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Escalation is the fact that in a game (for instance an auction), the agents play forever. It is not necessary to consider complex examples to establish its rationality. In particular, the 0, 1-game is an extremely simple infinite game in which escalation arises naturally and rationally. In some sense, it can be considered as the paradigm of escalation. Through an example of economic games, we show the benefit economics can take of coinduction.

[T]he future of economics is increasingly technical work that is founded on the vision that the economy is a complex system.

David Collander [START_REF] Colander | The future of economics: the appropriately educated in pursuit of the knowable[END_REF] Sequential games are the natural framework for decision processes. In this paper we study a decision phenomenon called escalation. Finite sequential games (also known as extensive games) have been introduced by Kuhn [START_REF] Kuhn | Extensive games and the problem of information[END_REF] and subgame perfect equilibria have been introduced by Selten [START_REF] Selten | Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit[END_REF] whereas escalation has been introduced by Shubik [START_REF] Shubik | The dollar auction game: A paradox in noncooperative behavior and escalation[END_REF]. Sequential games are games in which each player plays one after the other (or possibly after herself). In some specific infinite games, it has been showed that escalation cannot occur among rational players. Here we show on a simple example, the 0,1 game, that this is not the case if one uses coinduction. In addition the 0,1 game has nice properties which make it an excellent paradigm of escalation and a good domain of application for coalgebras and coinduction. by equilibria. It has been proved that in finite sequential games, rationality is obtained by a specific equilibrium called backward induction (see Appendix). More precisely a consequence of Aumann's theorem [START_REF] Aumann | Backward induction and common knowledge of rationality[END_REF] says that an agent takes a rational decision in a finite sequential game if she makes her choice according to backward induction. In this paper we generalize backward induction into subgame perfect equilibria and we consider naturally that rationality is reached by subgame perfect equilibria (SPE in short) relying on Capretta's [START_REF] Capretta | Common knowledge as a coinductive modality[END_REF] extension of Aumann's theorem.

What is escalation? In a sequential game, escalation is the possibility that agents take rational decisions forever without stopping. This phenomenon has been evidenced by Shubik [START_REF] Shubik | The dollar auction game: A paradox in noncooperative behavior and escalation[END_REF] in a game called the dollar auction. Without being very difficult, its analysis is relatively involved, because it requires infinitely many strategy profiles indexed by n ∈ N [START_REF] Lescanne | From coinduction to the rationality of escalation[END_REF]. Moreover in each step there are two and only two equilibria. By an observation of the past decisions of her opponent an agent could get a clue of her strategy and might this way avoid escalation. This blindness of the agents is perhaps not completely realistic and was criticized (see [START_REF] Lescanne | Rationality and escalation in infinite extensive games[END_REF] Section 4.2). In this paper, we propose an example which is much simpler theoretically and which offers infinitely many equilibria at each step. Due to the form of the equilibria, the agent has no clue on which strategy is taken by her opponent.

Escalation and infinite games. Books and articles [START_REF] Colman | Game theory and its applications in the social and biological sciences[END_REF][START_REF] Gintis | Game Theory Evolving: A Problem-Centered Introduction to Modeling Strategic Interaction[END_REF][START_REF] Osborne | An Introduction to Game Theory[END_REF][START_REF] Leininger | Escalation and coooperation in conflict situations[END_REF][START_REF] Barry | International escalation and the dollar auction[END_REF] which cover escalation take for granted that escalation is irrational. Following Shubik, all accept that escalation takes place and can only take place in an infinite game, but their argument uses a reasoning on finite games. Indeed, if one cuts the infinite game in which escalation is supposed to take place at a finite position, one gets a finite game, in which the only right and rational decision is to never start the game, because the only backward induction equilibrium corresponds to not start playing. Then the result is extrapolated by the authors to infinite games by making the size of the game to grow to infinity. However, it has been known for a long time at least since Weierstraß [START_REF] Weierstrass | Über continuirliche Funktionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differentialquotienten besitzen[END_REF], that the "cut and extrapolate" method is wrong (see Appendix). For Weierstraß this would lead to the conclusion that the infinite sum of differentiable functions would be differentiable whereas he has exhibited a famous counterexample. In the case of infinite structures like infinite games, the right reasoning is coinduction. With coinduction we were able to show that the dollar auction has a rational escalation [START_REF] Lescanne | Backward" coinduction, Nash equilibrium and the rationality of escalation[END_REF][START_REF] Lescanne | Rationality and escalation in infinite extensive games[END_REF]. Currently, since the tools used generally in economics are pre-coinduction based, they conclude that bubbles and crises are impossible and everybody's experience has witnessed the opposite. Careful analysis done by quantitative economists, like for instance Bouchaud [START_REF] Bouchaud | Economics needs a scientific revolution[END_REF][START_REF] Bouchaud | Theory of Financial Risk and Derivate Pricing[END_REF], have shown that bursts, which share much similarities with escalation, actually take place at any time scale. Escalation is therefore an intrinsic feature of economics. Consequently, coinduction is the tool that economists who call for a refoundation of economics [START_REF] Colander | The future of economics: the appropriately educated in pursuit of the knowable[END_REF][START_REF] Bouchaud | Economics needs a scientific revolution[END_REF] are waiting for [25].

Structure of the paper This paper is structured as follows. In Section 2 we present infinite games, infinite strategy profiles and infinite strategies, then we describe the 0,1-game in Section 3. Last, we introduce the concept of equilibrium (Sections 4 and 5) and we discuss escalation (Section 6). In an appendix, we talk about finite games and finite strategy profiles.

Two choice sequential games

Our aim is not to present a general theory. For this the reader is invited to look at [START_REF] Abramsky | Coalgebraic analysis of subgame-perfect equilibria in infinite games without discounting[END_REF][START_REF] Lescanne | Rationality and escalation in infinite extensive games[END_REF][START_REF] Lescanne | Backward" coinduction, Nash equilibrium and the rationality of escalation[END_REF]. But we want to give a taste of infinite sequential games through a very simple one. This game has two agents and two choices. To support our claim about the rationality of escalation, we do not need more features. In [START_REF] Lescanne | Rationality and escalation in infinite extensive games[END_REF], we have shown the existence of a big conceptual gap between finite games and infinite games.

Assume that the set P of agents is made of two agents called A and B. In this framework, an infinite sequential two choice game has two shapes. In the first shape, it is an ending position in which case it boils down to the distribution of the payoffs to the agents. In other words the game is reduced to a function f : A → f A , B → f B and we write it f . In the second shape, it is a generic game with a set C made of two potential choices: d or r (d for down and r for right). Since the game is potentially infinite, it may continue forever. Thus formally in this most general configuration a game can be seen as a triple:

g = p, g d , g r .
where p is an agent and g d and g r are themselves games. The subgame g d corresponds to the down choice, i.e., the choice corresponding to go down and the subgame g r corresponds to the right choice, i.e., the choices corresponding to go to the right. In other words, we define a functor:

: X → Payoff + P × X × X.
of which Game is the final coalgebra and where P = {A, B} and Payoff = R P .

Strategy profiles

From a game, one can deduce strategy profiles (later we will also say simply profiles), which is obtained by adding a label, at each node, which is a choice made by the agent. A choice belong to the set {d, r}. In other words, a strategy profile is obtained from a game by adding, at each node, a new label, namely a choice. Therefore a strategy profile which does not correspond to an ending game is a quadruple:

s = p, c, s d , s r ,
where p is an agent (A or B), c is choice (d or r), and, s d and s r are two strategy profiles. The strategy profile which corresponds to an ending position has no choice, namely it is reduced to a function

f = A → f A , B → f B .
From a strategy profile, one can build a game by removing the choices:

game( f ) = f game( p, c, s d , s r ) = p, game(s d ), game(s r )
game(s) is the underlying game of the strategy profile s.

Given a strategy profile s, one can associate, by induction, a (partial) payoff function s, as follows:

when s = f s = f when s = p, d, s d , s r s = s d when s = p, r, s d , s r s = s r
s is not defined if its definition runs in an infinite process. For instance, if s A,∞ is the strategy profile defined in Section 6, s A,∞ is not defined. To ensure that we consider only strategy profiles where the payoff function is defined we restrict to strategy profiles that are called convergent, written s ↓ (or sometimes prefixed ↓ (s)) and defined as the least predicate satisfying The case c = r is similar.

s = f ∨ s = p, d, s d , s r ⇒ s d ↓ ∧ p, r, s d , s r ⇒ s r ↓ . Proposition 1. If s ↓, then s is defined. Proof. By induction. If s = f , then since s = f and f is defined, s is defined. If s = p,
As we will consider the payoff function also for subprofiles, we want the payoff function to be defined on subprofiles as well. Therefore we define a property stronger than convergence which we call strong convergence. We say that a strategy profile s is strongly convergent and we write it s ⇓ if it is the largest predicate fulfilling the following conditions.

-p, c, s d , s r ⇓ if • p, c, s d , s r is convergent, • s d is strongly convergent, • s r is strongly convergent.
f is always strongly convergent More formally:

s ⇓ k s c C Q s = f ∨ (s = p, c, s d , s r ∧ s ↓ ∧s d ⇓ ∧s r ⇓).
There is however a difference between the definitions of ↓ and ⇓. Wherever s ↓ is defined by induction1 , from the ending games to the game, s ⇓ is defined by coinduction 2 .

Both concepts are based on the fixed-point theorem established by Tarski [START_REF] Tarski | A lattice-theoretical fixpoint theorem and its applications[END_REF]. The definition of ⇓ is typical of infinite games and means that ⇓ is invariant along the infinite game. To make the difference clear between the definitions, we use the symbol k s i C Q for inductive definitions and the symbol k s c C Q for coinductive definitions. By the way, the definition of the function game is also coinductive.

We can define the notion of subprofile, written :

s ′ s k s i C Q s ′ ∼ s s ∨ s = p, c, s d , s r ∧ (s ′ s d ∨ s ′ s r ),
where ∼ s is the bisimilarity among profiles defined as the largest binary predicate s ′ ∼ s s such that

s ′ = f = s ∨ (s ′ = p, c, s ′ d , s ′ r ∧ s = p, c, s d , s r ∧ s ′ d ∼ s s d ∧ s ′ r ∼ s s r ).
Notice that since we work with infinite objects, we may have s ∼ s s ′ and s s ′ s. In other words, an infinite profile can be a strict subprofile of itself. This is the case for s 1,0,a and s 1,0,b in Section 4. If a profile is strongly convergent, then the payoffs associated with all its subprofiles are defined.

Proposition 2. If s 1 ⇓ and if s 2 s 1 , then s 2 is defined.

The always modality

We notice that ↓ characterizes a profile by a property of the head node, we would say that this property is local. ⇓ is obtained by distributing the property along the game. In other words we transform the predicate ↓ and such a predicate transformer is called a modality. Here we are interested by the modality always, also written . Given a predicate Φ on strategy profiles, the predicate P is defined coinductively as follows:

Φ(s) k s c C Q Φ(s) ∧ s = p, c, s d , s r ⇒ ( Φ(s d ) ∧ Φ(s r )).
The predicate "is strongly convergent" is the same as the predicate "is always convergent".

Proposition 3. s ⇓ ⇔ ↓ (s).

Strategies

The coalgebra of strategies3 is defined by the functor

: X → R P + (P + Choice) × X × X
where Choice = {d, r}. A strategy of agent p is a game in which some occurrences of p are replaced by choices. A strategy is written f or x, s 1 , s 2 . By replacing the choice made by agent p by the agent p herself, we can associate a game with a pair consisting of a strategy and an agent:

st2g( f , p) = f st2g( x, st 1 , st 2 , p) = if x ∈ P then x, st2g(st 1 , p), st2g(st 2 , p) else p, st2g(st 1 , p), st2g(st 2 , p) .
If a strategy st is really the strategy of agent p it should contain nowhere p and should contain a choice c instead. In this case we say that st is full for p and we write it st

p . f p x, st 1 , st 2 p k s c C Q (x / ∈ Choice ⇒ x = p) ∧ st 1 p ∧ st 2 p .
We can sum strategies to make a strategy profile. But for that we have to assume that all strategies are full and underlie the same game. In other words, (st p ) p∈P is a family of strategies such that:

-∀p ∈ P, st p p , -there exists a game g such that ∀p ∈ P, st2g(st p ) = g.

We define

p∈P st p as follows:

p∈P f = f c, st p ′ ,1 , st p ′ ,2 ⊕ p∈P\p ′ p ′ , st p,1 , st p,2 = p ′ , c, p∈P st p,1 , p∈P st p,2 .
We can show that the game underlying all the strategies is the game underlying the strategy profile which is the sum of the strategies. 

f 1 f 2 f 3 f 4 f 5 f 6
At each step the agents have only two choices, namely to stop or to continue.

Let us call such a game, a comb game.

We introduce infinite games by means of equations. Let us see how this applies to define the 0, 1-game. First consider two payoff functions:

f 0,1 = A → 0, B → 1 f 1,0 = A → 1, B → 0 we define two games G 0,1 = A, f 0,1 , G 1,0 G 1,0 = B, f 1,0 , G 0,1
This means that we define an infinite sequential game G 0,1 in which agent A is the first player and which has two subgames: the trivial game f 1,0 and the game G 1,0 defined in the other equation. The game G 0,1 can be pictured as follows: From now on, we assume that we consider only strategy profiles whose underlying game is the 0,1-game. They are characterized by the following predicates

S 0 (s) k s c C Q s = A, c, f 0,1 , s ′ ∧ S 1 (s ′ ) S 1 (s) k s c C Q s = B, c, f 1,0 , s ′ ∧ S 0 (s ′ ).
Notice that the 0, 1-game we consider is somewhat a zero-sum game, but we are not interested in this aspect. Moreover, a very specific instance of a 0, 1 game has been considered (by Ummels [START_REF] Ummels | The complexity of Nash equilibria in infinite multiplayer games[END_REF] for instance), but these authors are not interested in the general structure of the game, but in a specific model on a finite graph, which is not general enough for our taste. Therefore this is not a direct generalization of finite sequential games (replacing induction by coinduction) and this not a framework to study escalation.
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Among the strategy profiles, one can select specific ones that are called subgame perfect equilibria. Subgame perfect equilibria are specific strategy profiles that fulfill a predicate SPE. This predicate relies on another predicate PE which checks a local property.

PE(s) ⇔ s ⇓ ∧ s = p, d, s d , s r ⇒ s d (p) ≥ s r (p) ∧ s = p, r, s d , s r ⇒ s r (p) ≥ s d (p)
A strategy profile is a subgame perfect equilibrium if the property PE holds always:

SPE = PE.
We may now wonder what the subgame perfect equilibria of the 0,1-game are.

We present two of them in Figure 1.b and 1.c. But there are others. To present them, let us define a predicate "A continues and B eventually stops"

AcBes(s) k s i C Q s = p, c, f , s ′ ⇒ (p = A ∧ f = f 0,1 ∧ c = r ∧ AcBes(s ′ )) ∨ (p = B ∧ f = f 1,0 ∧ (c = d ∨ AcBes(s ′ )) Proposition 5. (S 1 (s) ∨ S 0 (s)) ⇒ AcBes(s) ⇒ s = f 1,0 Proof. If s = p, c, f , s ′ , then S 0 (s ′ ) ∨ S 1 (s ′ ).
Therefore if AcBes(s ′ ), by induction, s ′ = f 0,1 . By case:

-If p = A ∧ c = r, then AcBes(s ′ ) and by definition of s, we have

s = s ′ = f 0,1 -if p = B ∧ c = d, the s = f 0,1 = f 0,1 .
if p = B ∧ c = r, , then AcBes(s ′ ) and by definition of s, s = s ′ = f 0,1 .

Like we generalize PE to SPE by applying the modality , we generalize AcBes into SAcBes by stating: SAcBes = AcBes.

There are at least two profiles which satisfies SAcBes namely s 1,0,a and s 1,0,b which have been studied in [START_REF] Lescanne | Rationality and escalation in infinite extensive games[END_REF] and pictured in Figure 1:

s 1,0,a k s c C Q A, r, f 0,1 , s 1,0,b s 0,1,a k s c C Q A, d, f 0,1 , s 0,1,b s 1,0,b k s c C Q B, d, f 1,0 , s 1,0,a s 0,1,b k s c C Q B, r, f 1,0 , s 0,1,a Proposition 6. SAcBes(s) ⇒ s ⇓ .
We may state the following proposition.

Proposition 7. ∀s, (S 0 (s) ∨ S 1 (s)) ⇒ (SAcBes(s) ⇒ SPE(s)).

Proof. Since SPE is a coinductively defined predicate, the proof is by coinduction. Given an s, we have to prove ∀s, AcBes(s) ∧ (S 0 (s) ∨ S 1 (s)) ⇒ PE(s).

For that we assume AcBes(s) ∧ (S 0 (s) ∨ S 1 (s)) and in addition (coinduction principle) PE(s ′ ) for all strict subprofiles s ′ of s and we prove PE(s). In other words,

s ⇓ ∧ p, d, s d , s r ⇒ s d (p) ≥ s r (p) ∧ p, r, s d , s r ⇒ s r (p) ≥ s d (p).
By Proposition 6, we have s ⇓. By Proposition 5, we know that for every subprofile s ′ of a profile s that satisfies S 1 (s) ∨ S 0 (s) we have

s ′ = f 1,0 except when s ′ = f 0,1 . Let us prove p, d, s d , s r ⇒ s d (p) ≥ s r (p) ∧ p, r, s d , s r ⇒ s r (p) ≥ s d (

p). Let us proceed by case:

s = A, r, f 0,1 , s ′ . Then S 0 (s) and S 1 (s ′ ). Since AcBes(s), we have

AcBes(s ′ ), therefore s ′ = f 1,0 hence s ′ (A) = 1 and f 0,1 (A) = 0, henceforth s ′ (A) ≥ f 0,1 (A). -s = B, r, f 1,0 , s ′ .
Then S 1 (s) and S 0 (s ′ ). Since AcBes(s), we have AcBes(s ′ ), therefore s ′ = f 1,0 hence s ′ (B) = 0 and f 1,0 (B) = 0, henceforth s ′ (B) ≥ f 1,0 (B).

Symmetrically we can define a predicate BcAes for "B continues and A eventually stops" and a predicate SBcAes which is SBcAes = BcAes which means that B continues always and A stops infinitely often. With the same argument as for SAcBes one can conclude that ∀s, (S 0 (s) ∨ S 1 (s)) ⇒ SBcAes(s) ⇒ SPE(s).

We claim that SAcBes ∨ SBcAes fully characterizes SPE of 0,1-games, in other words.

Conjecture 1. ∀s, (S 0 (s) ∨ S 1 (s)) ⇒ (SAcBes(s) ∨ SBcAes ⇔ SPE(s)).

Nash equilibria

Before talking about escalation, let us see the connection between subgame perfect equilibrium and Nash equilibrium in a sequential game. In [START_REF] Osborne | An Introduction to Game Theory[END_REF], the definition of a Nash equilibrium is as follows: A Nash equilibrium is a"pattern[s] of behavior with the property that if every player knows every other player's behavior she has not reason to change her own behavior" in other words, "a Nash equilibrium [is] a strategy profile from which no player wishes to deviate, given the other player's strategies." . The concept of deviation of agent p is expressed by a binary relation we call convertibility4 and we write ⊢ p ⊣. It is defined inductively as follows:

s ∼ s s ′ s ⊢ p ⊣ s ′ s 1 ⊢ p ⊣ s ′ 1 s 2 ⊢ p ⊣ s ′ 2 p, c, s 1 , s 2 ⊢ p ⊣ p, c ′ , s ′ 1 , s ′ 2 s 1 ⊢ p ⊣ s ′ 1 s 2 ⊢ p ⊣ s ′ 2 p ′ , c, s 1 , s 2 ⊢ p ⊣ p ′ , c, s ′ 1 , s ′ 2
We define the predicate Nash as follows:

Nash(s) ⇔ ∀p, ∀s ′ , s ⊢ p ⊣ s ′ ⇒ s(p) ≥ s ′ (p ′ ).
The concept of Nash equilibrium is more general than that of subgame perfect equilibrium and we have the following result: Proposition 8. SPE(s) ⇒ Nash(s).

The result has been proven in COQ and we refer to the script (see [START_REF] Lescanne | Backward" coinduction, Nash equilibrium and the rationality of escalation[END_REF]):

http://perso.ens-lyon.fr/pierre.lescanne/COQ/EscRatAI/ http://perso.ens-lyon.fr/pierre.lescanne/COQ/EscRatAI/SCRIPTS/ Notice that we defined the convertibility inductively, but a coinductive definition is possible. But this would give a more restrictive definition of Nash equilibrium.

Escalation

Escalation in a game with a set P of agents occurs when there is a tuple of strategies (st p ) p∈P such that its sum is not convergent, in other words, ¬ ( p∈P st p ) ↓. Said differently, it is possible that the agents have all a private strategy which combined with those of the others makes a strategy profile which is not convergent, which means that the strategy profile goes to infinity when following the choices. Notice the two uses of a strategy profile: first, as a subgame perfect equilibrium, second as a combination of the strategies of the agents.

Consider the strategy:

st A,∞ = r, f 0,1 , st ′ A,∞ st ′ A,∞ = B, f 1,0 , st A,∞
and its twin

st B,∞ = A, f 0,1 , st ′ B,∞ st ′ B,∞ = r, f 1,0 , st B,∞ .
Moreover, consider the strategy profile:

s A,∞ = A, r, f 0,1 , s B,∞ s B,∞ = B, r, f 1,0 , s A,∞ . Proposition 9. -st A,∞ A , -st B,∞ B , -st2g(st A,∞ , A) = st2g(st B,∞ , B) = G 0,1 , -game(s A,∞ ) = G 0,1 , -st A,∞ ⊕ st B,∞ = s A,∞ , -¬ s A,∞ ↓.
Proof. By coinduction.

st A,∞ and st B,∞ are both rational since they are built using choices, namely r, dictated by subgame perfect equilibria 5 which start with r. Another feature of this example is that no agent has a clue for what strategy the other agent is using. Indeed after k steps, A does not know if B has used a strategy derived of equilibria in SAcBes or in SBcAes. In other words, A does know if B will stop eventually or not and vice versa. The agents can draw no conclusion of what they observe. If each agent does not believe in the threat of the other she is naturally led to escalation.

Conclusion

In this paper, we have shown how to use coinduction in a field, namely economics, where it has not been used yet, or perhaps in a really hidden form, which has to be unearthed. We foresee a future for this tool and a possible way for a refoundation of economics.

A Finite 0,1 games and the "cut and extrapolate" method

We spoke about the "cut and extrapolate" method, applied in particular to the dollar auction. Let us see how it would work on the 0,1-game. Finite games, finite strategy profiles and payoff functions of finite strategy profiles are the inductive equivalent of infinite games, infinite strategy profiles and infinite payoff functions which we presented. Notice that payoff functions of finite strategy profiles are always defined. Despite we do not speak of the same types of objects, we use the same notations, but this does not lead to confusion. Consider two finite families of finite games, that could be seen as approximations of the 0,1-game:

F 0,1 = A, f 0,1 , B, f 1,0 , F 0,1 ∪ { f 0,1 } K 0,1 = A, f 0,1 , K ′ 0,1 K ′ 0,1 = B, f 1,0 , K 0,1 ∪ { f 1,0 }
In F 0,1 we cut after B and replace the tail by f 0,1 . In K 0,1 we cut after A and replace the tail by f 1,0 . Recall [START_REF] Vestergaard | A constructive approach to sequential Nash equilibria[END_REF] the predicate BI, which is the finite version of PE. We consider the two families of strategy profiles:

SF 0,1 (s) k s i C Q (s = A, d ∨ r, f 0,1 , B, r, f 1,0 , s ′ ∧ SF 0,1 (s ′ ) ∨ s = f 0,1 SK 0,1 (s) k s i C Q s = A, r, f 0,1 , s ′ ∧ SK ′ 0,1 (s ′ ) SK ′ 0,1 (s) k s i C Q (s = B, d, f 1,0 , s ′ ∨ s = B, r, f 1,0 , s ′ ) ∧ SK 0,1 (s ′ ) ∨ s = f 1,0
In SF 0,1 , B continues and A does whatever she likes and in SK 0,1 , A continues and B does whatever she likes. The following proposition characterizes the backward induction equilibria for games in F 0,1 and K 0,1 respectively and is easily proved by induction:

Proposition 10.

game(s) ∈ F 0,1 ∧ SF 0,1 (s) ⇔ BI(s), -game(s) ∈ K 0,1 ∧ SK 0,1 (s) ⇔ BI(s).

This shows that cutting at an even or an odd position does not give the same strategy profile by extrapolation. Consequently the "cut and extrapolate" method does not anticipate all the subgame perfect equilibria. Let us add that when cutting we decide which leaf to insert, namely f 0,1 or f 1,0 , but we could do another way around obtaining different results.

0,1 game and limited payroll. To avoid escalation in the dollar auctions, some require a limited payroll, i.e., a bound on the amount of money handled by the agents, but this is inconsistent with the fact that the game is infinite. Said otherwise, to avoid escalation, they forbid escalation. One can notice that, in the 0,1-game, a limited payroll would not prevent escalation, since the payoffs are anyway limited by 1.

  c, s d , s r , there are two cases: c = d or c = r. Let us look at c = d. If c = d, s d is defined by induction and since s = s d , we conclude that s is defined.

Proposition 4 .

 4 st2g(st p ′ , p ′ ) = game( p∈P st p ).

3

  Comb games and the 0,1-gameWe will restrict to simple games which have the shape of combs,

  in Figure1.a.

Fig. 1 .

 1 Fig. 1. The 0, 1-game and two equilibria seen compactly

  BI( f ) BI( p, c, s d , s r ) = BI(s l ) ∧ BI(s r ) ∧ p, d, s d , s r ⇒ s d (p) ≥ s r (p) ∧ p, r, s d , s r ⇒ s r (p) ≥ s d (p)

Roughly speaking a definition by induction works from the basic elements, here the ending games, to constructed elements.

Roughly speaking a definition by coinduction works on infinite objects, like an invariant.

A strategy is not the same as a strategy profile, which is obtained as the sum of strategies.

This should be called perhaps feasibility following[START_REF] Rubinstein | Lecture Notes in Microecomic Theory[END_REF] and[START_REF] Lescanne | Feasibility/desirability games for normal form games, choice models and evolutionary games[END_REF] 

Our choice of rationality is this of a subgame perfect equilibrium, as it generalizes backward induction, which is usually accepted as the criterion of rationality for finite game.
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