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Abstract

Krivine presented in [?] a methodology to combine Cohen’s forcing with the theory of classical

realizability and showed that the forcing condition can be seen as a reference that is not subject

to backtracks. The underlying classical program transformation was then analyzed by Miquel [?]

in a fully typed setting in classical higher-order arithmetic (PAω+).

As a case study of this methodology, we present a method to extract a Herbrand tree from a

classical realizer of inconsistency, following the ideas underlying the completeness theorem and

the proof of Herbrand’s theorem. Unlike the traditional proof based on Kőnig’s lemma (using a

fixed enumeration of atomic formulas), our method is based on the introduction of a particular

Cohen real. It is formalized as a proof in PAω+, making explicit the construction of generic sets

in this framework in the particular case where the set of forcing conditions is arithmetical.

We then analyze the algorithmic content of this proof.
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Keywords and phrases classical realizability, forcing, Curry-Howard correspondence, Herbrand

trees
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1 Introduction

Forcing is a model transformation initially invented by Cohen [?, ?] to prove the relative

consistency of the negation of the continuum hypothesis with respect to the axioms of Zermelo-

Fraenkel (ZF) set theory. From a model-theoretic point of view, forcing is a technique to

extend a given model of ZF—the base model—into a larger model—the generic extension—

generated around the base model from a new set with good properties: the generic filter G.

From a proof-theoretic point of view, forcing can be presented as a logical translation that

maps formulas expressing properties of the extended model into formulas expressing (more

complex) properties of the base model. Through this translation, the properties of the

(fictitious) generic set G (in the extended universe) are reduced to the properties of the

forcing poset C (in the base universe) that parametrizes the whole construction.

Recently, Krivine studied [?] Cohen forcing in the framework of the proofs-as-programs

correspondence in classical logic [?, ?, ?] and showed how to combine it with the theory of

classical realizability [?]. In particular, he discovered a program translation (independent

from typing derivations) that captures the computational contents of the logical translation
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underlying forcing. Surprisingly, this program transformation acts as a state passing style

translation where the forcing condition is treated as a memory cell that is protected from the

backtracks performed by control operators such as callcc [?] —thus opening an intriguing

connection between forcing and imperative programming. Reformulating this work in classical

higher-order arithmetic (PAω+) and analyzing the corresponding program transformation,

Miquel [?, ?] introduced an extension of the Krivine Abstract Machine (KAM) devoted to

execution of proofs by forcing—the KFAM—where the forcing condition is explicitly treated

as a memory cell in the context of the execution of a proof by forcing.

These analogies naturally suggest that Cohen forcing can be used not only to prove

relative consistency results, but also to write computationally more efficient (classical) proofs

by exploiting the imperative flavor of the forcing condition.

In this paper, we propose to instantiate this technique on one example, namely the

extraction of a Herbrand tree (see section 2) from a validity proof of an existential formula

∃~x. F (~x) where F (~x) is quantifier-free. Our extraction procedure is based on a proof of a

mix between completeness and Herbrand’s theorem using the method of forcing. The key

ingredient of this proof is the introduction of a Cohen real (using forcing) that represents all

valuations at once. From a computational point of view, we will see that the corresponding

program uses the forcing condition to store the tree under construction, thus protecting it

from the backtracks induced by classical reasoning. The interest of this approach is that since

the conclusion of our semantic variant of Herbrand’s theorem is Σ0
1, any proof (program) of

the translation of the conclusion (through the forcing translation) can be turned into a proof

(program) of the conclusion itself. From this, it is then possible to apply standard witness

extraction techniques in classical realizability [?] to extract the desired Herbrand tree.

Contribution of the paper

This work follows on from [?] and [?]. Its contributions are the following:

The extension of the program transformation underlying forcing to a generic filter G

(when the forcing sort and its relativization predicate are invariant under forcing).

A proof of a semantic variant of Herbrand’s theorem (containing completeness) by forcing

where a Cohen real represents all valuations at once in the forcing universe.

A formalization of this proof in the formal system PAω+ which, through the forcing

transformation, gives an extraction process for Herbrand trees.

An analysis of the computational content of this extraction process in classical realizability.

2 Herbrand trees

2.1 The notion of Herbrand tree

In what follows, we work in a given countable first-order language, and write Term and Atom

the countable sets of closed terms and of closed atomic formulas, respectively. Throughout

this paper we are interested in the following problem.

Let ∃~x. F (~x) be a purely existential formula, where F (~x) is quantifier-tree. Let us now

assume that the formula ∃~x. F (~x) is true in all models, and actually in all syntactic models,

where variables are interpreted by closed terms t ∈ Term. From this information, we know

that there is a function H : (Atom → Bool) →
−−−→
Term that associates to every syntactic

valuation ρ : Atom → Bool a tuple of closed terms H(ρ) = ~t ∈
−−−→
Term such that ρ |= F (~t) (i.e.

a ‘witness’ for the formula ∃~x. F (~x) in the valuation ρ).

CSL’13



592 Extracting Herbrand trees in classical realizability using forcing

However, the information provided by the function H is twice infinite: it is infinite

in depth since each valuation ρ : Atom → Bool is (a priori) infinite, and it is infinite in

width since the set of all such valuations has the power of continuum. Nevertheless, the

completeness theorem combined with Herbrand’s theorem says that we can compact the

information given by the a priori infinite function H into a finite binary tree, which is called

a Herbrand tree.

◮ Definition 2.1 (Herbrand tree for a formula F ). A Herbrand tree is a finite binary tree H

such that:

The inner nodes of H are labeled with atomic formulas a ∈ Atom, so that every branch of

the tree represents a partial valuation (going left means ‘true’, going right means ‘false’).

Every leaf of H contains a witness for the corresponding branch, that is a tuple ~t ∈
−−−→
Term

s.t. ρ |= F (~t) for every (total) valuation ρ extending that partial valuation of the branch.

◮ Theorem 2.2. If the formula ∃~x. F (~x) is true in all syntactic models, then F has a

Herbrand tree.

The aim of this paper is to describe a method to effectively extract a Herbrand tree from

a proof (actually a classical realizer) of the proposition expressing that ‘the formula ∃~x. F (~x)

holds in all syntactic models’. Since the latter proposition is directly implied by the formula

∃~x. F (~x) itself (using the trivial implication of the completeness theorem), we will thus get a

method to effectively extract a Herbrand tree from a proof/realizer of the formula ∃~x. F (~x).

Note that we will not give a proof of Theorem 2.2 but rather a proof of the validity of

the admissible rule associated to it, namely: given a proof that ‘the formula ∃~x. F (~x) holds

in all syntactic models’, we can build a proof of existence of a Herbrand tree for F . This

statement is enough for extraction.

2.2 Extracting Herbrand trees effectively

In the framework of the Curry-Howard correspondence, the natural method to extract

Herbrand trees is to use a classical realizer t0 obtained from a formal proof of Theorem 2.2.

By applying t0 to a realizer u of the premise of Theorem 2.2, we get a realizer of the

Σ0
1-formula expressing the existence of a Herbrand tree for the formula ∃x.F (~x), from which

we can retrieve the desired Herbrand tree using standard classical extraction techniques [?].

Given an enumeration (ai)i∈N of the
closed instances of the atomic formu-
las appearing in F (~x), let us consider
the infinite binary tree whose 2i nodes
at depth i are labeled with the atom
ai. Any infinite branch in this infinite
tree is an valuation ρ, because all atoms
appear along it. From our assumption,
we know that there is a tuple ~t ∈

−−−→
Term

such that ρ |= F (~t). But since the cal-
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culation of the truth value of the closed formula F (~t) only relies on a finite subset of ρ, we can
cut the branch along ρ at some depth d, putting a leaf labeled with ~t. Doing this in all branches
simultaneously, we get a finite tree (by the fan theorem), which is by construction a Herbrand tree.

Figure 1 A proof of Theorem 2.2 by enumerating the atoms

However, the efficiency of the extracted code highly depends on the proof of Theorem 2.2.

In particular, the simplest proof of this theorem (Fig. 1), which relies on a fixed enumeration
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of all atoms, is not well suited to this task, since it gives terribly poor performances on

formulas F (~x) involving atoms that appear late in the chosen enumeration. What we want

is a proof/realizer of Theorem 2.2 that chooses the atoms labeling the nodes only in function

of the realizer of its premise.

In what follows, we present a novel proof of Theorem 2.2 that is tailored for this purpose,

and that relies on the forcing techniques developed in [?, ?, ?]. In this case, the forcing

condition is a Cohen real which behaves as a generic valuation, i.e. it represents all infinite

branches at once. As we will see in section 6, it is computationally a scheduler that will

extend the tree under construction on request, depending on which atoms are required by

the realizer of the premise. It will scan the whole tree and schedule pending branches until

the full Herbrand tree is built.

3 The higher-order arithmetic PAω
+

In this section, we recall PAω+, the formal proof system in which this work takes place. It

is a presentation of classical higher-order arithmetic with explicit (classical) proof terms,

inspired by Church’s theory of simple types. It features an extra congruence on terms, in the

spirit of deduction modulo [?]. This section is a summary of the presentation of PAω+ in [?],

to which we refer the reader for more details and proofs of the results stated here.

3.1 Syntax

System PAω+ distinguishes three kinds of syntactic entities: sorts (or kinds), higher-order

terms, and proof terms, whose grammar is recalled in Fig 2.

Sorts τ, σ ::= ι | o | τ → σ

Higher-order terms M, N, A, B ::= xτ | λxτ . M | MN | 0 | S | recτ

| A ⇒ B | ∀xτ . A | M
.
=τ N 7→ A

Proof-terms t, u ::= x | λx. t | tu | callcc

Figure 2 Syntax of PAω+

3.1.1 Sorts and higher-order terms

Sorts are simple types formed from the two basic sorts ι (the sort of individuals) and o

(the sort of propositions). Higher-order terms (also called terms for short) are simply-typed

λ-terms (à la Church) that are intended to represent mathematical objects that inhabit sorts.

Higher-order terms of sort ι, which are called individuals, are formed using the two

constructors 0 (of sort ι), S (of sort ι → ι) and the family of recursors recτ (of sort

τ → (ι → τ → τ) → ι → τ).
Higher-order terms of sort o, which are called propositions (and written A, B, C, etc.

in what follows), are formed using implication A ⇒ B (where A and B are propositions),
universal quantification ∀xτ . A (where A is a proposition possibly depending on the vari-
able xτ ) and a new connective M

.
=τ N 7→ A called an equational implication (where M

and N are of sort τ and where A is a proposition). This new connective must be thought of
as a kind of implication, but giving more compact proof terms. It makes the computational
contents of the forcing translation more transparent, but it is logically equivalent to the
usual implication M =τ N ⇒ A, via the proof terms:

λxy. y x : (M
.
= N 7→ A) ⇒ (M = N ⇒ A), λx. x (λy. y) : (M = N ⇒ A) ⇒ (M

.
= N 7→ A)

CSL’13



594 Extracting Herbrand trees in classical realizability using forcing

(See fig. 4 for a definition of the proof system.)

As usual, application is left associative whereas implication and equational implication are

both right associative and have same precedence: A ⇒ M
.
= N 7→ B ⇒ C ⇒ D has to be read

as A ⇒ (M
.
= N 7→ (B ⇒ (C ⇒ D))). Logical connectives (absurdity, negation, conjunction,

disjunction) are defined using the standard second-order encodings, as well as Leibniz

equality, letting: x =τ y := ∀Zτ→o. Z x ⇒ Z y. Existential quantification (possibly combined

with conjunctions) is encoded classically using De Morgan laws: ∃xτ . A1 & . . . & Ak :=

¬(∀xτ . A1 ⇒ . . . ⇒ Ak ⇒ ⊥). We often omit the sort annotation τ to ease reading when

this does not hinder understanding. On the opposite, when we want to give explicitly the

sort of a term, we write it in exponent, e.g. Mτ , Ao, rec
τ→(ι→τ→τ)→ι→τ
τ .

3.1.2 System T is a fragment of PAω
+

Gödel’s system T can be recovered from PAω+ as the subsystem where we restrict sorts

to be T -sorts, that is sorts built with ι as the only base sort. This constraint casts out all

logical constructions and limits the term construction rules exactly to those of system T.

Recall that the expressiveness of system T is exactly the functions which are provably total

in first-order arithmetic, which includes (and exceeds) all primitive recursive functions.

3.2 Proof system

3.2.1 Congruence

The proof system PAω+ differs from higher-order arithmetic by the addition of a congruence

≃E to the proof system. This allows to reason modulo some equivalence on higher-order terms

(hence on propositions) without polluting the proof terms with computationally irrelevant

parts.

This congruence contains the usual βηι-conversion, some semantic equivalences on pro-

positions (mostly commutations) and an equational theory E . This equational theory is a

finite set of equations E = M1 = N1, . . . , Mk = Nk, where Mi and Ni are higher-order terms

of the same sort (that ≃E considers equal). Some rules for the congruence ≃E are given in

Fig. 3, the full set is given in annex A.

(M = N) ∈ E
M ≃E N

M ≃E N P ≃E Q A ≃E,M=P B

M
.
= P 7→ A ≃E N

.
= Q 7→ B

M
.
= M 7→ A ≃E A A ⇒ M

.
= N 7→ B ≃E M

.
= N 7→ A ⇒ B

x /∈ F V (M, N)
∀xτ . M

.
= N 7→ A ≃E M

.
= N 7→ ∀xτ . A

Figure 3 Some inference rules for the relation ≃E

3.2.2 Proof terms and inference rules

Proof terms (Fig. 2) are pure λ-terms enriched with an extra constant callcc; they are formed

from a set of proof variables (notation: x, y, z, etc.) distinct from higher-order term variables.

The deduction system of PAω+ is defined around a typing judgment of the form E ; Γ ⊢ t : A,

where E is an equational theory and Γ a context, that is: a finite set of bindings of distinct

proof variables xi to propositions Ai. The inference rules, given in Fig 4, are the ones of

higher-order arithmetic, with slight modifications to deal with the congruence and equational

implication.
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E ; Γ, x : A ⊢ x : A

E ; Γ ⊢ t : A
A ≃E A′

E ; Γ ⊢ t : A′ E ; Γ ⊢ callcc : ((A ⇒ B) ⇒ A) ⇒ A

E ; Γ, x : A ⊢ t : B

E ; Γ ⊢ λx. t : A ⇒ B

E ; Γ ⊢ t : A ⇒ B E ; Γ ⊢ u : A

E ; Γ ⊢ t u : B

E , Mτ = Nτ ; Γ ⊢ t : A

E ; Γ ⊢ t : M
.
=τ N 7→ A

E ; Γ ⊢ t : M
.
=τ M 7→ A

E ; Γ ⊢ t : A

E ; Γ ⊢ t : A
x /∈ F V (Γ)

E ; Γ ⊢ t : ∀xτ . A

E ; Γ ⊢ t : ∀xτ . A

E ; Γ ⊢ t : A[Nτ /xτ ]

Figure 4 The inference rules of PAω+

◮ Remarks.

1. The only inference rules that alter proof terms are the axiom, Peirce’s law, and the

introduction and elimination rules of implication. The remaining rules do not affect proof

terms and are said to be computationally transparent.

2. The proof system of PAω+ enjoys no normalization property since the proposition ⊤

defined by ⊤ := λxy. x
.
=o λxy. y 7→ ⊥ acts as a type of all (untyped) proof terms [?,

section II.E.3]. (Intuitively, ⊤ allows to equate any two propositions so that they are all

equivalent to ⊥.) Nevertheless, the system is sound with respect to the intended classical

realizability semantics (see section 3.4).

3. This proof system allows full classical reasoning thanks to Peirce’s law. Arithmetical

reasoning (including reasoning by induction) can be recovered by relativizing all quantifica-

tions over the sort ι using the predicate x ∈ N := ∀Zo. Z 0 ⇒ (∀yι. Z y ⇒ Z (S y)) ⇒ Z x

(see below).

3.3 Sets and datatypes

In PAω+, a set is given by a sort τ together with a relativization predicate P of sort τ → o

expressing membership in the set. For instance, the set of total relations between individuals

is given by the sort ι → ι → o and the predicate Tot := λR. ∀xι. ∃yι. R x y.

Because the sort τ can be inferred from the sort of P , we will identify sets with their

relativization predicates. For convenience, we use the suggestive notations x ∈ P (resp.

∀x ∈ P. A, ∃x ∈ P. A) for P x (resp. ∀x. P x ⇒ A, ∃x. x ∈ P & A). In what follows, datatypes

will be represented as particular sets based on the sort τ ≡ ι and whose relativization

predicate P is invariant under forcing (see section 4.2). For instance, the datatypes of

Booleans and natural numbers are given by

x ∈ Bool := ∀Zι→o. Z 0 ⇒ Z 1 ⇒ Z x

x ∈ N := ∀Zι→o. Z 0 ⇒
(

∀yι. Z y ⇒ Z (S y)
)

⇒ Z x

(The proof of their invariance under forcing is delayed until section 5.2.) We also consider two

abstract datatypes Term and Atom representing closed terms and closed atomic formulas

(whose exact implementation is irrelevant). More generally, inductive datatypes are defined

by implementing constructors as suitable functions from individuals to individuals and by

defining the corresponding predicate by well-known second-order encodings. For instance,

the datatype of binary trees

t, t′ := Leaf ~v | Node a t t′ where ~v ∈
−−−→
Term, a ∈ Atom

is given by two injective functions Leafι→ι and Nodeι→ι→ι→ι whose ranges do not overlap

(the actual implementation is irrelevant here) and the corresponding relativization predicate

CSL’13



596 Extracting Herbrand trees in classical realizability using forcing

t ∈ Tree is

∀Zι→o. (∀~v ∈ Term. Z (Leaf ~v)) ⇒ (∀tι
1tι

2 a ∈ Atom. Z t1 ⇒ Z t2 ⇒ Z (Node a t1 t2)) ⇒ Z t .

We also introduce the inductive datatype Comp of quantifier-free formulas built above Atom:

c, c′ := |= | a | c ⇛ c′ where a ∈ Atom

This presentation based on implication is more suited to classical realizability (see below),

but Comp is nothing but the free Boolean algebra generated by Atom.

3.4 Realizability semantics

System PAω+ has a classical realizability semantics in the spirit of Krivine’s [?] that is fully

described in [?, ?]. This semantics is based on Krivine’s λc-calculus (which contains all proof

terms of PAω+) and parametrized by a fixed set of processes (the pole of the realizability

model). According to this semantics, every (closed) proof term t of a (closed) proposition A

is a realizer of A (written t  A), and this independently from the choice of the pole. In

the particular case where the pole is empty, the realizability model collapses to a Tarski

model of PAω+, from which we deduce the logical consistency of the system. This classical

realizability semantics also provides simple methods to extract witnesses from realizers (and

thus from proofs) of Σ0
1-propositions [?].

4 The Forcing Transformation

4.1 Forcing in PAω
+

This section is a reformulation of Cohen’s theory of forcing (developed for ZF set theory) in

the framework of PAω+. Here, we see forcing as a translation of facts about objects living in

an extended universe (where sorts intuitively contain much more inhabitants) to facts about

objects living in the base universe. Technically, we will first present forcing as a translation

from PAω+ to itself. But in section 4.3, we will see how to add a generic filter G to PAω+,

so that forcing will be actually a translation from PAω+ + G to PAω+. We follow here the

presentation of [?, ?], where the reader may find all missing proofs.

4.1.1 Definition of a forcing structure

As in [?, ?], we introduce the set of conditions as an upward closed subset C of a meet-

semilattice (κ, ·, 1). (Any poset with a greatest element can be presented in this way.)

◮ Definition 4.1 (Forcing structure). A forcing structure is given by:

a set C : κ → o of well-formed forcing conditions (p ∈ C being usually written C[p]),

an operation · of sort κ → κ → κ to form the meet of two conditions (denoted by

juxtaposition),

a greatest condition 1,
nine closed proof terms representing the axioms that must be satisfied by the forcing
structure:

α0 : C[1] α1 : ∀pq. C[pq] ⇒ C[p] α2 : ∀pq. C[pq] ⇒ C[q]

α3 : ∀pq. C[pq] ⇒ C[qp] α4 : ∀p. C[p] ⇒ C[pp] α5 : ∀pqr. C[(pq)r] ⇒ C[p(qr)]

α6 : ∀pqr. C[p(qr)] ⇒ C[(pq)r] α7 : ∀p. C[p] ⇒ C[p1] α8 : ∀p. C[p] ⇒ C[1p]
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(σ → τ)∗ := σ∗ → τ∗ ι∗ := ι o∗ := κ → o

(xτ )∗ := xτ∗

0∗ := 0 (∀xτ . A)∗ := λrκ. ∀xτ∗

. A∗ r

λxτ . M := λxτ∗

. M∗ S∗ := S (M
.
= N 7→ A)∗ := λrκ. M∗ .

= N∗ 7→ A∗ r

(M N)∗ := M∗ N∗ rec∗
τ := recτ∗ (A ⇒ B)∗ := λrκ. ∀qκ∀(r′)κ. r

.
= qr′ 7→

(∀sκ. C[qs] ⇒ A∗ s) ⇒ B∗ r′

x∗ := x (λx. t)∗ := γ1(λx. t∗[(β3y)/y][(β4x)/x]) y 6= x

(t u)∗ := γ3 t∗ u∗ callcc∗ := λcx. callcc(λk. x (α14 c) (λcy. k (y α15 c)))

β3 := λxc. x (α9 c) β4 := λxc. x (α10 c) γ1 := λxcy. x y (α6 c) γ3 := λxyc. x (α11c) y

Figure 5 The forcing translations τ 7→ τ∗, M 7→ M∗ and t 7→ t∗

(This set of axioms is not minimal, since α2, α6 and α8 can be defined from the others.)

The above axioms basically express that the set C is upward-closed with respect to the

pre-ordering p ≤ q (‘p is stronger than q’) defined by p ≤ q := ∀rκ. C[pr] ⇒ C[qr]. From this

definition of the preorder p ≤ q, we easily check that pq is the meet of p and q and that 1 is

the greatest element. On the other hand, all the elements of κ outside C are equivalent with

respect to the ordering ≤; they intuitively represent an ‘inconsistent condition’ stronger than

all well-formed conditions.
In what follows, we will also need the following derived combinators:

α9 := α3 ◦ α1 ◦ α6 ◦ α3 : ∀pqr. C[pqr] ⇒ C[pr] α10 := α2 ◦ α5 : ∀pqr. C[pqr] ⇒ C[qr]
α11 := α9 ◦ α4 : ∀pq. C[pq] ⇒ C[p(pq)] α12 := α5 ◦ α3 : ∀pqr. C[p(qr)] ⇒ C[q(rp)]
α13 := α3 ◦ α12 : ∀pqr. C[p(qr)] ⇒ C[(rp)q]
α14 := α12 ◦ α10 ◦ α4 ◦ α2 : ∀pqr. C[p(qr)] ⇒ C[q(rr)] α15 := α9 ◦ α3 : ∀pqr. C[p(qr)] ⇒ C[qp]

where αi ◦ αj ◦ · · · ◦ αk stands for λc. αi (αj . . . (αk c) . . . ) with c a fresh proof variable.

4.1.2 The three forcing translations

Given a forcing structure, the forcing transformation consists of three translations: τ 7→ τ∗ on

sorts, M 7→ M∗ on higher-order terms (which is extended point-wise to equational theories)

and t 7→ t∗ on proof terms. The translations are given figure 5 (see [?] for the definition of

all combinators).

◮ Remarks.
1. The translation on sorts simply replaces occurrences of o by κ → o. This means that

propositions will now depend on an extra parameter which is a forcing condition.

2. The translation on (higher-order) terms changes the sort of the term: Nτ is turned into

(N∗)τ∗

. The heart of this translation lies in the implication case and it merely propagates

through the connectives in all the other cases.

3. The proof term translation instrumentalizes the computational interaction between

abstractions and applications in proof terms:

it adds the γ3 combinator in front of applications;

it shows the de Bruijn structure of bound variables: if an occurrence of the bound

variable x has de Bruijn index n, it will be translated to βn
3 (β4 x).

4.1.3 The forcing transformation on propositions

From the translation on terms, we define the usual forcing relation p F A on propositions,

letting:

p F A := ∀rκ. C[pr] ⇒ A∗r .

CSL’13
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This definition extends point-wise to contexts and we write it p F Γ. In addition to

the expected properties of substitutivity and compatibility with the congruences ≃E , this

transformation on propositions enjoys the following important properties:

◮ Proposition 4.2.
1. Forcing strongly commutes with universal quantification and equational implication:

p F ∀xτ . A ≃ ∀xτ∗

. (p F A) p F (M
.
=τ N 7→ A) ≃ M∗ .

=τ∗ N∗ 7→ (p F A)

2. Forcing is anti-monotonic: ∀pq. (p F A) ⇒ (pq F A)

3. Forcing an implication: p F A ⇒ B ⇐⇒ ∀qκ. (q F A) ⇒ (pq F B)

◮ Theorem 4.3 (Soundness). If the judgment E ; Γ ⊢ t : A is derivable in PAω+, then the

judgment E∗; (p F Γ) ⊢ t∗ : p F A is derivable in PAω+.

This theorem is thus an effective way to turn a proof term t : A (expressed in the forcing

universe) into a proof term t∗ : p F A (expressed in the base universe).

4.2 Invariance under forcing

Clearly, the sorts that are invariant under the forcing translation are exactly the T -sorts

defining Gödel’s system T (see section 3.1.2). A proposition A whose free variables live in

T -sorts is said to be invariant under forcing or absolute when there exist two closed proof

terms ξA and ξ′
A such that

ξA : ∀p. (p F A) ⇒ (C[p] ⇒ A) ξ′
A : ∀p. (C[p] ⇒ A) ⇒ (p F A) .

An important class of absolute propositions is the class of first-order propositions, which

contains the subclass of arithmetical propositions (in which all quantifications are relativized).

◮ Definition 4.4 (First-order propositions). First-order propositions are defined by

A, B := ⊥ | Mτ = Nτ | A ⇒ B | ∀xσ. A | M ι ∈ N

where σ and τ are T -sorts (see section 3.1.2).

◮ Theorem 4.5 (Invariance). All first-order propositions are invariant under forcing.

◮ Theorem 4.6 (Elimination of a forced hypothesis). If the propositions 1 F A and A ⇒ B

are derivable (in the empty context) and if B is absolute, then B is derivable too (in the

empty context).

Proof. Let u and s be proof terms such that u : A ⇒ B and s : 1 F A. Using theorem 4.3,

we have u∗ : 1 F A ⇒ B. Because B is invariant under forcing, the previous theorem gives

us ξB : (1 F B) ⇒ C[1] ⇒ B. We finally get ξB (γ3 u∗ s) α0 : B. ◭

This theorem will be used to remove forcing in the proof of existence of a Herbrand tree.

4.3 The generic filter G

We now introduce PAω+ + G, which extends PAω+ with a constant G (the generic filter)

and its axioms. To do so, we first assume that κ ≡ κ∗ (it is a T -sort) and that the set of

well-formed conditions C (of sort κ → o) is absolute, so that we have two proof terms ξC

and ξ′
C such that

ξC : ∀pq. (p F C[q]) ⇒ (C[p] ⇒ C[q]) ξ′
C : ∀pq. (C[p] ⇒ C[q]) ⇒ (p F C[q]) .

(At this stage, we do not need to know the particular implementation of C.)

The proof system PAω+ + G is defined from PAω+ by adding a constant G of sort κ → o

and five axioms expressing its properties. The first four axioms say that G is a filter in C:
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A1 : G is a subset of C: ∀p. p ∈ G ⇒ C[p],

A2 : G is non empty: 1 ∈ G,

A3 : G is upward closed: ∀pq. pq ∈ G ⇒ p ∈ G,

A4 : G is closed under product: ∀pq. p ∈ G ⇒ q ∈ G ⇒ pq ∈ G,

The last axiom—genericity—relies on the following notion:

◮ Definition 4.7 (Dense subset). A set D of sort κ → o is said dense in C if for every element

p ∈ C, there is an element q ∈ C belonging to D and smaller than p. Formally, we let:

D dense := ∀pκ. C[p] ⇒ ∃qκ. C[pq] & pq ∈ D (⇔ ∀pκ. C[p] ⇒ ∃qκ. C[q] & q ∈ D & q ≤ p)

The last axiom on the set G is then:

A5 : G intersects every set Dκ→o (of the base universe) dense in C:

(∀p. C[p] ⇒ ∃q. C[pq] & pq ∈ D) ⇒ ∃p. p ∈ G & p ∈ D.

Now we need to explain how the forcing translation extends to a translation from PAω++G

to PAω+. The term translation on the generic filter G is defined by G∗ := λpr. C[pr]. This

definition has the advantage of giving a very simple proposition for p F q ∈ G:

◮ Fact 4.8. p F q ∈ G := ∀r. C[pr] ⇒ (q ∈ G)∗r ≃ ∀r. C[pr] ⇒ C[qr] ≃ p ≤ q

We now need to prove the proposition ∀pκ. p F Ai (in PAω+) for each of the five axioms

A1–A5 of the generic filter G. Thanks to proposition 4.2 (anti-monotonicity), it is sufficient

to prove that 1 F Ai. Notice that the proof terms justifying the filter properties of G are

small, except the proof term for genericity (the most complex property).

◮ Proposition 4.9 (Forcing the properties of G).

γ1 (λx. ξ′
C (α1 ◦ x ◦ α3)) : 1 F ∀p. p ∈ G ⇒ C[p] (4.9.i)

λx. x : 1 F 1 ∈ G (4.9.ii)

γ1 (λx. α9 ◦ x ◦ α10) : 1 F ∀pq. pq ∈ G ⇒ p ∈ G (4.9.iii)

γ1(λx. γ1 (λy. α13 ◦ y ◦ α12 ◦ x ◦ α2 ◦ α5 ◦ α5)) : 1 F ∀pq. p ∈ G ⇒ q ∈ G ⇒ pq ∈ G

(4.9.iv)
γ1 (λx. γ1 (λy. ξ′

⊥
(λc. ξ∃2

ξC ξD(γ3 x (ξ′
c (λ_. c))) (α2 (α1 c))

(λc′d. ξ⊥ (γ3 (γ3 (β3 (β4 y)) I) (ξ′
D (λ_. d))) c′))))

: 1 F (∀p. C[p] ⇒ ∃q. C[pq] & pq ∈ D) ⇒ ∃p. p ∈ G & p ∈ D (4.9.v)

where ξ∃2
is the proof term (built using theorem 4.5) such that

ξ∃2
ξA ξB : (p F ∃n. A & B) ⇒ (C[p] ⇒ ∃n. A & B)

5 A proof of Herbrand’s theorem by forcing

In order not to alter the meaning of the forcing poset through the forcing transformation, we

choose to let κ := ι (the sort of individuals), because ι∗ ≡ ι.

5.1 Interface for finite relations over Atom × Bool

We describe here an interface implementing finite relations over pairs of atoms and Booleans

together with some operations (union, membership test) and properties. Everything can be

implemented for instance by finite ordered lists of pairs (in the sort ι) without repetition.

We assume given &&ι→ι→ι and ||ι→ι→ι
, the (infix) Boolean conjunction and disjunction (at
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the term level) together with their defining equations (e.g. 1 && b ≃ b) that must hold at

the congruence level (typically by β-reduction for suitable definitions of && and ||). Let us

first describe the terms of the interface.
∅ι : the empty relation singι→ι→ι : sing a b denotes {(a, b)} and is written ab

∪ι→ι→ι : union (infix symbol) testι→ι→ι→ι : test p a b tests if the atom a is mapped to b in p

The required properties over this structure are:

associativity, commutativity and idempotence of ∪

∅ is a neutral element for ∪

the specification equations of test: for all a, a′, b, b′, p, q with a 6= a′ or b 6= b′,

test ∅ a b = 0 test ab a b = 1 test ab a′ b′ = 0 test (p ∪ q) a b = test p a b || test q a b

Using these terms and properties, we define two operations:

testing membership: mem a p := test p a 1 || test p a 0

adding the binding (a, b) to p: p ∪ ab

Among finite relations, we can distinguish those that are functional, i.e. those representing

finite functions from Atom to Booleans. We call them finite valuations and denote their

set by FVal. Formally, this set (in the sense of section 3.3) is inductively defined using the

following second-order encoding, which encompasses both finiteness and functionality:

p ∈ FVal := ∀Zι→o. Z ∅ ⇒ (∀rι.∀a ∈ Atom. mem a r
.
=ι 0 7→ Z r ⇒ Z (r ∪ a1)) ⇒

(∀rι.∀a ∈ Atom. mem a r
.
=ι 0 7→ Z r ⇒ Z (r ∪ a0)) ⇒ Z p

This shows the underlying computational structure of finite valuations: they are isomorphic

to lists of atoms with two cons constructors (one for the atoms mapped to true, one for

those mapped to false) without duplicates (thanks to the precondition mem a r
.
=ι 0 7→ . . .

in the cons constructors).

Finally, we assume the existence of a function for testing membership, that is a proof

term Tottest of the totality of test on finite valuations:

Tottest : ∀p ∈ FVal.∀a ∈ Atom.∀b ∈ Bool. test p a b ∈ Bool .

5.2 Programming in PAω
+

In order to ease writing proof terms in PAω+, we introduce some macros:
〈a, b〉 λf. f a b let (x, y) = c in M c (λxy. M)
true, false λxy. x, λxy. y if b then f else g b f g

consT a p λx1x2x3. x2 a (p x1 x2 x3) consF a p λx1x2x3. x3 a (p x1 x2 x3)

They come with the inference rules (admissible in PAω+) given Fig. 6.

E ; Γ ⊢ M : A E ; Γ ⊢ N : B

E ; Γ ⊢ 〈M, N〉 : A ∧ B

E ; Γ ⊢ M : A ∧ B E ; Γ, x : A, y : B ⊢ N : C
x, y /∈ F V (M)

E ; Γ ⊢ let (x, y) = M in N : C

E ; Γ ⊢ true : 1 ∈ Bool E ; Γ ⊢ false : 0 ∈ Bool

E ; Γ ⊢ M : b ∈ Bool E ; Γ ⊢ N : b
.
= 1 7→ A E ; Γ ⊢ P : b

.
= 0 7→ A

E ; Γ ⊢ if M then N else P : A

E ; Γ ⊢ M : a ∈ Atom E ; Γ ⊢ N : p ∈ FVal
mem a p ≃E 0

E ; Γ ⊢ consT MN : p ∪ a1 ∈ FVal
+ idem for consF with p ∪ a0 ∈ FVal

Figure 6 Admissible inference rules in PAω+
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5.3 Definition of our forcing structure

The interface and functions defined in the previous two sections allow us to build the forcing

structure that we will use for Herbrand’s theorem. In this setting, finite valuations will

represent pieces of information about the current valuation that will be used to decide which

closed instance of the proposition F (~x) is false. Note that most combinators are the identity

thanks to the properties we imposed on the implementation of finite relations.

◮ Definition 5.1 (Forcing structure for Herbrand’s theorem). Our forcing structure is given by

κ := ι C[p] := p ∈ FVal ∧ (subH p ⇒ subH ∅) p · q := p ∪ q

1 := ∅ α3 = α4 = α5 = α6 = α7 = α8 := I α0 := 〈λxyz. z, I〉

α1 = α2 := λc. let (p, t) = c in 〈UpFVal p, λx. let (x1, x2) = x in t 〈x1, MonsubHtree x2〉〉

(UpFVal and MonsubHtree will be defined in section 5.4.)

◮ Remarks.

1. We can simplify α1 further if we replace MonsubHtree by I (which is a realizer of the

same formula, see the remark after lemma 5.4). Note that in this case, α1 is no longer

a proof term but only a realizer (which is enough for our purpose) and we can write it

α1 := λc. let (c1, c2) = c in 〈UpFVal c1, c2〉.

2. Once we have proven the existence of a Herbrand tree (that is subH ∅), the second part of

the definition of the set C (subH p ⇒ subH ∅) is trivial. Therefore, the set C is logically

equivalent to its first part FVal, the set of finite functions from Atom to Bool. It is

interesting to notice that when Atom = N, this is exactly the forcing conditions used to

add a Cohen real [?]. This remark means that our forcing structure actually adds a single

Cohen real (in the extended universe) which turns out to be the model we seek. It is a

simple exercise of forcing to show that this real number is different from all real numbers

of the base universe and that it is non computable.

In order to use all the results of section 4 and to be able to remove forcing using

theorem 4.6, we need to prove that both subH and C are absolute.

◮ Proposition 5.2. The sets Tree, subH, FVal and C are invariant under forcing.

Proof. There exist proof terms in PAω+ proving these properties. For instance, we have:

ξC := ξ∧ ξFVal (ξ⇒ ξ′
subH ξsubH) ξ′

C := ξ′
∧ ξ′

FVal (ξ′
⇒ ξsubH ξ′

subH) ◭

5.4 Formal statement of Herbrand’s theorem in PAω
+

We now formalize in PAω+ the statement of Herbrand’s theorem presented in section 2 as:

If F (~x) is a quantifier-free formula and all syntactic valuations validate ∃~x. F (~x),

then ∃~x. F (~x) has a Herbrand tree.

Since we consider atomic formulas as elements of an abstract datatype (of sort ι) rep-

resented by the set Atom, a valuation is completely determined by its values on atoms

and is thus defined as a function from atoms to propositions that we represent by a term

of sort ι → o. We can extend a valuation ρ to quantifier-free formulas by the function

interp(ι→o)→ι→o recursively defined by the following equations.

interp ρ |= := ⊥ interp ρ a := ρ a interp ρ (c ⇛ c′) := (interp ρ c) ⇒ (interp ρ c′)
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The formula F (~x) is represented by a term V ι→ι mapping any ~v to the corresponding

quantifier-free formula F (~v) in Comp. The premise of Herbrand’s theorem becomes the

formula ∀ρι→o. ∃~v ∈ Term. interp ρ (V ~v).

We now need to define the proposition expressing that a binary tree is a Herbrand tree.

Checking the correctness of a Herbrand tree is completely computational:

1. go down the tree and remember the partial valuation of your current branch,

2. evaluate V ~v at the leaves using the partial valuation accumulated so far.

This process is performed by the function subHtree recursively defined by these equations.

subHtree p (Node a t1 t2) := subHtree pa1 t1 && subHtree pa0 t2

subHtree p (Leaf ~v) := eval p (V ~v) 1

The case of leaves is treated using a Boolean function evalι→ι→ι→ι checking whether the

truth value of V ~v (2nd arg.) is equal to b (3rd arg.) in the valuation p (1st arg.). The only

non trivial case is the case of an atom where we need to look for the binding (a, b) into p,

which can be done by the test function (see section 5.1). Since p is partial, eval p (V ~v) b = 0

can have two causes: either the truth value of V ~v in p is 1 − b or p does not contain enough

information to evaluate V ~v. Conversely, when eval p (V ~v) b = 1, it means both that p

contains enough information to evaluate V ~v and that the result is b. When subHtree p t = 1,

we say that t is a Herbrand tree below p. Using subHtree, we finally define the predicate

subH p expressing the existence of a Herbrand tree below the finite (and partial) valuation p:

subH p := ∃t ∈ Tree. subHtree p t = 1.

Summing up, the formal statement of Herbrand’s theorem in PAω+ is

(∀ρι→o. ∃~v ∈ Term.¬ interp ρ (V ~v)) ⇒ subH ∅ . (H)

◮ Lemma 5.3 (subH-merging). Let p be a partial valuation and let a be an atom not appearing

in p. If we have both subH pa1 and subH pa0, then we have subH p.

Proof. If t1 and t2 are Herbrand trees below pa1 and pa0 respectively, then Node a t1 t2 is

a Herbrand tree below p. In PAω+, this lemma is formally stated and proved as follows.
merge := λxaxy. let (x1, x2) = x in let (y1, y2) = y in 〈Node xa x1 y1, y2 ◦ x2〉

: ∀pι.∀a ∈ Atom. mem a p
.
= 0 7→ subH pa1 ⇒ subH pa0 ⇒ subH p ◭

◮ Lemma 5.4 (Monotonicity). The functions test, eval and subHtree are monotonic in p.

Proof. There exists proof terms Montest, Moneval and MonsubHtree of the propositions

∀pqab. test p a b = 1 ⇒ test (p ∪ q) a b = 1

∀pq.∀c ∈ Comp.∀b ∈ Bool. eval p c b = 1 ⇒ eval (p ∪ q) c b = 1

∀pq.∀t ∈ Tree. subHtree p t = 1 ⇒ subHtree(p ∪ q) t = 1 .

For instance, we have Montest := λxy. x y. ◭

◮ Remark. In practice, there is no need to build formal proofs in PAω+ of monotonicity

since their unrelativized version are realized by the identity (they are Horn formulas, true in

the standard model): we can use them in proofs as axioms and later realize them by I.

◮ Lemma 5.5 (FVal is upward-closed). For all p and q, if (p ∪ q) ∈ FVal, then p ∈ FVal.

Proof. There exists a proof term UpFVal : ∀pq. (p ∪ q) ∈ FVal ⇒ p ∈ FVal. ◭
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5.5 The full proof

5.5.1 The big picture

Now that we have our forcing setting, we can turn to the proof itself. It will be split between

the base (B) and forcing universes (F) as shown by the following steps:

1. B Assume the premise ∀ρι→o. ∃~v ∈ Term. ¬ interp ρ (V ~v).

2. F Lift the premise to the forcing universe.

3. F Make the proof: t : subH ∅.

4. B Use the forcing translation: t∗ : 1 F subH ∅.

5. B Remove forcing: ξsubH t∗α0 : subH ∅.

6. B Extract a witness.

◮ Remarks.

1. Steps 1 and 2 are automatic (a proof in the base universe is correct in the forcing one),

2. Step 5 has already been explained in the general case,

3. Step 6 uses standard classical realizability techniques and will not be discussed here.

4. Since the premise is not absolute (because of the quantification over valuations ρ of sort

ι → o), we do not have a proof of Herbrand’s theorem (in the base universe) and only get

this admissible rule (see section 2.1):
E ; Γ ⊢ u : ∀ρι→o. ∃~v ∈ Term. interp ρ (V ~v)

E ; Γ ⊢ t(u) : subH ∅
.

5.5.2 The proof in the forcing universe (step 3)

Recall the formal statement of Herbrand’s theorem (H) given in section 5.4. Since we are now

in the forcing universe, we can use the properties of the generic filter G given in section 4.3.

As usual with proof in forcing, we start by building the generic valuation g =
⋃

G, which is

legal because G is a filter. We would like to let g :=
⋃

G and prove that it is total. However,

its simpler to define g := λa. ∃p ∈ G. test p a 1 = 1 (total by definition) and then prove that

it is equal to the union of G. To do so, instead of full genericity, we use a specialized axiom

∀a ∈ Atom. ∃p ∈ G. ∃b ∈ Bool. test p a b = 1 . (A)

First of all, we lift this axiom to quantifier-free formulas:

◮ Lemma 5.6 (Evaluation by G). There exists a proof term proving the proposition

∀c ∈ Comp. ∃p ∈ G. ∃b ∈ Bool. eval p c b = 1 & if b then interp g c else ¬(interp g c) .

Proof. The second part of the conjunct simply says that g must interpret a quantifier-free

formula c exactly as any p in G would do, which is obvious by definition of g. We can therefore

focus our attention on the first part on the conjunct, which is proved by induction on c, using

property (4.9.iv) for the case of implication and axiom (A) for the case of atom. ◭

Because g is a valuation, we can feed it to the premise of (H) to get terms ~v such that

~v ∈ Term (1) and ¬ interp g (V ~v) (2). Using lemma 5.6 above with V ~v, we get p ∈ G and

b ∈ Bool such that eval p (V ~v) b = 1 (3) and if b then interp g (V ~v) else ¬(interp g (V ~v)) (4).

Since b ∈ Bool, we can make a case analysis:

1. b = 1: By (4), we have interp g (V ~v) which is in contradiction with (2).

2. b = 0: The equation (3) gives us eval p (V ~v) 0 = 1 which, combined with (1), makes a

proof of subH p (take t := Leaf ~v). But p ∈ G and G ⊂ C so that we have C[p] and thus

subH p ⇒ subH ∅ which allows us to conclude.
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λcaf. let (p, t) = α1 c in a′ := ξAtom a (α1 c) : a ∈ Atom
if Tottest p a′ true then f (α1 c) I true∗ I∗ else
if Tottest p a′ false then f (α1 c) I false∗ I∗ else
f 〈UpFVal (consT a′ p), λt1. f 〈UpFVal (consF a′ p), λt2. t (merge a′ t1 t2)〉 I false∗ I∗〉 I true∗ I∗

Figure 7 The program realizing the axiom (A)

5.5.3 Back to the base universe (step 4)

Converting our proof term t : subH ∅ in the forcing universe into a proof term t∗ : 1 F subH ∅

in the base universe follows exactly the methodology of section 4. The only subtlety is that

instead of the genericity property of G (property (4.9.v)), we use the axiom (A) and we now

need to translate it.

◮ Proposition 5.7 (Forcing the axiom (A)). There is a proof term in PAω+ proving

1 F ∀a ∈ Atom. ¬(∀pb. p ∈ G ⇒ b ∈ Bool ⇒ test p a b = 1 ⇒ ⊥) .

Proof. The corresponding realizer is given in Fig. 7. Note that we use the simplified version

of α1. The (textual) proof is given in annex B. ◭

6 Computational interpretation

By analyzing the proof from the previous section, we obtain an algorithm for computing

Herbrand trees. In order to study this algorithm, we use Krivine’s classical realizability (see

section 3.4), the setting in which the computational content of forcing has been studied [?, ?].

Overall, the interest of using forcing in this case is twofold. First, it allows to reason (in

the forcing universe) on a single valuation, the generic valuation, instead of considering all of

them. The forcing translation takes care of ‘moving’ this generic valuation across the tree to

make sure we cover every possible branch. In short, forcing transparently manages the tree

structure. Second, the forcing condition stores the tree under construction (see below), thus

protecting it from any backtrack that might occur in the realizer of the premise of (H).

Computationally, a realizer of C[p] is a dependent type of a zipper [?] at position p. Its

first part (p ∈ FVal) behaves as a finite list of atoms with two cons constructors, representing

a finite approximation of the generic valuation g. Its second part (subH p ⇒ subH ∅) is the

return continuation: provided we can find a Herbrand tree below p, we have a full Herbrand

tree; it represents a tree context where the hole is at position p.

From this perspective, the key ingredient of the proof is axiom (A), which is responsible

for the insertion of new nodes in the Herbrand tree and the scheduling of the computation of

the subtrees. Indeed, it is the only place where the second component of the forcing condition

(the tree context) is modified. It can be seen as the primitive called by the user program (the

premise) to build the tree, like a system call giving access to g: given an atom a, this program

(given Fig. 7) computes the truth value b of a in g, together with a witness of its answer:

p ∈ G containing a (remember that g =
⋃

G). To do so, it first checks whether a belongs

to the current forcing condition q and if so, returns the associated value (lines 2 & 3) by

feeding it to its continuation f . When a does not belong to q, we need to extend q. Since a

can be mapped to either true or false in g, we consider both cases and hence make two calls

to f (last line). These two calls can be understood intuitively as follows: first we lead f to

believe we have a tree context for p := qa1 (i.e. a fictitious realizer T ′ of subH qa1 ⇒ subH ∅)

although at the time, we only have one for q. When the computation inside f uses T ′, it
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must provide a Herbrand tree t1 below qa1. We then swap branches and call f again with

p := qa0 because this time, we do have a tree context for qa0, namely λt2. t (merge a t1 t2).

Summing up, this last line contains both the extension of the tree (in merge a u v) and the

scheduling of the subtree computation (the two calls to f).

Furthermore, our realizer is completely intuitionistic (no callcc), which means that any

backtrack during execution originates from the realizer of the premise of (H) and cannot

affect the partial tree under construction which is stored in the second part of C[p]. Indeed

callcc∗ takes care of saving and restoring the forcing condition. This restricted form of

backtrack becomes a real instruction in the KFAM [?] (Krivine’s Forcing Abstract Machine)

which hard-wires the forcing translation of section 4 and features two execution modes:

a real mode where terms have their usual KAM behavior,

a forcing mode (or protected mode) where the first slot on the stack is considered as

a forcing condition and terms behave as if they were translated through the forcing

transformation.

In this machine, the premise of Herbrand’s theorem would be executed only in forcing mode

and could not affect the forcing condition (stored on the first slot of the stack).

Finally, the proof of section 5.5.2 in the forcing universe PAω+ + G never uses the upward

closure of G (property 4.9.iii). This means that we do not need to erase information from

the partial Herbrand tree and suggests that our realizer is efficient.
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A Definition of the congruence relation

Reflexivity, symmetry, transitivity and base case

M ≃E M

M ≃E N

N ≃E M

M ≃E N N ≃E P

M ≃E P

(M = N) ∈ E

M ≃E N

Context closure

M ≃E N

λx. M ≃E λx. N

A ≃E B

∀xτ . A ≃E ∀xτ . B

M ≃E N P ≃E Q

M P ≃E N Q

A ≃E B C ≃E D

A ⇒ C ≃E B ⇒ D

M ≃E N P ≃E Q A ≃E,M=P B

M
.
= P 7→ A ≃E N

.
= Q 7→ B

β η ι-conversion

(λxτ . M) Nτ ≃E M [Nτ /xτ ]
x /∈ F V (M)

λx. M x ≃E M

recτ M N 0 ≃E M recτ M N(S P ) ≃E N P (recτ M N P )

Semantically equivalent propositions

∀xτ ∀yσ. A ≃E ∀yσ∀xτ . A
x /∈ F V (A)

∀xτ . A ≃E A

x /∈ F V (A)
A ⇒ ∀xτ . B ≃E ∀xτ . A ⇒ B

M
.
= M 7→ A ≃E A M

.
= N 7→ A ≃E N

.
= M 7→ A

M
.
= N 7→ P

.
= Q 7→ A ≃E P

.
= Q 7→ M

.
= N 7→ A

A ⇒ M
.
= N 7→ B ≃E M

.
= N 7→ A ⇒ B

x /∈ F V (M, N)
∀xτ . M

.
= N 7→ A ≃E M

.
= N 7→ ∀xτ . A

B Proof that the axiom (A) is forced

We want to prove (in PAω+) that 1 F ∀a ∈ Atom. ∃p ∈ G. ∃b ∈ Bool. test p a b = 1. Unfolding

the existential quantifiers, we need to prove

1 F ∀a ∈ Atom. ¬(∀p ∈ G. ∀b ∈ Bool. test p a b = 1 ⇒ ⊥),

that is

1 F ∀a. a ∈ Atom ⇒ ¬(∀p∀b. p ∈ G ⇒ b ∈ Bool ⇒ test p a b = 1 ⇒ ⊥) .

Using proposition 4.2, it amounts to proving (1qa)qf F ⊥ given

xa : qa F a ∈ Atom

xf : qf F ∀p∀b. p ∈ G ⇒ b ∈ Bool ⇒ test p a b = 1 ⇒ ⊥ .

Since 1 is neutral for the product, this is the same as proving that qaqf F ⊥. With repeated

use of γ3, we can turn xf into y := λuv. γ3(γ3 (γ3 (β4 y) u) v) which is a proof term for

∀q∀p∀b. (qqf F p ∈ G) ⇒ (qqf F b ∈ Bool) ⇒ (qqf F test p a b = 1) ⇒ (qqf F ⊥) .

Because test is total and we have Tottest : ∀p ∈ FVal.∀a ∈ Atom.∀b ∈ Bool. test p a b ∈ Bool

(both assumed in the interface for finite relations), we can proceed by case analysis:
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test (qaqf ) a 1 = 1: We take p := qaqf and b := 1. We use y with q := qa to prove

qaqf F ⊥ so that we have to prove its premises:

I : qaqf ≤ qaqf ≡ qaqf F qaqf ∈ G,

γ1(λu. γ1(λv. β4 (β3 u))) : qaqf F 1 ∈ Bool,

I∗ : qaqf F test (qaqf ) a 1 = 1 because the equality holds in the equational theory

(thanks to the case analysis).

test (qaqf ) a 0 = 1: It is similar to the previous case.

test (qaqf ) a 1 = 0 and test (qaqf ) a 0 = 0: This case means that a does not appear in

qaqf .

We use ξ′
⊥

and we are left to prove C[qaqf ] ⇒ ⊥. We first prove C[(qaa1)qf ] ⇒ ⊥ by

using first ξ⊥ then y with q ≡ p := qaa1 and b := 1.

α9 : (qaa1)qf ≤ qaa1 ≡ (qaa1)qf F qaa1 ∈ G because product is the glb for ≤,

(qaa1)qf F 1 ∈ Bool proved as before,

(qaa1)qf F test (qaa1) a 1 = 1 proved as before.

In a similar fashion, we prove C[(qaa0)qf ] ⇒ ⊥.

Let us come back to the proof of C[qaqf ] ⇒ ⊥. Assume C[qaqf ]. Applying the proof term

for C[(qaa1)qf ] ⇒ ⊥, we have to prove C[(qaa1)qf ] ≡ (qaa1)qf ∈ FVal∧(subH (qaa1)qf ⇒

subH ∅). The first part present no difficulty because we have C[qaqf ] and mem a (qaqf ) = 0:

we just need to apply the second constructor of FVal. For the second part, we assume

subH (qaa1)qf and we want to prove subH ∅. Instead we choose to prove ⊥ ≡ ∀Z. Z.

Applying again the same method with C[(qaa0)q] ⇒ ⊥, we end up proving subH ∅ with

subH (qaa1)q and subH (qaa0)qf as extra hypotheses. For this, we just have to use merge

(proposition 5.3) to get subH qaqf and apply it to subH qaqf ⇒ subH ∅ which we get from

C[qaqf ].
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