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A simple case of rationality of escalation

Pierre Lescanne

University of Lyon, École normale supérieure de Lyon, CNRS (LIP),
46 allée d’Italie, 69364 Lyon, France

Abstract. Escalation is the fact that in a game (for instance an auc-
tion), the agents play forever. It is not necessary to consider complex
examples to establish its rationality. In particular, the 0, 1-game is an
extremely simple infinite game in which escalation arises naturally and
rationally. In some sense, it can be considered as the paradigm of es-
calation. Through an example of economic games, we show the benefit
economics can take of coinduction.

Keywords: economic game, infinite game, sequential game, crash, esca-
lation, speculative bubble, coinduction, auction.

[T]he future of economics is increasingly technical
work that is founded on the vision that the economy
is a complex system.

David Collander [6]

Sequential games are the natural framework for decision processes. In this
paper we study a decision phenomenon called escalation. Finite sequential games
(also known as extensive games) have been introduced by Kuhn [9] and subgame
perfect equilibria have been introduced by Selten [19] whereas escalation has been
introduced by Shubik [20]. Sequential games are games in which each player plays
one after the other (or possibly after herself). In some specific infinite games,
it has been showed that escalation cannot occur among rational players. Here
we show on a simple example, the 0,1 game, that this is not the case if one
uses coinduction. In addition the 0,1 game has nice properties which make it an
excellent paradigm of escalation and a good domain of application for coalgebras
and coinduction.

1 The problem of escalation

That “rational agents” should not engage in such [es-
calation] behavior seems obvious.

Wolfgang Leininger [11]

Escalation in sequential games is a classic of game theory and it is admitted
that escalation is irrational. The rationality which we consider is that given



by equilibria. It has been proved that in finite sequential games, rationality is
obtained by a specific equilibrium called backward induction (see Appendix).
More precisely a consequence of Aumann’s theorem [2] says that an agent takes
a rational decision in a finite sequential game if she makes her choice according
to backward induction. In this paper we generalize backward induction into
subgame perfect equilibria and we consider naturally that rationality is reached
by subgame perfect equilibria (SPE in short) relying on Capretta’s [5] extension
of Aumann’s theorem.

What is escalation? In a sequential game, escalation is the possibility that agents
take rational decisions forever without stopping. This phenomenon has been
evidenced by Shubik [20] in a game called the dollar auction. Without being
very difficult, its analysis is relatively involved, because it requires infinitely
many strategy profiles indexed by n ∈ N [12]. Moreover in each step there are
two and only two equilibria. By an observation of the past decisions of her
opponent an agent could get a clue of her strategy and might this way avoid
escalation. This blindness of the agents is perhaps not completely realistic and
was criticized (see [14] Section 4.2). In this paper, we propose an example which
is much simpler theoretically and which offers infinitely many equilibria at each
step. Due to the form of the equilibria, the agent has no clue on which strategy
is taken by her opponent.

Escalation and infinite games. Books and articles [7, 8, 17, 11, 16] which cover
escalation take for granted that escalation is irrational. Following Shubik, all
accept that escalation takes place and can only take place in an infinite game,
but their argument uses a reasoning on finite games. Indeed, if one cuts the infi-
nite game in which escalation is supposed to take place at a finite position, one
gets a finite game, in which the only right and rational decision is to never start
the game, because the only backward induction equilibrium corresponds to not
start playing. Then the result is extrapolated by the authors to infinite games by
making the size of the game to grow to infinity. However, it has been known for a
long time at least since Weierstraß [24], that the “cut and extrapolate” method
is wrong (see Appendix). For Weierstraß this would lead to the conclusion that
the infinite sum of differentiable functions would be differentiable whereas he
has exhibited a famous counterexample. In the case of infinite structures like in-
finite games, the right reasoning is coinduction. With coinduction we were able
to show that the dollar auction has a rational escalation [15, 14]. Currently, since
the tools used generally in economics are pre-coinduction based, they conclude
that bubbles and crises are impossible and everybody’s experience has witnessed
the opposite. Careful analysis done by quantitative economists, like for instance
Bouchaud [3, 4], have shown that bursts, which share much similarities with es-
calation, actually take place at any time scale. Escalation is therefore an intrinsic
feature of economics. Consequently, coinduction is the tool that economists who
call for a refoundation of economics [6, 3] are waiting for [25].



Structure of the paper This paper is structured as follows. In Section 2 we present
infinite games, infinite strategy profiles and infinite strategies, then we describe
the 0,1-game in Section 3. Last, we introduce the concept of equilibrium (Sec-
tions 4 and 5) and we discuss escalation (Section 6). In an appendix, we talk
about finite games and finite strategy profiles.

2 Two choice sequential games

Our aim is not to present a general theory. For this the reader is invited to look
at [1, 14, 15]. But we want to give a taste of infinite sequential games through
a very simple one. This game has two agents and two choices. To support our
claim about the rationality of escalation, we do not need more features. In [14],
we have shown the existence of a big conceptual gap between finite games and
infinite games.

Assume that the set P of agents is made of two agents called A and B. In this
framework, an infinite sequential two choice game has two shapes. In the first
shape, it is an ending position in which case it boils down to the distribution
of the payoffs to the agents. In other words the game is reduced to a function
f : A 7→ fA, B 7→ fB and we write it 〈f〉. In the second shape, it is a generic
game with a set C made of two potential choices: d or r (d for down and r
for right). Since the game is potentially infinite, it may continue forever. Thus
formally in this most general configuration a game can be seen as a triple:

g = 〈p, gd, gr〉.

where p is an agent and gd and gr are themselves games. The subgame gd cor-
responds to the down choice, i.e., the choice corresponding to go down and the
subgame gr corresponds to the right choice, i.e., the choices corresponding to go
to the right. In other words, we define a functor:

〈 〉 : X → Payoff + P× X× X.

of which Game is the final coalgebra and where P = {A,B} and Payoff = RP.

2.1 Strategy profiles

From a game, one can deduce strategy profiles (later we will also say simply
profiles), which is obtained by adding a label, at each node, which is a choice
made by the agent. A choice belong to the set {d, r}. In other words, a strategy
profile is obtained from a game by adding, at each node, a new label, namely
a choice. Therefore a strategy profile which does not correspond to an ending
game is a quadruple:

s = 〈〈p, c, sd, sr〉〉,

where p is an agent (A or B), c is choice (d or r), and, sd and sr are two strategy
profiles. The strategy profile which corresponds to an ending position has no



choice, namely it is reduced to a function 〈〈f〉〉 = 〈〈A 7→ fA, B 7→ fB〉〉. From a
strategy profile, one can build a game by removing the choices:

game(〈〈f〉〉) = 〈f〉

game(〈〈p, c, sd, sr〉〉) = 〈p, game(sd), game(sr)〉

game(s) is the underlying game of the strategy profile s.

Given a strategy profile s, one can associate, by induction, a (partial) payoff
function ŝ, as follows:

when s = 〈〈f〉〉 ŝ = f
when s = 〈〈p, d, sd, sr〉〉 ŝ = ŝd
when s = 〈〈p, r, sd, sr〉〉 ŝ = ŝr

ŝ is not defined if its definition runs in an infinite process. For instance, if sA,∞ is

the strategy profile defined in Section 6, ŝA,∞ is not defined. To ensure that we
consider only strategy profiles where the payoff function is defined we restrict to
strategy profiles that are called convergent, written s ↓ (or sometimes prefixed
↓ (s)) and defined as the least predicate satisfying

s = 〈〈f〉〉 ∨ s = 〈〈p, d, sd, sr〉〉 ⇒ sd ↓ ∧ 〈〈p, r, sd, sr〉〉 ⇒ sr ↓ .

Proposition 1. If s ↓, then ŝ is defined.

Proof. By induction. If s = 〈〈f〉〉, then since ŝ = f and f is defined, ŝ is defined.

If s = 〈〈p, c, sd, sr〉〉, there are two cases: c = d or c = r. Let us look at c = d.
If c = d, ŝd is defined by induction and since ŝ = ŝd, we conclude that ŝ is
defined.

The case c = r is similar.

As we will consider the payoff function also for subprofiles, we want the pay-
off function to be defined on subprofiles as well. Therefore we define a property
stronger than convergence which we call strong convergence. We say that a strat-
egy profile s is strongly convergent and we write it s ⇓ if it is the largest predicate
fulfilling the following conditions.

– 〈〈p, c, sd, sr〉〉 ⇓ if

• 〈〈p, c, sd, sr〉〉 is convergent,

• sd is strongly convergent,

• sr is strongly convergent.

– 〈〈f〉〉 is always strongly convergent

More formally:

s ⇓ ks c, +3 s = 〈〈f〉〉 ∨ (s = 〈〈p, c, sd, sr〉〉 ∧ s ↓ ∧sd ⇓ ∧sr ⇓).



There is however a difference between the definitions of ↓ and ⇓. Wherever
s ↓ is defined by induction1, from the ending games to the game, s ⇓ is defined
by coinduction2.

Both concepts are based on the fixed-point theorem established by Tarski [21].
The definition of ⇓ is typical of infinite games and means that ⇓ is invariant along
the infinite game. To make the difference clear between the definitions, we use
the symbol ks i, +3 for inductive definitions and the symbol ks c, +3 for coinductive
definitions. By the way, the definition of the function game is also coinductive.

We can define the notion of subprofile, written -:

s′ - s ks i, +3 s′ ∼s s ∨ s = 〈〈p, c, sd, sr〉〉 ∧ (s′ - sd ∨ s′ - sr),

where∼s is the bisimilarity among profiles defined as the largest binary predicate
s′ ∼s s such that

s′ = 〈〈f〉〉 = s ∨ (s′ = 〈〈p, c, s′d, s
′
r〉〉 ∧ s = 〈〈p, c, sd, sr〉〉 ∧ s′d ∼s sd ∧ s′r ∼s sr).

Notice that since we work with infinite objects, we may have s 6∼s s′ and
s - s′ - s. In other words, an infinite profile can be a strict subprofile of it-
self. This is the case for s1,0,a and s1,0,b in Section 4. If a profile is strongly
convergent, then the payoffs associated with all its subprofiles are defined.

Proposition 2. If s1 ⇓ and if s2 - s1, then ŝ2 is defined.

2.2 The always modality

We notice that ↓ characterizes a profile by a property of the head node, we would
say that this property is local. ⇓ is obtained by distributing the property along
the game. In other words we transform the predicate ↓ and such a predicate
transformer is called a modality. Here we are interested by the modality always,
also written �.

Given a predicate Φ on strategy profiles, the predicate �P is defined coin-
ductively as follows:

�Φ(s) ks c, +3 Φ(s) ∧ s = 〈〈p, c, sd, sr〉〉 ⇒ (�Φ(sd) ∧�Φ(sr)).

The predicate “is strongly convergent” is the same as the predicate “is always
convergent”.

Proposition 3. s ⇓ ⇔ � ↓ (s).

1 Roughly speaking a definition by induction works from the basic elements, here the
ending games, to constructed elements.

2 Roughly speaking a definition by coinduction works on infinite objects, like an in-
variant.



2.3 Strategies

The coalgebra of strategies3 is defined by the functor

J K : X → RP + (P+ Choice)×X ×X

where Choice = {d, r}. A strategy of agent p is a game in which some occurrences
of p are replaced by choices. A strategy is written JfK or Jx, s1, s2K. By replacing
the choice made by agent p by the agent p herself, we can associate a game with
a pair consisting of a strategy and an agent:

st2g(JfK, p) = 〈f〉
st2g(Jx, st1, st2K, p) = if x ∈ P then 〈x, st2g(st1, p), st2g(st2, p)〉

else 〈p, st2g(st1, p), st2g(st2, p)〉.

If a strategy st is really the strategy of agent p it should contain nowhere p
and should contain a choice c instead. In this case we say that st is full for p
and we write it st .

p

.

JfK .
p

Jx, st1, st2K .
p ks c, +3 (x /∈ Choice ⇒ x 6= p) ∧ st1 .

p

∧ st2 .
p

.

We can sum strategies to make a strategy profile. But for that we have to assume
that all strategies are full and underlie the same game. In other words, (stp)p∈P
is a family of strategies such that:

– ∀p ∈ P, stp .
p

,

– there exists a game g such that ∀p ∈ P, st2g(stp) = g.

We define
⊕

p∈P

stp as follows:

⊕

p∈P

JfK = 〈〈f〉〉

Jc, stp′,1, stp′,2K ⊕
⊕

p∈P\p′

Jp′, stp,1, stp,2K = 〈〈p′, c,
⊕

p∈P

stp,1,
⊕

p∈P

stp,2〉〉.

We can show that the game underlying all the strategies is the game underlying
the strategy profile which is the sum of the strategies.

Proposition 4. st2g(stp′ , p′) = game(
⊕

p∈P

stp).

3 A strategy is not the same as a strategy profile, which is obtained as the sum of
strategies.



3 Comb games and the 0,1-game

We will restrict to simple games which have the shape of combs,
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At each step the agents have only two choices, namely to stop or to continue.
Let us call such a game, a comb game.

We introduce infinite games by means of equations. Let us see how this
applies to define the 0, 1-game. First consider two payoff functions:

f0,1 = A 7→ 0,B 7→ 1

f1,0 = A 7→ 1,B 7→ 0

we define two games

G0,1 = 〈A, 〈f0,1〉, G1,0〉

G1,0 = 〈B, 〈f1,0〉, G0,1〉

This means that we define an infinite sequential game G0,1 in which agent A is
the first player and which has two subgames: the trivial game 〈f1,0〉 and the game
G1,0 defined in the other equation. The game G0,1 can be pictured as follows:
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or more simply in Figure 1.a.
From now on, we assume that we consider only strategy profiles whose under-

lying game is the 0,1-game. They are characterized by the following predicates

S0(s) ks c, +3 s = 〈〈A, c, f0,1, s
′〉〉 ∧ S1(s

′)

S1(s) ks c, +3 s = 〈〈B, c, f1,0, s
′〉〉 ∧ S0(s

′).

Notice that the 0, 1-game we consider is somewhat a zero-sum game, but we
are not interested in this aspect. Moreover, a very specific instance of a 0, 1 game
has been considered (by Ummels [22] for instance), but these authors are not
interested in the general structure of the game, but in a specific model on a finite
graph, which is not general enough for our taste. Therefore this is not a direct
generalization of finite sequential games (replacing induction by coinduction)
and this not a framework to study escalation.
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Fig. 1. The 0, 1-game and two equilibria seen compactly

4 Subgame perfect equilibria

Among the strategy profiles, one can select specific ones that are called subgame
perfect equilibria. Subgame perfect equilibria are specific strategy profiles that
fulfill a predicate SPE. This predicate relies on another predicate PE which checks
a local property.

PE(s) ⇔ s ⇓ ∧ s = 〈〈p, d, sd, sr〉〉 ⇒ ŝd(p) ≥ ŝr(p)
∧ s = 〈〈p, r, sd, sr〉〉 ⇒ ŝr(p) ≥ ŝd(p)

A strategy profile is a subgame perfect equilibrium if the property PE holds
always:

SPE = �PE.

We may now wonder what the subgame perfect equilibria of the 0,1-game are.
We present two of them in Figure 1.b and 1.c. But there are others. To present
them, let us define a predicate “A continues and B eventually stops”

AcBes(s) ks i, +3 s = 〈〈p, c, 〈〈f〉〉, s′〉〉 ⇒ (p = A ∧ f = f0,1 ∧ c = r ∧ AcBes(s′)) ∨

(p = B ∧ f = f1,0 ∧ (c = d ∨ AcBes(s′))

Proposition 5. (S1(s) ∨ S0(s)) ⇒ AcBes(s) ⇒ ŝ = f1,0

Proof. If s = 〈〈p, c, 〈〈f〉〉, s′〉〉, then S0(s
′) ∨ S1(s

′). Therefore if AcBes(s′), by

induction, ŝ′ = f0,1. By case:

– If p = A∧ c = r, then AcBes(s′) and by definition of ŝ, we have ŝ = ŝ′ = f0,1

– if p = B ∧ c = d, the ŝ = 〈̂〈f0,1〉〉 = f0,1.

– if p = B ∧ c = r, , then AcBes(s′) and by definition of ŝ, ŝ = ŝ′ = f0,1.

Like we generalize PE to SPE by applying the modality �, we generalize AcBes

into SAcBes by stating:

SAcBes = �AcBes.



There are at least two profiles which satisfies SAcBes namely s1,0,a and s1,0,b
which have been studied in [14] and pictured in Figure 1:

s1,0,a ks c, +3 〈〈A, r, f0,1, s1,0,b〉〉
s0,1,a ks c, +3 〈〈A, d, f0,1, s0,1,b〉〉

s1,0,b ks c, +3 〈〈B, d, f1,0, s1,0,a〉〉
s0,1,b ks c, +3 〈〈B, r, f1,0, s0,1,a〉〉

Proposition 6. SAcBes(s) ⇒ s ⇓ .

We may state the following proposition.

Proposition 7. ∀s, (S0(s) ∨ S1(s)) ⇒ (SAcBes(s) ⇒ SPE(s)).

Proof. Since SPE is a coinductively defined predicate, the proof is by coinduction.
Given an s, we have to prove ∀s,�AcBes(s) ∧ (S0(s) ∨ S1(s)) ⇒ �PE(s).
For that we assume �AcBes(s)∧ (S0(s)∨S1(s)) and in addition (coinduction

principle) �PE(s′) for all strict subprofiles s′ of s and we prove PE(s). In other
words, s ⇓ ∧〈〈p, d, sd, sr〉〉 ⇒ ŝd(p) ≥ ŝr(p) ∧ 〈〈p, r, sd, sr〉〉 ⇒ ŝr(p) ≥ ŝd(p).

By Proposition 6, we have s ⇓.
By Proposition 5, we know that for every subprofile s′ of a profile s that

satisfies S1(s) ∨ S0(s) we have ŝ′ = f1,0 except when s′ = 〈〈f0,1〉〉. Let us prove
〈〈p, d, sd, sr〉〉 ⇒ ŝd(p) ≥ ŝr(p) ∧ 〈〈p, r, sd, sr〉〉 ⇒ ŝr(p) ≥ ŝd(p). Let us proceed
by case:

– s = 〈〈A, r, 〈〈f0,1〉〉, s
′〉〉. Then S0(s) and S1(s

′). Since �AcBes(s), we have

AcBes(s′), therefore ŝ′ = f1,0 hence ŝ′(A) = 1 and f0,1(A) = 0, henceforth

ŝ′(A) ≥ f0,1(A).
– s = 〈〈B, r, 〈〈f1,0〉〉, s

′〉〉. Then S1(s) and S0(s
′). Since �AcBes(s), we have

AcBes(s′), therefore ŝ′ = f1,0 hence ŝ′(B) = 0 and f1,0(B) = 0, henceforth

ŝ′(B) ≥ f1,0(B).

Symmetrically we can define a predicate BcAes for “B continues and A eventually
stops” and a predicate SBcAes which is SBcAes = � BcAes which means that
B continues always and A stops infinitely often. With the same argument as for
SAcBes one can conclude that

∀s, (S0(s) ∨ S1(s)) ⇒ SBcAes(s) ⇒ SPE(s).

We claim that SAcBes ∨ SBcAes fully characterizes SPE of 0,1-games, in other
words.

Conjecture 1. ∀s, (S0(s) ∨ S1(s)) ⇒ (SAcBes(s) ∨ SBcAes ⇔ SPE(s)).

5 Nash equilibria

Before talking about escalation, let us see the connection between subgame per-
fect equilibrium and Nash equilibrium in a sequential game. In [17], the definition
of a Nash equilibrium is as follows: A Nash equilibrium is a“pattern[s] of behavior
with the property that if every player knows every other player’s behavior she has



not reason to change her own behavior” in other words, “a Nash equilibrium [is]
a strategy profile from which no player wishes to deviate, given the other player’s
strategies.” . The concept of deviation of agent p is expressed by a binary relation
we call convertibility4 and we write ⊢p⊣. It is defined inductively as follows:

s ∼s s
′

s⊢p⊣ s′

s1 ⊢p⊣ s′
1

s2 ⊢p⊣ s′
2

〈〈p, c, s1, s2〉〉 ⊢p⊣ 〈〈p, c′, s′
1
, s′

2
〉〉

s1 ⊢p⊣ s′
1

s2 ⊢p⊣ s′
2

〈〈p′, c, s1, s2〉〉 ⊢p⊣ 〈〈p′, c, s′
1
, s′

2
〉〉

We define the predicate Nash as follows:

Nash(s) ⇔ ∀p, ∀s′, s⊢p⊣ s′ ⇒ ŝ(p) ≥ ŝ′(p′).

The concept of Nash equilibrium is more general than that of subgame perfect
equilibrium and we have the following result:

Proposition 8. SPE(s) ⇒ Nash(s).

The result has been proven in COQ and we refer to the script (see[15]):
http://perso.ens-lyon.fr/pierre.lescanne/COQ/EscRatAI/

http://perso.ens-lyon.fr/pierre.lescanne/COQ/EscRatAI/SCRIPTS/

Notice that we defined the convertibility inductively, but a coinductive def-
inition is possible. But this would give a more restrictive definition of Nash
equilibrium.

6 Escalation

Escalation in a game with a set P of agents occurs when there is a tuple of strate-

gies (stp)p∈P such that its sum is not convergent, in other words, ¬ (
⊕

p∈P

stp) ↓.

Said differently, it is possible that the agents have all a private strategy which
combined with those of the others makes a strategy profile which is not con-
vergent, which means that the strategy profile goes to infinity when following
the choices. Notice the two uses of a strategy profile: first, as a subgame perfect
equilibrium, second as a combination of the strategies of the agents.

Consider the strategy:

stA,∞ = Jr, Jf0,1K, st
′
A,∞

K

st′
A,∞

= JB, Jf1,0K, stA,∞K

4 This should be called perhaps feasibility following [18] and [13]



and its twin

stB,∞ = JA, Jf0,1K, st
′
B,∞

K

st′
B,∞

= Jr, Jf1,0K, stB,∞K.

Moreover, consider the strategy profile:

sA,∞ = 〈〈A, r, 〈〈f0,1〉〉, sB,∞〉〉

sB,∞ = 〈〈B, r, 〈〈f1,0〉〉, sA,∞〉〉.

Proposition 9.

– stA,∞ .
A
,

– stB,∞ .
B
,

– st2g(stA,∞,A) = st2g(stB,∞,B) = G0,1,
– game(sA,∞) = G0,1,
– stA,∞ ⊕ stB,∞ = sA,∞,
– ¬ sA,∞ ↓.

Proof. By coinduction.

stA,∞ and stB,∞ are both rational since they are built using choices, namely r,

dictated by subgame perfect equilibria5 which start with r. Another feature of
this example is that no agent has a clue for what strategy the other agent is
using. Indeed after k steps, A does not know if B has used a strategy derived of
equilibria in SAcBes or in SBcAes. In other words, A does know if B will stop
eventually or not and vice versa. The agents can draw no conclusion of what
they observe. If each agent does not believe in the threat of the other she is
naturally led to escalation.
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7 Conclusion

In this paper, we have shown how to use coinduction in a field, namely economics,
where it has not been used yet, or perhaps in a really hidden form, which has
to be unearthed. We foresee a future for this tool and a possible way for a
refoundation of economics.

5 Our choice of rationality is this of a subgame perfect equilibrium, as it generalizes
backward induction, which is usually accepted as the criterion of rationality for finite
game.
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A Finite 0,1 games and the “cut and extrapolate”

method

We spoke about the “cut and extrapolate” method, applied in particular to the
dollar auction. Let us see how it would work on the 0,1-game. Finite games, finite
strategy profiles and payoff functions of finite strategy profiles are the inductive
equivalent of infinite games, infinite strategy profiles and infinite payoff functions
which we presented. Notice that payoff functions of finite strategy profiles are
always defined. Despite we do not speak of the same types of objects, we use the
same notations, but this does not lead to confusion. Consider two finite families
of finite games, that could be seen as approximations of the 0,1-game:

F0,1 = 〈A, 〈f0,1〉, 〈B, 〈f1,0〉, F0,1〉〉 ∪ {〈f0,1〉}
K0,1 = 〈A, 〈f0,1〉,K

′
0,1〉

K ′
0,1 = 〈B, 〈f1,0〉,K0,1〉 ∪ {〈f1,0〉}

In F0,1 we cut after B and replace the tail by 〈f0,1〉. In K0,1 we cut after A and
replace the tail by 〈f1,0〉. Recall [23] the predicate BI, which is the finite version
of PE.

BI(〈f〉)

BI(〈p, c, sd, sr〉) = BI(sl) ∧ BI(sr) ∧

〈〈p, d, sd, sr〉〉 ⇒ ŝd(p) ≥ ŝr(p) ∧

〈〈p, r, sd, sr〉〉 ⇒ ŝr(p) ≥ ŝd(p)

We consider the two families of strategy profiles:

SF0,1(s) ks i, +3 (s = 〈〈A, d ∨ r, 〈〈f0,1〉〉, 〈〈B, r, 〈〈f1,0〉〉, s
′〉〉〉〉 ∧ SF0,1(s

′) ∨
s = 〈〈f0,1〉〉

SK0,1(s) ks i, +3 s = 〈〈A, r, 〈〈f0,1〉〉, s
′〉〉 ∧ SK′

0,1(s
′)

SK′
0,1(s) ks i, +3 (s = 〈〈B, d, 〈〈f1,0〉〉, s

′〉〉 ∨ s = 〈〈B, r, 〈〈f1,0〉〉, s
′〉〉) ∧ SK0,1(s

′) ∨
s = 〈〈f1,0〉〉

In SF0,1, B continues and A does whatever she likes and in SK0,1, A continues and
B does whatever she likes. The following proposition characterizes the backward
induction equilibria for games in F0,1 and K0,1 respectively and is easily proved
by induction:



Proposition 10.

– game(s) ∈ F0,1 ∧ SF0,1(s) ⇔ BI(s),
– game(s) ∈ K0,1 ∧ SK0,1(s) ⇔ BI(s).

This shows that cutting at an even or an odd position does not give the same
strategy profile by extrapolation. Consequently the “cut and extrapolate” method
does not anticipate all the subgame perfect equilibria. Let us add that when
cutting we decide which leaf to insert, namely 〈f0,1〉 or 〈f1,0〉, but we could do
another way around obtaining different results.

0,1 game and limited payroll. To avoid escalation in the dollar auctions, some
require a limited payroll, i.e., a bound on the amount of money handled by
the agents, but this is inconsistent with the fact that the game is infinite. Said
otherwise, to avoid escalation, they forbid escalation. One can notice that, in
the 0,1-game, a limited payroll would not prevent escalation, since the payoffs
are anyway limited by 1.


