Lionel Rieg # ▶ To cite this version: Lionel Rieg. Extracting Herbrand trees in classical realizability using forcing. Computer Science Logic 2013, Simona Ronchi Della Rocca, Sep 2013, Turin, Italy. pp.15, 10.4230/LIPIcs.CSL.2013.i. ensl-00814278v1 # HAL Id: ensl-00814278 https://ens-lyon.hal.science/ensl-00814278v1 Submitted on 16 Apr 2013 (v1), last revised 11 Dec 2013 (v2) **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. # Lionel Rieg¹ LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA), ENS de Lyon, Université de Lyon 46 allée d'Italie, 69364 LYON, FRANCE lionel.rieg@ens-lyon.fr #### - Abstract Krivine presented in [9] a methodology to combine Cohen's forcing with the theory of classical realizability and showed that the forcing condition can be seen as a reference that is not subject to backtracks. The underlying classical program transformation was then analyzed by Miquel [11] in a fully typed setting in classical higher-order arithmetic ($PA\omega^{+}$). As a case study of this methodology, we present a method to extract a Herbrand tree from a classical realizer of inconsistency, following the ideas underlying the compactness theorem and the proof of Herbrand's theorem. Unlike the traditional proof based on Kőnig's lemma (using a fixed enumeration of atomic formulas), our method is based on the introduction of a particular Cohen real. It is formalized as a proof in $PA\omega^+$, making explicit the construction of generic sets in this framework in the particular case where the set of forcing conditions is arithmetical. We then analyze the algorithmic content of this proof. 1998 ACM Subject Classification F.4.1 Lambda-calculus and related system Keywords and phrases classical realizability, forcing, Curry-Howard correspondence, Herbrand trees Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p #### Introduction Forcing is a model transformation initially invented by Cohen [1, 2] to prove the relative consistency of the negation of the continuum hypothesis with respect to the axioms of Zermelo-Fraenkel (ZF) set theory. From a model-theoretic point of view, forcing is a technique to extend a given model of ZF—the base model—into a larger model—the generic extension—generated around the base model from a new set with good properties: the generic filter G. From a proof-theoretic point of view, forcing can be presented as a logical translation that maps formulas expressing properties of the extended model into formulas expressing (more complex) properties of the base model. Through this translation, the properties of the (fictitious) generic set G (in the extended universe) are reduced to the properties of the forcing poset C (in the base universe) that parametrizes the whole construction. Recently, Krivine studied [9] Cohen forcing in the framework of the proofs-as-programs correspondence in classical logic [5, 13, 3] and showed how to combine it with the theory of classical realizability [8]. In particular, he discovered a program translation (independent from typing derivations) that captures the computational contents of the logical translation underlying forcing. Surprisingly, this program transformation acts as a state passing style translation where the forcing condition is treated as a memory cell that is protected from the backtracks performed by control operators such as callcc [5] —thus opening an intriguing connection between forcing and imperative programming. Reformulating this work in classical higher-order arithmetic ($PA\omega^+$) and analyzing ^{*} This work was supported by the ANR project RÉCRÉ. © Lionel Rieg; licensed under Creative Commons License CC-BY the corresponding program transformation, Miquel [11, 12] introduced an extension of the Krivine Abstract Machine (KAM) devoted to execution of proofs by forcing—the KFAM—where the forcing condition is explicitly treated as a memory cell in the context of the execution of a proof by forcing. These analogies naturally suggest that Cohen forcing can be used not only to prove relative consistency results, but also to write computationally more efficient (classical) proofs by exploiting the imperative flavor of the forcing condition. In this paper, we propose to instantiate this technique on one example, namely the extraction of a Herbrand tree (see section 2) from a validity proof of an existential formula $\exists \vec{x}. F(\vec{x})$ where $F(\vec{x})$ is quantifier-free. Our extraction procedure is based on a proof of a mix between compactness and Herbrand's theorem using the method of forcing. The key ingredient of this proof by *reductio ad absurdum* is the introduction of a Cohen real (using forcing) that represents the infinite branch leading to a contradiction. From a computational point of view, we shall see that the corresponding program uses the forcing condition to store the tree under construction, thus protecting it from the backtracks induced by classical reasoning. However, the interest of this approach is that since the conclusion of our semantic variant of Herbrand's theorem is Σ_1^0 , any proof (program) of the translation of the conclusion (through the forcing translation) can be turned into a proof (program) of the conclusion itself. From this, it is then possible to apply standard witness extraction techniques in classical realizability [10] to extract the desired Herbrand tree. # Contribution of the paper This work follows on from [9] and [11]. The contributions are the following: - The extension of the program transformation underlying forcing to a generic filter G (in the case where the forcing sort is a system T sort and its relativization predicate is invariant under forcing). - A proof of a semantic variant of Herbrand's theorem (containing compactness) by forcing where the contradictory interpretation is introduced in the extended universe as a Cohen real. - A formalization of this proof in the formal system $PA\omega^+$ which, through the forcing transformation, gives an extraction process for Herbrand trees. - An analysis of the computational content of this extraction process in classical realizability. # 2 Herbrand trees #### 2.1 The notion of Herbrand tree Throughout this paper we are interested in the following problem. Let $\exists \vec{x}. F(\vec{x})$ be a purely existential formula, where $F(\vec{x})$ is quantifier-tree. (In what follows, we work in a given countable first-order language, and write Term and Atom the countable sets of closed terms and of closed atomic formulas, respectively.) Let us now assume that the formula $\exists \vec{x}. F(\vec{x})$ is true in all models, and actually in all *syntactic models*, where variables are interpreted by closed terms $t \in \text{Term}$. From this information, we know that there is a function $H: (\text{Atom} \to \text{Bool}) \to \overline{\text{Term}}$ that associates to every syntactic interpretation $\rho: \text{Atom} \to \text{Bool}$ a tuple of closed terms $H(\rho) = \vec{t} \in \overline{\text{Term}}$ such that $\rho \models F(\vec{t})$ (i.e. a 'witness' for the formula $\exists \vec{x}. F(\vec{x})$ in the interpretation ρ). However, the information provided by the function H is twice infinite: it is infinite in depth since each interpretation ρ : Atom \to Bool is (a priori) infinite, and it is infinite in width since the set of all such interpretations has the power of continuum. Nevertheless, the compactness theorem combined with Herbrand's theorem says that we can compact the information given by the a priori infinite function H into a finite tree, that is called a *Herbrand tree*: ▶ **Definition 2.1** (Herbrand tree). A *Herbrand tree* is a finite binary tree *H* such that: The inner nodes of H are labeled with atomic formulas $a \in A$ tom, so that every branch of the tree represents a partial interpretation (going left means 'true', going right means 'false'). - Every leaf of H contains a witness for the corresponding branch, that is a tuple $\vec{t} \in \overrightarrow{\text{Term}}$ such that $\rho \models F(\vec{t})$ for every (total) interpretation ρ that extends that partial interpretation of the branch. - ▶ **Theorem 2.2.** If the formula $\exists x.F(\vec{x})$ is true in all (syntactic) models, then it has a Herbrand tree. The aim of this paper is to describe a method to effectively extract a Herbrand tree from a proof (actually a classical realizer) of the proposition expressing that 'the formula $\exists x. F(\vec{x})$ holds in all syntactic models'. Since the latter proposition is directly implied by the formula $\exists x. F(\vec{x})$ itself (using the trivial implication of the completeness theorem), we will thus get a method to effectively extract a Herbrand tree from a proof/realizer of the formula $\exists x. F(\vec{x})$. # 2.2 Extracting Herbrand trees effectively In the framework of the Curry-Howard correspondence, the natural method to extract Herbrand trees is to use a classical realizer t_0 obtained from a formal proof of Theorem 2.2. By applying t_0 to a realizer u of the premise of Theorem 2.2, we get a realizer of the Σ_1^0 -formula expressing the existence of a Herbrand tree for the formula $\exists x. F(\vec{x})$, from which we can retrieve the desired Herbrand tree using standard classical extraction techniques [10]. Given an enumeration $(a_i)_{i\in\mathbb{N}}$ of the closed instances of the atomic formulas appearing in $F(\vec{x})$, let us consider the infinite binary tree whose 2^i nodes at
depth i are labeled with the atom a_i . Any infinite branch in this infinite tree is an interpretation ρ , because all atoms appear along it. From our assumption, we know that there is a tuple $\vec{t} \in \overrightarrow{\text{Term}}$ such that $\rho \models F(\vec{t})$. But since the calculation of the truth value of the closed formula $F(\vec{t})$ only relies on a finite subset of ρ , we can cut the branch along ρ at some depth d, putting a leaf labeled with \vec{t} . Doing this in all branches simultaneously, we thus get a finite tree (by weak Kőnig's lemma), which is by construction a Herbrand tree. # **Figure 1** A proof of Theorem 2.2 by enumerating the atoms However, the efficiency of the extracted code highly depends on the proof of Theorem 2.2. In particular, the traditional proof of this theorem (Fig. 1), that relies on a fixed enumeration of all atoms, is not well suited to this task, since it gives terribly poor performances on formulas $F(\vec{x})$ involving atoms that appear late in the chosen enumeration. What we want is a proof/realizer of Theorem 2.2 that chooses the atoms labeling the nodes only in function of the realizer of its premise. In what follows, we present a novel proof of Theorem 2.2 that is tailored for this purpose, and that relies on the forcing techniques developed in [9, 11, 12]. In this case, the forcing condition is a Cohen real which behaves as a generic valuation, *i.e.* it represents all infinite branch at once. As we will see in section 6, it is computationally a scheduler that will extend the tree under construction on request, depending on the atoms required by the realizer of the premise. It will scan the whole tree and schedule pending branches until the full Herbrand tree is built. # 3 The higher-order arithmetic PA ω^+ In this section, we recall $PA\omega^+$, the formal proof system in which this work takes place. It is a presentation of classical higher-order arithmetic with explicit (classical) proof terms, inspired by Church's theory of simple types. It features an extra congruence on terms, in the spirit of deduction modulo [4]. This section is a summary of the presentation of $PA\omega^+$ in [11]. We refer the reader to it for more details and proofs of the results stated here. #### 3.1 Syntax System $PA\omega^+$ distinguishes three kinds of syntactic entities: *sorts* (or *kinds*), *higher-order terms*, and *proof terms*, whose grammar is recalled in Fig 2. Sorts $$\tau, \sigma ::= \iota \mid o \mid \tau \to \sigma$$ Higher-order terms $$M, N, A, B ::= x^{\tau} \mid \lambda x^{\tau}. M \mid MN \mid 0 \mid S \mid \operatorname{rec}_{\tau}$$ $$\mid A \Rightarrow B \mid \forall x^{\tau}. A \mid M \doteq_{\tau} N \mapsto A$$ Proof-terms $$t, u ::= x \mid \lambda x. t \mid tu \mid \text{callcc}$$ Figure 2 Syntax of PAω⁺ # 3.1.1 Sorts and higher-order terms Sorts are simple types formed from the two basic sorts ι (the sort of *individuals*) and o (the sort of *propositions*). Higher-order terms — which we will call *terms* for short — are simply-typed λ -terms (à la Church) that are intended to represent *mathematical objects* that inhabit sorts. Higher-order terms of sort ι , that are called *individuals*, are formed using the two constructors 0 (of sort ι), S (of sort $\iota \to \iota$) and the family of recursors $\operatorname{rec}_{\tau}$ (of sort $\tau \to (\iota \to \tau \to \tau) \to \iota \to \tau$). Higher-order terms of sort o, that are called *propositions* (and written A, B, C, etc. in what follows), are formed using implication $A \Rightarrow B$ (where A and B are propositions), universal quantification $\forall x^{\tau}$. A (where A is a proposition possibly depending on the variable x^{τ}) and a new connective $M \doteq_{\tau} N \mapsto A$ called an *equational implication* (where M and N are of sort τ and where A is a proposition). This new connective must be thought of as a kind of implication, but giving more compact proof terms. It makes the computational contents of the forcing translation more transparent, but it is logically equivalent to the usual implication $M =_{\tau} N \Rightarrow A$, via the proof terms: $$\lambda xy.yx: (M \doteq N \mapsto A) \Rightarrow (M = N \Rightarrow A), \qquad \lambda x.x(\lambda y.y): (M = N \Rightarrow A) \Rightarrow (M \doteq N \mapsto A)$$ (See fig. 4 for a definition of the proof system.) As usual, application is left associative whereas implication and equational implication are both right associative and have same precedence: $A \Rightarrow M \doteq N \mapsto B \Rightarrow C \Rightarrow D$ has to be read as $A \Rightarrow (M \doteq N \mapsto (B \Rightarrow (C \Rightarrow D)))$. Logical connectives (absurdity, negation, conjunction, disjunction) are defined using the standard second-order encodings, as well as Leibniz equality, letting: $x =_{\tau} y := \forall Z^{\tau \to o}. Z x \Rightarrow Z y$. Existential quantification (possibly combined with conjunctions) is encoded classically using De Morgan laws: $\exists x^{\tau}. A_1 \& \dots \& A_k := \neg(\forall x^{\tau}. A_1 \Rightarrow \dots \Rightarrow A_k \Rightarrow \bot)$. We will often omit the sort annotation τ to ease reading when this does not hinder understanding. # 3.1.2 System T is a fragment of $PA\omega^+$ Gödel's system T can be recovered from $PA\omega^+$ as the subsystem where we restrict sorts to be T-sorts, that is sorts built with ι as the only base sort. This constraint casts out all logical constructions and limits the term construction rules exactly to those of system T. Recall that the expressiveness of system T is exactly the functions which are provably total in first-order arithmetic, which includes (and exceeds) all primitive recursive functions. ### 3.2 Proof system #### 3.2.1 Congruence The proof system $PA\omega^+$ differs from higher-order arithmetic by the addition of a congruence $\approx_{\mathcal{E}}$ to the proof system. This allows to reason modulo some equivalence on higher-order terms (hence on propositions) without polluting the proof terms with computationally irrelevant parts. This congruence contains the usual $\beta\eta\iota$ -conversion, some semantic equivalences on propositions (mostly commutations) and an equational theory \mathcal{E} . This *equational theory* is a finite set of equations $\mathcal{E} = M_1 = N_1, \dots, M_k = N_k$, where M_i and N_i are higher-order terms of the same sort (that \mathcal{E} considers equal). Some rules for the congruence $\simeq_{\mathcal{E}}$ are given in Fig. 3. $$\frac{M \simeq_{\mathcal{E}} N \qquad P \simeq_{\mathcal{E}} Q \qquad A \simeq_{\mathcal{E},M=P} B}{M \doteq P \mapsto A \simeq_{\mathcal{E}} N \doteq Q \mapsto B}$$ $$\frac{M \doteq M \mapsto A \simeq_{\mathcal{E}} A \qquad A \Rightarrow_{\mathcal{E}} M \doteq N \mapsto B \simeq_{\mathcal{E}} M \doteq N \mapsto A \Rightarrow B}{\forall x^{\mathsf{T}}.M \doteq N \mapsto A \simeq_{\mathcal{E}} M \doteq N \mapsto \forall x^{\mathsf{T}}.A} \quad x \notin FV(M,N)$$ **Figure 3** Some inference rules for the relation \simeq_{ε} #### 3.2.2 Proof terms and deduction rules Proof terms (Fig. 2) are pure λ -terms enriched with an extra constant callcc; they are formed from a set of *proof variables* (notation: x, y, z, etc.) distinct from higher-order term variables. The deduction system of $PA\omega^+$ is defined around a typing judgment of the form \mathcal{E} ; $\Gamma \vdash t : A$, where \mathcal{E} is an equational theory and Γ a *context*, that is: a finite set of bindings of distinct proof variables x_i to propositions A_i . The deduction rules, given in Fig 4, are the ones of higher-order arithmetic, with slight modifications to deal with the congruence and equational implication. $$\frac{\mathcal{E}; \Gamma \vdash t : A}{\mathcal{E}; \Gamma, x : A \vdash x : A} \qquad \frac{\mathcal{E}; \Gamma \vdash t : A}{\mathcal{E}; \Gamma \vdash t : A'} \land \cong_{\mathcal{E}} A' \qquad \overline{\mathcal{E}; \Gamma \vdash \text{callcc} : ((A \Rightarrow B) \Rightarrow A) \Rightarrow A}$$ $$\frac{\mathcal{E}; \Gamma, x : A \vdash t : B}{\mathcal{E}; \Gamma \vdash \lambda x . t : A \Rightarrow B} \qquad \frac{\mathcal{E}; \Gamma \vdash t : A \Rightarrow B}{\mathcal{E}; \Gamma \vdash t u : B}$$ $$\frac{\mathcal{E}, M = N; \Gamma \vdash t : A}{\mathcal{E}; \Gamma \vdash t : M \doteq_{\tau} N \mapsto A} \qquad \frac{\mathcal{E}; \Gamma \vdash t : M \doteq_{\tau} M \mapsto A}{\mathcal{E}; \Gamma \vdash t : A}$$ $$\frac{\mathcal{E}; \Gamma \vdash t : A}{\mathcal{E}; \Gamma \vdash t : \forall x^{\tau}. A} \qquad \frac{\mathcal{E}; \Gamma \vdash t : \forall x^{\tau}. A}{\mathcal{E}; \Gamma \vdash t : A[N^{\tau}/x^{\tau}]}$$ **Figure 4** Deduction rules for $PA\omega^+$ #### ▶ Remarks. - 1. The only deduction rules that alter proof terms are the axiom, Peirce's law, and the introduction and elimination rules of implication. The remaining rules do not affect proof terms and are said to be *computationally transparent*. - 2. The proof system of $PA\omega^+$ enjoys no normalization property since the proposition \top defined by $\top := \lambda xy. \ x \doteq_o \lambda xy. \ y \mapsto \bot$ acts as a type of all proof terms. Nevertheless, the system is correct w.r.t. the intended classical realizability semantics (see section 3.4). - **3.** This proof system allows full classical reasoning thanks to Pierce's law. Arithmetical reasoning (including reasoning by induction) can be recovered by relativizing all quantifications over the sort ι using the predicate $x \in \mathbb{N} := \forall Z^o. Z \, 0 \Rightarrow (\forall y^\iota. Z \, y \Rightarrow Z(S \, y)) \Rightarrow Z \, x$ (see below). # 3.3 Sets and datatypes In PA ω^+ , a set is given by a sort τ together with a relativization predicate P of sort $\tau \to o$ expressing membership in the set. For instance, the set of total
relations between individuals is given by the sort $\iota \to \iota \to o$ and the predicate Tot $R := \forall x^{\iota}. \exists y^{\iota}. R x y$. Because the sort τ can be inferred from the sort of P, we will identify sets with their relativization predicates. For convenience, we use the suggestive notations $x \in P$ (resp. $\forall x \in P.A$, $\exists x \in P.A$) for Px (resp. $\forall x. Px \Rightarrow A$, $\exists x. x \in P \& A$). In what follows, *datatypes* will be represented as particular sets based on the sort $\tau \equiv \iota$ and whose relativization predicate P is invariant under forcing (see section 4.2). For instance, the datatypes of Booleans and natural numbers are given by $$x \in \text{Bool} := \forall Z^{t \to o}. Z0 \Rightarrow Z1 \Rightarrow Zx \qquad x \in \mathbb{N} := \forall Z^{t \to o}. Z0 \Rightarrow (\forall y^t. Zy \Rightarrow Z(Sy)) \Rightarrow Zx$$ (The proof of their invariance under forcing is delayed until section 5.5.) We also consider two abstract datatypes Term and Atom representing ground terms and atomic formulas (whose exact implementation is irrelevant). More generally, inductive datatypes are defined by implementing constructors as suitable functions from individuals to individuals and by defining the corresponding predicate by well-known second-order encodings. For instance, the datatype of binary trees ``` t, t' := \text{Leaf } \vec{v} \mid \text{Node } a t t' \qquad \text{where } \vec{v} \in \text{Term}, a \in \text{Atom} ``` is given by two injective functions $\operatorname{Leaf}^{t\to t}$ and $\operatorname{Node}^{t\to t\to t\to t}$ whose ranges do not overlap (the actual implementation is irrelevant here) and the corresponding relativization predicate $t\in\operatorname{Tree}$ is $$\forall Z^{t \to o}. \ (\forall \vec{v} \in \text{Term} \ . \ Z \ (\text{Leaf} \ \vec{v})) \ \Rightarrow \ (\forall t_1^t t_2^t \ a \in \text{Atom} \ . \ Z \ t_1 \Rightarrow Z \ t_2 \Rightarrow Z \ (\text{Node} \ a \ t_1 \ t_2)) \ \Rightarrow \ Z \ t \ .$$ We also introduce the inductive datatype Comp of quantifier-free formulas built above Atom: $$c, c' := \bot \mid a \mid c \Rightarrow c'$$ where $a \in Atom$ This presentation based on implication is more suited to classical realizability (see below), but Comp is nothing but the free Boolean algebra generated by Atom. # 3.4 Realizability semantics System $PA\omega^+$ has a classical realizability semantics in the spirit of Krivine's [8] that is fully described in [11, 12]. This semantics is based on Krivine's λ_c -calculus (that contains all proof terms of $PA\omega^+$) and parametrized by a fixed set of processes (the *pole* of the realizability model). According to this semantics, every (closed) proof term t of a (closed) proposition A is a realizer of A (written $t \Vdash A$), and this independently from the choice of the pole. In the particular case where the pole is empty, the realizability model collapses to a Tarski model of $PA\omega^+$, from which we deduce the logical consistency of the system. This classical realizability semantics also provides simple methods to extract witnesses from realizers (and thus from proofs) of Σ_1^0 -propositions [10]. # 4 The Forcing Transformation #### 4.1 Forcing in $PA\omega^+$ This section is a reformulation of Cohen's theory of forcing (developed for ZF set theory) in the framework of $PA\omega^+$. Here, we see forcing as a translation of facts about objects living in an *extended universe* (where sorts intuitively contain much more inhabitants) to facts about objects living in the *base universe*. Technically, we shall first present forcing as a translation from system $PA\omega^+$ to itself. ``` (\sigma \to \tau)^* \; := \; \sigma^* \to \tau^* \iota^* := \iota o^* := \kappa \to o (x^{\tau})^* := x^{\tau^*} 0^* := 0 (\forall x^{\tau}.A)^* := \lambda r^{\kappa}. \forall x^{\tau^*}.A^* r \lambda x^{\tau}. M := \lambda x^{\tau^*}. M^* S^* := S (M \doteq N \mapsto A)^* := \lambda r^{\kappa}. M^* \doteq N^* \mapsto A^* r (A \Rightarrow B)^* := \lambda r^{\kappa}. \forall q^{\kappa} \forall (r')^{\kappa}. r \doteq qr' \mapsto (M N)^* := M^* N^* rec_{\tau}^* := rec_{\tau^*} (\forall s^{\kappa}. C[qs] \Rightarrow A^* s) \Rightarrow B^* r' x^* := x (\lambda x. t)^* := \gamma_1(\lambda x. t^* [(\beta_3 y)/y] [(\beta_4 x)/x]) callcc* := (t u)^* := \gamma_3 t^* u^* \lambda cx. callcc(\lambda k. x(\alpha_{14} c)(\gamma_4 k)) ``` ``` \beta_3 := \lambda x c. \ x (\alpha_9 c) \quad \beta_4 := \lambda x c. \ x (\alpha_{10} c) \quad \gamma_1 := \lambda x cy. \ x y (\alpha_6 c) \quad \gamma_3 := \lambda x y c. \ x (\alpha_{11} c) y \quad \gamma_4 := \lambda x cy. \ x (y (\alpha_{15} c)) \quad \gamma_5 := \lambda x cy. \ x (\gamma_{11} c) y \quad \gamma_6 := \lambda x cy. \ x (\gamma_{11} c) y \quad \gamma_7 := \lambda x cy. \ x (\gamma_{11} c) y \quad \gamma_8 := \lambda x cy ``` **Figure 5** The forcing translations $\tau \mapsto \tau^*$, $M \mapsto M^*$ and $t \mapsto t^*$ But in section 4.3, we will see how to add a generic filter G to system $PA\omega^+$, so that forcing will be actually a translation from system $PA\omega^+ + G$ to system $PA\omega^+$. We follow here the presentation of [11, 12], where the reader may find all missing proofs. # 4.1.1 Definition of a forcing structure As in [9, 11], we introduce the set of conditions as an upward closed subset C of a meet-semilattice $(\kappa, \cdot, 1)$. (Any poset with a greatest element can be presented in this way.) Formally: - ▶ **Definition 4.1** (Forcing structure). A *forcing structure* is given by: - a set $C: \kappa \to o$ of well-formed forcing conditions $(p \in C \text{ being usually written } C[p])$, - \blacksquare an operation \cdot of sort $\kappa \to \kappa \to \kappa$ to form the *meet* of two conditions (denoted by juxtaposition), - a greatest condition 1, - inine closed proof terms representing the axioms that must be satisfied by the forcing structure: ``` \begin{array}{lll} \alpha_0:C[1] & \alpha_1:\forall p^\kappa q^\kappa.C[pq]\Rightarrow C[p] & \alpha_2:\forall p^\kappa q^\kappa.C[pq]\Rightarrow C[q]\\ \alpha_3:\forall p^\kappa q^\kappa.C[pq]\Rightarrow C[qp] & \alpha_4:\forall p^\kappa.C[p]\Rightarrow C[pp] & \alpha_5:\forall p^\kappa q^\kappa r^\kappa.C[pq)r]\Rightarrow C[p(qr)]\\ \alpha_6:\forall p^\kappa q^\kappa r^\kappa.C[p(qr)]\Rightarrow C[(pq)r] & \alpha_7:\forall p^\kappa.C[p]\Rightarrow C[p1] & \alpha_8:\forall p^\kappa.C[p]\Rightarrow C[1p] \end{array} ``` (This set of axioms is not minimal, since α_2 , α_6 and α_8 can be defined from the others combinators.) The above axioms basically express that the set C is upward-closed w.r.t. the pre-ordering $p \le q$ ('p is stronger than q') defined by $p \le q := \forall r^{\kappa}. C[pr] \Rightarrow C[qr]$. From this definition of the preorder $p \le q$, we easily check that pq is the meet of p and q and that 1 is the greatest element. On the other hand, all the elements of κ outside C are equivalent w.r.t. the ordering \le ; they intuitively represent an 'inconsistent condition' stronger than all well-formed conditions. In what follows, we
will also need the following derived combinators: ``` \begin{array}{llll} \alpha_{9} & := & \alpha_{3} \circ \alpha_{1} \circ \alpha_{6} \circ \alpha_{3} & : & \forall pqr. \, C[pqr] \Rightarrow C[pr] & \alpha_{10} & := & \alpha_{2} \circ \alpha_{5} : & \forall pqr. \, C[pqr] \Rightarrow C[qr] \\ \alpha_{11} & := & \alpha_{9} \circ \alpha_{4} & : & \forall pq. \, C[pq] \Rightarrow C[p(pq)] & \alpha_{12} & := & \alpha_{5} \circ \alpha_{3} : & \forall pqr. \, C[p(qr)] \Rightarrow C[q(rp)] \\ \alpha_{13} & := & \alpha_{3} \circ \alpha_{12} & : & \forall p\forall q\forall r. \, C[p(qr)] \Rightarrow C[(rp)q] \\ \alpha_{14} & := & \alpha_{12} \circ \alpha_{10} \circ \alpha_{4} \circ \alpha_{2} : & \forall pqr. \, C[p(qr)] \Rightarrow C[q(rr)] & \alpha_{15} & := & \alpha_{9} \circ \alpha_{3} : & \forall pqr. \, C[p(qr)] \Rightarrow C[qp] \end{array} ``` where $\alpha_i \circ \alpha_j \circ \cdots \circ \alpha_k$ stands for $\lambda c. \alpha_i (\alpha_j ... (\alpha_k c)...)$ with c a fresh proof variable. #### 4.1.2 The three forcing translations Given a forcing structure, the forcing transformation consists of three translations: $\tau \mapsto \tau^*$ on sorts, $M \mapsto M^*$ on higher-order terms (that is extended point-wise to equational theories) and $t \mapsto t^*$ on proof terms. The translations are given figure 5 (see [12] for the definition of all combinators). ▶ Remarks. - 1. The translation on sorts simply replaces occurrences of o by $\kappa \to o$. This means that propositions will now depend on an extra parameter which is a forcing condition. - **2.** The translation on (higher-order) terms changes the sort of the term: N^{τ} is turned into $(N^*)^{\tau^*}$. The heart of this translation lies in the implication case and it merely propagates through the connectives in all the other cases. - **3.** The proof term translation instrumentalizes the computational interaction between abstractions and applications in proof terms: - it adds the γ_3 combinator in front of applications; - it shows the de Bruijn structure of bound variables: if an occurrence of the bound variable x has de Bruijn index n, it will be translated to β_3^n ($\beta_4 x$). # 4.1.3 The forcing transformation on propositions From the translation on terms, we define the usual forcing relation $p \parallel F A$ on propositions, letting: $$p \Vdash A := \forall r^{\kappa}. C[pr] \Rightarrow A^*r$$. (This definition extends point-wise to contexts, notation: $p \Vdash \Gamma$.) In addition to the expected properties of substitutivity and compatibility with the congruences $\simeq_{\mathcal{E}}$, this transformation on propositions enjoys the following important properties: #### ▶ Proposition 4.2. - 1. Forcing strongly commutes with universal quantification and equational implication: - $p \Vdash \forall x^{\tau}.A \simeq \forall x^{\tau^*}.(p \Vdash A)$ - $p \Vdash (M \doteq_{\tau} N \mapsto A) \simeq M^* \doteq_{\tau^*} N^* \mapsto (p \Vdash A)$ - **2.** Forcing is anti-monotonic: $\forall pq. (p \Vdash A) \Rightarrow (pq \Vdash A)$ - **3.** Forcing an implication: $p \Vdash A \Rightarrow B \iff \forall q^{\kappa}. (q \Vdash A) \Rightarrow (pq \Vdash B)$ - ▶ **Theorem 4.3** (Soundness). *If the judgment* \mathcal{E} ; $\Gamma \vdash t : A$ *is derivable in* $PA\omega^+$, *then the judgment* \mathcal{E}^* ; $(p \Vdash \Gamma) \vdash t^* : p \Vdash A$ *is derivable in* $PA\omega^+$. This theorem is thus an effective way to turn a proof term t : A (expressed in the forcing universe) into a proof term $t^* : p \Vdash A$ (expressed in the base universe). # 4.2 Invariance under forcing Clearly, the sorts that are invariant under the forcing translation are exactly the T-sorts defining Gödel's system T (see section 3.1.2). A proposition A whose free variables live in T-sorts is said to be *invariant under forcing* or *absolute* when there exist two closed proof terms ξ_A and ξ'_A such that $$\xi_A : \forall p^{\kappa}. (p \Vdash A) \Rightarrow (C[p] \Rightarrow A)$$ $\xi_A' : \forall p^{\kappa}. (C[p] \Rightarrow A) \Rightarrow (p \Vdash A).$ An important class of absolute propositions is the class of *first-order propositions*, that contains the subclass of *arithmetical propositions* (in which all quantifications are relativized). - ▶ **Definition 4.4** (First-order propositions). First-order propositions are defined from the grammar $A, B := \bot \mid M^{\tau} = N^{\tau} \mid A \Rightarrow B \mid \forall x^{\sigma}. A \mid M^{\iota} \in \mathbb{N}$ where σ and τ are T-sorts (see section 3.1.2). - ▶ **Theorem 4.5** (Invariance). All first-order propositions are invariant under forcing. Absolute propositions allow to remove a forced hypothesis: ▶ **Theorem 4.6** (Elimination of a forced hypothesis). *If the propositions* 1 \Vdash *A and* $A \Rightarrow B$ *are derivable (in the empty context) and if B is absolute, then B is derivable too (in the empty context).* **Proof.** Let u and s be proof terms such that $u:A\Rightarrow B$ and s:1 \mathbb{F} A. Using theorem 4.3, we have $u^*:1$ \mathbb{F} $A\Rightarrow B$. Because B is invariant under forcing, the previous theorem gives us $\xi_B:(1 \mathbb{F} B)\Rightarrow C[1]\Rightarrow B$. We finally get $\xi_B(\gamma_3 u^*s)\alpha_0:B$. This theorem is the tool we will use to remove forcing in the proof of existence of a Herbrand tree. # 4.3 The generic filter G We now introduce $PA\omega^+ + G$, that extends $PA\omega^+$ with a constant G (the generic filter) and its axioms. To do so, we first assume that $\kappa \equiv \kappa^*$ (it is a T-sort) and that the set of well-formed conditions C (of sort $\iota \to o$) is absolute, so that we have two proof terms ξ_C and ξ'_C such that $$\xi_C : \forall pq. (p \Vdash C[q]) \Rightarrow (C[p] \Rightarrow C[q]) \qquad \qquad \xi_C' : \forall pq. (C[p] \Rightarrow C[q]) \Rightarrow (p \Vdash C[q]).$$ (At this stage, we do not need to know the particular implementation of C.) The proof system $PA\omega^+ + G$ is defined from $PA\omega^+$ by adding a constant G of sort $\iota \to o$ and five axioms expressing its properties. The first four axioms say that G is a filter in C: $A_1: G$ is a subset of $C: \forall p. p \in G \Rightarrow C[p]$, A_2 : G is non empty: $1 \in G$, A_3 : G is upward closed: $\forall pq. pq \in G \Rightarrow p \in G$, A_4 : G is closed under product: $\forall pq. p \in G \Rightarrow q \in G \Rightarrow pq \in G$, The last axiom—genericity—relies on the following notion: ▶ **Definition 4.7** (Dense subset). A set *D* of sort $\kappa \to o$ is said *dense* in *C* if for every element $p \in C$, there is an element $q \in C$ belonging to *D* and smaller than *p*. Formally, we let: $$D$$ dense := $\forall p^{\kappa}$. $C[p] \Rightarrow \exists q^{\kappa}$. $C[pq] \& pq \in D$ ($\Leftrightarrow \forall p^{\kappa}$. $C[p] \Rightarrow \exists q^{\kappa}$. $C[q] \& q \in D \& q \leq p$) The last axiom on the set G is then: A_5 : G intersects every set $D^{\kappa \to o}$ (of the base universe) dense in C: $$(\forall p.\, C[p] \Rightarrow \exists q.\, C[pq]\,\&\, pq \in D) \ \Rightarrow \ \exists p.\, p \in G\,\&\, p \in D.$$ Now we need to explain how the forcing translation extends to a translation from $PA\omega^+ + G$ to $PA\omega^+$. The term translation on the generic filter G is defined by $G^* := \lambda pr. C[pr]$. This definition has the advantage of giving a very simple proposition for $p \Vdash q \in G$: ▶ Fact 4.8. $$p \Vdash q \in G := \forall r. C[pr] \Rightarrow (q \in G)^*r \simeq \forall r. C[pr] \Rightarrow C[qr] \simeq p \leq q$$ We now need to prove the proposition $\forall p^k$. $p \Vdash A_i$ (in system $PA\omega^+$) for each of the five axioms A_1 – A_5 of the generic filter G. Thanks to proposition 4.2 (anti-monotonicity), it is sufficient to prove that $1 \Vdash A_i$. Notice that the proof terms justifying the filter properties of G are small, except the proof term for genericity (the most complex property). ▶ **Proposition 4.9** (Forcing the properties of *G*). $$\gamma_1 (\lambda x. \, \xi_C' (\alpha_1 \circ x \circ \alpha_3)) : 1 \, \mathbb{F} \, \forall p. \, p \in G \Rightarrow C[p] \tag{4.9.i}$$ $$\lambda x. \ x: 1 \ \mathbb{F} \ 1 \in G \tag{4.9.ii}$$ $$\gamma_1(\lambda x. \alpha_9 \circ x \circ \alpha_{10}) : 1 \text{ } \mathbb{F} \forall pq. pq \in G \Rightarrow p \in G$$ (4.9.iii) $$\gamma_1(\lambda x, \gamma_1(\lambda y, \alpha_{13} \circ y \circ \alpha_{12} \circ x \circ \alpha_2 \circ \alpha_5 \circ \alpha_5)) : 1 \Vdash \forall pq, p \in G \Rightarrow q \in G \Rightarrow pq \in G$$ (4.9.iv) $$\gamma_{1}(\lambda x. \gamma_{1}(\lambda y. \xi'_{\perp}(\lambda c. \xi_{\exists_{2}} \xi_{C} \xi_{D}(\gamma_{3} x(\xi'_{c}(\lambda_{-}.c))) (\alpha_{2}(\alpha_{1} c))$$ $$(\lambda c'd. \xi_{\perp}(\gamma_{3}(\gamma_{3}(\beta_{3}(\beta_{4} y)) I) (\xi'_{D}(\lambda_{-}.d))) c'))))$$ $$: 1 \mathbb{F} (\forall p. C[p] \Rightarrow \exists q. C[pq] \& pq \in D) \Rightarrow \exists p. p \in G \& p \in D$$ $$(4.9.v)$$ where ξ_{\exists} , is the proof term (built from theorem 4.5) such that $$\xi_{\exists_2}, \xi_A \xi_B : (p \Vdash \exists n. A \& B) \Rightarrow (C[p] \Rightarrow \exists n. A \& B)$$ # 5 A proof of Herbrand's theorem by forcing In order not to alter the meaning of the forcing poset throughout the forcing transformation, we choose to let $\kappa := \iota$ (the sort of individuals), because $\iota^* \equiv \iota$. # 5.1 Programming in $PA\omega^+$ In order to ease writing proof terms in $PA\omega^+$, we introduce shorthands for some usual constructions: $$\langle a,b \rangle$$ $\lambda f. f a b$ $\det(x,y) = c \text{ in } M$ $c(\lambda xy. M)$ true, false $\lambda xy. x, \lambda xy. y$ if b then f else g $b f g$ consT $a p$ $\lambda x_0 x_+ x_-. x_+ a (p x_0 x_+ x_-)$ consF $a p$ $\lambda x_0 x_+ x_-. x_- a (p x_0 x_+ x_-)$ They come with the deduction rules (admissible in $PA\omega^+$) given Fig. 6.
Figure 6 Admissible deduction rules in $PA\omega^+$ We also assume the existence of && $^{\iota \to \iota \to \iota}$ and $\parallel^{\iota \to \iota \to \iota}$, the Boolean conjunction and disjunction together with their defining equations (e.g. 1 && $b \simeq b$) that must hold at the congruence level. #### 5.2 Interface for finite relations over $Atom \times Bool$ We describe here an interface implementing finite relations over pairs of atoms and Booleans together with some operations (union, membership test) and properties. Everything can be implemented for instance by finite ordered lists of pairs (in the sort ι) without repetition. Let us first describe the terms. ``` \emptyset^{\iota}: the empty relation \operatorname{sing}^{\iota \to \iota \to \iota}: \operatorname{sing} a b denotes \{(a, b)\} and is written a^b \cup^{\iota \to \iota \to \iota}: union (infix symbol) \operatorname{test}^{\iota \to \iota \to \iota \to \iota}: \operatorname{test} p \ a \ b tests if the atom a is mapped to b in p ``` The properties we need on this structure are: - \blacksquare associativity, commutativity, idempotence of \cup - \emptyset is a neutral element for \cup - the specification equations of test: for all a, a', b, b', p, q with $a \neq a'$ or $n \neq b'$, $test \emptyset \ a \ b = 0$ $test \ a^b \ a \ b = 1$ $test \ a^b \ a' \ b' = 0$ $test \ a \ b \ (p \cup q) = test \ a \ b \ p \parallel test \ a \ b \ q$ Among finite relations, we can distinguish those that are *functional*, *i.e.* those representing finite functions from \mathbb{N} to Booleans. We call them *finite valuations* and denote their set by FVal. Formally, this set (in the sense of section 3.3) is inductively defined using the following second-order encoding (which encompasses both finiteness and functionality): ``` p \in \text{FVal} := \forall Z^{\iota \to o}. Z\emptyset \Rightarrow (\forall r^{\iota}. \forall a \in \text{Atom. mem } a \, r \doteq_{\iota} 0 \mapsto Z \, r \Rightarrow Z(r \cup a^{1})) \Rightarrow (\forall r^{\iota}. \forall a \in \text{Atom. mem } a \, r \doteq_{\iota} 0 \mapsto Z \, r \Rightarrow Z(r \cup a^{0})) \Rightarrow Z \, p ``` This shows the underlying computational structure of finite valuations: they are isomorphic to lists of atoms with two *cons* constructors (one for the atoms mapped to true, one for those mapped to false). Finally, we assume a function for testing membership, that is a proof term $\mathsf{Tot}_\mathsf{test}$ of the totality of test: $\mathsf{Tot}_\mathsf{test} : \forall p \in \mathsf{FVal} . \forall a \in \mathsf{Atom} . \forall b \in \mathsf{Bool} . \mathsf{test} \ p \ a \ b \in \mathsf{Bool} . \mathsf{With} \ \mathsf{it}, \mathsf{we} \ \mathsf{define} \ \mathsf{two} \ \mathsf{operations}$ testing membership: $\mathsf{mem} \ a \ p := \mathsf{test} \ a \ 1 \ p \| \mathsf{test} \ a \ 0 \ p$ ■ adding the binding (a, b) to $p: p \cup a^b$ and prove the totality of mem with the term $Tot_{mem} := \lambda xyuv$. $Tot_{test} xy$ true $u(Tot_{test} xy \text{ false } uv) : \forall p \in FVal. \forall a \in Atom. mem <math>a p \in Bool.$ # 5.3 Formal statement of Herbrand's theorem in PA ω^+ We now formalize in PA ω^+ our statement of Herbrand's theorem, which we presented in section 2 as follows: If $U(\vec{x})$ is a quantifier-free formula and no interpretation validates $\forall \vec{x}$. $U(\vec{x})$, then $\forall \vec{x}$. $U(\vec{x})$ admits a Herbrand tree. Since we consider atomic formulas as elements of an abstract datatype (of sort ι) represented by the set Atom, an interpretation is completely determined by its values on atoms and is thus defined as a function from atoms to propositions that we represent by a term of sort $\iota \to o$. We can extend an interpretation ρ to quantifier-free formulas by the function interp $^{(\iota \to o) \to \iota \to o}$ recursively defined as ``` interp \rho \perp := \perp interp \rho a := \rho a interp \rho (c \Rightarrow c') := (interp \rho c) \Rightarrow (interp \rho c') ``` The universal formula $\forall \vec{x}. U(\vec{x})$ is represented by a term $V^{\iota \to \iota}$ mapping any \vec{v} to the corresponding quantifier-free formula in Comp. The premise of Herbrand's theorem becomes the formula $\forall \rho^{\iota \to o}$. $\exists \vec{v} \in \text{Term.} \neg \text{interp } \rho(V \vec{v})$. We now need to define the proposition expressing that a binary tree is a Herbrand tree. Checking the correctness of a Herbrand tree is completely computational: - 1. go down the tree and remember the partial interpretation of your current branch, - **2.** evaluate $V \vec{v}$ at the leaves using the partial interpretation accumulated so far. This process is performed by the function subHtree recursively defined by ``` subHtree p (Node a t_1 t_2) := subHtree (p \cup a^1) t_1 && subHtree (p \cup a^0) t_2 subHtree p (Leaf \vec{v}) := eval (V \vec{v}) b p ``` The case of leaves is treated using a Boolean function $\operatorname{eval}^{t \to t \to t}$ checking whether the truth value of $V \vec{v}$ (1st arg.) is equal to b (2nd arg.) in the valuation p (3rd arg.) The only non trivial case is the case of an atom where we need to look for the binding (a,b) into p, which can be done by the test function (see section 5.2). Since p is partial, $\operatorname{eval}(V \vec{v}) b p = 0$ can have two causes: either the truth value of $V \vec{v}$ in p is 1-b or p does not contain enough information to evaluate $V \vec{v}$. Conversely, when $\operatorname{eval}(V \vec{v}) b p = 1$, it means both that p contains enough information to evaluate $V \vec{v}$ and that the result is p. Using subHtree, we finally define the predicate subH p expressing the existence of a Herbrand tree below the finite (and partial) valuation p: subH $p := \exists t \in \text{Tree}$. subHtree p : t = 1. Summing up, the formal statement of Herbrand's theorem in PA ω^+ is $$(\forall \rho^{\iota \to o}. \exists \vec{v} \in \text{Term.} \neg \text{ interp } \rho(V \vec{v})) \Rightarrow \text{subH } \emptyset. \tag{H}$$ ▶ **Lemma 5.1** (subH-merging). *Let p be a partial interpretation and let a be an atom not appearing in p. If we have both* subH $(p \cup a^1)$ *and* subH $(p \cup a^0)$, *then we have* subH $(p \cup a^0)$. ``` \forall p^{\iota}. \forall a \in \text{Atom. mem } a \ p \doteq 0 \mapsto \text{subH}(p \cup a^{1}) \Rightarrow \text{subH}(p \cup a^{0}) \Rightarrow \text{subH } p which is proved by merge := \lambda x_{a} x y. let (x_{1}, x_{2}) = x in let (y_{1}, y_{2}) = y in \langle \text{Node } x_{a} x_{1} y_{1}, y_{2} \circ x_{2} \rangle. ``` ▶ **Lemma 5.2** (Monotonicity). *The functions* test, eval *and* subHtree *are monotonic in p.* **Proof.** There exists proof terms Mon_{test}, Mon_{eval} and Mon_{subHtree} of the propositions ``` \begin{split} \forall pqab. \text{ test } a\,b\,\,p = 1 &\Rightarrow \text{test } a\,b\,(p \cup q) = 1 \\ \forall pq. \forall c \in \text{Comp.} \forall b \in \text{Bool.} \text{ eval } c\,b\,\,p = 1 \Rightarrow \text{eval } c\,b\,(p \cup q) = 1 \\ \forall pq. \forall t \in \text{Tree.} \text{ subHtree}\,\,p\,\,t = 1 \Rightarrow \text{subHtree}(p \cup q)\,\,t = 1 \end{split} ``` For instance, we have $Mon_{test} := \lambda xy. xy.$ - ▶ Remark. In practice, there is no need to build formal proofs in system $PA\omega^+$ of monotonicity since their unrelativized version are realized by the identity term (because they are Horn formulas which are true in the standard model): we can use them in proofs as axioms and later realize them by I. - ▶ **Lemma 5.3** (FVal is upward-closed). For all p and q, if $(p \cup q) \in FVal$, then $p \in FVal$. **Proof.** There exists a proof term Up_{FVal} : $\forall pq. (p \cup q) \in FVal \Rightarrow p \in FVal$. # 5.4 Definition of our forcing structure The interface and functions defined in the previous two sections allow us to build the forcing structure that we will use for Herbrand's theorem. In this setting, finite valuations will represent pieces of information about the current interpretation that will be used to decide which closed instance of the proposition $U(\vec{x})$ is false. Note that most combinators are the identity thanks to the properties we imposed on the implementation of finite relations. ▶ **Definition 5.4** (Forcing structure for Herbrand's theorem). Our forcing structure is defined by ``` \kappa := \iota \qquad C[p] := p \in \text{FVal} \land (\text{subH } p \Rightarrow \text{subH } \emptyset) \qquad p \cdot q := p \cup q \alpha_1 = \alpha_2 = \alpha := \lambda c. \text{ let } (c_1, c_2) = c \text{ in } \langle \text{Up}_{\text{FVal}} \ c_1, \lambda x. \text{ let } (x_1, x_2) = x \text{ in } c_2 \langle x_1, \text{Mon}_{\text{subHtree}} \ x_2 \rangle \rangle \alpha_0 := \langle \lambda xyz. \ z, \text{I} \rangle \qquad \alpha_3 = \alpha_4 = \alpha_5 = \alpha_6 = \alpha_7 = \alpha_8 := \text{I} ``` - ► Remarks. - 1. We can simplify α further if we replace $\operatorname{Mon}_{\operatorname{subHtree}}$ by I (which is a realizer of the same formula). It then becomes $\alpha := \lambda c$. let $(c_1, c_2) = c$ in $\langle \operatorname{Up}_{\operatorname{FVal}} c_1, c_2 \rangle$. Note that in this case, it is no longer a proof term but only a realizer (which is enough for our purpose). - 2. Once we have proven the existence of a Herbrand tree (that is subH ∅), the second part of the definition of the set C (subH p ⇒ subH ∅) is trivial. Therefore, the set C is logically equivalent to its first part FVal, the set of finite functions from Atom to Bool. It is interesting to notice that when Atom = N, this is exactly the forcing conditions used to add a Cohen real. This remark means that our forcing structure actually adds a single Cohen real (in the extended universe) which turns out to be the model we seek. It is a simple exercise of forcing to show that this real number is different from all real numbers of the base universe and that
it is non computable. In order to use all the results of section 4 and to be able to remove forcing using proposition 4.6, we need to prove that both subH and *C* are absolute. ▶ **Proposition 5.5.** *The sets* Tree, subH, FVal and C are invariant under forcing. **Proof.** There exist proof terms in PA ω^+ proving these properties. For instance, for C we have: $$\xi_C := \xi_{\wedge} \, \xi_{\text{FVal}} \, (\xi_{\Rightarrow} \, \xi'_{\text{subH}} \, \xi_{\text{subH}}) \qquad \qquad \xi'_C := \xi'_{\wedge} \, \xi'_{\text{FVal}} \, (\xi'_{\Rightarrow} \, \xi_{\text{subH}} \, \xi'_{\text{subH}}) \qquad \qquad \blacktriangleleft$$ # 5.5 The full proof # 5.5.1 The big picture Now that we have our forcing setting, we can turn to the proof itself. It will be split between the base (**B**) and forcing universes (**F**) as shown by the following steps: - **1. B** Assume the premise $\forall \rho$. $\exists \vec{v} \in \text{Term.} \neg \text{interp } \rho(V \vec{v})$. - **2. F** Lift the premise to the forcing universe. - **3. F** Make the proof: t : subH \emptyset . - **4. B** Use the forcing translation: $t^* : 1$ | F subH \emptyset . - **5. B** Remove forcing: $\xi_{\text{subH}} t^* \alpha_0$: subH \emptyset . - **6. B** Extract a witness. #### ► Remarks. - 1. Steps 1 and 2 are automatic (a proof in the base universe is correct in the forcing one), - 2. Step 5 has already been explained in the general case, - 3. Step 6 uses standard classical realizability techniques and will not be discussed here. - 4. Since the premise is not absolute (because of the quantification over interpretations M of sort t → o), we cannot have a proof of Herbrand's theorem (in the base universe) and only get an admissible rule in PAω⁺. # 5.5.2 The proof in the forcing universe (step 3) Recall the formal statement of Herbrand's theorem (H) given in section 5.3. Since we are now in the forcing universe, we can use the properties of the generic filter G given in section 4.3. As usual with proof in forcing, we start by building the generic valuation $g := \bigcup G$, which is legal because G is a filter. Instead of full genericity, we will use a specialized axiom $$\forall a \in \text{Atom} \ \exists p \in G \ \exists b \in \text{Bool} \ \text{test} \ p \ a \ b = 1$$ (A) In particular, (A) implies that the generic valuation g is total and is an interpretation. First of all, we lift this axiom to quantifier-free formulas: **Lemma 5.6** (Evaluation by G). There exists a proof term proving the proposition $$\forall c \in \text{Comp.} \exists p \in G. \exists b \in \text{Bool.} \text{ eval } c \text{ } b \text{ } p = 1 \text{ & if } b \text{ then } \text{ interp } g \text{ } c \text{ else } \neg (\text{interp } g \text{ } c)$$ **Proof.** The second part of the conjunct simply says that g must interpret a quantifier-free formula c exactly as any p in G would do, which is obvious by definition of g. We can therefore focus our attention on the first part on the conjunct, which is proved by induction on c, using property (4.9.iv) for the case of implication and axiom (A) for the case of atoms. Because g is an interpretation, we can feed it to the premise of (H) to get terms \vec{v} such that $\vec{v} \in \text{Term }(1)$ and \neg interp $g(V \vec{v})$ (2). Using lemma 5.6 above with $V \vec{v}$, we get $p \in G$ and $b \in \text{Bool}$ such that eval $(V \vec{v}) b p = 1$ (3) and if b then interp $g(V \vec{v})$ else $\neg(\text{interp }g(V \vec{v}))$ (4). Since $b \in \text{Bool}$, we can make a case analysis: - 1. b = 1: By (4), we have interp $g(V \vec{v})$ which is in contradiction with (2). - **2.** b = 0: The equation (3) gives us eval $(V \vec{v}) 0 p = 1$ which, combined with (1), makes a proof of subH p (take $t := \text{Leaf } \vec{v}$). But $p \in G$ and $G \subset C$ so that we have C[p] and thus subH $p \Rightarrow \text{subH } \emptyset$ which allows us to conclude. # 5.5.3 Back to the base universe (step 4) Converting our proof term t: subH \emptyset in the forcing universe into a proof term t^* : 1 | F subH \emptyset in the base universe follows exactly the methodology of section 4. The only subtlety is that instead of the genericity property of G (property (4.9.v)), we use the axiom (A) and we now need to translate it. ▶ **Proposition 5.7** (Forcing the extra axiom on *G*). There is a proof term in $PA\omega^+$ proving 1 IF $\forall a \in Atom . \neg (\forall p^i b^i . p \in G \Rightarrow b \in Bool \Rightarrow test p a b = 1 \Rightarrow \bot)$ **Proof.** The proof term is given in Fig. 7. Note that we use the simplified version of α . # 6 Computational interpretation The proof (by forcing) of the previous section gives birth to an algorithm for computing Herbrand trees. In order to analyze this algorithm, we use Krivine's classical realizability [8]. This framework is based on an abstract machine (called the KAM) for a classical λ -calculus called λ_c containing the usual λ -calculus plus an instruction callcc realizing Pierce's law [5]. The main interest of this machine is that it can be easily extended, for instance with the quote instruction in order to realize the axiom of dependent choices [7]. It is in this setting that the computational content of forcing has been studied [9, 11]. Computationally, a realizer of C[p] is a dependent type of a zipper [6] at position p. Its first part $(p \in FVal)$ behaves as a finite list of pairs (a, b) (where a is an atom and b a Boolean). It represents a finite approximation of the generic valuation g and justifies that $g = \bigcup G$ is a Cohen real. Its second part (subH $p \Rightarrow \text{subH } \emptyset$) means that provided we can find a Herbrand tree below p, we have a full Herbrand tree: it represents a *tree context* where the hole is at position p. ``` \begin{split} \lambda caf. \ & \text{let} \ (c_1,c_2) = \alpha \ c \ \text{in} & a' := \xi_{\text{Atom}} \ a(\alpha \ c) \ : \ a \in \text{Atom} \\ & \text{if } \text{Tot}_{\text{mem}} \ c_1 \ a' \text{ then} \\ & \text{if } \text{Tot}_{\text{test}} \ c_1 \ a' \text{ true } \text{ then} \ f \ (\alpha \ c) \ \text{I } \text{ true}^* \ \text{I}^* \text{ else} \ f \ (\alpha \ c) \ \text{I } \text{ false}^* \ \text{I}^* \\ & \text{else} \ f \ \langle \text{Up}_{\text{FVal}}(\text{consT} \ a' \ c_1), \lambda u. \ f \ \langle \text{Up}_{\text{FVal}}(\text{consT} \ a' \ c_1), \lambda v. \ c_2 \ (\text{merge} \ a' \ u \ v) \rangle \ I \ \text{true}^* \ I^* \rangle \end{split} ``` # **Figure 7** The program realizing the axiom (A) From this perspective, the key ingredient of the proof is axiom (A) that is responsible for the insertion of new nodes in the Herbrand tree. It lies at the interface between the premise and the forcing condition and behaves as a scheduler that extends the tree and swaps between branches. Given an atom a, this program (given Fig. 7) finds a Boolean b and a partial valuation p in G containing a. Its general idea is to use the first component of the current forcing condition (q, T) as a witness for p because it is then easy to find a realizer of $p \in G$. But q does not necessarily contain a so that we might need to extend it. More precisely, we first test whether a belong to the current forcing condition (line 2). When a belongs to q, we take p:=q and b becomes the value of a in q (either 1 or 0). Then, it simply amounts to applying the continuation f to the computational witnesses for q and b: I: $q \Vdash q \in G$, true*: $q \Vdash 1 \in Bool$ or false*: $q \Vdash 0 \in Bool$ and I*: $q \Vdash test q a b = 1$. When a does not belong to q, we weed to extend q. Since we cannot know which value must a be mapped to, we consider both cases and hence make two calls to f (last line). This second case is very similar to the first one (again calls to f with adequate witnesses) except that this time, we modify heavily the forcing condition: we extend the tree. The two calls to f can be understood intuitively as follows: first we lead f to believe we have a tree context for $p:=qa^1$ (i.e. a fictitious realizer T' of subH $qa^1 \Rightarrow \text{subH } \emptyset$) although at the time, we only have one for q. When the computation inside f will use T', it will provide a Herbrand tree t_1 below qa^1 . We then swap branches and call f again with $p := qa^0$ because this time, we do have a tree context for it, namely λx . T (Node $at_1 x$). Axiom A is the only point where the second component of a forcing condition is modified because no combinator (neither I nor α) affect it: it is the primitive actually building the Herbrand tree and modifying the control flow (by scheduling branches). Furthermore, our realizer is completely intuitionistic, which means that any backtrack during execution will originate from the realizer of the premise and cannot affect the forcing condition where the partial tree under construction is stored (and thus cannot affect this partial tree). Indeed, through the forcing transformation, any use of callcc in the premise is translated to the proof term callcc* that takes care of saving and restoring the forcing condition. This restricted form of backtrack becomes a real instruction in the KFAM [12] (Krivine's Forcing Abstract Machine) which hard-wires the forcing translation of section 4 and features two *execution modes*: - a real mode where terms have their usual KAM behavior, - **a** *forcing mode* (or *protected mode*) where the first slot on the stack is considered as a forcing condition and terms behave as if they were translated through the forcing transformation. In this machine, the premise of Herbrand's theorem would be executed only in forcing mode and could not affect the forcing condition (stored on the first slot of the stack). Finally, the proof of section 5.5.2 in the forcing universe $PA\omega^+ + G$ never uses the upward closure of G (property 4.9.iii). This means that we do not need to erase
information from the forcing condition and suggests that our realizer is efficient. #### References - 1 Paul J. Cohen. The independence of the continuum hypothesis. *Proc. of the Nat. Acad. of Sc. of the USA*, 50:1143–1148, 1963. - 2 Paul J. Cohen. The independence of the continuum hypothesis II. *Proc. of the Nat. Acad. of Sc. of the USA*, 51:105–110, 1964. - 3 P.-L. Curien and Hugo Herbelin. The duality of computation. In *ICFP*, pages 233–243, 2000. - 4 Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem proving modulo. *Journal of Automated Reasoning*, 31(1):33–72, 2003. - 5 Timothy G. Griffin. A formulae-as-types notion of control. In *Principles Of Programming Languages (POPL'90)*, pages 47–58, 1990. - 6 Gérard P. Huet. The zipper. Journal of Functional Programming, 7(5):549–554, 1997. - 7 Jean-Louis Krivine. Dependent choice, 'quote' and the clock. *Theoretical Computer Science*, 308(1-3):259–276, 2003. - **8** Jean-Louis Krivine. Realizability in classical logic. In *Interactive models of computation and program behaviour*, volume 27 of *Panoramas et synthèses*, pages 197–229. Société Mathématique de France, 2009. - **9** Jean-Louis Krivine. Realizability algebras: a program to well order *r. Log. Meth. in Comp. Sc.*, (TLCA'09):3:02, 47, 2010. - 10 Alexandre Miquel. Existential witness extraction in classical realizability and via a negative translation. In *Log. Meth. in Comp. Sc.*, 2010. - 11 Alexandre Miquel. Forcing as a program transformation. *Logic in Computer Science*, pages 197–206, 2011. - **12** Alexandre Miquel. Forcing as a program transformation. *Mathematical Structures in Computer Science*, 2013. to appear. - M. Parigot. Proofs of strong normalisation for second order classical natural deduction. *J. of Symb. Log.*, 62(4):1461–1479, 1997.