇒ C[qr]
α11 := α9 ◦ α4 : ∀pq.C[pq]⇒ C[p(pq)] α12 := α5 ◦ α3 : ∀pqr.C[p(qr)]⇒ C[q(rp)]
α13 := α3 ◦ α12 : ∀p∀q∀r.C[p(qr)]⇒ C[(rp)q]
α14 := α12 ◦ α10 ◦ α4 ◦ α2 : ∀pqr.C[p(qr)]⇒ C[q(rr)] α15 := α9 ◦ α3 : ∀pqr.C[p(qr)]⇒ C[qp]

where αi ◦ α j ◦ · · · ◦ αk stands for λc. αi (α j . . . (αk c) . . .) with c a fresh proof variable.

4.1.2 The three forcing translations

Given a forcing structure, the forcing transformation consists of three translations: τ 7→ τ∗ on sorts,
M 7→ M∗ on higher-order terms (that is extended point-wise to equational theories) and t 7→ t∗ on
proof terms. The translations are given figure 5 (see [12] for the definition of all combinators).

◮ Remarks.

8 Extracting Herbrand trees in classical realizability using forcing

1. The translation on sorts simply replaces occurrences of o by κ → o. This means that propositions
will now depend on an extra parameter which is a forcing condition.

2. The translation on (higher-order) terms changes the sort of the term: Nτ is turned into (N∗)τ
∗

.
The heart of this translation lies in the implication case and it merely propagates through the
connectives in all the other cases.

3. The proof term translation instrumentalizes the computational interaction between abstractions
and applications in proof terms:

it adds the γ3 combinator in front of applications;
it shows the de Bruijn structure of bound variables: if an occurrence of the bound variable x

has de Bruijn index n, it will be translated to βn
3 (β4 x).

4.1.3 The forcing transformation on propositions

From the translation on terms, we define the usual forcing relation p F A on propositions, letting:

p F A := ∀rκ.C[pr]⇒ A∗r .

(This definition extends point-wise to contexts, notation: p F Γ.) In addition to the expected properties
of substitutivity and compatibility with the congruences ≃E, this transformation on propositions enjoys
the following important properties:

◮ Proposition 4.2.
1. Forcing strongly commutes with universal quantification and equational implication:

p F ∀xτ. A ≃ ∀xτ
∗

. (p F A)
p F (M �τ N 7→ A) ≃ M∗ �τ∗ N∗ 7→ (p F A)

2. Forcing is anti-monotonic: ∀pq. (p F A)⇒ (pq F A)
3. Forcing an implication: p F A⇒ B ⇐⇒ ∀qκ. (q F A)⇒ (pq F B)

◮ Theorem 4.3 (Soundness). If the judgment E;Γ ⊢ t : A is derivable in PAω+, then the judgment

E∗; (p F Γ) ⊢ t∗ : p F A is derivable in PAω+.

This theorem is thus an effective way to turn a proof term t : A (expressed in the forcing universe)
into a proof term t∗ : p F A (expressed in the base universe).

4.2 Invariance under forcing

Clearly, the sorts that are invariant under the forcing translation are exactly the T -sorts defining
Gödel’s system T (see section 3.1.2). A proposition A whose free variables live in T -sorts is said to
be invariant under forcing or absolute when there exist two closed proof terms ξA and ξ′

A
such that

ξA : ∀pκ. (p F A)⇒ (C[p]⇒ A) ξ′A : ∀pκ. (C[p]⇒ A)⇒ (p F A) .

An important class of absolute propositions is the class of first-order propositions, that contains the
subclass of arithmetical propositions (in which all quantifications are relativized).

◮ Definition 4.4 (First-order propositions). First-order propositions are defined from the grammar
A, B := ⊥ | Mτ = Nτ | A⇒ B | ∀xσ. A | Mι ∈ N

where σ and τ are T -sorts (see section 3.1.2).

◮ Theorem 4.5 (Invariance). All first-order propositions are invariant under forcing.

Absolute propositions allow to remove a forced hypothesis:

Lionel Rieg 9

◮ Theorem 4.6 (Elimination of a forced hypothesis). If the propositions 1 F A and A ⇒ B are

derivable (in the empty context) and if B is absolute, then B is derivable too (in the empty context).

Proof. Let u and s be proof terms such that u : A ⇒ B and s : 1 F A. Using theorem 4.3,
we have u∗ : 1 F A ⇒ B. Because B is invariant under forcing, the previous theorem gives us
ξB : (1 F B)⇒ C[1]⇒ B. We finally get ξB (γ3 u∗ s)α0 : B. ◭

This theorem is the tool we will use to remove forcing in the proof of existence of a Herbrand tree.

4.3 The generic filter G

We now introduce PAω+ +G, that extends PAω+ with a constant G (the generic filter) and its axioms.
To do so, we first assume that κ ≡ κ∗ (it is a T -sort) and that the set of well-formed conditions C (of
sort ι→ o) is absolute, so that we have two proof terms ξC and ξ′

C
such that

ξC : ∀pq. (p F C[q])⇒ (C[p]⇒ C[q]) ξ′C : ∀pq. (C[p]⇒ C[q])⇒ (p F C[q]) .

(At this stage, we do not need to know the particular implementation of C.)
The proof system PAω+ +G is defined from PAω+ by adding a constant G of sort ι→ o and five

axioms expressing its properties. The first four axioms say that G is a filter in C:
A1 : G is a subset of C: ∀p. p ∈ G ⇒ C[p],
A2 : G is non empty: 1 ∈ G,
A3 : G is upward closed: ∀pq. pq ∈ G ⇒ p ∈ G,
A4 : G is closed under product: ∀pq. p ∈ G ⇒ q ∈ G ⇒ pq ∈ G,
The last axiom—genericity—relies on the following notion:

◮ Definition 4.7 (Dense subset). A set D of sort κ → o is said dense in C if for every element
p ∈ C, there is an element q ∈ C belonging to D and smaller than p. Formally, we let:

D dense := ∀pκ.C[p]⇒ ∃qκ.C[pq] & pq ∈ D (⇔ ∀pκ.C[p]⇒ ∃qκ.C[q] & q ∈ D & q ≤ p)

The last axiom on the set G is then:
A5 : G intersects every set Dκ→o (of the base universe) dense in C:

(∀p.C[p]⇒ ∃q.C[pq] & pq ∈ D) ⇒ ∃p. p ∈ G & p ∈ D.

Now we need to explain how the forcing translation extends to a translation from PAω+ +G to
PAω+. The term translation on the generic filter G is defined by G∗ := λpr.C[pr]. This definition
has the advantage of giving a very simple proposition for p F q ∈ G:

◮ Fact 4.8. p F q ∈ G := ∀r.C[pr]⇒ (q ∈ G)∗r ≃ ∀r.C[pr]⇒ C[qr] ≃ p ≤ q

We now need to prove the proposition ∀pκ. p F Ai (in system PAω+) for each of the five axioms
A1–A5 of the generic filter G. Thanks to proposition 4.2 (anti-monotonicity), it is sufficient to prove
that 1 F Ai. Notice that the proof terms justifying the filter properties of G are small, except the proof
term for genericity (the most complex property).

◮ Proposition 4.9 (Forcing the properties of G).

γ1 (λx. ξ′C (α1 ◦ x ◦ α3)) : 1 F ∀p. p ∈ G ⇒ C[p] (4.9.i)

λx. x : 1 F 1 ∈ G (4.9.ii)

γ1 (λx. α9 ◦ x ◦ α10) : 1 F ∀pq. pq ∈ G ⇒ p ∈ G (4.9.iii)

γ1(λx. γ1 (λy. α13 ◦ y ◦ α12 ◦ x ◦ α2 ◦ α5 ◦ α5)) : 1 F ∀pq. p ∈ G ⇒ q ∈ G ⇒ pq ∈ G (4.9.iv)

10 Extracting Herbrand trees in classical realizability using forcing

γ1 (λx. γ1 (λy. ξ′⊥ (λc. ξ∃2 ξC ξD(γ3 x (ξ′c (λ_ . c))) (α2 (α1 c))
(λc′d. ξ⊥ (γ3(γ3 (β3 (β4 y)) I) (ξ′

D
(λ_. d))) c′))))

: 1 F (∀p.C[p]⇒ ∃q.C[pq] & pq ∈ D)⇒ ∃p. p ∈ G & p ∈ D (4.9.v)

where ξ∃2 is the proof term (built from theorem 4.5) such that

ξ∃2 ξA ξB : (p F ∃n. A & B)⇒ (C[p]⇒ ∃n. A & B)

5 A proof of Herbrand’s theorem by forcing

In order not to alter the meaning of the forcing poset throughout the forcing transformation, we
choose to let κ := ι (the sort of individuals), because ι∗ ≡ ι.

5.1 Programming in PAω+

In order to ease writing proof terms in PAω+, we introduce shorthands for some usual constructions:
〈a, b〉 λ f . f a b let (x, y) = c in M c (λxy.M)

true, false λxy. x, λxy. y if b then f else g b f g

consT a p λx∅x+x−. x+ a (p x∅ x+ x−) consF ap λx∅x+x−. x− a (p x∅ x+ x−)

They come with the deduction rules (admissible in PAω+) given Fig. 6.

E;Γ ⊢ M : A E;Γ ⊢ N : B

E;Γ ⊢ 〈M,N〉 : A ∧ B

E;Γ ⊢ M : A ∧ B E;Γ, x : A, y : B ⊢ N : C
x, y < FV(Γ,M)

E;Γ ⊢ let (x, y) = M in N : C

E;Γ ⊢ true : 1 ∈ Bool E;Γ ⊢ false : 0 ∈ Bool

E;Γ ⊢ M : b ∈ Bool E;Γ ⊢ N : b � 1 7→ A E;Γ ⊢ P : b � 0 7→ A

E;Γ ⊢ if M then N else P : A

E;Γ ⊢ M : a ∈ Atom E;Γ ⊢ N : p ∈ FVal
mem ap ≃E 0

E;Γ ⊢ consT MN : pa1 ∈ FVal
+ idem for consF

Figure 6 Admissible deduction rules in PAω+

We also assume the existence of &&ι→ι→ι and ||ι→ι→ι, the Boolean conjunction and disjunction
together with their defining equations (e.g. 1 && b ≃ b) that must hold at the congruence level.

5.2 Interface for finite relations over Atom×Bool

We describe here an interface implementing finite relations over pairs of atoms and Booleans together
with some operations (union, membership test) and properties. Everything can be implemented for
instance by finite ordered lists of pairs (in the sort ι) without repetition. Let us first describe the terms.
∅ι : the empty relation singι→ι→ι : sing a b denotes {(a, b)} and is written ab

∪ι→ι→ι : union (infix symbol) testι→ι→ι→ι : test p a b tests if the atom a is mapped to b in p

The properties we need on this structure are:
associativity, commutativity, idempotence of ∪
∅ is a neutral element for ∪
the specification equations of test: for all a, a′, b, b′, p, q with a , a′ or n , b′,
test ∅ a b = 0 test ab a b = 1 test ab a′ b′ = 0 test a b (p∪ q) = test a b p || test a b q

Among finite relations, we can distinguish those that are functional, i.e. those representing finite
functions from N to Booleans. We call them finite valuations and denote their set by FVal. Formally,
this set (in the sense of section 3.3) is inductively defined using the following second-order encoding
(which encompasses both finiteness and functionality):

Lionel Rieg 11

p ∈ FVal := ∀Zι→o.Z ∅ ⇒(∀rι.∀a ∈ Atom. mem a r �ι 0 7→ Z r ⇒ Z (r∪ a1))⇒
(∀rι.∀a ∈ Atom. mem a r �ι 0 7→ Z r ⇒ Z (r∪ a0))⇒ Z p

This shows the underlying computational structure of finite valuations: they are isomorphic to lists of
atoms with two cons constructors (one for the atoms mapped to true, one for those mapped to false).

Finally, we assume a function for testing membership, that is a proof term Tottest of the totality of
test: Tottest : ∀p ∈ FVal .∀a ∈ Atom .∀b ∈ Bool . test p a b ∈ Bool. With it, we define two operations

testing membership: mem a p := test a 1 p || test a 0 p

adding the binding (a, b) to p: p∪ ab

and prove the totality of mem with the term
Totmem := λxyuv. Tottest x y true u (Tottest x y false u v) : ∀p ∈ FVal.∀a ∈ Atom. mem a p ∈ Bool.

5.3 Formal statement of Herbrand’s theorem in PAω+

We now formalize in PAω+our statement of Herbrand’s theorem, which we presented in section 2 as
follows:

If U(~x) is a quantifier-free formula and no interpretation validates ∀~x. U(~x),
then ∀~x.U(~x) admits a Herbrand tree.

Since we consider atomic formulas as elements of an abstract datatype (of sort ι) represented by
the set Atom, an interpretation is completely determined by its values on atoms and is thus defined as
a function from atoms to propositions that we represent by a term of sort ι→ o. We can extend an
interpretation ρ to quantifier-free formulas by the function interp(ι→o)→ι→o recursively defined as

interp ρy := ⊥ interp ρ a := ρ a interp ρ (c⇛ c′) := (interp ρ c)⇒ (interp ρ c′)

The universal formula ∀~x.U(~x) is represented by a term V ι→ι mapping any ~v to the correspond-
ing quantifier-free formula in Comp. The premise of Herbrand’s theorem becomes the formula
∀ρι→o.∃~v ∈ Term .¬ interp ρ (V ~v).

We now need to define the proposition expressing that a binary tree is a Herbrand tree. Checking
the correctness of a Herbrand tree is completely computational:
1. go down the tree and remember the partial interpretation of your current branch,
2. evaluate V ~v at the leaves using the partial interpretation accumulated so far.
This process is performed by the function subHtree recursively defined by

subHtree p (Node a t1 t2) := subHtree (p∪ a1) t1 && subHtree (p∪ a0) t2

subHtree p (Leaf ~v) := eval (V ~v) b p

The case of leaves is treated using a Boolean function evalι→ι→ι→ι checking whether the truth value
of V ~v (1st arg.) is equal to b (2nd arg.) in the valuation p (3rd arg.) The only non trivial case is the
case of an atom where we need to look for the binding (a, b) into p, which can be done by the test
function (see section 5.2). Since p is partial, eval (V ~v) b p = 0 can have two causes: either the truth
value of V ~v in p is 1− b or p does not contain enough information to evaluate V ~v. Conversely, when
eval (V ~v) b p = 1, it means both that p contains enough information to evaluate V ~v and that the result
is b. Using subHtree, we finally define the predicate subH p expressing the existence of a Herbrand
tree below the finite (and partial) valuation p: subH p := ∃t ∈ Tree. subHtree p t = 1.

Summing up, the formal statement of Herbrand’s theorem in PAω+is
(

∀ρι→o.∃~v ∈ Term .¬ interp ρ (V ~v)
)

⇒ subH ∅. (H)

◮ Lemma 5.1 (subH-merging). Let p be a partial interpretation and let a be an atom not appearing

in p. If we have both subH (p∪ a1) and subH (p∪ a0), then we have subH p.

12 Extracting Herbrand trees in classical realizability using forcing

Proof. If t1 and t2 are Herbrand trees below p∪ a1 and p∪ a0 respectively, then Node a t1 t2 is a
Herbrand tree below p. In PAω+, this lemma is formally stated as the proposition

∀pι.∀a ∈ Atom . mem a p � 0 7→ subH(p∪ a1)⇒ subH(p∪ a0)⇒ subH p

which is proved by merge := λxaxy. let (x1, x2) = x in let (y1, y2) = y in 〈Node xa x1 y1, y2 ◦ x2〉. ◭

◮ Lemma 5.2 (Monotonicity). The functions test, eval and subHtree are monotonic in p.

Proof. There exists proof terms Montest, Moneval and MonsubHtree of the propositions

∀pqab. test a b p = 1⇒ test a b (p∪ q) = 1
∀pq.∀c ∈ Comp .∀b ∈ Bool . eval c b p = 1⇒ eval c b (p∪ q) = 1
∀pq.∀t ∈ Tree . subHtree p t = 1⇒ subHtree(p∪ q) t = 1

For instance, we have Montest := λxy. x y. ◭

◮ Remark. In practice, there is no need to build formal proofs in system PAω+ of monotonicity since
their unrelativized version are realized by the identity term (because they are Horn formulas which
are true in the standard model): we can use them in proofs as axioms and later realize them by I.

◮ Lemma 5.3 (FVal is upward-closed). For all p and q, if (p∪ q) ∈ FVal, then p ∈ FVal.

Proof. There exists a proof term UpFVal : ∀pq. (p∪ q) ∈ FVal⇒ p ∈ FVal. ◭

5.4 Definition of our forcing structure

The interface and functions defined in the previous two sections allow us to build the forcing structure
that we will use for Herbrand’s theorem. In this setting, finite valuations will represent pieces of
information about the current interpretation that will be used to decide which closed instance of the
proposition U(~x) is false. Note that most combinators are the identity thanks to the properties we
imposed on the implementation of finite relations.

◮ Definition 5.4 (Forcing structure for Herbrand’s theorem). Our forcing structure is defined by

κ := ι C[p] := p ∈ FVal∧(subH p⇒ subH ∅) p · q := p∪ q

α1 = α2 = α := λc. let (c1, c2) = c in
〈

UpFVal c1, λx. let (x1, x2) = x in c2 〈x1,MonsubHtree x2〉
〉

α0 := 〈λxyz. z, I〉 α3 = α4 = α5 = α6 = α7 = α8 := I

◮ Remarks.

1. We can simplify α further if we replace MonsubHtree by I (which is a realizer of the same formula).
It then becomes α := λc. let (c1, c2) = c in

〈

UpFVal c1, c2
〉

. Note that in this case, it is no longer a
proof term but only a realizer (which is enough for our purpose).

2. Once we have proven the existence of a Herbrand tree (that is subH ∅), the second part of the
definition of the set C (subH p⇒ subH ∅) is trivial. Therefore, the set C is logically equivalent
to its first part FVal, the set of finite functions from Atom to Bool. It is interesting to notice that
when Atom = N, this is exactly the forcing conditions used to add a Cohen real. This remark
means that our forcing structure actually adds a single Cohen real (in the extended universe)
which turns out to be the model we seek. It is a simple exercise of forcing to show that this real
number is different from all real numbers of the base universe and that it is non computable.

In order to use all the results of section 4 and to be able to remove forcing using proposition 4.6,
we need to prove that both subH and C are absolute.

◮ Proposition 5.5. The sets Tree, subH, FVal and C are invariant under forcing.

Proof. There exist proof terms in PAω+ proving these properties. For instance, for C we have:
ξC := ξ∧ ξFVal (ξ⇒ ξ′subH ξsubH) ξ′

C
:= ξ′∧ ξ

′
FVal (ξ′⇒ ξsubH ξ

′
subH) ◭

Lionel Rieg 13

5.5 The full proof

5.5.1 The big picture

Now that we have our forcing setting, we can turn to the proof itself. It will be split between the base
(B) and forcing universes (F) as shown by the following steps:

1. B Assume the premise ∀ρ.∃~v ∈ Term.¬ interp ρ (V ~v).
2. F Lift the premise to the forcing universe.
3. F Make the proof: t : subH ∅.
4. B Use the forcing translation: t∗ : 1 F subH ∅.
5. B Remove forcing: ξsubH t∗α0 : subH ∅.
6. B Extract a witness.

◮ Remarks.

1. Steps 1 and 2 are automatic (a proof in the base universe is correct in the forcing one),
2. Step 5 has already been explained in the general case,
3. Step 6 uses standard classical realizability techniques and will not be discussed here.
4. Since the premise is not absolute (because of the quantification over interpretationsM of sort
ι → o), we cannot have a proof of Herbrand’s theorem (in the base universe) and only get an
admissible rule in PAω+.

5.5.2 The proof in the forcing universe (step 3)

Recall the formal statement of Herbrand’s theorem (H) given in section 5.3. Since we are now in the
forcing universe, we can use the properties of the generic filter G given in section 4.3. As usual with
proof in forcing, we start by building the generic valuation g :=

⋃

G, which is legal because G is a
filter. Instead of full genericity, we will use a specialized axiom

∀a ∈ Atom .∃p ∈ G.∃b ∈ Bool . test p a b = 1 (A)

In particular, (A) implies that the generic valuation g is total and is an interpretation. First of all, we
lift this axiom to quantifier-free formulas:

◮ Lemma 5.6 (Evaluation by G). There exists a proof term proving the proposition

∀c ∈ Comp .∃p ∈ G.∃b ∈ Bool . eval c b p = 1 & if b then interp g c else ¬(interp g c)

Proof. The second part of the conjunct simply says that g must interpret a quantifier-free formula
c exactly as any p in G would do, which is obvious by definition of g. We can therefore focus our
attention on the first part on the conjunct, which is proved by induction on c, using property (4.9.iv)
for the case of implication and axiom (A) for the case of atoms. ◭

Because g is an interpretation, we can feed it to the premise of (H) to get terms ~v such that
~v ∈ Term (1) and ¬ interp g (V ~v) (2). Using lemma 5.6 above with V ~v, we get p ∈ G and b ∈ Bool
such that eval (V ~v) b p = 1 (3) and if b then interp g (V ~v) else ¬(interp g (V ~v)) (4). Since b ∈ Bool,
we can make a case analysis:
1. b = 1: By (4), we have interp g (V ~v) which is in contradiction with (2).
2. b = 0: The equation (3) gives us eval (V ~v) 0 p = 1 which, combined with (1), makes a proof of

subH p (take t := Leaf ~v). But p ∈ G and G ⊂ C so that we have C[p] and thus subH p⇒ subH ∅
which allows us to conclude.

14 Extracting Herbrand trees in classical realizability using forcing

5.5.3 Back to the base universe (step 4)

Converting our proof term t : subH ∅ in the forcing universe into a proof term t∗ : 1 F subH ∅ in the
base universe follows exactly the methodology of section 4. The only subtlety is that instead of the
genericity property of G (property (4.9.v)), we use the axiom (A) and we now need to translate it.

◮ Proposition 5.7 (Forcing the extra axiom on G). There is a proof term in PAω+proving

1 F ∀a ∈ Atom .¬(∀pιbι. p ∈ G ⇒ b ∈ Bool⇒ test p a b = 1⇒ ⊥)

Proof. The proof term is given in Fig. 7. Note that we use the simplified version of α. ◭

6 Computational interpretation

The proof (by forcing) of the previous section gives birth to an algorithm for computing Herbrand
trees. In order to analyze this algorithm, we use Krivine’s classical realizability [8]. This framework
is based on an abstract machine (called the KAM) for a classical λ-calculus called λc containing
the usual λ-calculus plus an instruction callcc realizing Pierce’s law [5]. The main interest of this
machine is that it can be easily extended, for instance with the quote instruction in order to realize
the axiom of dependent choices [7]. It is in this setting that the computational content of forcing has
been studied [9, 11].

Computationally, a realizer of C[p] is a dependent type of a zipper [6] at position p. Its first part
(p ∈ FVal) behaves as a finite list of pairs (a, b) (where a is an atom and b a Boolean). It represents a
finite approximation of the generic valuation g and justifies that g =

⋃

G is a Cohen real. Its second
part (subH p ⇒ subH ∅) means that provided we can find a Herbrand tree below p, we have a full
Herbrand tree: it represents a tree context where the hole is at position p.

λca f . let (c1, c2) = α c in a′ := ξAtom a (α c) : a ∈ Atom
if Totmem c1 a′ then

if Tottest c1 a′ true then f (α c) I true∗ I∗ else f (α c) I false∗ I∗

else f
〈

UpFVal(consT a′ c1), λu. f
〈

UpFVal(consT a′ c1), λv. c2 (merge a′ u v)
〉

I true∗ I∗
〉

Figure 7 The program realizing the axiom (A)

From this perspective, the key ingredient of the proof is axiom (A) that is responsible for the
insertion of new nodes in the Herbrand tree. It lies at the interface between the premise and the
forcing condition and behaves as a scheduler that extends the tree and swaps between branches. Given
an atom a, this program (given Fig. 7) finds a Boolean b and a partial valuation p in G containing a.
Its general idea is to use the first component of the current forcing condition (q,T) as a witness for p

because it is then easy to find a realizer of p ∈ G. But q does not necessarily contain a so that we
might need to extend it.

More precisely, we first test whether a belong to the current forcing condition (line 2). When
a belongs to q, we take p := q and b becomes the value of a in q (either 1 or 0). Then, it simply
amounts to applying the continuation f to the computational witnesses for q and b: I : q F q ∈ G,
true∗ : q F 1 ∈ Bool or false∗ : q F 0 ∈ Bool and I∗ : q F test q a b = 1. When a does not belong to q,
we weed to extend q. Since we cannot know which value must a be mapped to, we consider both
cases and hence make two calls to f (last line). This second case is very similar to the first one (again
calls to f with adequate witnesses) except that this time, we modify heavily the forcing condition: we
extend the tree. The two calls to f can be understood intuitively as follows: first we lead f to believe
we have a tree context for p := qa1 (i.e. a fictitious realizer T ′ of subH qa1 ⇒ subH ∅) although at the
time, we only have one for q. When the computation inside f will use T ′, it will provide a Herbrand

Lionel Rieg 15

tree t1 below qa1. We then swap branches and call f again with p := qa0 because this time, we do
have a tree context for it, namely λx.T (Node a t1 x). Axiom A is the only point where the second
component of a forcing condition is modified because no combinator (neither I nor α) affect it: it
is the primitive actually building the Herbrand tree and modifying the control flow (by scheduling
branches).

Furthermore, our realizer is completely intuitionistic, which means that any backtrack during
execution will originate from the realizer of the premise and cannot affect the forcing condition where
the partial tree under construction is stored (and thus cannot affect this partial tree). Indeed, through
the forcing transformation, any use of callcc in the premise is translated to the proof term callcc∗ that
takes care of saving and restoring the forcing condition. This restricted form of backtrack becomes a
real instruction in the KFAM [12] (Krivine’s Forcing Abstract Machine) which hard-wires the forcing
translation of section 4 and features two execution modes:

a real mode where terms have their usual KAM behavior,
a forcing mode (or protected mode) where the first slot on the stack is considered as a forcing
condition and terms behave as if they were translated through the forcing transformation.

In this machine, the premise of Herbrand’s theorem would be executed only in forcing mode and
could not affect the forcing condition (stored on the first slot of the stack).

Finally, the proof of section 5.5.2 in the forcing universe PAω+ +G never uses the upward closure
of G (property 4.9.iii). This means that we do not need to erase information from the forcing condition
and suggests that our realizer is efficient.

References

1 Paul J. Cohen. The independence of the continuum hypothesis. Proc. of the Nat. Acad. of Sc. of the

USA, 50:1143–1148, 1963.
2 Paul J. Cohen. The independence of the continuum hypothesis II. Proc. of the Nat. Acad. of Sc. of

the USA, 51:105–110, 1964.
3 P.-L. Curien and Hugo Herbelin. The duality of computation. In ICFP, pages 233–243, 2000.
4 Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem proving modulo. Journal of Auto-

mated Reasoning, 31(1):33–72, 2003.
5 Timothy G. Griffin. A formulae-as-types notion of control. In Principles Of Programming Lan-

guages (POPL’90), pages 47–58, 1990.
6 Gérard P. Huet. The zipper. Journal of Functional Programming, 7(5):549–554, 1997.
7 Jean-Louis Krivine. Dependent choice, ‘quote’ and the clock. Theoretical Computer Science,

308(1-3):259–276, 2003.
8 Jean-Louis Krivine. Realizability in classical logic. In Interactive models of computation and

program behaviour, volume 27 of Panoramas et synthèses, pages 197–229. Société Mathématique
de France, 2009.

9 Jean-Louis Krivine. Realizability algebras: a program to well order r. Log. Meth. in Comp. Sc.,
(TLCA’09):3:02, 47, 2010.

10 Alexandre Miquel. Existential witness extraction in classical realizability and via a negative trans-
lation. In Log. Meth. in Comp. Sc., 2010.

11 Alexandre Miquel. Forcing as a program transformation. Logic in Computer Science, pages 197–
206, 2011.

12 Alexandre Miquel. Forcing as a program transformation. Mathematical Structures in Computer

Science, 2013. to appear.
13 M. Parigot. Proofs of strong normalisation for second order classical natural deduction. J. of Symb.

Log., 62(4):1461–1479, 1997.

	Introduction
	Herbrand trees
	The notion of Herbrand tree
	Extracting Herbrand trees effectively

	The higher-order arithmetic PAw+
	Syntax
	Sorts and higher-order terms
	System T is a fragment of PAw+

	Proof system
	Congruence
	Proof terms and deduction rules

	Sets and datatypes
	Realizability semantics

	The Forcing Transformation
	Forcing in PAw+
	Definition of a forcing structure
	The three forcing translations
	The forcing transformation on propositions

	Invariance under forcing
	The generic filter G

	A proof of Herbrand's theorem by forcing
	Programming in PAw+
	Interface for finite relations over Atom x Bool
	Formal statement of Herbrand's theorem in PAw+
	Definition of our forcing structure
	The full proof
	The big picture
	The proof in the forcing universe (step 3)
	Back to the base universe (step 4)

	Computational interpretation

