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Abstract

In this paper we invite the reader to a journey through three lambda calculi

with resource control: the lambda calculus, the sequent lambda calculus, and the

lambda calculus with explicit substitution. All three calculi enable explicit control

of resources due to the presence of weakening and contraction operators. Along

this journey, we propose intersection type assignment systems for all three resource

control calculi. We recognise the need for three kinds of variables all requiring

different kinds of intersection types. Our main contribution is the characterisation

of strong normalisation of reductions in all three calculi, using the techniques of

reducibility, head subject expansion, a combination of well-orders and suitable

embeddings of terms.
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Introduction

It is well known that simply typed λ-calculus captures the computational content of

intuitionistic natural deduction through Curry-Howard correspondence [34]. This con-

nection between logic and computation can be extended to other calculi and logical

systems [27]: Herbelin’s λ-calculus [33], Pinto and Dyckhoff’s λπσ-calculus [49] and

Espı́rito Santo’s λGtz-calculus [20] correspond to intuitionistic sequent calculus. In the
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realm of classical logic, Parigot’s λµ-calculus [48] corresponds to classical natural de-

duction, whereas Barbanera and Berardi’s symmetric calculus [3] and Curien and Her-

belin’s λµµ̃-calculus [14] correspond to its sequent version. Extending first, the λx cal-

culus of explicit substitution and later λ-calculus and λGtz-calculus with explicit opera-

tors for erasure (a.k.a. weakening) and duplication (a.k.a. contraction) brings the same

correspondence to intuitionistic natural deduction and intuitionistic sequent calculus

with explicit structural rules of weakening and contraction on the logical side [24], as

investigated in [35, 36, 26].

On the other hand, let us consider type assignment systems for various calculi.

To overcome the limitations of the simple type discipline in which the only forming

operator is an arrow →, a new type forming operator ∩ was introduced in [12, 13,

50, 55]. The newly obtained intersection type assignment systems enabled complete

characterisation of termination of term calculi [60, 23, 25]. The extension of Curry-

Howard correspondence to other formalisms brought the need for intersection types

into many different settings [18, 39, 43, 46].

Our work is inspired by and extends Kesner and Lengrand’s [35] work on resource

operators for λ-calculus with explicit substitution. Their linear λlxr-calculus introduces

operators for linear substitution, erasure and duplication, preserving at the same time

confluence and full composition of explicit substitutions of its predecessor λx [8, 54].

The simply typed version of this calculus corresponds to the intuitionistic fragment of

Linear Logic’s proof-nets, according to Curry-Howard correspondence, and it enjoys

strong normalisation and subject reduction. Resource control in sequent λ-calculus

was proposed by Ghilezan et al. in [26], whereas resource control both in λ-calculus

and λx-calculus was further developed in [36, 37].

In order to control all resources, in the spirit of λI-calculus (see e.g. [4]), void

lambda abstraction is not acceptable, so in order to have λx.M the variable x has to

occur in M. But if x is not used in a term M, one can perform an erasure (a.k.a weak-

ening) by using the expression x⊙M. In this way, the term M does not contain the

variable x, but the term x⊙M does. Similarly, a variable should not occur twice. If

nevertheless, we want to have two positions for the same variable, we have to duplicate

it explicitly, using fresh names. This is done by using the operator x <x1
x2

M, called

duplication (a.k.a contraction) which creates two fresh variables x1 and x2.

Explicit control of erasure and duplication leads to decomposing of reduction steps

into more atomic steps, thus revealing the details of computation which are usually left

implicit. Since erasing and duplicating of (sub)terms essentially changes the structure

of a program, it is important to see how this mechanism really works and to be able

to control this part of computation. We chose a direct approach to term calculi rather

than taking a more common path through linear logic [1, 7]. In practice, for instance

in the description of compilers by rules with binders [52, 53], the implementation of

substitutions of linear variables by inlining1 is simple and efficient when substitution

of duplicated variables requires the cumbersome and time consuming mechanism of

pointers and it is therefore important to tightly control duplication. On the other hand,

precise control of erasing does not require a garbage collector and prevents memory

1Inlining is the technics which consists in copying at compile time the text of a function instead of

implementing a call to that function.
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leaking.

Our main goal is to characterize the termination of reductions for term calculi with

explicit control of duplication and erasure, in different frameworks: natural deduction,

sequent style and with explicit substitution. We revisit the syntax and reduction rules

of three term calculi with explicit operators for weakening and contraction: λr (the

extension of the λ-calculus), λGtz
r (the extension of the sequent lambda calculus λGtz)

and λx
r (the extension of the λx-calculus with explicit substitution). We then intro-

duce intersection types into all three calculi λr, λGtz
r and λx

r. Our intersection type

assignment systems λr∩, λGtz
r ∩ and λx

r∩ integrate intersection into logical rules, thus

preserving syntax-directedness of the system. We assign restricted form of intersec-

tion types to terms, namely strict types, therefore minimizing the need for pre-order on

types. By using these intersection type assignment systems we prove that terms in all

three calculi enjoy strong normalisation if and only if they are typeable. To the best of

our knowledge, together with the conference version of this paper [28], this is the first

treatment of intersection types in the presence of resource control operators. Intersec-

tion types fit naturally to resource control. Indeed, the control allows us to consider

three types of variables: variables as placeholders (the traditional view of λ-calculus),

variables to be duplicated and variables to be erased because they are irrelevant. For

each kind of a variable, there is a kind of type associated to it, namely a strict type for

a placeholder, an intersection for a variable to-be-duplicated, and a specific type for an

erased variable.

We first prove in Section 1 that terms typeable in λr-calculus are strongly normal-

ising by adapting the reducibility method for explicit resource control operators. Then

we prove that all strongly normalising terms are typeable in λr-calculus by using ty-

peability of normal forms and head subject expansion.

Further, we prove strong normalisation for λGtz
r and λx

r, in Section 2 and Section 3,

respectively, by using a combination of well-orders and a suitable embeddings of λGtz
r -

terms and λx
r-terms into λr-terms which preserve typeability and enable the simula-

tion of all reductions and equations by the operational semantics of the λr-calculus.

Finally, we prove that strong normalisation implies typeability in λGtz
r and λx

r using

head subject expansion.

Related work The idea to control the use of variables can be traced back to Church’s

λI-calculus [4]. Currently there are several different lines of research in resource aware

term calculi. Van Oostrom [61] and later Kesner and Lengrand [35], applying ideas

from linear logic [31], proposed to extend the λ-calculus and the λx-calculus, with op-

erators to control the use of variables (resources). Generalising this approach, Kesner

and Renaud [36, 37] developed the prismoid of resources, a system of eight calculi

parametric over the explicit and implicit treatment of substitution, erasure and du-

plication. Resource control in sequent calculus corresponding to classical logic was

proposed in [62]. On the other hand, process calculi and their relation to λ-calculus

by Boudol [9] initialised investigations in resource aware non-deterministic λ-calculus

with multiplicities and a generalised notion of application [10]. The theory was con-

nected to linear logic via differential λ-calculus in [19] and typed with non-idempotent

intersection types in [47]. In this paper we follow the notation of [62] and [28], which
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is related to [61].

This paper is an extended and revised version of [28]. In addition to λr-calculus

and λGtz
r -calculus presented in [28], this extended version adds the treatment of the

λx
r-calculus, the resource lambda calculus with explicit substitution, together with the

characterization of strong normalisation for this calculus. Also, the proof that typeabil-

ity implies strong normalisation in λr-calculus is improved.

Outline of the paper In Section 1 we first give the syntax and reduction rules for λr-

calculus, followed by the intersection type assignment system and the characterisation

of strong normalisation. Section 2 deals with λGtz
r -calculus, its syntax, reduction rules,

intersection type assignment system and the characterisation of strong normalisation.

Section 3 introduces λx
r-calculus with its syntax, reduction rules and intersection type

assignment system, again followed by the characterisation of strong normalisation. Fi-

nally, we conclude in Section 4 with some directions for future work.

Contents

1 Intersection types for the resource control lambda calculus λr 4

1.1 Resource control lambda calculus λr . . . . . . . . . . . . . . . . . 5

1.2 Intersection types for λr . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Typeability ⇒ SN in λr∩ . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 SN ⇒ Typeability in λr∩ . . . . . . . . . . . . . . . . . . . . . . . 20

2 Intersection types for the sequent resource control lambda calculus λGtz
r 21

2.1 Resource control sequent lambda calculus λGtz
r . . . . . . . . . . . . 22

2.2 Intersection types for λGtz
r . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Typeability ⇒ SN in λGtz
r ∩ . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 SN ⇒ Typeability in λGtz
r ∩ . . . . . . . . . . . . . . . . . . . . . . . 31

3 Intersection types for the resource control lambda calculus with explicit

substitution λx
r 32

3.1 Resource control lambda calculus with explicit substitution λx
r . . . . 32

3.2 Intersection types for λx
r . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Conclusions 34
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In this section we focus on the resource control lambda calculus λr. First we revisit

its syntax and operational semantics; further we introduce intersection type assignment

system and finally we prove that typebility in the proposed system completely charac-

terises the set of strongly normalising λr-terms.
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1.1 Resource control lambda calculus λr

The resource control lambda calculus, λr, is an extension of the λ-calculus with ex-

plicit operators for weakening and contraction. It corresponds to the λcw-calculus of

Kesner and Renaud, proposed in [36] as a vertex of “the prismoid of resources”, where

substitution is implicit. We use a notation along the lines of [62] and close to [61]. It

is slightly modified w.r.t. [36] in order to emphasize the correspondence between this

calculus and its sequent counterpart.

First of all, we introduce the syntactic category of pre-terms of λr-calculus given

by the following abstract syntax:

Pre-terms f ::= x |λx. f | f f |x⊙ f |x <x1
x2

f

where x ranges over a denumerable set of term variables. λx. f is an abstraction, f f

is an application, x⊙ f is a weakening and x <x1
x2

f is a contraction. The contraction

operator is assumed to be insensitive to the order of the arguments x1 and x2, i.e. x <x1
x2

f = x <x2
x1 f .

The set of free variables of a pre-term f , denoted by Fv( f ), is defined as follows:

Fv(x) = x; Fv(λx. f ) = Fv( f )\ {x}; Fv( f g) = Fv( f )∪Fv(g);
Fv(x⊙ f ) = {x}∪Fv( f ); Fv(x <x1

x2 f ) = {x}∪Fv( f )\ {x1,x2}.

In x <x1
x2

f , the contraction binds the variables x1 and x2 in f and introduces a free

variable x. The operator x ⊙ f also introduces a free variable x. In order to avoid

parentheses, we let the scope of all binders extend to the right as much as possible.

The set of λr-terms, denoted by Λr and ranged over by M,N,P,M1, .... is a subset

of the set of pre-terms, defined in Figure 1.

x ∈ Λr

f ∈ Λr x ∈ Fv( f )

λx. f ∈ Λr

f ∈ Λr g ∈ Λr Fv( f )∩Fv(g) = /0

f g ∈ Λr

f ∈ Λr x /∈ Fv( f )

x⊙ f ∈ Λr

f ∈ Λr x1 6= x2 x1,x2 ∈ Fv( f ) x /∈ Fv( f )\ {x1,x2}

x <x1
x2 f ∈ Λr

Figure 1: Λr: λr-terms

Informally, we say that a term is a pre-term in which in every subterm every free

variable occurs exactly once, and every binder binds (exactly one occurrence of) a free

variable. Our notion of terms corresponds to the notion of linear terms in [35]. In that

sense, only linear expressions are in the focus of our investigation. In other words,

terms are well-formed in λr if and only if bound variables appear actually in the term

and variables occur at most once. These conditions will be assumed throughout the

paper without mentioning them explicitly. This assumption is not a restriction, since

every traditional term has a corresponding λr-term, as illustrated by the following

example.
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Example 1. Pre-terms λx.y and λx.xx are not λr-terms, on the other hand pre-terms

λx.(x⊙ y) and λx.x <x1
x2
(x1x2) are their corresponding λr-terms.

In the sequel, we use the notation X ⊙M for x1 ⊙ ... xn ⊙M and X <Y
Z M for x1 <

y1
z1

... xn <yn
zn M, where X , Y and Z are lists of size n, consisting of all distinct variables

x1, ...,xn,y1, ...,yn,z1, ...,zn. If n = 0, i.e., if X is the empty list, then X ⊙M = X <Y
Z

M = M. Note that due to the equivalence relation defined in Figure 4, we can use these

notations also for sets of variables of the same size.

In what follows we use Barendregt’s convention [4] for variables: in the same

context a variable cannot be both free and bound. This applies to binders like λx.M
which binds x in M, x <x1

x2
M which binds x1 and x2 in M, and also to the implicit

substitution M[N/x] which can be seen as a binder for x in M.

The set r of reduction rules →λr of the λr-calculus is presented in Figure 2.

(β) (λx.M)N → M[N/x]

(γ1) x <x1
x2 (λy.M) → λy.x <x1

x2 M

(γ2) x <x1
x2
(MN) → (x <x1

x2
M)N, if x1,x2 6∈ Fv(N)

(γ3) x <x1
x2
(MN) → M(x <x1

x2
N), if x1,x2 6∈ Fv(M)

(ω1) λx.(y⊙M) → y⊙ (λx.M), x 6= y

(ω2) (x⊙M)N → x⊙ (MN)
(ω3) M(x⊙N) → x⊙ (MN)

(γω1) x <x1
x2 (y⊙M) → y⊙ (x <x1

x2 M), y 6= x1,x2

(γω2) x <x1
x2
(x1 ⊙M) → M[x/x2]

Figure 2: The set r of reduction rules of the λr-calculus

The reduction rules are divided into four groups. The main computational step is

β reduction. The group of (γ) reductions perform propagation of contraction into the

expression. Similarly, (ω) reductions extract weakening out of expressions. This dis-

cipline allows us to optimize the computation by delaying duplication of terms on the

one hand, and by performing erasure of terms as soon as possible on the other. Finally,

the rules in (γω) group explain the interaction between explicit resource operators that

are of different nature.

The inductive definition of the meta operator [ / ], representing the implicit substi-

tution of free variables, is given in Figure 3. In order to obtain well formed terms as

the results of substitution, Fv(M)∩Fv(N) = /0 must hold in this definition. Moreover,

notice that for the expression M[N/x] to make sense, M must contain exactly one oc-

currence of the free variable x and M and N must share no variable but x.2 Indeed a

substitution is always created by a β-reduction and, in the term (λx.M)N, x has to ap-

pear exactly once in M and the other variables of Fv(M)∪Fv(N) as well. Barendregt

convention on variable says that x should not occur freely in N. Also, if the terms N1

and N2 are obtained from the term N by renaming all the free variables in N by fresh

variables, then M[N1/x1,N2/x2] denotes a parallel substitution.

2We prefer x not to belong to M in order to respect Barendregt convention on variable.
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x[N/x] , N

(λy.M)[N/x] , λy.M[N/x], x 6= y

(MP)[N/x] , M[N/x]P, x 6∈ Fv(P)

(MP)[N/x] , MP[N/x], x 6∈ Fv(M)

(y⊙M)[N/x] , y⊙M[N/x], x 6= y

(x⊙M)[N/x] , Fv(N)⊙M

(y <y1
y2

M)[N/x] , y <y1
y2

M[N/x], x 6= y

(x <x1
x2

M)[N/x] , Fv(N)<
Fv(N1)
Fv(N2)

M[N1/x1,N2/x2]

Figure 3: Substitution in λr-calculus

(ε1) x⊙ (y⊙M) ≡λr y⊙ (x⊙M)

(ε2) x <x1
x2

M ≡λr x <x2
x1

M

(ε3) x <
y
z (y <u

v M) ≡λr x <
y
u (y <z

v M)

(ε4) x <x1
x2
(y <y1

y2
M) ≡λr y <y1

y2
(x <x1

x2
M), x 6= y1,y2, y 6= x1,x2

Figure 4: Equivalences in λr-calculus

Definition 2 (Parallel substitution). M[N/x,P/z] = (M[N/x])[P/z] for x,z ∈ Fv(M)
and (Fv(M)\ {x})∩Fv(N) = (Fv(M)\ {z})∩Fv(P) = Fv(N)∩Fv(P) = /0.

In the λr-calculus, one works modulo equivalencies given in Figure 4.

Notice that because we work with λr terms, no variable is lost during the compu-

tation, which is stated by the following proposition.

Proposition 3. If M → M′ then Fv(M) = Fv(M′).

Proof. The proof is by case analysis on the reduction rules.

The following lemma explains how to compose implicit substitutions.

Lemma 4.

• If z ∈ FV (N) then (M[N/x])[P/z] = M[N[P/z]/x].

• If z ∈ FV (M) then (M[N/x])[P/z] = (M[P/z])[N/x]

Proof.

Notice that for the expressions to make sense, one must have x ∈ Fv(M) and

(Fv(M)\{x})∩Fv(N)= /0, (Fv(N)\{z})∩Fv(P)= /0 and (Fv(M)\ {x})∩Fv(P) = /0.

• (x[N/x])[P/z], N[P/z] and x[N[P/z]/x], N[P/z]

• ((λy.M)[N/x])[P/z], (λy.M[N/x])[P/z], λy.(M[N/x])[P/z] =IH λy.M[N[P/z]/x],
(λy.M)[N[P/z]/x], x,z 6= y
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• x 6∈ Fv(Q) (the case x 6∈ Fv(M) is analogous)

((MQ)[N/x])[P/z], (M[N/x]Q)[P/z] =z∈Fv(N) (M[N/x])[P/z]Q=IH M[N[P/z]/x]Q=
(MQ)[N[P/z]/x]

• ((y⊙M)[N/x])[P/z], (y⊙M[N/x])[P/z], y⊙M[N/x][P/z] =IH y⊙M[N[P/z]/x],
(y⊙M)[N[P/z]/x], y 6= x,z

• ((x⊙M)[N/x])[P/z], (Fv(N)⊙M)[P/z] =z∈Fv(N)

(z⊙{Fv(N)\{z}}⊙M)[P/z] = {Fv(P)∪Fv(N)\ z}⊙M = Fv(N[P/z])⊙M ,
(x⊙M)[N[P/z]/x]

• ((y <
y1
y2

M)[N/x])[P/z] , (y <
y1
y2

M[N/x])[P/z] , y <
y1
y2

M[N/x][P/z] =IH y <
y1
y2

M[[P/z]N/x] =IH (y <
y1
y2 M)[[P/z]N/x], x 6= y

• ((x <x1
x2

M)[N/x])[P/z], (Fv(N) <
Fv(N1)
Fv(N2)

M[N1/x1,N2/x2])[P/z],

Fv(N)<
Fv(N1)
Fv(N2)

M[N1/x1][N2/x2][P/z] =

z <z1
z2

Fv(N)\ {z}<
Fv(N1)\{z1}
Fv(N2)\{z2}

M[N1/x1][N2/x2][P/z],

Fv(P)<
Fv(P1)
Fv(P2)

Fv(N)\ {z}<
Fv(N1)\{z1}
Fv(N2)\{z2}

M[N1/x1][N2/x2][P1/z1][P2/z2] =IH

Fv(P)∪Fv(N)\ {z}<
Fv(P1)∪Fv(N1)\{z1}
Fv(P2)∪Fv(N2)\{z2}

M[N1[P1/z1]/x1,N2[P2/z2]/x2],

(x <x1
x2

M)[N[P/z]/x].
We used the fact that z1 ∈ Fv(N1) and z2 ∈ Fv(N2).

In the following lemma, by →∗ we denote the reflexive and transitive closure of the

reductions and equivalences of λr-calculus, i.e., →∗, (→λr ∪ ≡λr)
∗.

Lemma 5.

(i) M[y⊙N/x]→∗ y⊙M[N/x]

(ii) y <y1
y2

M[N/x]→∗ M[y <y1
y2

N/x], for y1,y2 /∈ Fv(M).

Proof. The proof is by induction on the structure of the term M.

(i) – M = x. Then M[y⊙N/x] = x[y⊙N/x], y⊙N , y⊙x[N/x] = y⊙M[N/x].

– M = λz.P. Then M[y⊙N/x] = (λz.P)[y⊙N/x], λz.P[y⊙N/x]→IH λz.(y⊙
P[N/x])→ω1

y⊙ (λz.P[N/x]), y⊙ (λz.P)[N/x] = y⊙M[N/x].

– M = PQ. We will treat the case when x 6∈ Fv(Q). The case when x 6∈ Fv(P)
is analogous.

Then M[y⊙N/x] = (PQ)[y⊙N/x], P[y⊙N/x]Q →IH (y⊙P[N/x])Q
→ω2

y⊙ (P[N/x]Q), y⊙ (PQ)[N/x] = y⊙M[N/x].

– M = z⊙P. Then M[y⊙N/x] = (z⊙P)[y⊙N/x] , z⊙P[y⊙N/x] →IH

z⊙ y⊙P[N/x]≡ε1
y⊙ z⊙P[N/x] = y⊙M[N/x].

– M = x⊙P. Then M[y⊙N/x] = (x⊙P)[y⊙N/x] , Fv(y⊙N)⊙P = y⊙
Fv(N)⊙P , y⊙ (x⊙P)[N/x] = y⊙M[N/x], since x 6∈ Fv(P).
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– M = z<z1
z2

P. Then M[y⊙N/x] = (z<z1
z2

P)[y⊙N/x], z<z1
z2

P[y⊙N/x]→IH

z <z1
z2
(y⊙P[N/x])→γω1

y⊙ (z <z1
z2

P[N/x]) = y⊙M[N/x].

– M = x <x1
x2

P. Then M[y⊙N/x] = (x <x1
x2

P)[y⊙N/x],

Fv(y⊙N)<
Fv(y1⊙N1)
Fv(y2⊙N2)

P[y1 ⊙N1/x1,y2 ⊙N2/x2]→IH

Fv(y⊙N)<
Fv(y1⊙N1)
Fv(y2⊙N2)

y1 ⊙ y2 ⊙P[N1/x1,N2/x2] =

Fv(N)<
Fv(N1)
Fv(N2)

y <
y1
y2

y1 ⊙ y2 ⊙P[N1/x1,N2/x2]→γω2

Fv(N)<
Fv(N1)
Fv(N2)

y⊙P[N1/x1,N2/x2]→γω1

y⊙Fv(N)<
Fv(N1)
Fv(N2)

P[N1/x1,N2/x2], y⊙ (x <x1
x2

P[N/x]) = y⊙M[N/x].

(ii) – M = x. Then y <
y1
y2

M[N/x] = y <
y1
y2

x[N/x] , y <
y1
y2

N , x[y <
y1
y2

N/x] =
M[y <y1

y2
N/x].

– M = λz.P. Then y <
y1
y2

M[N/x] = y <
y1
y2
(λz.P)[N/x], y <

y1
y2

λz.P[N/x]
→γ1

λz.y <
y1
y2 P[N/x]→IH λz.P[y <

y1
y2 N/x], (λz.P)[y <

y1
y2 N/x] =

M[y <y1
y2

N/x].

– M = PQ, x 6∈ Fv(Q). The case when x 6∈ Fv(P) is analogous.

Then y<y1
y2

M[N/x] = y<y1
y2
(PQ)[N/x], y<y1

y2
P[N/x]Q→γ2

(y<y1
y2

P[N/x])Q

→IH P[y <
y1
y2

N/x]Q , (PQ)[y <
y1
y2

N/x] = M[y <
y1
y2

N/x].

– M = z⊙P, where z 6= x,y1,y2. Then y <
y1
y2 M[N/x] = y <

y1
y2 (z⊙P)[N/x],

y<y1
y2

z⊙P[N/x]→γω1
z⊙y<y1

y2
P[N/x]→IH z⊙P[y<y1

y2
N/x], (z⊙P)[y<y1

y2

N/x] = M[y <
y1
y2

N/x].

– M = x⊙P. Then y <y1
y2

M[N/x] = y <y1
y2
(x⊙P)[N/x], y <y1

y2
Fv(N)⊙P.

Since y1,y2 ∈Fv(N) we have that y<
y1
y2

y1⊙y2⊙Fv(N)\{y1,y2}⊙P→γω2

y⊙Fv(N)\ {y1,y2}⊙P.
On the other hand, M[y<y1

y2
N/x] = (x⊙P)[y<y1

y2
N/x],Fv(y<y1

y2
N)⊙P=

y⊙Fv(N)\ {y1,y2}⊙P, so the proposition is proved.

– M = z <z1
z2

P. Then y <y1
y2

M[N/x] = y <y1
y2
(z <z1

z2
P)[N/x],

y <
y1
y2

z <z1
z2

P[N/x] ≡λr z <z1
z2

y <
y1
y2

P[N/x] →IH z <z1
z2

P[y <
y1
y2

N/x] ,

(z <z1
z2

P)[y <
y1
y2

N/x] = M[y <
y1
y2

N/x].

– y <
y1
y2 M[N/x] = y <

y1
y2 (x <

x1
x2 P)[N/x],

y <
y1
y2

Fv(N)<
Fv(N1)
Fv(N2)

P[N1/x1,N2/x2] =

y <y1
y2

y1 <
y′1
y′2

y2 <
y′′1
y′′2

Fv(N)\ {y1,y2}<
Fv(N1)\{y′1,y

′′
1}

Fv(N2)\{y′2,y
′′
2}

P[N1/x1,N2/x2]≡λr

y <
y1

y′1
y1 <

y2

y′2
y2 <

y′′1
y′′2

Fv(N)\ {y1,y2}<
Fv(N1)\{y′1,y

′′
1}

Fv(N2)\{y′2,y
′′
2}

P[N1/x1,N2/x2]≡λr

y <
y1

y′1
y1 <

y2

y′′1
y2 <

y′2
y′′2

Fv(N)\ {y1,y2}<
Fv(N1)\{y′1,y

′′
1}

Fv(N2)\{y′2,y
′′
2}

P[N1/x1,N2/x2]≡λr

y <y1
y2

y1 <
y′1
y′′1

y2 <
y′2
y′′2

Fv(N)\ {y1,y2}<
Fv(N1)\{y′1,y

′′
1}

Fv(N2)\{y′2,y
′′
2}

P[N1/x1,N2/x2]≡λr

y<
y1
y2

Fv(N)\{y1,y2}<
Fv(N1)\{y′1,y

′′
1}

Fv(N2)\{y′2,y
′′
2}

y2 <
y′2
y′′2

y1 <
y′1
y′′1

P[N1/x1,N2/x2]→IHx2

y <y1
y2

Fv(N)\ {y1,y2}<
Fv(N1)\{y′1,y

′′
1}

Fv(N2)\{y′2,y
′′
2}

P[(y1 <
y′1
y′′1

N1)/x1,(y2 <
y′2
y′′2

N2)/x2]

On the other hand, rewriting the right hand side yields:

M[y <y1
y2

N/x] = (x <x1
x2

P)[y <y1
y2

N/x],
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Fv(y <
y1
y2

N)<
Fv(y3<

y1
y2

N′
1)

Fv(y4<
y1
y2

N′
2)

P[(y3 <
y1
y2

N′
1)/x1,(y4 <

y1
y2

N′
2)/x2]

By renaming y1 → y′1 and y2 → y′′1 in y3 <
y1
y2

N′
1 and y1 → y′2 and y2 → y′′2

in y4 <
y1
y2

N′
2 we get

Fv(y <
y1
y2

N)<
Fv(y3<

y′
1

y′′
1

N1)

Fv(y4<
y′
2

y′′
2

N2)
P[(y3 <

y′1
y′′1

N1)/x1,(y4 <
y′2
y′′2

N2)/x2]

where N′
1[y

′
1/y1,y

′′
1/y2] = N1 and N′

2[y
′
2/y1,y

′′
2/y2] = N2.

Finally, by renaming y3 → y1 and y4 → y2 we get

Fv(y <
y1
y2

N)<
Fv(y1<

y′
1

y′′
1

N1)

Fv(y2<
y′
2

y′′
2

N2)
P[(y1 <

y′1
y′′1

N1)/x1,(y2 <
y′2
y′′2

N2)/x2] =

y <
y1
y2

Fv(N)\ {y1,y2}<
Fv(N1)\{y′1,y

′′
1}

Fv(N2)\{y′2,y
′′
2}

P[(y1 <
y′1
y′′1

N1)/x1,(y2 <
y′2
y′′2

N2)/x2]

which completes the proof.

Since the last case of the previous lemma is a bit tricky, let us illustrate it with the

following example.

Example 6. Let M = x <x1
x2

x1x2 and N = y1y2. Then

y <y1
y2

M[N/x] = y <y1
y2

x <x1
x2

x1x2[(y1y2)/x],

y <
y1
y2

Fv(y1y2)<
Fv(z1z2)
Fv(w1w2)

x1x2[(z1z2)/x1,(w1w2)/x2] =

y <
y1
y2

y1 <
z1
w1

y2 <
z2
w2

x1x2[(z1z2)/x1,(w1w2)/x2]≡λr,(3×ε3)

y <y1
y2

y1 <
z1
z2

y2 <
w1
w2

(z1z2)(w1w2) = M1.

On the other hand:

x <x1
x2

x1x2[y <
y1
y2

y1y2/x],

Fv(y <y1
y2

y1y2)<
Fv(y3<

y1
y2

y1y2)

Fv(y4<
y1
y2

y1y2)
(x1x2)[(y3 <

y1
y2

y1y2)/x1,(y4 <
y1
y2

y1y2)/x2] =

y <
y3
y4
(y3 <

y1
y2

y1y2)(y4 <
y1
y2

y1y2).
By renaming y1 → z1, y2 → z2 in the first bracket, and y1 → w1, y2 → w2 in the second

one we obtain: y <
y3
y4
(y3 <

z1
z2

z1z2)(y4 <
w1
w2

w1w2).
By renaming y3 → y1, y4 → y2 we get y <

y1
y2
(y1 <

z1
z2

z1z2)(y2 <
w1
w2

w1w2) = M2.
Finally, M1 →γ2,γ3

M2.

1.2 Intersection types for λr

In this subsection we introduce an intersection type assignment system which assigns

strict types to λr-terms. Strict types were proposed in [60] and used in [22] for char-

acterisation of strong normalisation in λGtz-calculus.

The syntax of types is defined as follows:

Strict types σ ::= p | α → σ
Types α ::= ∩n

i σi
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where p ranges over a denumerable set of type atoms, and ∩n
i σi stands for σ1 ∩ . . .∩

σn, n ≥ 0. Particularly, if n = 0, then ∩0
i σi represents the neutral element for the inter-

section operator, denoted by ⊤.

We denote types with α,β,γ..., strict types with σ,τ,υ... and the set of all types by

Types. We assume that the intersection operator is idempotent, commutative and asso-

ciative. We also assume that intersection has priority over the arrow operator. Hence,

we will omit parenthesis in expressions like (∩n
i τi)→ σ.

Definition 7.

(i) A basic type assignment is an expression of the form x : α, where x is a term

variable and α is a type.

(ii) A basis Γ is a set {x1 : α1, . . . ,xn : αn} of basic type assignments, where all term

variables are different. Dom(Γ) = {x1, . . . ,xn}. A basis extension Γ,x : α denotes

the set Γ∪{x : α}, where x 6∈ Dom(Γ).

(iii) A bases intersection is defined as:

Γ⊓∆ = {x : α∩β | x : α ∈ Γ & x : β ∈ ∆ & Dom(Γ) = Dom(∆)}.

(iv) Γ⊤ = {x : ⊤ | x ∈ Dom(Γ)}.

In what follows we assume that the bases intersection has priority over the basis

extension, hence the parenthesis in Γ,(∆1 ⊓ . . .⊓∆n) will be omitted. It is easy to show

that Γ⊤ ⊓∆ = ∆ for arbitrary bases Γ and ∆ that can be intersected, hence Γ⊤ can be

considered the neutral element for the bases intersection.

x : σ ⊢ x : σ
(Ax)

Γ,x : α ⊢ M : σ

Γ ⊢ λx.M : α → σ
(→I)

Γ ⊢ M : ∩n
i τi → σ ∆0 ⊢ N : τ0 . . . ∆n ⊢ N : τn

Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n ⊢ MN : σ

(→E)

Γ,x : α,y : β ⊢ M : σ

Γ,z : α∩β ⊢ z <x
y M : σ

(Cont) Γ ⊢ M : σ
Γ,x : ⊤ ⊢ x⊙M : σ

(Weak)

Figure 5: λr∩: λr-calculus with intersection types

The type assignment system λr∩ is given in Figure 5. Notice that in the syntax of

λr there are three kinds of variables according to the way they are introduced, namely

as a placeholder, as a result of a contraction or as a result of a weakening. Each kind of a

variable receives a specific type. Variables as placeholders have a strict type, variables

resulting from a contraction have an intersection type and variables resulting from a

weakening have a ⊤ type. Moreover, notice that intersection types occur only in two

inference rules. In the rule (Cont) the intersection type is created, this being the only

place where this happens. This is justified because it corresponds to the duplication of

11



a variable. In other words, the control on the duplication of variables entails the control

on the introduction of intersections in building the type of the term in question. In the

rule (→E), intersection appears on the right hand side of ⊢ sign which corresponds

to the usage of the intersection type after it has been created by the rule (Cont) or by

the rule (Weak) if n = 0. In this inference rule, the role of ∆0 should be noticed. It is

needed only when n = 0 to ensure that N has a type, i.e. that N is strongly normalizing.

Then, in the bottom of the rule, the types of the free variables of N can be forgotten,

hence all the free variables of N receive the type ⊤. All the free variables of the term

must occur in the environment (see Lemma 8), therefore useless variables occur with

the type ⊤. If n is not 0, then ∆0 can be any of the other environments and the type

of N the associated type. Since ∆⊤ is a neutral element for ⊓, then ∆⊤ disappears in

the bottom of the rule. The case for n = 0 resembles the rules (drop) and/or (K-cup)

in [42] and was used to present the two cases, n = 0 and n 6= 0 in a uniform way. In

the rule (Weak) the choice of the type of x is ⊤, since this corresponds to a variable

which does not occur anywhere in M. The remaining rules, namely (Ax) and (→I) are

traditional, i.e. they are the same as in the simply typed λ-calculus. Noticed however

that the type of the variable in (Ax) is a strict type.

Lemma 8 (Domain Correspondence for λr∩). Let Γ ⊢ M : σ be a typing judgment.

Then x ∈ Dom(Γ) if and only if x ∈ Fv(M).

Proof. The rules of Figure 5 belong to three categories.

1. The rules that introduce a variable. These rules are (Ax), (Cont) and (Weak).
One sees that the variable is introduced in the environment if and only it is intro-

duced in the term as a free variable.

2. The rules that remove variables. These rules are (→I) and (Cont). One sees that

the variables are removed from the environment if and only if they are removed

from the term as a free variable.

3. The rule that does not introduce and does not remove a variable. This rule is

(→E).

Notice that (Cont) introduces and removes variables.

The Generation Lemma makes somewhat more precise the Domain Correspon-

dence Lemma.

Lemma 9 (Generation lemma for λr∩).

(i) Γ ⊢ λx.M : τ iff there exist α and σ such that τ≡α → σ and Γ,x : α ⊢ M : σ.

(ii) Γ ⊢MN : σ iff and there exist ∆i and τi, i = 0, . . . ,n such that Γ′ ⊢ M : ∩n
i τi →

σ and for all i ∈ {0, . . . ,n}, ∆i ⊢ N : τi and Γ = Γ′,∆⊤
0 ⊓∆1 ⊓ . . .⊓∆n.

(iii) Γ ⊢ z <x
y M : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β

and Γ′,x : α,y : β ⊢ M : σ.

(iv) Γ ⊢ x⊙M : σ iff Γ = Γ′,x : ⊤ and Γ′ ⊢ M : σ.

12



Proof. The proof is straightforward since all the rules are syntax directed.

The proposed system satisfies the following properties.

Lemma 10 (Substitution lemma for λr∩). If Γ,x : ∩n
i τi ⊢ M : σ and for all i ∈

{0, . . . ,n}, ∆i ⊢ N : τi, then Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n ⊢ M[N/x] : σ.

Proof. The proof is by induction on the structure of the term M. We only show the

interesting cases.

• Base case M = x. By the axiom x : τ ⊢ x : τ where τ = ∩1
i τi, i.e. n = 1, hence the

second assumption is ∆ ⊢ N : τ which proves the case since N , x[N/x].

• M = x ⊙ P. Now we assume Γ,x : ∩0
i τi ⊢ x ⊙ P : σ and ∆i ⊢ N : τi for all

i ∈ {0, . . . ,0}, in other words Γ,x : ⊤ ⊢ x⊙P : σ and ∆0 ⊢ N : τ0 (i.e. N is ty-

peable). By Generation lemma 9(iv) we get Γ ⊢ P : σ. Since Dom(∆0) = Fv(N)
by applying the (Weak) rule multiple times we get Γ,∆⊤

0 ⊢ Fv(N)⊙P ⊢ σ which

is exactly what we want to prove.

• M = x <x1
x2

P. From Γ,x : ∩n
i τi ⊢ x <x1

x2
P : σ, by Generation lemma 9(iii) we get

that ∩n
i τi =∩m

i=1τi∩∩n
i=m+1τi for some m< n and Γ,x1 :∩m

i τi,x2 : ∩n
i=m+1τi ⊢ P :

σ. From the other assumption ∆i ⊢ N : τi for all i ∈ {1, . . . ,n}, by renaming the

variables in ∆i (i.e. the free variables of N) we get two different sets of sequents:

∆′
j ⊢ N1 : τ j for j = 1, . . . ,m and ∆′′

k ⊢ N2 : τk for k = m+1, . . . ,n. By applying IH

twice, we get Γ,∆′⊤
0 ⊓∆′

1 ⊓ . . .⊓∆′
m,∆

′′⊤
0 ⊓∆′′

m+1 ⊓ . . .⊓∆′′
n ⊢ (P[N1/x1])[N2/x2] :

σ. Now, we apply the definition of the parallel substitution, and perform con-

traction on all pairs of corresponding (i.e. obtained by the renaming of the same

variable) elements of ∆′
j and ∆′′

k by introducing again the original names of the

free variables of N from ∆i and finally get what we need:

Γ,∆⊤
0 ⊓∆1 ⊓ . . .⊓∆n ⊢ Fv(N)<

Fv(N1)
Fv(N2)

P[N1/x1,N2/x2] : σ.

Proposition 11 (Subject reduction and equivalence). For every λr-term M: if Γ ⊢ M : σ
and M → M′ or M ≡ M, then Γ ⊢ M′ : σ.

Proof. The proof is done by the case analysis on the applied reduction. Since the prop-

erty is stable by context, we can without losing generality assume that the reduction

takes place at the outermost position of the term. Here we just show several cases. We

will use GL as an abbreviation for Generation lemma 9.

• Case (β): Let Γ ⊢ (λx.M)N : σ. We want to show that Γ ⊢ M[N/x] : σ. From

Γ ⊢ (λx.M)N : σ and from GL(ii) it follows that Γ = Γ′,∆⊤
0 ⊓ ∆1 ⊓ . . .⊓ ∆n,

and that there is a type ∩n
i τi such that for all i = 0, . . . ,n, ∆i ⊢ N : τi, and Γ′ ⊢

λx.M : ∩n
i τi → σ. Further, by GL(i) we have that Γ′,x : ∩n

i τi ⊢ M : σ. Now, all

the assumptions of Substitution lemma 10 hold, yielding Γ′,∆⊤
0 ⊓∆1 ⊓ . . .⊓∆n ⊢

M[N/x] : σ which is exactly what we need, since Γ = ∆⊤
0 ⊓Γ′,∆1 ⊓ . . .⊓∆n.
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• Case (γω2): Let Γ ⊢ x <x1
x2

x1 ⊙M : σ. We are showing that Γ ⊢ M[x/x2] : σ.

From the first sequent by GL(iii) we have that Γ = Γ′,x : α∩β and Γ′,x1 : α,x2 :

β ⊢ x1 ⊙M : σ. Further, by GL(iv) we conclude that α ≡ ⊤, x : ⊤∩β ≡ β and

Γ′,x2 : β ⊢ M : σ. Since β = ∩n
i τi for some n ≥ 0, by applying Substitution

lemma 10 to Γ′,x2 : β⊢M : σ and x : τi ⊢ x : τi, i= 0, . . . ,n we get Γ⊢M[x/x2] : σ.

• The other rules are easy since they do not essentially change the structure of the

term.

Due to this property, equivalent terms have the same type.

1.3 Typeability ⇒ SN in λr∩

In various type assignment systems, the reducibility method can be used to prove many

reduction properties of typeable terms. It was first introduced by Tait [58] for proving

the strong normalisation of simply typed λ-calculus, and developed further to prove

strong normalisation of various calculi in [59, 30, 41, 25, 29], confluence (the Church-

Rosser property) of βη-reduction in [40, 57, 44, 45, 29] and to characterise certain

classes of λ-terms such as strongly normalising, normalising, head normalising, and

weak head normalising terms (and their persistent versions) by their typeability in var-

ious intersection type systems in [23, 17, 15, 16].

The main idea of the reducibility method is to interpret types by suitable sets of

lambda terms which satisfy some realizability properties and prove the soundness of

type assignment with respect to these interpretations. A consequence of soundness is

that every typeable term belongs to the interpretation of its type, hence satisfying a

desired reduction property.

In the remainder of the paper we consider Λr as the applicative structure whose

domain are λr-terms and where the application is just the application of λr-terms.

The set of strongly normalizing terms is defined as the smallest subset of Λr such that:

M′ ∈ SN M → M′

M ∈ SN

Definition 12. For M ,N ⊆ Λr, we define M // N ⊆ Λr as

M // N = {N ∈ Λr | ∀M ∈ M NM ∈ N )}.

Definition 13. The type interpretation [[−]] : Types→ 2Λr is defined by:

(I1) [[p]] = SN , where p is a type atom;

(I2) [[α → σ]] = [[α]] // [[σ]];

(I3) [[∩n
i σi]] = ∩n

i [[σi]] and [[∩0
i σi]] = SN .
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Next, we introduce the notions of variable property, reduction property, expansion

property, weakening property and contraction property. Variable property and expan-

sion property correspond to the saturation property given in [5], whereas reduction

property corresponds to the property CR 2 in Chapter 6 of [32]. To this aim we will

use the following notation: recall that r denotes the set of reductions given in Fig-

ure 2. If µ ∈r, then redex
ς
µ denotes a redex, that is a term which is an instance by the

meta-substitution ς of the left hand side of the reduction µ. Whereas contr
ς
µ denotes the

instance of the right hand side of the same reduction µ by the same meta-substitution

ς.3

Definition 14.

• A set X ⊆ Λr satisfies the variable property, notation VAR(X ), if X contains all

the terms of the form xM1 . . .Mn for Mi ∈ SN .

• A set X ⊆ Λr satisfies the reduction property, notation RED(X ), if X is stable

by reduction, in other words M ∈ X and M → M′ imply M′ ∈ X .

• A set X ⊆ Λr satisfies the expansion property, notation EXPµ(X ) where µ is a

rule in r, if4:

M1 ∈ SN . . .Mn ∈ SN contrς
µ M1 . . .Mn ∈ X

EXPµ(X )
redexς

µ M1 . . .Mn ∈ X .

• A set X ⊆ Λr satisfies the weakening property, notation WEAK(X ) if:

M ∈ X
WEAK(X )

x⊙M ∈ X .

• A set X ⊆ Λr satisfies the contraction property, notation CONT(X ) if:

M ∈ X
CONT(X )

x <y
z M ∈ X .

Remark. In the previous definition (Definition 14) it is not necessary to explicitly write

the conditions about free variables since we work with λr-terms.

Definition 15 (r-Saturated set). A set X ⊆ Λr is called r-saturated, if

• X ⊆ SN and

• X satisfies the variable, reduction, expansion, weakening and contraction prop-

erties.

Proposition 16. Let M ,N ⊆ Λr.

3Meta-substitution is a substitution that assigns values to meta-variables.
4Notice that we do not need a condition that N ∈ SN in EXPβ(X ), as in ordinary λ-calculus, since we

only work with linear terms, hence if the contractum M[N/x] ∈ SN , then N ∈ SN .
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(i) SN is r-saturated.

(ii) If M and N are r-saturated, then M // N is r-saturated.

(iii) If M and N are r-saturated, then M ∩N is r-saturated.

(iv) For all types ϕ ∈ Types, [[ϕ]] is r-saturated.

Proof. (i)

• SN ⊆ SN , VAR(SN ) and RED(SN ) trivially hold.

• EXPβ(SN ). Suppose that M[N/x]M1 . . .Mn ∈ SN and M1, . . . ,Mn ∈ SN . Since

M[N/x] is a subterm of a term in SN , we know that M ∈ SN . Also, since

M[N/x] ∈ SN and M is linear, N ∈ SN . By assumption, M1, . . . ,Mn ∈ SN ,

so the reductions inside of these terms terminate. After finitely many reduction

steps, we obtain (λx.M)NM1 . . .Mn → . . . → (λx.M′)N′M′
1 . . .M

′
n where M →

M′, N → N′, M1 → M′
1, . . . ,Mn → M′

n. After contracting

(λx.M′)N′M′
1 . . .M

′
n to M′[N′/x]M′

1 . . .M
′
n, we obtain a reduct of

M[N/x]M1 . . .Mn ∈ SN . Hence, (λx.M)NM1 . . .Mn ∈ SN .

• EXPµ(SN ). Analogous to EXPβ(SN ).

• WEAK(SN ). Suppose that M ∈ SN and x 6∈Fv(M). Then trivially x⊙M ∈ SN ,

since no new redexes are formed.

• CONT(SN ). Suppose that M ∈ SN , y 6= z, y,z ∈ Fv(M), x 6∈ Fv(M) \ {y,z}.

We prove x <
y
z M ∈ SN by induction on the structure of M.

– M = λw.N. Then N ∈ SN and x <
y
z M = x <

y
z (λw.N) →γ1

λw.x <
y
z N ∈

SN , since x <
y
z N ∈ SN by IH.

– M = PQ. Then P,Q ∈ SN and if y,z 6∈ Fv(Q), x <
y
z M = x <

y
z (PQ) →γ2

(x <y
z P)Q ∈ SN , since by IH x <y

z P ∈ SN .

The case of →γ3
reduction is analogous.

– M = w⊙N. Then x <
y
z M = x <

y
z (w ⊙N) →γω1

w⊙ (x <
y
z N). By IH

x <y
z N ∈ SN and w⊙ (x <y

z N) does not introduce any new redexes.

– M = y⊙N. Then x<y
z M = x<y

z (y⊙N)→γω2
N[x/z]∈ SN , since N ∈ SN

by IH.

(ii)

• M // N ⊆ SN . Suppose that M ∈ M // N . Then, for all N ∈ M , MN ∈
N . Since M is r-saturated, VAR(M ) holds so x ∈ M and Mx ∈ N ⊆ SN .
From here we can deduce that M ∈ SN .

• VAR(M // N ). Suppose that x∈ var, and M1, . . . ,Mn ∈ SN ,n≥ 0, such that

x∩Fv(M1)∩ . . .∩Fv(Mn) = /0. We need to show that xM1 . . .Mn ∈ M // N ,
i.e. ∀N ∈ M , xM1 . . .MnN ∈ N . This holds since by IH M ⊆ SN and N is

r-saturated, i.e. VAR(N ) holds.
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• RED(M // N ). Let M ∈ M // N and M′ be such that M → M′ and let

N ∈ M . We know that MN ∈ N and MN → M′N. By IH, M′N ∈ N hence

M′ ∈ M // N .

• EXPβ(M // N ). Suppose that M[N/x]M1 . . .Mn ∈ M // N and M1, . . . ,
Mn ∈ SN . This means that for all P ∈ M , M[N/x]M1 . . .MnP ∈ N . But N is r-

saturated, so EXPβ(N ) holds and we have that for all P∈N , (λx.M)NM1 . . .MnP∈
N . This means that (λx.M)NM1 . . .Mn ∈ M // N .

• EXPµ(M // N ). Analogous to EXPβ(M // N ).

• WEAK(M // N ). Suppose that M ∈M // N and x 6∈Fv(M). This means

that for all N ∈ M ,MN ∈ N . But N is r-saturated, i.e. WEAK(N ) holds, hence

x⊙ (MN) ∈ N . Also EXPω2
(N ) holds so we obtain for all N ∈ M ,(x⊙M)N ∈

N , i.e x⊙M ∈ M // N .

• CONT(M // N ). Let M ∈ M // N . We want to prove that x <y
z M ∈

M // N for y 6= z, y,z ∈ Fv(M) and x 6∈ Fv(M). Let P be any term in M .

We have to prove that (x <y
z M)P ∈ N . Since M ∈ M // N , we know that

M P ∈ N . By IH x <
y
z (M P) ∈ N . By reduction γ2 and hence by RED(N ) we

have (x <
y
z M)P ∈ N . Therefore x <

y
z M ∈ M // N .

(iii)

• M ∩N ⊆ SN is straightforward, since M,N ⊆ SN by IH.

• VAR(M ∩N ). Since VAR(M ) and VAR(N ) hold, we have that ∀M1, . . . , Mn ∈
SN , n≥ 0: xM1 . . .Mn ∈ M and xM1 . . .Mn ∈N . We deduce that ∀M1, . . . ,Mn ∈
SN , n ≥ 0: xM1 . . .Mn ∈ M ∩N , i.e. VAR(M ∩N ) holds.

• RED(M ∩N ) is straightforward.

• EXPβ(M ∩N ) and EXPµ(M ∩N ) are straightforward.

• WEAK(M ∩N ). Let M ∈ M ∩N and x 6∈ Fv(M). Then M ∈ M and M ∈ N .

Since both M and N are r-saturated WEAK(M ) and WEAK(N ) hold, hence

by IH x⊙M ∈ M and x⊙M ∈ N , i.e. x⊙M ∈ M ∩N .

• CONT(M ∩N ). Suppose that M ∈ M ∩N , y 6= z, y,z ∈ Fv(M), x 6∈ Fv(M) \
{y,z}. Since both M and N are r-saturated CONT(M ) and CONT(N ) hold,

hence by IH x <
y
z M ∈ M and x <

y
z M ∈ N , i.e. x <

y
z M ∈ M ∩N .

(iv) By induction on the construction of ϕ ∈ Types.

• If ϕ ≡ p, p a type atom, then [[ϕ]] = SN , so it is r-saturated using (i).

• If ϕ ≡ α → σ, then [[ϕ]] = [[α]] // [[σ]]. Since [[α]] and [[σ]] are r-saturated by

IH, we can use (ii).

• If ϕ ≡ ∩n
i σi, then [[ϕ]] = [[∩n

i σi]] = ∩n
i [[σi]] and for all i = 1, . . . ,n, [[σi]] are r-

saturated by IH, so we can use (iii). If ϕ ≡ ∩0
i σi, then [[ϕ]] = SN
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We further define a valuation of terms [[−]]ρ : Λr → Λr and the semantic satisfia-

bility relation |= connecting the type interpretation with the term valuation.

Definition 17. Let ρ : var→ Λr be a valuation of term variables in Λr. For M ∈ Λr,

with Fv(M) = {x1, . . . ,xn} the term valuation [[−]]ρ : Λr → Λr is defined as follows:

[[M]]ρ = M[ρ(x1)/x1, . . . ,ρ(xn)/xn].

providing that x 6= y ⇒ Fv(ρ(x))∩Fv(ρ(y)) = /0.

Notation: ρ(N/x) is the valuation defined as: ρ(N/x)(y) =

{
ρ(y) if x 6= y

N otherwise

Lemma 18.

(i) [[MN]]ρ = [[M]]ρ[[N]]ρ

(ii) [[λx.M]]ρN → [[M]]ρ(N/x).

(iii) [[x⊙M]]ρ = Fv(ρ(x))⊙ [[M]]ρ.

(iv) [[z <x
y M]]ρ = Fv(N)<

Fv(N1)
Fv(N2)

[[M]]ρ(N1/x,N2/y)

where N = ρ(z), N1, N2 are obtained from N by renaming its free variables.

Proof.

(i) Straightforward from the definition of substitution given in Figure 3.

(ii) If Fv(λx.M) = {x1, . . . ,xn}, then

[[λx.M]]ρN = (λx.M)[ρ(x1)/x1, . . . ,ρ(xn)/xn]N →
(M[ρ(x1)/x1, . . . ,ρ(xn)/xn])[N/x] = M[ρ(x1)/x1, . . . ,ρ(xn)/xn,N/x] =
[[M]]ρ(N/x),

(iii) If Fv(M) = {x1, . . . ,xn}, then

[[x⊙M]]ρ = (x⊙M)[ρ(x)/x,ρ(x1)/x1, . . . ,ρ(xn)/xn] =
Fv(ρ(x))⊙M[ρ(x1)/x1, . . . ,ρ(xn)/xn] = Fv(ρ(x))⊙ [[M]]ρ.

(iv) If Fv(M) = {x1, . . . ,xn}, then

[[z <x
y M]]ρ = (z <x

y M)[N/z,ρ(x1)/x1, . . . ,ρ(xn)/xn] =

Fv(N)<
Fv(N1)
Fv(N2)

M[N1/x,N2/y,ρ(x1)/x1, . . . ,ρ(xn)/xn] =

= Fv(N)<
Fv(N1)
Fv(N2)

[[M]]ρ(N1/x,N2/y).

Definition 19.

(i) ρ |= M : σ ⇐⇒ [[M]]ρ ∈ [[σ]];

(ii) ρ |= Γ ⇐⇒ (∀(x : α) ∈ Γ) ρ(x) ∈ [[α]];
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(iii) Γ |= M : σ ⇐⇒ (∀ρ,ρ |= Γ ⇒ ρ |= M : σ).

Lemma 20. Let Γ � M : σ and ∆ � M : τ, then

ρ � Γ⊓∆ if and only if ρ � Γ and ρ � ∆.

Proof. The proof is a straightforward consequence of the Definition 7 of bases inter-

section ⊓.

Proposition 21 (Soundness of λr∩). If Γ ⊢ M : σ, then Γ |= M : σ.

Proof. By induction on the derivation of Γ ⊢ M : σ.

• If the last rule applied is (Ax), i.e. x : σ ⊢ x : σ the proof is trivial.

• The last rule applied is (→I), i.e.,

Γ,x : α ⊢ M : σ ⇒ Γ ⊢ λx.M : α → σ.

By the IH Γ,x : α |= M : σ. Suppose that ρ |= Γ and we want to show that

ρ |= λx.M : α → σ. We have to show that

[[λx.M]]ρ ∈ [[α → σ]] = [[α]] // [[σ]] i.e. ∀N ∈ [[α]]. [[λx.M]]ρN ∈ [[σ]].

Suppose that N ∈ [[α]]. We have that ρ(N/x) |= Γ,x : α since ρ |= Γ, x 6∈ Γ and

ρ(N/x)(x) = N ∈ [[α]]. By IH ρ(N/x) |= M : σ, hence we can conclude that

[[M]]ρ(N/x) ∈ [[σ]]. Using Lemma 18(ii) we get [[λx.M]]ρN → [[M]]ρ(N/x). Since

[[M]]ρ(N/x) ∈ [[σ]] and [[σ]] is r-saturated, we obtain [[λx.M]]ρN ∈ [[σ]].

• The last rule applied is (→E), i.e.

Γ ⊢ M : ∩n
i τi → σ, ∆0 ⊢ N : τ0 . . . ∆n ⊢ N : τn ⇒ Γ,∆⊤

0 ⊓∆1 ⊓ . . .⊓∆n ⊢ MN : σ.

Let ρ be any valuation.

Assuming that Γ ⊢ M : ∩n
i τi → σ,∆1 ⊢ N : τ1, . . . ,∆n ⊢ N : τn, we have to prove

that if ρ � Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n, then ρ � M N : σ.

By IH, Γ |= M : ∩n
i τi → σ and ∆0 |= N : τ0, . . . ,∆n |= N : τn. Assume that

ρ |= Γ,∆⊤
0 ⊓∆1 ⊓ . . .⊓∆n. This means that ρ |= Γ and ρ |= ∆⊤

0 ⊓∆1 ⊓ . . .⊓∆n.
From ρ |= Γ we deduce by Definition 19 (iii) ρ |= M : ∩n

i τi → σ and by Defini-

tion 19 (i) [[M]]ρ ∈ [[∩n
i τi → σ]]. By Definition 17 [[M]]ρ ∈

⋂n
i [[τ]] // [[σ]].

Using Lemma 20 ρ |= ∆⊤
0 ⊓ ∆1 ⊓ ...⊓ ∆n implies (ρ |= ∆⊤

0 ) ∧ (
∧n

i=1 ρ |= ∆i),
hence by Definition 19 (i) and (iii) we get ([[N]]ρ ∈ [[⊤]])∧

∧n
i=1([[N]]ρ ∈ [[τi]]),

i.e. [[N]]ρ ∈ SN ∩ ∩n
i [[τi]] = ∩n

i [[τi]], since [[τi]] ⊆ SN by Proposition 16(iv).

By Definition 12 of // , [[M N]]ρ = [[M]]ρ [[N]]ρ ∈ [[σ]] and by Definition 19 (i)

ρ � M N : σ.

• The last rule applied is (Weak), i.e.,

Γ ⊢ M : σ ⇒ Γ,x : ⊤ ⊢ x⊙M : σ.

By the IH Γ |= M : σ. Suppose that ρ |= Γ,x : ⊤ ⇔ ρ |= Γ and ρ |= x : ⊤. From

ρ |= Γ we obtain [[M]]ρ ∈ [[σ]]. Using multiple times the weakening property

WEAK and Lemma 18(iii) we obtain Fv(ρ(x))⊙ [[M]]ρ = [[x⊙M]]ρ ∈ [[σ]], since

Fv(ρ(x))∩Fv([[M]]ρ) = /0.
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• The last rule applied is (Cont), i.e.,

Γ,x : α,y : β ⊢ M : σ ⇒ Γ,z : α∩β ⊢ z <x
y M : σ.

By the IH Γ,x : α,y : β |= M : σ. Suppose that ρ |= Γ,z : α∩β.This means that

ρ |= Γ and ρ |= z : α∩β ⇔ ρ(z) ∈ [[α]] and ρ(z) ∈ [[β]]. For the sake of simplic-

ity let ρ(z) ≡ N. We define a new valuation ρ′ such that ρ′ = ρ(N1/x,N2/y),
where N1 and N2 are obtained by renaming the free variables of N. Then ρ′ |=
Γ,x : α,y : β since x,y 6∈ Dom(Γ), N1 ∈ [[α]] and N2 ∈ [[β]]. By the IH [[M]]ρ′ =

[[M]]ρ(N1/x,N2/y) ∈ [[σ]]. Using the contraction property CONT we have that Fv(N)<
Fv(N1)
Fv(N2)

[[M]]ρ(N1/x,N2/y) = [[z <x
y M]]ρ ∈ [[σ]].

Theorem 22 (SN for λr∩). If Γ⊢M : σ, then M is strongly normalizing, i.e. M ∈ SN .

Proof. Suppose Γ ⊢ M : σ. By Proposition 21 Γ |= M : α. According to Defini-

tion 19(iii), this means that (∀ρ |= Γ) ρ |=M : σ. We can choose a particular ρ0(x) = x

for all x ∈ var. By Proposition 16(iv), [[β]] is r-saturated for each type β, hence

x = [[x]]ρ0
∈ [[β]] (variable condition for n = 0). Therefore, ρ0 |= Γ and we can conclude

that [[M]]ρ0
∈ [[σ]]. On the other hand, M = [[M]]ρ0

and [[σ]] ⊆ SN (Proposition 16),

hence M ∈ SN .

1.4 SN ⇒ Typeability in λr∩

We want to prove that if a λr-term is SN, then it is typeable in the system λr∩. We

proceed in two steps: 1) we show that all λr-normal forms are typeable and 2) we

prove the head subject expansion. First, let us observe the structure of the λr-normal

forms, given by the following abstract syntax:

Mn f ::= x |λx.Mn f |λx.x⊙Mn f |xM1
n f . . .M

n
n f |

x <x1
x2

Mn f Nn f , with x1 ∈ Fv(Mn f ),x2 ∈ Fv(Nn f )
Wn f ::= x⊙Mn f |x⊙Wn f

Notice that it is necessary to distinguish normal forms Wn f since the term λx.y⊙
Mn f is not a normal form, since λx.y⊙Mn f →ω1

y⊙λx.Mn f .

Proposition 23. λr-normal forms are typeable in the system λr∩.

Proof. By induction on the structure of Mn f and Wn f .

Lemma 24 (Inverse substitution lemma). Let Γ ⊢ M[N/x] : σ and N typeable. Then,

there are ∆ j and τ j , j = 0, . . . ,n such that ∆ j ⊢ N : τ j , and Γ′,x : ∩n
i τi ⊢ M : σ, where

Γ = Γ′, ∆⊤
0 ⊓∆1 ⊓ . . .⊓∆n.

Proof. By induction on the structure of M.

Proposition 25 (Head subject expansion). For every λr-term M: if M → M′, M is a

contracted redex and Γ ⊢ M′ : σ , then Γ ⊢ M : σ, provided that if M ≡ (λx.N)P →β

N[P/x]≡ M′, P is typeable.
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Proof. By case study according to the applied reduction.

Theorem 26 (SN ⇒ typeability). All strongly normalising λr-terms are typeable in

the λr∩ system.

Proof. The proof is by induction on the length of the longest reduction path out of a

strongly normalising term M, with a subinduction on the size of M.

• If M is a normal form, then M is typeable by Proposition 23.

• If M is itself a redex, let M′ be the term obtained by contracting the redex M. M′

is also strongly normalising, hence by IH it is typeable. Then M is typeable, by

Proposition 25. Notice that, if M ≡ (λx.N)P →β N[P/x]≡ M′, then, by IH, P is

typeable, since the length of the longest reduction path out of P is smaller than

that of M, and the size of P is smaller than the size of M.

• Next, suppose that M is not itself a redex nor a normal form. Then M is of

one of the following forms: λx.N, λx.x⊙N, xM1 . . .Mn, x⊙N, or x <x1
x2

NP, x1 ∈
Fv(N), x2 ∈Fv(P) (where M1, . . . ,Mn, N, and NP are not normal forms). M1, . . . ,Mn

and NP are typeable by IH, as subterms of M. Then, it is easy to build the typing

for M. For instance, let us consider the case x <x1
x2 NP with x1 ∈ Fv(N), x2 ∈

Fv(P). By induction NP is typeable, hence N is typeable with say Γ,x1 : β ⊢ N :

∩n
i τi → σ and P is typeable with say ∆ j,x2 : γ j ⊢ P : τ j , for all j = 0, . . . ,n. Then

using the rule (E →) we obtain Γ,∆⊤
0 ⊓∆1 ⊓ . . .⊓∆n,x1 : β,x2 : ∩n

i γi ⊢ NP : σ.

Finally, the rule (Cont) yields Γ,∆⊤
0 ⊓∆1 ⊓ . . .⊓∆n,x : β∩ (∩n

i γi) ⊢ x <x1
x2

NP : σ.

Finally, we can give a characterisation of strong normalisation in λr-calculus.

Theorem 27. In λr-calculus, the term M is strongly normalising if and only if it is

typeable in λr∩.

Proof. Immediate consequence of Theorems 22 and 26.

2 Intersection types for the sequent resource control

lambda calculus λGtz
r

In this section we focus on the sequent resource control lambda calculus λGtz
r . First

we revisit its syntax and operational semantics; further we introduce an intersection

type assignment system and finally we prove that typeability in the proposed system

completely characterises the set of strongly normalising λGtz
r -expressions.
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2.1 Resource control sequent lambda calculus λGtz

r

The resource control lambda Gentzen calculus λGtz
r is derived from the λGtz-calculus

(more precisely its confluent sub-calculus λGtz
V ) by adding the explicit operators for

weakening and contraction. It is proposed in [26]. The abstract syntax of λGtz
r pre-

expressions is the following:

Pre-values F ::= x |λx. f |x⊙ f |x <x1
x2

f

Pre-terms f ::= F | f c

Pre-contexts c ::= x̂. f | f :: c |x⊙ c |x <x1
x2

c

where x ranges over a denumerable set of term variables.

A pre-value can be a variable, an abstraction, a weakening or a contraction; a pre-

term is either a value or a cut (an application). A pre-context is one of the following:

a selection, a context constructor (usually called cons), a weakening on pre-context or a

contraction on a pre-context. Pre-terms and pre-contexts are together referred to as the

pre-expressions and will be ranged over by E . Pre-contexts x⊙ c and x <x1
x2

c behave

exactly like corresponding pre-terms x⊙ f and x <x1
x2

f in the untyped calculus, so they

will mostly not be treated separately. The set of free variables of a pre-expression is

defined analogously to the free variables in λr-calculus with the following additions:

Fv( f c) = Fv( f )∪Fv(c); Fv(x̂. f ) = Fv( f )\ {x}; Fv( f :: c) = Fv( f )∪Fv(c).

Like in λr-calculus, the set of λGtz
r -expressions (namely values, terms and con-

texts), denoted by ΛGtz
r ∪ ΛGtz

r,C, is a subset of the set of pre-expressions, defined in

Figure 6. Values are denoted by T, terms by t,u,v..., contexts by k,k′, ... and expres-

sions by e,e′.
The computation over the set of λGtz

r -expressions reflects the cut-elimination pro-

cess. Four groups of reductions in λGtz
r -calculus are given in Figure 7.

The first group consists of βg, π, σ and µ reductions from the λGtz. New reductions

are added to deal with explicit contraction (γ reductions) and weakening (ω reduc-

tions). The groups of γ and ω reductions consist of rules that perform propagation of

contraction into the expression and extraction of weakening out of the expression. This

discipline allows us to optimize the computation by delaying the duplication of terms

on the one hand, and by performing the erasure of terms as soon as possible on the

other. The equivalencies in λGtz
r are the ones given in Figure 4, except for the fact that

they refer to λGtz
r -expressions.

The meta-substitution t[u/x] is defined as in Figure 3 with the following additions:

(tk)[u/x] = t[u/x]k, x /∈ Fv(k) (tk)[u/x] = tk[u/x], x /∈ Fv(t)
(ŷ.t)[u/x] = ŷ.t[u/x]

(t :: k)[u/x] = t[u/x] :: k, x /∈ Fv(k) (t :: k)[u/x] = t :: k[u/x], x /∈ Fv(t)

In the π rule, the meta-operator @, called append, joins two contexts and is defined as:

(x̂.t)@k′ = x̂.tk′ (u :: k)@k′ = u :: (k@k′)
(x⊙ k)@k′ = x⊙ (k@k′) (x <y

z k)@k′ = x <y
z (k@k′).
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x ∈ ΛGtz
r

f ∈ ΛGtz
r x ∈ Fv( f )

λx. f ∈ ΛGtz
r

f ∈ ΛGtz
r c ∈ ΛGtz

r,C Fv( f )∩Fv(c) = /0

f c ∈ ΛGtz
r

f ∈ ΛGtz
r x ∈ Fv( f )

x̂. f ∈ ΛGtz
r,C

f ∈ ΛGtz
r c ∈ ΛGtz

r,C Fv( f )∩Fv(c) = /0

f :: c ∈ ΛGtz
r,C

E ∈ ΛGtz
r ∪ΛGtz

r,C x /∈ Fv(E)

x⊙E ∈ ΛGtz
r ∪ΛGtz

r,C

E ∈ ΛGtz
r ∪ΛGtz

r,C x1 6= x2 x1,x2 ∈ Fv(E) x /∈ Fv(E)\ {x1,x2}

x <x1
x2

E ∈ ΛGtz
r ∪ΛGtz

r,C

Figure 6: ΛGtz
r ∪ΛGtz

r,C: λGtz
r -expressions

2.2 Intersection types for λGtz

r

The type assignment system λGtz
r ∩ that assigns strict types to λGtz

r -expressions is given

in Figure 8. Due to the sequent flavour of the λGtz
r -calculus, here we distinguish two

sorts of type assignments:

- Γ ⊢ t : σ for typing a term and

- Γ;β ⊢ k : σ, a type assignment with a stoup, for typing a context.

A stoup is a place for the last formula in the antecedent, after the semi-colon. The

formula in the stoup is the place where computation will continue.

The syntax of types and the related definitions are the same as in λr∩. The λGtz
r ∩

system is also syntax-directed i.e. the intersection is incorporated into already existing

rules of the simply-typed system. In the style of sequent calculus, left intersection

introduction is managed by the contraction rules (Contt) and (Contk), whereas the right

intersection introduction is performed by the cut rule (Cut) and left arrow introduction

rule (→L). In these two rules Dom(Γ1) = . . . = Dom(Γn). The role of Γ⊤
0 has been

already explained in subsection 1.2.

The Generation lemma induced by the proposed system is the following:

Lemma 28 (Generation lemma for λGtz
r ∩).

(i) Γ ⊢ λx.t : τ iff there exist α and σ such that τ ≡ α → σ and Γ,x : α ⊢ t : σ.

(ii) Γ;γ ⊢ t :: k : ρ iff Γ = Γ′
0
⊤⊓Γ′

1 ⊓ ...⊓Γ′
n,∆, γ ≡ ∩m

j (∩
n
i σi → τ j), ∆;∩m

j τ j ⊢

k : ρ and Γ′
l ⊢ t : σl for all l ∈ {0, . . . ,n}.
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(βg) (λx.t)(u :: k) → u(x̂.tk)
(σ) T (x̂.v) → v[T/x]
(π) (tk)k′ → t(k@k′)
(µ) x̂.xk → k

(γ1) x <x1
x2
(λy.t) → λy.x <x1

x2
t

(γ2) x <x1
x2
(tk) → (x <x1

x2
t)k, if x1,x2 /∈ Fv(k)

(γ3) x <x1
x2
(tk) → t(x <x1

x2
k), if x1,x2 /∈ Fv(t)

(γ4) x <x1
x2 (ŷ.t) → ŷ.(x <x1

x2 t)
(γ5) x <x1

x2
(t :: k) → (x <x1

x2
t) :: k, if x1,x2 /∈ Fv(k)

(γ6) x <x1
x2
(t :: k) → t :: (x <x1

x2
k), if x1,x2 /∈ Fv(t)

(ω1) λx.(y⊙ t) → y⊙ (λx.t), x 6= y

(ω2) (x⊙ t)k → x⊙ (tk)
(ω3) t(x⊙ k) → x⊙ (tk)
(ω4) x̂.(y⊙ t) → y⊙ (x̂.t), x 6= y

(ω5) (x⊙ t) :: k → x⊙ (t :: k)
(ω6) t :: (x⊙ k) → x⊙ (t :: k)

(γω1) x <x1
x2
(y⊙ e) → y⊙ (x <x1

x2
e) x1 6= y 6= x2

(γω2) x <x1
x2
(x1 ⊙ e) → e[x/x2]

Figure 7: Reduction rules of λGtz
r -calculus

(iii) Γ ⊢ tk : σ iff Γ = Γ′
0
⊤⊓Γ′

1 ⊓ ...⊓Γ′
n,∆, and there exist τ j, j = 0, . . . ,n such

that for all j ∈ {0, . . . ,n} the following holds: Γ′
j ⊢ t : τ j, and ∆;∩n

i τi ⊢ k : σ.

(iv) Γ;α ⊢ x̂.t : σ iff Γ,x : α ⊢ t : σ.

(v) Γ ⊢ z <x
y t : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β and

Γ′,x : α,y : β ⊢ t : σ.

(vi) Γ ⊢ x⊙ t : σ iff Γ = Γ′,x : ⊤ and Γ′ ⊢ t : σ.

(vii) Γ;γ ⊢ z <x
y k : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β and

Γ′,x : α,y : β;γ ⊢ k : σ.

(viii) Γ;γ ⊢ x⊙ k : σ iff Γ = Γ′,x : ⊤ and Γ′;γ ⊢ k : σ.

The proposed system satisfies the following properties.

Lemma 29.

(i) If Γ ⊢ t : σ , then Dom(Γ) = Fv(t).

(ii) If Γ;α ⊢ k : σ , then Dom(Γ) = Fv(k).

Proof. Similar to the proof of Lemma 8.

Lemma 30 (Substitution lemma for λGtz
r ∩).
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x : σ ⊢ x : σ
(Ax)

Γ,x : α ⊢ t : σ

Γ ⊢ λx.t : α → σ
(→R)

Γ,x : α ⊢ t : σ

Γ;α ⊢ x̂.t : σ
(Sel)

Γ0 ⊢ t : σ0 ... Γn ⊢ t : σn ∆;∩m
j τ j ⊢ k : ρ

Γ⊤
0 ⊓Γ1 ⊓ ...⊓Γn,∆;∩m

j (∩
n
i σi → τ j) ⊢ t :: k : ρ

(→L)

Γ0 ⊢ t : σ0 ... Γn ⊢ t : σn ∆;∩n
i σi ⊢ k : τ

Γ⊤
0 ⊓Γ1 ⊓ ...⊓Γn,∆ ⊢ tk : τ

(Cut)

Γ,x : α,y : β ⊢ t : σ

Γ,z : α∩β ⊢ z <x
y t : σ

(Contt)
Γ ⊢ t : σ

Γ,x : ⊤ ⊢ x⊙ t : σ
(Weakt)

Γ,x : α,y : β;γ ⊢ k : σ

Γ,z : α∩β;γ ⊢ z <x
y k : σ

(Contk)
Γ;γ ⊢ k : σ

Γ,x : ⊤;γ ⊢ x⊙ k : σ
(Weakk)

Figure 8: λGtz
r ∩: λGtz

r -calculus with intersection types

(i) If Γ,x : ∩n
i τi ⊢ t : σ and for all j = 0, . . . ,n, ∆ j ⊢ u : τ j , then

Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n ⊢ t[u/x] : σ.

(ii) If Γ,x : ∩n
i τi;α ⊢ k : σ and for all j = 0, . . . ,n, ∆ j ⊢ u : τ j, then

Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n;α ⊢ k[u/x] : σ.

Proof. By mutual induction on the structure of terms and contexts.

Proposition 31 (Append lemma). If Γ j;α ⊢ k : τ j for all j = 0, . . . ,n, and ∆;∩n
i τi ⊢

k′ : σ, then Γ⊤
0 ⊓Γ1 ⊓ . . .⊓Γn,∆;α ⊢ k@k′ : σ.

Proof. By induction on the structure of the context k.

Proposition 32 (Subject equivalence for λGtz
r ∩).

(i) For every λGtz
r -term t: if Γ ⊢ t : σ and t ≡λGtzr

t ′, then Γ ⊢ t ′ : σ.

(ii) For every λGtz
r -context k: if Γ;α ⊢ k : σ and k ≡λGtz

r
k′, then Γ;α ⊢ k′ : σ.

Proof. By case analysis on the applied equivalence.

Proposition 33 (Subject reduction for λGtz
r ∩).

(i) For every λGtz
r -term t: if Γ ⊢ t : σ and t → t ′, then Γ ⊢ t ′ : σ.

(ii) For every λGtz
r -context k: if Γ;α ⊢ k : σ and k → k′, then Γ;α ⊢ k′ : σ.
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Proof. By case analysis on the applied reduction, using Lemmas 30 and 31 for the

cases of (σ) and (π) rule, respectively.

2.3 Typeability ⇒ SN in λGtz

r ∩

In this section, we prove the strong normalisation of the λGtz
r -calculus with intersection

types. The termination is proved by showing that the reduction on the set ΛGtz
r ∪ΛGtz

r,C

of the typeable λGtz
r -expressions is included in a particular well-founded relation, which

we define as the lexicographic product of three well-founded component relations. The

first one is based on the mapping of λGtz
r -expressions into λr-terms. We show that this

mapping preserves types and that every λGtz
r -reduction can be simulated either by a

λr-reduction or by an equality and each λGtz
r -equivalence can be simulated by an λr-

equivalence. The other two well-founded orders are based on the introduction of quan-

tities designed to decrease a global measure associated with specific λGtz
r -expressions

during the computation.

Definition 34. The mapping ⌊ ⌋ : ΛGtz
r → Λr is defined together with the auxiliary

mapping ⌊ ⌋k : ΛGtz
r,C → (Λr → Λr) in the following way:

⌊x⌋ = x ⌊x̂.t⌋k(M) = (λx.⌊t⌋)M
⌊λx.t⌋ = λx.⌊t⌋ ⌊t :: k⌋k(M) = ⌊k⌋k(M⌊t⌋)
⌊x⊙ t⌋ = x⊙⌊t⌋ ⌊x⊙ k⌋k(M) = x⊙⌊k⌋k(M)
⌊x <

y
z t⌋ = x <

y
z ⌊t⌋ ⌊x <

y
z k⌋k(M) = x <

y
z ⌊k⌋k(M)

⌊tk⌋ = ⌊k⌋k(⌊t⌋)

Lemma 35.

(i) Fv(t) = Fv(⌊t⌋), for t ∈ ΛGtz
r .

(ii) ⌊v[t/x]⌋= ⌊v⌋[⌊t⌋/x], for v, t ∈ ΛGtz
r .

We prove that the mappings ⌊ ⌋ and ⌊ ⌋k preserve types. In the sequel, the notation

Λr(Γ⊢λr
σ) stands for {M | M ∈ Λr & Γ ⊢λr M : σ}.

Proposition 36 (Type preservation by ⌊ ⌋).

(i) If Γ ⊢ t : σ, then Γ ⊢λr ⌊t⌋ : σ.

(ii) If Γ;∩n
i τi ⊢ k : σ, then ⌊k⌋k : Λr(∆ j⊢λr

τ j ) → Λr(Γ,∆⊢λr
σ), for all j ∈ {0, . . . ,n}

and for some ∆ = ∆⊤
0 ⊓∆1 ⊓ ...⊓∆n.

Proof. The proposition is proved by simultaneous induction on derivations. We distin-

guish cases according to the last typing rule used.

• Cases (Ax), (→R), (Weakt) and (Contt) are easy, because the intersection type

assignment system of λr has exactly the same rules.
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• Case (Sel): the derivation ends with the rule

Γ,x : α ⊢ t : σ

Γ;α ⊢ x̂.t : σ
(Sel)

By IH we have that Γ,x : α ⊢λr ⌊t⌋ : σ, where α = ∩n
i τi. For any M ∈ Λr such

that ∆ j ⊢λr M : τi, for all j ∈ {0, . . . ,n}, we have

Γ,x : ∩n
i τi ⊢λr ⌊t⌋ : σ

(→I)
Γ ⊢λr λx.⌊t⌋ : ∩n

i τi → σ ∆0 ⊢λr M : τ0 . . . ∆n ⊢λr M : τn
(→E)

Γ,∆⊤
0 ⊓∆1 ⊓ . . .⊓∆n ⊢λr (λx.⌊t⌋)M : σ

Since (λx.⌊t⌋)M = ⌊x̂.t⌋k(M), we conclude that ⌊x̂.t⌋k : Λr(∆ j⊢λr
τ j)→Λr(Γ,∆⊤

0
⊓∆1⊓...⊓∆n⊢λr

σ).

• Case (→L): the derivation ends with the rule

Γ0 ⊢ t : σ0 ... Γn ⊢ t : σn ∆;∩m
j τ j ⊢ k : ρ

Γ,∆;∩m
j (∩

n
i σi → τ j) ⊢ t :: k : ρ

(→L)

for Γ = Γ⊤
0 ⊓Γ1 ⊓ . . .⊓Γn. By IH we have that Γl ⊢λr ⌊t⌋ : σl , for l ∈ {0, . . . ,n}.

For any M ∈ Λr such that Γ′
j ⊢Λr

M : ∩n
i σi → τ j , j = 1, . . . ,m we have

Γ′
j ⊢λr M : ∩n

i σi → τ j Γ0 ⊢λr ⌊t⌋ : σ0 . . . Γn ⊢λr ⌊t⌋ : σn

Γ⊤
0 ⊓Γ1 ⊓ . . .⊓Γn,Γ

′
j ⊢λr M⌊t⌋ : τ j

(→E)

From the right-hand side premise in the (→L) rule, by IH, we get that ⌊k⌋k is

the function with the scope ⌊k⌋k : Λr(Γ′′′j ⊢λr
τ j ) → Λr(Γ′′′ ,Γ′′⊢λr

ρ), for some Γ′′′ =

Γ′′′
0
⊤ ⊓Γ′′′

1 ⊓ ...⊓Γ′′′
n . For Γ′′′ ≡ Γ,Γ′ and by taking M⌊t⌋ as the argument of

the function ⌊k⌋k, we get Γ,∆,Γ′ ⊢λr ⌊k⌋k(M⌊t⌋) : ρ. Since ⌊k⌋k(M⌊t⌋) = ⌊t ::

k⌋k(M), we have that Γ,∆,Γ′ ⊢λr ⌊t :: k⌋k(M) : ρ. This holds for any M of the

appropriate type, yielding

⌊t :: k⌋k : Λr(Γ′⊢λr
∩n

i
σi→τ j) → Λr(Γ,∆,Γ′⊢λr

ρ), which is exactly what we need. Case

(Cut): the derivation ends with the rule

Γ0 ⊢ t : τ0 . . .Γn ⊢ t : τn ∆;∩τn
i ⊢ k : σ

Γ⊤
0 ⊓Γ1 ⊓ . . .⊓Γn,∆ ⊢ tk : σ

(Cut)

By IH we have that Γ j ⊢λr ⌊t⌋ : τ j and ⌊k⌋k : Λr(Γ′j⊢λr
τ j ) → Λr(Γ′ ,∆⊢λr

σ) for all

j = 0, . . . ,n and for Γ′ = Γ⊤
0 ⊓Γ′

1 ⊓ . . .⊓Γ′
n. Hence, for any M ∈ Λr such that

Γ′
j ⊢λr M : τ j, Γ′,∆ ⊢λr ⌊k⌋k(M) : σ holds. By taking M ≡ ⌊t⌋ and Γ′ ≡ Γ, we

get Γ,∆ ⊢λr ⌊k⌋k(⌊t⌋) : σ. But ⌊k⌋k(⌊t⌋) = ⌊tk⌋, so the proof is done.
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• Case (Weakk): the derivation ends with the rule

Γ;β ⊢ k : σ

Γ,x : ⊤;β ⊢ x⊙ k : σ
(Weakk)

By IH we have that ⌊k⌋k is the function with the scope ⌊k⌋k : Λr(Γ′j⊢λr
τ j) →

Λr(Γ,Γ′
0
⊤
⊓Γ′

1
⊓...⊓Γ′n⊢λr

σ), meaning that for each M ∈ Λr such that Γ′
j ⊢λr M : τ j

for all j ∈ {0, . . . ,n} holds Γ′
0
⊤⊓Γ′

1 ⊓ . . .⊓Γ′
n,Γ ⊢λr ⌊k⌋k(M) : σ. Now, we can

apply (Weak) rule:

Γ,Γ′
0
⊤⊓Γ′

1 ⊓ . . .⊓Γ′
n ⊢ ⌊k⌋k(M) : σ

Γ,Γ′
0
⊤⊓Γ′

1 ⊓ . . .⊓Γ′
n,x : ⊤ ⊢ x⊙⌊k⌋k(M) : σ

(Weak)

Since x ⊙ ⌊k⌋k(M) = ⌊x ⊙ k⌋k(M), this means that ⌊x ⊙ k⌋k : Λr(Γ′j⊢λr
τ j ) →

Λr(Γ,Γ′
0
⊤
⊓Γ′

1
⊓...⊓Γ′n,x:⊤⊢λr

σ), which is exactly what we wanted to get.

• Case (Contk): similar to the case (Weakk), relying on the rule (Cont) in λr.

For the given encoding ⌊ ⌋, we show that each λGtz
r -reduction step can be simulated

by an λr-reduction or by an equality. In order to do so, we prove the following lemmas.

The proofs of Lemma 38 and Lemma 39, according to [21], use Regnier’s σ reductions,

investigated in [51].

((λx.M)N)P → (λx.(MN))P x /∈ P

(λxy.M)N → λy.((λx.M)N) y /∈ N

M((λx.P)N) → (λx.MP)N x /∈ M

Lemma 37. If M →λr M′, then ⌊k⌋k(M)→λr ⌊k⌋k(M
′).

Lemma 38. ⌊k⌋k((λx.P)N)→λr (λx.⌊k⌋k(P))N.

Lemma 39. If M ∈ Λr and k,k′ ∈ ΛGtz
r,C, then ⌊k′⌋k ◦ ⌊k⌋k(M)→λr ⌊k@k′⌋k(M).

Lemma 40.

(i) If x /∈ Fv(k), then (⌊k⌋k(M))[N/x] = ⌊k⌋k(M[N/x]).

(ii) If x,y /∈ Fv(k), then z <x
y (⌊k⌋k(M))→λr ⌊k⌋k(z <

x
y M).

(iii) ⌊k⌋k(x⊙M)→λr x⊙⌊k⌋k(M).

Now we can prove that the reduction rules of λGtz
r can be simulated by the reduction

rules or an equality in the λr-calculus. Moreover, the equivalences of λGtz
r -calculus

are preserved in λr-calculus.

Theorem 41 (Simulation of λGtz
r -reduction by λr-reduction).

(i) If a term t →λGtzr
t ′, then ⌊t⌋ →λr ⌊t ′⌋.
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(ii) If a context k →λGtzr
k′ by γ6 or ω6 reduction, then ⌊k⌋k(M) ≡ ⌊k′⌋k(M), for any

M ∈ Λr.

(iii) If a context k →λGtz
r

k′ by some other reduction, then ⌊k⌋k(M) →λr ⌊k′⌋k(M),

for any M ∈ Λr.

(iv) If t ≡λGtzr
t ′, then ⌊t⌋ ≡λr ⌊t ′⌋, and if k ≡λGtzr

k′, then ⌊k⌋k(M)≡λr ⌊k′⌋k(M), for

any M ∈ Λr.

Proof. The proof goes by case analysis on the outermost reduction or equivalence per-

formed, using Definition 34.

The previous proposition shows that βg, π, σ, µ, γ1 - γ5, ω1 - ω5, γω1 and γω2

λGtz
r -reductions are interpreted by λr-reductions and that γ6 and ω6 λGtz

r -reductions

are interpreted by an identity in the λr. Since the set of equivalences of the two

calculi coincide, they are trivially preserved. If one wants to prove that there is no

infinite sequence of λGtz
r -reductions one has to prove that there cannot exist an infinite

sequence of λGtz
r -reductions which are all interpreted as equalities. To prove this, one

shows that if a term is reduced with such a λGtz
r -reduction, it is reduced for another

order that forbids infinite decreasing chains. This order is itself composed of several

orders, free of infinite decreasing chains (Definition 45).

Definition 42. The functions S( ), || ||c, || ||w : ΛGtz
r →N are defined as follows:

S(x) = 1 S(tk) = S(t)+S(k)
S(λx.t) = 1+S(t) S(x̂.t) = 1+S(t)

S(x⊙ e) = 1+S(e) S(t :: k) = S(t)+S(k)
S(x <

y
z e) = 1+S(e)

||x||c = 0 ||x||w = 1

||λx.t||c = ||t||c ||λx.t||w = 1+ ||t||w
||x⊙ e||c = ||e||c ||x⊙ e||w = 0

||x <
y
z e||c = ||e||c+S(e) ||x <

y
z e||w = 1+ ||e||w

||tk||c = ||t||c+ ||k||c ||tk||w = 1+ ||t||w+ ||k||w
||x̂.t||c = ||t||c ||x̂.t||w = 1+ ||t||w

||t :: k||c = ||t||c+ ||k||c ||t :: k||w = 1+ ||t||w+ ||k||w

Lemma 43. For all e,e′ ∈ ΛGtz
r :

(i) If e →γ6
e′, then ||e||c > ||e′||c.

(ii) If e →ω6
e′, then ||e||c = ||e′||c.

(iii) If e ≡λGtzr
e′, then ||e||c = ||e′||c.

Lemma 44.

(i) For all e,e′ ∈ ΛGtz
r : If e →ω6

e′, then ||e||w > ||e′||w.
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(ii) If e ≡λGtzr
e′, then ||e||w = ||e′||w.

Now we can define the following orders based on the previously introduced map-

ping and norms.

Definition 45. We define the following strict orders and equivalencies on ΛGtz
r ∩:

(i) t >λr t ′ iff ⌊t⌋ →+
λr

⌊t ′⌋; t =λr t ′ iff ⌊t⌋ ≡λr ⌊t ′⌋

k >λr k′ iff ⌊k⌋k(M)→+
λr

⌊k′⌋(M) for every λr term M ;

k =λr k′ iff ⌊k⌋k(M) ≡λr ⌊k′⌋k(M) or ⌊k⌋k(M) ≡ ⌊k′⌋(M) for every λr term

M;

(ii) e >c e′ iff ||e||c > ||e′||c; e =c e′ iff ||e||c = ||e′||c;

(iii) e >w e′ iff ||e||w > ||e′||w; e =w e′ iff ||e||w = ||e′||w;

The lexicographic product of two orders >1 and >2 is defined as [2]:

a >1 ×lex >2 b ⇔ a >1 b or (a =1 b and a >2 b).

Definition 46. We define the relation ≫ on ΛGtz
r as the lexicographic product:

≫ = >λr ×lex >c ×lex >w .

The following propositions proves that the reduction relation on the set of typed

λGtz
r -expressions is included in the given lexicographic product ≫.

Proposition 47. For each e ∈ ΛGtz
r : if e → e′, then e ≫ e′.

Proof. By case analysis on the kind of reduction and the structure of ≫.

If e → e′ by βg, σ, π, µ, γ1, γ2, γ3, γ4 γ5, γω1, γω2, ω1, ω2, ω3 ω4 or ω5 reduction, then

e >λr e′ by Proposition 41.

If e → e′ by γ6, then e =λr e′ by Proposition 41, and e >c e′ by Lemma 43.

Finally, if e → e′ by ω6, then e =λr e′ by Proposition 41, e =c e′ by Lemma 43 and

e >w e′ by Lemma 44.

Strong normalisation of → is another terminology for the well-foundness of the

relation → and it is well-known that a relation included in a well-founded relation

is well-founded and that the lexicographic product of well-founded relations is well-

founded.

Theorem 48 (Strong normalisation of the λGtz
r ∩). Each expression in ΛGtz

r ∩ is strongly

normalising.

Proof. The reduction → is well-founded on ΛGtz
r ∩ as it is included (Proposition 47)

in the relation ≫ which is well-founded as the lexicographic product of the well-

founded relations >λr , >c and >w. Relation >λr is based on the interpretation

⌊ ⌋ : ΛGtz
r →Λr. By Proposition 36 typeability is preserved by the interpretation ⌊ ⌋ and

→λr is strongly normalising (i.e., well-founded) on Λr∩ (Section 1.3), hence >λr is

well-founded on ΛGtz
r ∩. Similarly, >c and >w are well-founded, as they are based on

interpretations into the well-founded relation > on the set N of natural numbers.
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2.4 SN ⇒ Typeability in λGtz

r ∩

Now, we want to prove that if a λGtz
r -term is SN, then it is typeable in the system

λGtz
r ∩. We follow the procedure used in Section 1.4. The proofs are similar to the ones

in Section 1.4.

The abstract syntax of λGtz
r -normal forms is the following:

tn f ::= x |λx.tn f |λx.x⊙ tn f |x(tn f :: kn f ) |x <
y
z y(tn f :: kn f )

kn f ::= x̂.tn f | x̂.x⊙ tn f | tn f :: kn f |x <
y
z (tn f :: kn f ), y ∈ Fv(tn f ),z ∈ Fv(kn f )

wn f ::= x⊙ en f |x⊙wn f

We use en f for any λGtz
r -expression in the normal form.

Proposition 49. λGtz
r -normal forms are typeable in the system λGtz

r ∩.

Proof. By mutual induction on the structure of tn f , kn f and wn f .

The following two lemmas explain the behavior of the meta operators [ / ] and @

during expansion.

Lemma 50 (Inverse substitution lemma).

(i) Let Γ ⊢ t[u/x] : σ and u typeable. Then, there exist ∆ j and τ j, j = 0, . . . ,n such

that ∆ j ⊢ u : τ j and Γ′,x : ∩n
i τi ⊢ t : σ, where Γ = Γ′,∆⊤

0 ⊓∆1 ⊓ . . .⊓∆n.

(ii) Let Γ;γ ⊢ k[u/x] : σ and u typeable. Then, there are ∆ j and τ j, j = 0, . . . ,n such

that ∆ j ⊢ u : τ j and Γ′,x : ∩n
i τi;γ ⊢ k : σ, where Γ = Γ′,∆⊤

0 ⊓∆1 ⊓ . . .⊓∆n.

Proof. By mutual induction on the structure of terms and contexts.

Lemma 51 (Inverse append lemma). If Γ;α ⊢ k@k′ : σ, then there are ∆ j and τ j, j =
0, . . . ,n such that ∆ j;α ⊢ k : τ j and Γ′;∩n

i τi ⊢ k′ : σ, where Γ = Γ′,∆⊤
0 ⊓∆1 ⊓ . . .⊓∆n.

Proof. By induction on the structure of the context k.

Now we prove that the type of a term is preserved during the expansion.

Proposition 52 (Head subject expansion). For every λGtz
r -term t: if t → t ′, t is con-

tracted redex and Γ ⊢ t ′ : σ , then Γ ⊢ t : σ.

Proof. By case study according to the applied reduction.

Theorem 53 (SN ⇒ typeability). All strongly normalising λGtz
r terms are typeable in

the λGtz
r ∩ system.

Proof. Analogous to the proof of Theorem 26.

Now we give a characterisation of strong normalisation in λGtz
r -calculus.

Theorem 54. In λGtz
r -calculus, the term t is strongly normalising if and only if it is

typeable in λGtz
r ∩.

Proof. Immediate consequence of Theorems 48 and 53.
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3 Intersection types for the resource control lambda cal-

culus with explicit substitution λx
r

3.1 Resource control lambda calculus with explicit substitution λx

r

The resource control lambda calculus with explicit substitution λx
r, is an extension of

the λx-calculus with explicit operators for weakening and contraction. It corresponds

to the λlxr-calculus of Kesner and Lengrand, proposed in [35], and also represents a

vertex of “the prismoid of resources”.

The pre-terms of λx
r-calculus are given by the following abstract syntax:

Pre-terms f ::= x |λx. f | f f | f 〈x := f 〉 |x⊙ f |x <x1
x2

f

The only point of difference with respect to λr-calculus is the operator of explicit

substitution 〈 := 〉.
The set of free variables of a pre-term f , denoted by Fv( f ), is defined as follows:

Fv(x) = x; Fv(λx. f ) = Fv( f )\ {x};

Fv( f g) = Fv( f )∪Fv(g); Fv( f 〈x := g〉) = (Fv( f )\ {x})∪Fv(g)
Fv(x⊙ f ) = {x}∪Fv( f ); Fv(x <x1

x2
f ) = {x}∪Fv( f )\ {x1,x2}.

In f 〈x := g〉, the substitution binds the variable x in f .

The set of λx
r-terms, denoted by Λx

r and ranged over by M,N,P,M1, .... is a subset

of the set of pre-terms, defined by the rules in Figure 9.

x ∈ Λx
r

f ∈ Λx
r x ∈ Fv( f )

λx. f ∈ Λx
r

f ∈ Λx
r g ∈ Λx

r Fv( f )∩Fv(g) = /0

f g ∈ Λx
r

f ∈ Λx
r g ∈ Λx

r x ∈ Fv( f ) (Fv( f )\ {x})∩Fv(g) = /0

f 〈x := g〉 ∈ Λx
r

f ∈ Λx
r x /∈ Fv( f )

x⊙ f ∈ Λx
r

f ∈ Λx
r x1 6= x2, x1,x2 ∈ Fv( f ) x /∈ Fv( f )\ {x1,x2}

x <x1
x2

f ∈ Λx
r

Figure 9: Λx
r: λx

r-terms

The notion of terms corresponds to the notion of linear terms in [35].

The reduction rules of λx
r-calculus are presented in Figure 10.

In the λx
r, one works modulo equivalencies given in Figure 11.

3.2 Intersection types for λx

r

In this subsection we introduce intersection type assignment system which assigns

strict types to λx
r-terms. The system is syntax-directed, hence significantly different
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(βx) (λx.M)N → M〈x := N〉

(σ1) x〈x := N〉 → N

(σ2) (λy.M)〈x := N〉 → λy.M〈x := N〉
(σ3) (MP)〈x := N〉 → M〈x := N〉P, if x /∈ Fv(P)
(σ4) (MP)〈x := N〉 → MP〈x := N〉, if x /∈ Fv(M)
(σ5) (x⊙M)〈x := N〉 → Fv(N)⊙M

(σ6) (y⊙M)〈x := N〉 → y⊙M〈x := N〉, if x 6= y

(σ7) (x <x1
x2

M)〈x := N〉 → Fv(N) <
Fv(N1)
Fv(N2)

M〈x1 := N1〉〈x2 := N2〉

(σ8) (M〈x := N〉)〈y := P〉 → M〈x := N〈y := P〉〉, if y /∈ Fv(M)\ {x}

(γ1) x <x1
x2
(λy.M) → λy.x <x1

x2
M

(γ2) x <x1
x2
(MN) → (x <x1

x2
M)N, if x1,x2 6∈ Fv(N)

(γ3) x <x1
x2 (MN) → M(x <x1

x2 N), if x1,x2 6∈ Fv(M)
(γ4) x <x1

x2
(M〈y := N〉) → M〈y := x <x1

x2
N〉, if x1,x2 /∈ Fv(M)\ {y}

(ω1) λx.(y⊙M) → y⊙ (λx.M), x 6= y

(ω2) (x⊙M)N → x⊙ (MN)
(ω3) M(x⊙N) → x⊙ (MN)
(ω4) M〈y := x⊙N〉 → x⊙ (M〈y := N〉)

(γω1) x <x1
x2
(y⊙M) → y⊙ (x <x1

x2
M), y 6= x1,x2

(γω2) x <x1
x2
(x1 ⊙M) → M〈x2 := x〉

Figure 10: Reduction rules of λx
r-calculus

(ε1) x⊙ (y⊙M) ≡λxr
y⊙ (x⊙M)

(ε2) x <x1
x2

M ≡λxr
x <x2

x1
M

(ε3) x <y
z (y <u

v M) ≡λxr
x <y

u (y <z
v M)

(ε4) x <x1
x2
(y <y1

y2
M) ≡λxr

y <y1
y2
(x <x1

x2
M), x 6= y1,y2, y 6= x1,x2

(ε5) M〈x := N〉〈y := P〉 ≡λxr
M〈y := P〉〈x := N〉, x /∈ Fv(P), y /∈ Fv(M)

(ε6) (y <
y1
y2

M)〈x := N〉 ≡λxr
y <

y1
y2

M〈x := N〉, x 6= y, y1,y2 /∈ Fv(N)

Figure 11: Equivalences in λx
r-calculus
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from the one proposed in [42].

The syntax of types and the definitions of type assignment, basis, etc. are the same

as in the case of the system λr∩. The type assignment system λx
r∩ is given in Fig-

ure 12. The only difference with respect to the λr∩ is the presence of one new type

assignment rule, namely (Subst) for typing the explicit substitution. The rules (→E)
and (Subst) are constructed in the same manner, as explained in subsection 1.2.

x : σ ⊢ x : σ
(Ax)

Γ,x : α ⊢ M : σ

Γ ⊢ λx.M : α → σ
(→I)

Γ ⊢ M : ∩n
i τi → σ ∆0 ⊢ N : τ0 ... ∆n ⊢ N : τn

Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n ⊢ MN : σ

(→E)

Γ,x : ∩n
i τi ⊢ M : σ ∆0 ⊢ N : τ0 ... ∆n ⊢ N : τn

Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n ⊢ M〈x := N〉 : σ

(Subst)

Γ,x : α,y : β ⊢ M : σ

Γ,z : α∩β ⊢ z <x
y M : σ

(Cont) Γ ⊢ M : σ
Γ,x : ⊤ ⊢ x⊙M : σ

(Weak)

Figure 12: λx
r∩: λx

r-calculus with intersection types

Proposition 55 (Generation lemma for λx
r∩).

(i) Γ ⊢ λx.M : τ iff there exist α and σ such that τ ≡ α → σ and Γ,x : α ⊢ M : σ.

(ii) Γ ⊢ MN : σ iff there exist ∆ j and τ j , j = 0, . . . ,n such that ∆ j ⊢ N : τ j and

Γ′ ⊢ M : ∩n
i τi → σ, moreover Γ = Γ′,∆⊤

0 ⊓∆1 ⊓ . . .⊓∆n.

(iii) Γ ⊢ M〈x := N〉 : σ iff there exist a type α = ∩n
j=0τ j , such that for all j ∈

{0, . . . ,n}, ∆ j ⊢ N : τ j and Γ′,x : ∩n
i τi ⊢ M : σ, moreover Γ = Γ′,x : α,∆⊤

0 ⊓∆1 ⊓
. . .⊓∆n.

(iv) Γ ⊢ z <x
y M : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β

and Γ′,x : α,y : β ⊢ M : σ.

(v) Γ ⊢ x⊙M : σ iff Γ = Γ′,x : ⊤ and Γ′ ⊢ M : σ.

The proposed system also satisfies preservation of free variables, bases intersection

and subject reduction and equivalence.

4 Conclusions

In this paper, we have proposed intersection type assignment systems for:

• resource control lambda calculus λr, which corresponds to λCW of [36];
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• resource control sequent lambda calculus λGtz
r of [26] and

• resource control calculus with explicit substitution λx
r of [35].

The three intersection type assignment systems proposed here give a complete char-

acterization of strongly normalizing terms for these three calculi. The strong normal-

isation of typeable resource control lambda terms is proved directly by an appropriate

modification of the reducibility method, whereas the same property for resource control

sequent lambda terms is proved by well-founded lexicographic order based on suitable

embedding into the former calculus and the strong normalisation of the calculus with

explicit substitution is given by its interpretation in the resource control lambda cal-

culus. This paper expands the range of the intersection type techniques and combines

different methods in the strict types environment. It should be noticed that the strict

control on the way variables are introduced determines the way terms are typed in a

given environment. Basically, in a given environment no irrelevant intersection types

are introduced. The flexibility on the choice of a type for a term, as it is used in rule

(→E) in Figure 5, comes essentially from the choice one has in invoking the axiom.

Unlike the approach of introducing non-idempotent intersection types into the calculus

with some kind of resource management [47], our intersection is idempotent. As a

consequence, our type assignment system corresponds to full intuitionistic logic, while

non-idempotent intersection type assignment systems correspond to intuitionistic lin-

ear logic.

The three presented calculi λr, λGtz
r and λx

r are good candidates to investigate

the computational content of substructural logics [56], both in natural deduction and

sequent calculus. The motivation for these logics comes from philosophy (Relevant

Logics), linguistics (Lambek Calculus) to computing (Linear Logic). Since the basic

idea of resource control is to explicitly handle structural rules, the control operators

could be used to handle the absence of (some) structural rules in substructural logics

such as weakening, contraction, commutativity, associativity. This would be an inter-

esting direction for further research. Another direction will involve the investigation of

the use of intersection types, being a powerful means for building models of lambda

calculus [6, 16], in constructing models for sequent lambda calculi. Finally, one may

wonder how the strict control on the duplication and the erasure of variables influences

the type reconstruction of terms [11, 38].
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janović, editor, Collection of Papers, special issue Logic in Computer Science

20(12), pages 159–215. Mathematical Institute of Serbian Academy of Sciences

and Arts, 2009.
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[62] D. Žunić. Computing with sequents and diagrams in classical logic - calculi ∗X ,
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