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We consider a magnetic impurity deposited on the surface of a strong topological insulator and interacting with
the surface modes by a Kondo exchange interaction. Taking into account the warping of the Fermi line of the
surface modes, we derive a mapping to an effective one-dimensional model and show that the impurity is fully
screened by the surface electrons except when the Fermi level lies exactly at the Dirac point. Using an Abrikosov
fermion mean-field theory, we calculate the shape of the electronic density Friedel oscillation resulting from the
presence of the Kondo screening cloud. We analyze quantitatively the observability of a sixfold symmetry in the
Friedel oscillations for two prototype compounds: Bi2Se3 and Bi2Te3.
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I. INTRODUCTION

Topological insulators are a new class of materials, with an
insulating bulk and a conducting surface.1–3 The existence
of four topological invariants guarantees the stability of
these surface states against perturbations.4–6 Furthermore, the
topological invariants permit one to distinguish two types of
topological insulators: the weak topological insulators and the
strong topological insulators. In a strong topological insulator,
the surface modes at low energy form an odd number of Dirac
cones. This is to be contrasted with a strictly two-dimensional
conductor such as graphene,7 where the Nielsen-Ninomiya
theorem8 only permits an even number of Dirac cones: the
presence of the gapped bulk is crucial to the formation of
an odd number of Dirac cones. Experimentally, the material
BixSb1-x is a strong topological insulator with three Dirac
cones,9 while Bi2Se3, Bi2Te3, and Sb2Te3 are strong topo-
logical insulators with a single Dirac cone.10,11 In the case of
Bi2Te3, a significant hexagonal Fermi line warping is present.11

More recent examples of topological insulator materials
are TlBiSe2,12 strained HgTe,13,14 Bi2Te1.6S1.4,15 PbBi2Te4,16

Pb(Bi1-xSbx)2Te4,17 Bi2Se2Te, Bi2Te2Se, and GeBi2Te4.18 It
has also recently been proposed on the basis of band structure
calculations that the ternary compound LiAuSe19 and the
cerium filled skutterudites20 CeOs4As12 and CeOs4As12 could
be topological insulators. A recent review of known topolog-
ical insulators can be found in Ref. 21. In all these systems, a
strong spin-orbit coupling is present, and in the surface states
the helicity, i.e., the sign of the spin projection of the quasi-
particle spin on the quasi-momentum, is fixed. An interesting
theoretical question is then whether the Kondo effect22–25 in
the surface modes is affected by a fixed helicity. In particular,
one would like to know whether a conventional Kondo effect
takes place, or whether the fixed helicity constraint gives
rise to unconventional Kondo fixed points. In the case of
two-dimensional topological insulators,26 the question was
addressed,27 and it was shown that a conventional Kondo effect
would take place, leading to a suppression of the backscattering
of the edge states by magnetic impurities. In the case of a
three-dimensional topological insulator, the Anderson model
was considered both in the absence28–30 and in the presence31

of Fermi surface warping. Within a variational trial wave
function method, it was found that the local moment would
be fully quenched, but correlations would exist between the
conduction electron spin and the spin of the local impurity.28

Analogous results were obtained in a two-dimensional electron
gas with Rashba and Dresselhaus spin-orbit couplings.32

In the case of a pure Dirac spectrum, a mapping on the
one-dimensional Anderson model with a pseudogap in the
hybridization function was obtained.29,30 It was concluded that
away from the Dirac point the Kondo effect would take place,
and the impurity would be fully screened, while at the Dirac
point, the local moment would decouple.29 The local density
of states (LDOS), the local spin density of states (LSDOS),
and the Friedel oscillations were also investigated30 within a
U(1) slave-boson33 mean-field theory. In Ref. 31, the Anderson
model in a topological insulator with a Fermi surface warping
was considered using the numerical renormalization group
and the behavior of the LDOS was obtained. Experimentally,
magnetic impurities such as manganese,34 nickel, iron,35–37

cobalt,37,38 and gadolinium39 have been deposited on the
surface of topological insulators. It was found that the surface
states were remarkably insensitive to the presence of both mag-
netic and nonmagnetic impurities.34,39 While the first result can
be understood as a consequence of the suppression of backscat-
tering, the second result is more surprising since magnetic
impurities permit backscattering by flipping the electron spin.

Besides this single impurity behavior, it has been suggested
theoretically that in a Kondo lattice at electronic half-filling,
the Kondo interaction could help the formation of a topological
insulator.40–43 There are indeed recent experimental indica-
tions that the Kondo insulator44,45 SmB6 could be a topological
insulator. This also lends support to the hypothesis that Kondo
screening of magnetic impurities is compatible with the helical
character of the surface states. An important technique to
probe conducting surfaces is scanning tunneling microscopy
(STM).46,47 This is particularly interesting in relation to the
Kondo effect since STM measurements of the LDOS around a
Kondo impurity located on the surface of a metal have already
been performed,48–52 and the influence of the Kondo resonance
on the LDOS has been studied theoretically.53 Since the surface
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of a topological insulator is conducting, it can be probed
by STM.54–60 The existing predictions for the LDOS caused
by a Kondo impurity31 could thus be tested in that manner.
Moreover, following the proposal of Ref. 61, integrating the
measured LDOS would permit the measurement of the Friedel
oscillations of the electron density induced by the Kondo
screening cloud around the magnetic impurity.

In the present paper, we want to further analyze the Kondo
effect of a magnetic impurity at the surface of a strong
topological insulator with warping. In the first part, we reduce
the Kondo Hamiltonian to a one-dimensional model which
can be treated by integrability techniques. We find that a
conventional Kondo effect is obtained, with the impurity
screened by the surface modes unless the Fermi level is right at
the Dirac point, in which case, because of the vanishing density
of states, the impurity remains unscreened for weak Kondo
coupling. In the second part, we calculate within an Abrikosov
fermion mean-field theory62 the Friedel oscillations61 resulting
from the existence of the Kondo screening cloud. For weak
Fermi surface warping, we derive a perturbative expression of
the density Friedel oscillations. In the third part we discuss the
observability in STM measurements of the Friedel oscillations
of electron density61 around an impurity in the specific cases
of two prototype compounds: Bi2Se3 and Bi2Te3.

II. MAPPING TO A ONE-DIMENSIONAL MODEL

The free electrons Hamiltonian of the surface modes of a
strong topological insulator with warping reads

H0 ≡
∑
k,α,β

c
†
k,α

[
−ivF ẑ · (σ αβ × k)

+ λ

2
[(kx + iky)3 + (kx − iky)3]σ z − μδαβ

]
ck,β

≡
∑
k,α,β

c
†
k,αH0

αβ(k)ck,β , (1)

where ck,α annihilates a fermion of momentum k and spin
α, ẑ is the normal to surface of the topological insulator,
σ = (σx,σ y,σ z) denotes the Pauli matrices, vF is the Fermi
velocity, λ is the warping, and μ is the chemical potential. In the
case of Bi2Se3, one has63 vF = 3.55 eV Å and λ = 128 eV Å3.
For Bi2Te3,11,64 one has vF = 2.55 eV Å and λ = 250 eV Å. In
the following, we will study the effects induced by the presence
of a magnetic quantum impurity. We take the position of the
impurity as the origin of our coordinates so that the Kondo
Hamiltonian describing the surface modes and their interaction
with the impurity reads

H = H0 + HK ≡ H0 + JK

L2

∑
k,k′,α,β

S · c
†
k,ασ αβck′,β , (2)

where JK is the Kondo interaction, L the linear dimension of
the (square) surface, and S the impurity spin.

In the present section, we briefly review the eigenstates
of the free electrons Hamiltonian (1). We will use a spinor
notation to represent the Fermion annihilation and creation

operators:

�(r) =
(

ψ↑(r)

ψ↓(r)

)
=

∑
s=±

∫
d2k

(2π )2
ψs

k(r)cs(k), (3)

where the spinors ψs
k(r) are eigenstates of the first quantized

Hamiltonian and {cs(k),cs ′ (k′)} = (2π )2δs,s ′δ(k − k′). Intro-
ducing the polar coordinates k ≡ (k,φ) and r ≡ (r,θ ) the
spinors have the explicit form

ψs
k,φ(r,θ ) =

(
As

−iBse
iφ

)
eikr cos(θ−φ), (4)

where |As |2 + |Bs |2 = 1 and

As + iBs

As − iBs

= s
λk3 cos 3θ + ivF k√
v2

F k2 + λ2k6 cos2 3θ

. (5)

We note that As and Bs are periodic functions of θ of
period 2π

3 . In the rotationally invariant case, i.e., without the
warping term (λ = 0), the eigenstates of the Hamiltonian
are rewritten as angular momentum eigenstates, and only
the s-wave channel29,30 is found to contribute to the Kondo
interaction. In the case with warping (λ �= 0), there is only a
discrete rotational symmetry, and instead of representations of
O(2) the eigenstates have to be expressed as representations
of the discrete group Z3:

ψs
k,φ,�(r) = 1√

3

∑
n=0,1,2

ei 2π
3 �nψs

k,φ+ 2nπ
3

(r), (6)

with the restriction |φ| < π/3 and � = 0,1,2 labels the
representation. With full rotational symmetry, � would be the
angular momentum. Because of the threefold symmetry of
the warping term, the states having a difference of angular
momentum equal to a multiple of 3 are hybridized together,
and the angular momentum � is defined only modulo 3. In that
basis, the spinor (3) reads

�(r) =
∑

�,s=±

∫
d2k

(2π )2
ψs

k,�(r)c�,s(k). (7)

Since ψs
k,φ,1(0,θ ) = 0, only the � = 0,2 modes interact with

the magnetic impurity,

�(0) =
√

3
∫

d2k
(2π )2

(
Ac0,+(k) − Bc0,−(k)

− iBc2,+(k) − iAc2,−(k)

)
, (8)

and the Kondo Hamiltonian is rewritten as

H =
∑
�,s

∫
d2k

(2π )2
[sE(k) − μ]c†�,s(k)c�,s(k)

+ JKS · �†(0)σ�(0), (9)

with

E(k) ≡
√

v2
F k2 + λ2k6 cos2(3φ). (10)

The Hamiltonian (9) can be further reduced by turning the
integration variable k to a system of curvilinear coordinates
(E,κ⊥), where E is the energy of the eigenstate, and κ⊥ is
the curvilinear coordinate along the line of constant energy.
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Introducing the new operators,

a�,s(E,κ⊥) = c�,s(k)√||∇kE(k)|| , (11)

with anticommutation relations {a�,s(E,κ⊥),a†
�,s(E

′,κ ′
⊥)} =

(2π )2δ(E − E′)δ(κ⊥ − κ ′
⊥), the free electrons part of the

Hamiltonian (9) can be rewritten:

H0 =
∑
�,s

∫
dE dκ⊥
(2π )2

(sE − μ)a†
�,s(E,κ⊥)a�,s(E,κ⊥). (12)

Introducing the density of states,

ρ0(E) ≡
∫

dκ⊥
4π2||∇kE(k)|| , (13)

and the operators,

a↑,+(E) =
√

3
∫

dκ⊥
A(E,κ⊥)a0,+(E,κ⊥)√
2π2ρ0(E)||∇kE(k)||

, (14)

a↑,−(E) =
√

3
∫

dκ⊥
B(E,κ⊥)a0,−(E,κ⊥)√
2π2ρ0(E)||∇kE(k)||

, (15)

a↓,+(E) =
√

3
∫

dκ⊥
B(E,κ⊥)a2,+(E,κ⊥)√
2π2ρ0(E)||∇kE(k)||

, (16)

a↓,−(E) =
√

3
∫

dκ⊥
A(E,κ⊥)a2,−(E,κ⊥)√
2π2ρ0(E)||∇kE(k)||

, (17)

with anticommutators {aα,s(E),a†
α′,s ′ (E′)} = (2π )2δ(E −

E′)δss ′δαα′ , we can define

aα(E) = (−i)1/2−α
∑
s=±

�(sE)s1/2+αaα,s(|E|), (18)

ψα(0) =
∫ ∞

−∞

dE
√

ρ0(|E|)
π

√
8

aα(E), (19)

where � denotes the Heaviside function. In terms of these
operators, the Kondo Hamiltonian (9) reads

H = JKS · �†(0)σ�(0)

+
∫ +∞

−∞

dE

(2π )2

∑
α

(E − μ)a†
α(E)aα(E) + · · · , (20)

where · · · stands for the modes of the free electrons Hamilto-
nian H0 that do not couple to the impurity. Away from the Dirac
point, the density of states ρ0(E) can be approximated by the
density of states at the Fermi level ρ0(μ), and the usual single
channel Kondo problem is obtained. For a spin-1/2 impurity,
the Kondo temperature can be obtained from the Bethe ansatz
solution as65

TK = DeγE−1/4 exp

( −1

JKρ0(μ)

)
, (21)

where γE � 0.577 is the Euler-Mascheroni constant and D is
a symmetric cutoff around the Fermi energy. The density of
states ρ0(E) can be expressed in terms of elliptic integrals,66 so
the full dependence of the Kondo temperature on the chemical
potential is known up to the prefactor D. Since the Bethe
ansatz solution of the Kondo problem65 requires a constant
density of states, D represents as the energy scale away from
the Fermi energy for which the density of states starts to
deviate significantly from the density of states at the Fermi
energy. For small warping λ or not too far from the Dirac

point, the density of states is a linear function of energy, and
D � μ, so the dependence of D on E is only a subdominant
contribution. Close to the Dirac point, μ → 0, the density of
states ρ0(μ) ∼ |μ|. Because of such pseudogap, the Kondo
temperature vanishes.67 These results are in agreement with
the ones derived in the framework of the Anderson model,29,30

where Kondo screening was obtained only when the density
of states at the Fermi level was nonvanishing. In the case
of an impurity with spin S > 1/2, Eq. (20) would give the
underscreened single channel Kondo fixed point.

More generally, it can be established in any dimension d

that with any free Hamiltonian of the form

H0 =
∑
α,β

c
†
k,α[μδαβ + ε(k) · σ αβ]ck,β (22)

having time reversal symmetry [i.e., ε(−k) = −ε(k)] only a
conventional Kondo effect can be obtained. Indeed, if we write
the partition function as68

Z = Z0
〈
Tτ e

−JK

∫ β

0 dτ S(τ )·ψ†
α(0,τ )σ αβψβ (0,τ )

〉
H0

, (23)

with Z0 ≡ Tr e−βH0 , and expand in powers of JK , the series
will depend on

Gαβ(0,τ ) = 1

β

∑
iνn

∫
ddk

(2π )d
(iνn + μ)δαβ + ε(k) · σ αβ

(iνn + μ)2 − ‖ε(k)‖2
eiνnτ ,

(24)

but since ε(k) is odd, introducing the density of states ρ0(E) =∫
δ(E − ‖ε(k)‖)ddk/(2π )d we can write

Gαβ(0,τ ) = 1

2β

∑
iνn

∫
ρ0(|E|)δαβ

iνn + μ − E
dE, (25)

showing that the partition function is the same as the one
of a system without spin-orbit coupling having the same
density of states ρ0 as the Hamiltonian (22). As a result, a
conventional Kondo effect is realized every time the density
of states at the Fermi level is nonzero.68 As a consequence, the
dispersion and the Kondo self-energy are expected to remain
spin independent much beyond the mean-field approximation
that we will consider in the following.

III. FRIEDEL OSCILLATIONS AND ABRIKOSOV
FERMIONS MEAN-FIELD THEORY

A. Mean-field theory

1. Abrikosov fermions and mean-field self-consistent relations

We have seen in Sec. II that even in the presence of
warping, a magnetic impurity on the surface of a topological
insulator is always screened provided the density of states
at the Fermi level is nonzero. In such conditions, a Kondo
screening cloud61,69 is formed around the impurity, and Friedel
oscillations are formed. We consider in the following the case
of a fully screened S = 1/2 impurity. Since we are dealing with
a conventional Kondo fixed point, we can use the Abrikosov
fermion representation62 for the localized spin:

S+ = f
†
↑f↓, S− = f

†
↓f↑, Sz = 1

2 (f †
↑f↑ − f

†
↓f↓), (26)
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with the constraint

1 = f
†
↑f↑ + f

†
↓f↓, (27)

to rewrite the Kondo interaction as a local fermion-fermion
interaction:

HK = JKS · �†(0)σ�(0)

= JK

2

(∑
αβ

f †
αfβψ

†
β(0)ψα(0) −

∑
α

ψ†
α(0)ψα(0)

2

)
, (28)

where the two terms on the right-hand side, respectively,
correspond to the spin-flip and charge potential scattering
processes of conduction electrons on the Kondo impurity.
Hereafter we will concentrate on the spin-flip interaction
term and we will neglect the charge potential scattering one.
Adding a Lagrange multiplier μf (1 − ∑

α f †
αfα) to the full

Kondo Hamiltonian H0 + HK to enforce the constraint (27),
we decouple (28) by a mean-field approximation:

HMF = H0 + �
∑

α

[f †
αψα(0) + H.c.] − μf

∑
α

f †
αfα, (29)

where the effective hybridization � and the Lagrange multi-
plier μf satisfy the self-consistent relations:

� = JK

2

∑
α

〈ψ†
αfα〉, (30)

1 =
∑

α

〈f †
αfα〉, (31)

where 〈· · · 〉 denotes the thermal average computed with
the mean-field effective Hamiltonian (29). We introduce the
Fourier decomposition:

ψα(r) = 1

L

∑
k

ckαeik·r, (32)

where L2 is the surface of the system. To solve the mean-field
equations, we introduce the Green’s functions

Gcc
αβ(k,k′,τ ) = −〈Tτ ckα(τ )c†k′β(0)〉,
G

f c

αβ(k′,τ ) = −〈Tτfα(τ )c†k′β(0)〉,
(33)

G
cf

αβ(k,τ ) = −〈Tτ ckα(τ )f †
α (0)〉,

G
ff

αβ (τ ) = −〈Tτfα(τ )f †
β (0)〉.

Using the equations of motion from the Hamiltonian (29) and a
Fourier decomposition in Matsubara frequencies, the Green’s
functions in Eq. (33) are expressed as

Gcc(k,k′,iνn) = δk,k′G0(k,iνn)

+ |�|2
L2

G0(k,iνn)Gff (iνn)G0(k′,iνn), (34)

Gf c(k,iνn) = −��

L
Gff (iνn)G0(k,iνn), (35)

Gcf (k,iνn) = −�

L
G0(k,iνn)Gff (iνn), (36)

Gff (iνn) = [iνn + μf − �(iνn)]−1, (37)

with the free electrons Green function,

G0(k,iνn) ≡ [iνn − H0(k)]−1, (38)

and the self-energy,

�(iνn) = |�|2
∫

d2k
(2π )2

G0(k,iνn). (39)

Hereafter, we introduce the noninteracting electronic density
of states, ρ0(E) ≡ ∫

δ(E − εk)d2k/(2π )2, where εk denotes
the electronic eigenenergies. Remarking that H0(k) has time
reversal symmetry, and invoking a similar analysis as the one
leading to Eq. (25), we find the following spin-independent
expression for the self-energy:

�αβ(z) ≡ δαβ |�|2
∫ ∞

−∞
dE

ρ0(E)

z + μ − E
. (40)

Introducing the real and imaginary parts of the self-energy,
�αβ(E + i0+) = δαβ[�′(E) + i�′′(E)], with

�′(E) = |�|2
∫ ∞

−∞
dε ρ0(ε)P.V.

(
1

E + μ − ε

)
, (41)

�′′(E) = −π |�|2ρ0(E + μ), (42)

the self-consistency conditions (30) and (31) read

|�|2 = JK

∫ ∞

−∞

dE

π
nF (E)

(E + μf )�′′(E)

[E + μf − �′(E)]2 + [�′′(E)]2
,

(43)

1

2
= −

∫ ∞

−∞

dE

π
nF (E)

�′′(E)

[E + μf − �′(E)]2 + [�′′(E)]2
.

(44)

2. Kondo temperature

On general grounds, the Kondo temperature TK indicates
a crossover between the high temperature weakly coupled
and the low temperature strongly coupled regimes. Indeed,
the system at temperatures below TK is characterized by
a magnetic confinement of the spin of the edge electronic
states which screens the Kondo impurity.33 TK has been
shown to be the unique energy scale that characterizes the
universal physical properties of single impurity Kondo models
at low temperature T � TK . We will see later how this
scaling property will become extremely useful for analyzing
universal properties of the electronic density at very low
temperature. But before, we derive here an expression of TK .
Within the mean-field approximation, the Kondo crossover
turns to a transition at TK which corresponds to a continuous
vanishing of the f -c effective hybridization: �(TK ) = 0.
Invoking the self-consistent relations (43) and (44), we find
(see Appendix A1) the following mean-field equation for TK :

μf = 0, (45)

and

2

JK

= P.V.
∫ +∞

−∞
dE

nF (E)

E
ρ0(μ + E), (46)

which is equivalent to the Nagaoka-Suhl equation derived in
Refs. 70 and 71. Assuming an even free electrons density of
state, ρ0(−E) = ρ0(E), a general explicit expression of TK

was derived in the weak Kondo coupling limit,72,73

TK = FKe−1/JKρ0(μ), (47)
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with

FK = 2eγE

π
(D + μ) exp

[
−

∫ 0

−D−μ

dE

E

ρ0(μ + E) − ρ0(μ)

ρ0(μ)

]
,

(48)

where γE � 0.577 is the Euler-Mascheroni constant, and D de-
notes the half-bandwidth of ρ0. The mean-field expression (47)
provides the usual nonanalytic exponential term characterizing
the JK dependence of the Kondo temperature at small Kondo
coupling JKρ0(μ) � 1. The same exponential dependence
also emerges from the mapping to the Bethe ansatz solvable
model [see Eq. (21)]. The prefactor FK does not depend on
JK and is thus a pure characteristic of the noninteracting
electronic system. Whatever the specific chemistry of the
magnetic impurity and whatever the microscopic details of its
coupling with conduction electrons, the prefactor FK depends
only on the energy structure of the noninteracting conduction
electrons.

We find that FK ∼ D if one assumes a constant density
of states and a chemical potential close to the middle
of the electronic energy band. The situation may become
quantitatively different when the conduction electrons describe
the surface modes of a topological insulator. Indeed, using
the density of states ρ(E) = |E|/(2πv2

F ) that characterizes a
surface mode without warping, we find for μ > 0

TK = 2eγE−1

π

μ2

D + μ
exp

(
D

μ
− 2πv2

F

JKμ

)
. (49)

This small JK asymptotic expression becomes singular at
the Dirac point μ = 0, where the density of states vanishes
linearly. At the Dirac point, one has to start from Eq. (46) for
the Kondo temperature, which simplifies to

1

JK

=
∫ D

0

dE

2πv2
F

tanh

(
E

2TK

)
, (50)

= TK

πv2
F

ln

[
cosh

(
D

2TK

)]
, (51)

where D is a bandwidth cutoff. For JK < J c
K ≡ 2πv2

F

D
, Eq. (50)

has no solution, in agreement with the results of Ref. 67. For
JK > J c

K , we find that

TK = D

2 ln 2

(
1 − J c

K

JK

)
, (52)

indicating that the regular Kondo effect can still be realized
at the Dirac point, but with a Kondo temperature vanishing
linearly with the Kondo interaction when JK → J c

K , in
agreement with the prediction of Ref. 67 for a linear density
of states.

3. T-matrix and local electronic density

The local electronic density is defined as

ρ(r) ≡ − 1

π
Im(Tr[Gcc(r,r,i0+)]) ≡ ρ0(μ) + δρ(r). (53)

From Eqs. (34) and (37) we derive the expression of the T-
matrix,61 which is defined by the relation

G(r,r′,iνn) ≡ G0(r − r′,iνn) + G0(r,iνn)T (iνn)G0(−r′,iνn).

(54)

We find

T (iνn) = |�|2Gff (iνn) = |�|2[iνn + μf − �(iνn)]−1.

(55)

Invoking this expression of the T-matrix and considering that
the Kondo self-energy �(iνn) is diagonal and symmetric in
spin components [see Eq. (40)], the local electronic density is
then given by

δρ(r) = |�|2
β

∑
νn

Tr[G0(r,iνn)G0(−r,iνn)]

iνn + μf − �(iνn)
. (56)

Assuming that the energy scale which characterizes the
Kondo resonance is much smaller than the effective bandwidth
of the noninteracting electrons, the T-matrix can be approxi-
mated as

T (iνn) = |�|2
i[νn + � sgn(νn)]

, (57)

where � = π |�|2ρ0(μ). This expression of the T-matrix is
expected to be valid beyond the mean-field approach that
we are following here, since it is equivalent up to a Fourier
transformation to the definitions Eqs. (5.38)–(5.39) on p. 112
in Ref. 33.

The expression of � in terms of the microscopic parameters
of the Hamiltonian can be obtained from Eq. (A12). For zero
temperature, we have (see Appendix A for a derivation)

�(T = 0) = (D + μ) exp

[
− 1

JKρ0(μ)

−
∫ 0

−D−μ

dE

E

ρ0(μ + E) − ρ0(μ)

ρ0(μ)

]
. (58)

Comparing this expression with expression (47) for the Kondo
temperature, we find the very general (i.e., coupling and band-
structure independent) relation

TK = 2eγE

π
�(T = 0), (59)

which connects universally the crossover temperature TK

to the T = 0 resonance width. Invoking the Wilson ratio
R ≡ χ (T = 0)/γ = 2, and using the small coupling asymp-
totic expression γ ≈ − 1

π
Im[Gff (i0+)] ≈ 1/π�, we find the

following universal Wilson number within the mean-field
approximation:

w ≡ TKχ (T = 0) = 2eγE

π2
≈ 0,36. (60)

This result is in relatively good agreement with Wilson’s
numerical result w = 0,41 [see Eq. (6.75) in Ref. 33].
Therefore, the following results will be derived within the
mean-field method, but we expect them to be qualitatively and
quantitatively valid beyond this approximation.
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C 1

C 2

C’1

C’2

Im(z)=0

FIG. 1. Integration contours C1 and C2 used in the calculation of
the sum (53). These contours can be deformed into C ′

1 and C ′
2.

B. Friedel oscillations without warping

In this section, we study the electronic local density ρ(r)
in the absence of warping, i.e., for λ = 0. We start from
expression (53) and we rewrite the sum as a contour integral:

δρ(r) = −
∫

C1

dz

2iπ
nF (z)Tr

[
G0(r,z)

|�|2
z + i�

G0(−r,z)

]

−
∫

C2

dz

2iπ
nF (z)Tr

[
G0(r,z)

|�|2
z − i�

G0(−r,z)

]
,

(61)

where the contours C1 and C2, depicted by Fig. 1, encircle
the poles of the function nF (z) = (eβz + 1)−1 of the positive
(negative) imaginary part. The contours can be deformed
respectively into C ′

1 and C ′
2 allowing one to rewrite the integral

as

δρ(r) = −|�|2
∫

dE

π
nF (E)

× Im

[
Tr[G0(r,E + i0+)G0(−r,E + i0+)]

E + i�

]
, (62)

where E covers the real axis and G0(r,E + i0+) will be
obtained in the following from analytic continuation. Indeed,
in the absence of warping, an analytic expression of the Green’s
function is available from the noninteracting Hamiltonian (1).
After Fourier transform of [iνn − H0(k)]−1, we find

G0(r,iνn) = iνn + μ

2πv2
F

[
K0

( |νn| − iμ sgn(νn)

vF

r

)

+ sgn(νn)ẑ · (σ × r̂)K1

( |νn| − iμ sgn(νn)

vF

r

)]
(63)

and

Tr[G0(r,iνn)G0(−r,iνn)]

= (iνn + μ)2

2π2v4
F

[
K0

( |νn| − iμ sgn(νn)

vF

r

)2

−K1

( |νn| − iμ sgn(νn)

vF

r

)2 ]
, (64)

where K0 and K1 are respectively modified Bessel functions
the second kind of order zero and one,74 and r ≡ |r|. Hereafter
we will replace this expression by its analytic continuation in

the upper half complex plane, iνn → E + i0+, with νn > 0.
Using Eq. (9.6.4) in Ref. 74, we have

Kν

(
0+ − i(E + μ)

vF

r

)
= i

π

2
ei π

2 νH (1)
ν

(
(E + μ + i0+)

vF

r

)
,

(65)

where H (1)
ν denotes the Hankel function.74 We thus find the

following expression:

δρ(r) = |�|2
8πv4

F

∫
dE(E + μ)2nF (E)

× Im

[(
H

(1)
0

)2( (E+μ)r
vF

) + (
H

(1)
1

)2( (E+μ)r
vF

)
E + i�

]
.

(66)

For long distances, r � RF = vF /μ, we can use the
approximation from Ref. 74:

(
H

(1)
0

)2
(z) + (

H
(1)
1

)2
(z) = −2

πz2
ei(2z− π

2 ) + O(1/z3), (67)

giving

δρ(r) � �

2π2μr2

∫ ∞

−∞

dζ

1 + exp
(

E
T

)
× Re

[
exp [2i (E + μ) r/vF ]

E + i�

]
, (68)

where we have used the relation |�|2 = �/πρ0(μ) =
2�v2

F /μ.
At zero temperature, with Eq. (68) we find the following

expression for the local density:

δρ(r) = − �

2π2μr2
e

2�r
vF E1

(
2�r

vF

)
cos

(
2μr

vF

)
, (69)

where E1(u) is the exponential integral.74 For long distance
r � vF /�, since euE1(u) ∼ 1/u, we obtain

δρ(r) ∼ − vF

4π2μr3
cos

(
2μr

vF

)
. (70)

Remarkably, the amplitude of the Friedel oscillations becomes
independent of �, i.e., independent of TK , for distances
longer than the Kondo length scale RK ≡ vF /�. This can
be understood by noting that for distances larger than RK ,
the impurity appears as a potential scatterer at unitarity.23 For
short distances r � vF /(2μ),RK , we find

δρ(r) = �

2π2μr2
ln

(
2�eγ r

vF

)
, (71)

so that the amplitude of oscillations inside the Kondo cloud
depends explicitly on �. This indicates that the Friedel
oscillations at distances shorter than the Kondo length scale RK

reflect the internal structure of the Kondo screening cloud.61

At finite temperature, Eq. (68) yields

δρ(r) = − �

2π2μr2

e
− 2πr

βvF

1
2+ β�

2π

2F1

(
1,

1

2
+ β�

2π
;

3

2
+ β�

2π
; e− 4πr

βvF

)

× cos

(
2μr

vF

)
, (72)
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FIG. 2. (Color online) Variation of electronic density computed at
finite temperature using the exact expression Eq. (72) (red solid line),
the long distance coherent approximation Eq. (70) (blue dotted line)
which is appropriate for RK < r < RT , and the very long distance
regime r > RT approximated by Eq. (73) (green dashed line).
(a) Overview along few Friedel oscillations; (b) focus at relatively
short distance. Here, we chose RT = 50RK and πRF = 5RK .

where 2F1 is the Gauss hypergeometric function.74 For
long distances, and T � TK the Friedel oscillations decay
exponentially over the thermal length RT ≡ vF /T ,

δρ(r) ∼ − e
−2πr
βvF

πβμr2
cos

(
2μr

vF

)
, (73)

in agreement with Ref. 30. The behavior is represented on
Fig. 2 which depicts the Friedel oscillations, and on Fig. 3
which depicts the envelope of these oscillations. It appears
clearly that the Friedel oscillations have a period πRF , and
an envelope decreasing like 1/r3 when RK < r < RT as
approximated by Eq. (70). Their amplitude is exponentially
reduced at longer distances r > RT , where Eq. (73) provides
a good approximation. We see from the previous analysis that
there are three relevant length scales as depicted schematically

10-8
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102

104

106

10-2 10-1 100 101

δρ
(r

)/
co

s(
2μ

 r
/v

F
)

2π r/RT

FIG. 3. (Color online) Plot of the envelope of Friedel oscillations,
δρ(r)/ cos(2μr/vF ), computed at finite temperature using the exact
expression Eq. (72) (red solid line), the long distance coherent
approximation Eq. (70) (blue dotted line) which is appropriate
for RK < r < RT , and the very long distance regime r > RT

approximated by Eq. (73) (green dashed line). Here, we chose
RT = 50RK and πRF = 5RK .

FIG. 4. (Color online) Schematic description of the Friedel
oscillations that can be observed in the density variations around
the impurity when T < TK . For the rotationally invariant case λ = 0
the envelope decays like 1/r3. For the warping term λ �= 0 the decay
is slower (like 1/r2) in some directions.

by Fig. 4. The first one, RF = vF /μ, is proportional to
the Fermi wavelength. For length scales much larger than RF ,
the simplification (67) is justified, and RF then simply gives
the pseudoperiod of the Friedel oscillations. The second length
scale is the Kondo screening length RK , which is the size of
the Kondo cloud; due to the temperature dependence of the
Kondo resonance width, �(T ), we have RK (T � TK ) = ∞
and RK (T � TK ) ∝ vF /TK . Above that length scale, which
requires at least T < TK , the Friedel oscillations become
identical to those of a resonant nonmagnetic impurity. The
third important length scale is the thermal length RT . Beyond
that length, the Friedel oscillations decay exponentially, while
below RT they are unchanged from the zero temperature case.
In order to observe the Friedel oscillations characteristic of
the Kondo screening cloud, we must have T � TK so that
the Kondo screening length is much shorter than the thermal
length. In a renormalization group picture, the temperature is
the natural infrared cutoff for the renormalization group flow,
and the constraint T � TK is simply a requirement that the
strong coupling scale is reached before the thermal cutoff.

C. Friedel oscillations with warping

We now turn to the electronic local density ρ(r) in the
presence of warping. For λ �= 0 we don’t have anymore an
expression in closed form of the Green’s function. Instead, we
use the approximation (B13) derived in Appendix B:

G0(r,iνn) = G0(r,θ,iνn) (74)

= iνn + μ

2πv2
F

[
K0(ζn) + sgn(νn)ẑ · (σ × r̂)K1(ζn)

+ λσ z cos(3θ )(iνn + μ)2sgn(νn)K3(ζn)/v3
F

]
+O(λ2), (75)

with

ζn ≡ |νn| − iμ sgn(νn)

vF

r. (76)
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We obtain

Tr [G(r,θ,iνn)G(r,θ + π,iνn)] = (iνn + μ)2

2π2v4
F

[
K0

( |νn| − iμ sgn(νn)

vF

r

)2

− K1

( |νn| − iμ sgn(νn)

vF

r

)2

−
(

λ

vF

cos 3θ

)2 (
iνn + μ

vF

)4

K3

( |νn| − iμ sgn(νn)

vF

r

)2 ]
. (77)

Since this expression is only approximate, we cannot use
contour integration techniques to obtain the sum (53). Indeed,
attempting to use contour integration for T > 0 yields a
divergent integral. Nevertheless, for zero temperature, we can
still change the sum (53) into an integral as the exponential
decay of the modified Bessel function ensures the convergence
of the sums. This leads to the zero temperature result valid for
r � RK = vF /�:

δρ(r) = δρ(r)|λ=0 − λ2 μ4 cos2(3θ )

4π2v6
F r2

cos

(
2
μr

vF

)
. (78)

For positive temperature, we have to compute the sum (53)
numerically. This will be done in the next section using realistic
values for the model parameters. Here we rather discuss
general new features that emerge from this warping term.
First, we expect finite temperature corrections to be relevant
only in the crossover temperature regime around TK . Indeed,
similar to what we found without warping, the thermal length
RT = vF /T provides a cutoff below which Friedel oscillations
are identical to the ones predicted for T = 0, and above which
they are muffled by thermal fluctuations.

Furthermore, one important feature here in this expression
is the 1/r2 decay of the envelope: this decay is identical to the
one of a two-dimensional normal metal, and it dominates the
1/r3 contribution from the nonwarping. Because of the cos2 3θ

factor, the Friedel oscillations in the directions θ = π
6 (2n + 1)

have the contribution from warping switched off and contain
only the 1/r3 contribution, whilst in other directions the
warping contribution is observable and dominates on the
longer length scales due to its slower 1/r2 decay.

Also, RK = vF /� characterizing the size of the Kondo
screening cloud, we expect the Friedel oscillations to be
observable only at a distance larger than this Kondo length.
Within a renormalization group picture, the density oscillations
are thus supposed to be measured at a sufficiently large distance
from the Kondo impurity such that the system is correctly
described by its strong coupling fixed point, i.e., the Kondo
spin is totally screened. Nevertheless, comparing Eqs. (70) and
(78) we find that the warping correction becomes relevant only
for distances larger than a new characteristic length, RW =
v7

F

λ2μ5 . Introducing the density of surface states nS and invoking

the density of states ρ0(E) = |E|/(2πv2
F ) in the vicinity of

the Dirac point, we have nS = μ2/(4πv2
F ) = 1/(4πR2

F ), so
that RW = (vF /λ)2(4πnS)−5/2. A crossover density emerges,

n�
S ≡ 1

4π
( v2

F

λ2RK
)2/5, that distinguishes two different cases: for

nS > n�
S , we find RW < RK and the Friedel oscillations

which are observed for RK < r < RT are characterized by
the warping term with switch on and off directions and
an 1/r3 envelope. But, closer to the Dirac point, i.e., for

density nS < n�
S , Friedel oscillations are characterized by two

regimes: at shortest distances RK < r < RW the isotropic
term with 1/r2 envelope dominates, whilst the warping
correction dominates at larger distances RW < r < RT . Also,
a new temperature scale emerges in the lowest density case
nS < n�

S : the warping temperature TW ≡ vF /RW < TK indi-
cating the crossover temperature below which warping effects
appear.

IV. DISCUSSION

Here we analyze the experimental observability of the
density oscillation effects, with or without warping effects,
that were discussed on general grounds in the previous
section. The idea is to compute the density variation δρ(r)
around a Kondo impurity using realistic values of parameters
that correspond to topologically insulating compounds for
which surface states have been observed or predicted. We
consider more specifically two compounds: Bi2Se3 for which
Ref. 63 gives vF = 3.55 eV Å and λ = 128 eV Å3, and
Bi2Te3 with values vF = 2.55 eV Å and λ = 250 eV Å3

given by Refs. 11 and 64. We are still left with two
tunable parameters: the Kondo temperature TK = vF /RK , and
the density of surface states nS = μ2/(4πv2

F ) = 1/(4πR2
F ).

First, we remark that the Kondo temperature depends on
various microscopic parameters including the chemistry of
the magnetic impurity and the density nS . Furthermore, the
well-known exponential JK dependence of TK (see Sec. III A2)
makes this temperature scale very sensitive to variations of
these microscopic parameters. Therefore, refereeing from the
orders of magnitude that are usually measured in Kondo
compounds, we consider here three different characteristic
values: TK = 1000 K (big), TK = 100 K (medium), and TK =
10 K (relatively small). For the density of surface states nS , we
consider three values for each compound: the crossover density

n�
S = 1

4π
( v2

F

λ2RK
)2/5, a smaller density nS = n�

S/10, and a larger
density nS = 10n�

S . The sets of relevant parameters that we
consider are summarized in Table I for Bi2Se3, and in Table II
for Bi2Te3.

The results are represented on Figs. 5 and 6 for Bi2Se3

and Bi2Te3, respectively. For these plots, we fixed arbitrarily
TK = 100 K and we chose realistic relevant values of chemical
potential μ, that can be controlled experimentally by doping
with Sn11 or Mg.63 In Bi2Se3 compounds, experimental values
of μ indicated in Ref. 63 are tuned from 350 meV down to
0 eV. Therefore, the four values that we considered for the plots
of Fig. 5 were chosen invoking Table I in order to illustrate
the observability of the various cases: with dominant warping
term (μ = 350 meV > μ�), with similar warping and isotropic
terms (μ = μ� = 250 meV), and with negligible warping term
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TABLE I. Model parameters for Bi2Se3, with vF = 3.55 eV Å and λ = 128 eV Å3.

TK = 10 K TK = 100 K TK = 1000 K
RK = 410 nm RK = 41 nm RK = 4,1 nm

nS ≈ n�
S/10 nS = 1,6 × 103 μm−2 nS = 4 × 103 μm−2 nS = 104 μm−2

μ = 50 meV μ = 80 meV μ = 130 meV
RF = 7,0 nm RF = 4,4 nm RF = 2,8 nm
RW = 130 μm RW = 13 μm RW = 1,3 μm
TW = 3 × 10−5 K TW = 3 × 10−4 K TW = 3 × 10−3 K

nS ≈ n�
S nS = 1,6 × 104 μm−2 nS = 4 × 104 μm−2 nS = 105 μm−2

μ = 160 meV μ = 250 meV μ = 400 meV
RF = 2,2 nm RF = 1,4 nm RF = 8,8 Å
RW = 410 nm RW = 41 nm RW = 4,1 nm

nS ≈ 10n�
S nS = 1,6 × 105 μm−2 nS = 4 × 105 μm−2 nS = 106 μm−2

μ = 500 meV μ = 800 meV μ = 1,3 eV
RF = 7,0 Å RF = 4,4 Å RF = 2,8 Å
RW = 1,3 nm RW = 1,3 Å RW = 0,13 Å

(μ = 130 meV and 50 meV). Figure 5 clearly shows the
Friedel oscillations with sixfold rotation symmetry when μ >

μ�, or with full rotation symmetry when μ < μ�. The choice
of TK = 100 K for this plot is arbitrary and experimental
values of the Kondo temperature can be significantly different.
Furthermore, we are aware that doping, i.e., varying μ, strongly
affects the value of TK which may continuously vanish at the
Dirac point as we discussed in Sec. III A2. Nevertheless, we
expect that the Friedel oscillations will qualitatively not really
depend on TK . This is a consequence of the universality of
the strong Kondo coupling effective regime that is realized
below TK within the renormalization group picture: since
Friedel oscillations appear above the Kondo screening size
RK their shape is qualitatively universal (but still depends
on the warping length RW and Fermi pseudoperiod πRF ).
Also, according to the values given in Table I, the crossover
value for the chemical potential varies very smoothly from
μ� = 160 meV to μ� = 400 meV when TK changes from 10 K
to 1000 K. This suggests that the results which are illustrated
by Fig. 5 for TK = 100 K can be extended to any other values

of TK . Of course, the characteristic unit length which is used
for the plots, RK , would have to be rescaled accordingly.
Experimentally, one of the main difficulties for observing
Friedel oscillations with or without sixfold symmetry is the
requirement of cooling the temperature sufficiently lower than
TK , but the orders of magnitudes that are considered here
correspond to values that are realistic both physically (TK is
imposed by the chemistry) and technologically (T is limited
by cryogenic technics).

We made a similar analysis for Bi2Te3 compounds. In this
case, Ref. 11 indicates experimental values of μ between
350 meV and 120 meV. We thus plotted these two extreme
cases, together with the intermediate value μ = 250 meV.
Here, we chose a Kondo temperature TK = 100 K, which
corresponds to a crossover value μ� = 130 meV as indicated
in Table II. In this case, the sixfold symmetry resulting from
the warping is thus observable for μ = 350 meV and 250 meV,
and the full rotation symmetry is recovered for μ = 120 meV.
The sixfold symmetry may remain for that value of chem-
ical potential if the Kondo temperature is lowered. Indeed,

TABLE II. Model parameters for Bi2Te3, with vF = 2.55 eV Å and λ = 250 eV Å3.

TK = 10 K TK = 100 K TK = 1000 K
RK = 300 nm RK = 30 nm RK = 3 nm

nS ≈ n�
S/10 nS = 8,3 × 102 μm−2 nS = 2,1 × 103 μm−2 nS = 5,2 × 103 μm−2

μ = 26 meV μ = 41 meV μ = 65 meV
RF = 9,8 nm RF = 6,2 nm RF = 3,9 nm
RW = 94 μm RW = 9,4 μm RW = 940 nm
TW = 3 × 10−5 K TW = 3 × 10−4 K TW = 3 × 10−3 K

nS ≈ n�
S nS = 8,3 × 103 μm−2 nS = 2,1 × 104 μm−2 nS = 5,2 × 104 μm−2

μ = 82 meV μ = 130 meV μ = 210 meV
RF = 3,1 nm RF = 2,0 nm RF = 1,2 nm
RW = 300 nm RW = 30 nm RW = 3 nm

nS ≈ 10n�
S nS = 8,3 × 104 μm−2 nS = 2,1 × 105 μm−2 nS = 5,2 × 105 μm−2

μ = 260 meV μ = 410 meV μ = 650 meV
RF = 9,8 Å RF = 6,2 Å RF = 3,9 Å
RW = 9,3 Å RW = 0,93 Å RW = 0,093 Å
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FIG. 5. Intensity plot of the Friedel oscillations around a screened magnetic impurity at the edge of Bi2Se3. Model parameters vF =
3.55 eV Å and λ = 128 eV Å3. We chose TK = 100 K and T = 10 K. From top left to bottom right, μ = 350 meV, 250 meV, 130 meV, and
50 meV. Unit length: RK . Short distances, r < 0.2RK , are not represented. Intensity in arbitrary units is represented by the darkness of the plots.

Table II indicates μ� = 82 meV for Bi2Te3 compounds with
TK = 10 K.

Here, we have restricted our analysis to the observation
of Friedel oscillations within the fluctuation of the local
density of states, δρ(r). This physical quantity can be mea-
sured experimentally using scanning tunneling microscopy
(STM). Local density of states31 (LDOS) measurements have
already been performed by STM on Kondo impurities at
the surface of metals.48–52 The measurement of the Friedel
oscillations would require the integration of the measured
local density of states over a range of energy.61 Beside the
issue of cooling the temperature sufficiently lower than TK ,
other technical limitations have to be considered in order

to observe the predicted Friedel oscillations using STM as
follows.

First, a voltage bias is applied locally between the tip of the
STM and the surface of the sample. The resulting STM current
which is measured may invoke out of equilibrium effects that
have not been analyzed here. We expect our predictions to
be valid for STM experiments with bias voltages invoking
energies that are lower to both TK and μ. Higher values of bias
voltage may have nonuniversal effects on the Kondo screening
leading to a distortion of the Friedel oscillations.

A second limitation is the STM resolution in both lateral
and depth directions. More precisely, we may expect an
experimental STM measurement of the Friedel oscillations to
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FIG. 6. Intensity plot of the Friedel oscillations around a screened magnetic impurity at the edge of Bi2Te3. Model parameters vF =
2.55 eV Å and λ = 250 eV Å3. We chose TK = 100 K and T = 10 K. From left to right, μ = 340 meV, 250 meV, and 120 meV. Unit length:
RK . Short distances, r < 0.2RK , are not represented. Intensity in arbitrary units is represented by the darkness of the plots.

be realized by moving the STM tip at the surface of the system
along two orthogonal directions. The most natural resulting
STM signal will thus be discretized on a grid having a square
lattice symmetry and an elementary step of length RSTM �
0.2 nm. Since the period of the Friedel oscillations is πRF , the
measured STM signal may exhibit a Moiré pattern75 resulting
from the interference between the two periods, RSTM and πRF .
Considering the values of RF which are given in Tables I and II,
and assuming RSTM is of the order of one or few Å, Moiré
patterns might occur for values of chemical potential relatively
higher than μ�. In such cases, the measured STM images would
only have the twofold symmetry common to both the square
and the hexagonal symmetry groups.

Comparing qualitatively the plots of Figs. 5 and 6, we find
that warping effects and their related sixfold symmetry are
more observable at the surface of Bi2Te3 rather than Bi2Se3.
This is due of course to a larger value of the warping constant λ,
but this also results from a smaller value of the Fermi velocity
vF , which gives a smaller value of crossover potential μ�.

V. CONCLUSION

We have shown that a magnetic impurity on the surface
of a strong topological insulator will be fully screened by
the surface modes unless the Fermi energy is exactly at the
Dirac point. The result depends only on the time reversal
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invariance of the effective Hamiltonian of the surface modes
and is valid in particular in the presence of warping of the
Fermi surface. We have shown that Friedel oscillations are
formed around the impurity and we have calculated the shape
of these oscillations both without warping and with a weak
warping that can be treated perturbatively. With warping,
the symmetry of the Friedel oscillation pattern is broken
from full rotational symmetry to a sixfold symmetry. In both
cases, the pseudoperiod of the oscillations, πRF = πvF /μ, is
half the Fermi wavelength of the surface modes, the short
distance cutoff RK ∝ vF /TK is determined by the Kondo
temperature TK , and the long distance cutoff RT = vF /T

results from thermal fluctuations. With warping, the amplitude
of the fully rotationally symmetric part decreases as 1/r3,
whilst the sixfold symmetry term has an envelope decreasing
more slowly, a 1/r2. As a consequence, a new length scale
RW emerges, above which Friedel oscillations with sixfold
symmetry may be observed. The crossover condition RK ≈
RW defines a chemical potential μ� associated to a doping
n�

S above which the Friedel oscillations are characterized by
the sixfold symmetry even at shortest distances. Considering
realistic values for the model parameters, we analyzed the
observability and the symmetry of Friedel oscillations in the
vicinity of magnetic impurities deposited at the surface of two
compounds, Bi2Se3 and Bi2Te3. We identified a large range of
parameters where the crossover between the sixfold and the
fully rotational symmetries may be observed. We propose to
use STM as an experimental probe for the variation of the local
density of states.

Various questions remain to be addressed. First, it would be
interesting to investigate the unstable fixed point that separates
the regime with Kondo screening from the regime of decoupled
impurities in the case of a system at half-filling. Second, an
exact calculation of the Friedel oscillations could be performed
using form factor expansion methods76,77 at zero temperature.

The single impurity model that we considered here could
also be generalized to two or several impurities.78,79 In
this case, the local Kondo screening will compete with the
Ruderman-Kittel-Kasuya-Yosida80–82 (RKKY) interimpurity
screening as discussed by Doniach83 in a general context. Here,
we may expect the sixfold symmetry of the Friedel oscillations
to have signatures on the symmetry of the RKKY interaction.
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APPENDIX A: DETAILS OF THE MEAN-FIELD
APPROXIMATION

We start from the mean-field self-consistent relations (43):

|�|2 = JK

∫ ∞

−∞

dE

π

(E + μf )nF (E)�′′(E)

[E + μf − �′(E)]2 + [�′′(E)]2
, (A1)

1

2
= −

∫ ∞

−∞

dE

π

nF (E)�′′(E)

[E + μf − �′(E)]2 + [�′′(E)]2
, (A2)

with the expression (42) of the imaginary part of the self-
energy:

�′′(E) = −π |�|2ρ0(μ + E). (A3)

Introducing the Hilbert transform of the density of states,

�(E) ≡
∫ ∞

−∞
dε ρ0(ε)P.V.

(
1

E − ε

)
, (A4)

the expression (41) of the real part of the self-energy can be
written as

�′(E) = π |�|2�(μ + E). (A5)

1. Derivation of the Kondo temperature

When the temperature T goes to TK , the hybridization
parameter � vanishes. In such limit, Eq. (A2) reduces to
nF (−μF ) = 1/2, yielding μf (TK ) = 0. Equation (A1) can
then be cast into the Nagaoka-Suhl form:70,71

− 1

JK

= P.V.

∫ +∞

−∞

dE

E
nF (E)ρ0(μ + E). (A6)

In the general μ > 0 case, we can rewrite Eq. (A6),

− 1

JK

= −ρ0(μ)
∫ D−μ

0

dE

2E
tanh

(
E

2TK

)

− ρ0(μ)
∫ D+μ

D−μ

dE

E
nF (−E)

+
∫ D−μ

−D−μ

dE

E
[ρ0(μ + E) − ρ0(μ)]nF (E), (A7)

where D is a bandwidth cutoff such that ρ(E) = 0 when |E| >

D. Taking the limit of low Kondo temperature TK � D,μ, we
obtain the following approximate equation:

1

JK

= ρ0(μ) ln

(
2eγE (D + μ)

πT

)

−
∫ 0

−D−μ

dE

E
[ρ0(μ + E) − ρ0(μ)], (A8)

improving the prefactor in the expression of the Kondo
temperature by taking into account the variation of the density
of states with the energy.

2. Derivation of the resonance width

We have seen that both � and μf vanish at and above
the Kondo temperature. Hereafter, we will consider the limit
of small Kondo coupling, and we will thus assume that
� and μf remain small compared to the noninteracting
electron characteristic energy scales, even below the Kondo
temperature where these quantities are not vanishing any
more. If we take first Eq. (A2), and make the approximations
�′(E) = 0 and �′′(E) = �′′(0) = −�, we obtain

1

2
=

∫ ∞

−∞

dE

π

�

(E + μf )2 + �2
nF (E) � nF (−μf ), (A9)

so we have to take also μf = 0. Inserting our approximations
in the denominator of (A1), we obtain a second equation:

− 1

JK

=
∫ ∞

−∞
dE

EnF (E)ρ0(μ + E)

E2 + �2
. (A10)
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We introduce the bandwidth cutoff D such that ρ0(E) = 0 if
|E| > D. We can then rewrite Eq. (A10) in the following form:

− 1

JK

= ρ0(μ)
∫ D−μ

−D−μ

dE
EnF (E)

E2 + �2

+
∫ D−μ

−D−μ

dE
EnF (E)[ρ0(μ + E) − ρ0(μ)]

E2 + �2
.

(A11)

In the rightmost integral of the right-hand side, ρ(μ +
E) − ρ(μ) vanishes for E = 0, so we can neglect � in the
denominator. This gives the final equation:

− 1

JKρ0(μ)
=

∫ D−μ

−D−μ

EnF (E)

E2 + �2
dE

+
∫ D−μ

−D−μ

ρ(E + μ) − ρ(μ)

ρ0(μ)
nF (E)

dE

E
.

(A12)

With that approximation, and taking the zero temperature limit,
we obtain

�(T = 0) = (D + μ) exp

[
− 1

JKρ0(μ)

−
∫ 0

−D−μ

dE

E

ρ0(μ + E) − ρ0(μ)

ρ0(μ)

]
. (A13)

We note that �(T = 0)/TK = 2eγE /π � 2.26 for such level of
approximation. For finite temperature, we can replace nF (E)
with θ (−E) in the integral over the density of states in the
right-hand side of Eq. (A12). Using that approximation, we
can write

ln

(
�(T = 0)

�(T )

)
=

∫ ∞

−∞

du

4 cosh2 u
ln

(
1 + 4T 2u2

�2

)
.

(A14)

These equations imply that �(T ) = �(T = 0)ϕ[�(T =
0)/T ], so given the relation between �(T = 0) and TK ,
�(T ) = �(T = 0)ϕ̄(TK/T ).

APPENDIX B: ASYMPTOTIC APPROXIMATION FOR THE GREEN’S FUNCTION IN THE PRESENCE OF WARPING

The exact Green’s function of the surface electrons is

G0(r,iνn) =
∫

d2k
(2π )2

iνn + μ + vF ẑ · (σ × k) + λ
2 (k3

+ + k2
−)σ z

(iνn + μ)2 − v2
F k2 − [

λ
2 (k3+ + k2−)

]2 eik·r. (B1)

Using polar coordinates, we can express the Green’s function (B1) as a series:

G0(r,θ,iνn) =
∫

k dk

(2π )2

∫
dφ

iz + ivF k(σ+e−iφ − σ−eiφ) + λk3 cos(3φ)σ z√(
z2 + v2

F k2
)(

z2 + v2
F k2 + λ2k6

) eikr cos(φ−θ)

×
∞∑

m=−∞

⎛
⎝ λ2k6[√(

z2 + v2
F k2

) +
√(

z2 + v2
F k2 + λ2k6

)]2

⎞
⎠

|m|

(−ei6φ)m, (B2)

where z = νn − iμ. To obtain an asymptotic expansion of G(r,θ,iνn) to lowest order in λ it is enough to consider the term m = 0.
We then have to consider the integral

G0(r,θ,iνn) =
∫

k dk

(2π )2

∫
dφ

iz + ivF k(σ+e−iφ − σ−eiφ) + λk3 cos(3φ)σ z√(
z2 + v2

F k2
)(

z2 + v2
F k2 + λ2k6

) eikr cos(φ−θ) + · · · , (B3)

where · · · denotes corrections of higher order in λ. After integration with respect to φ this expression gives

G0(r,θ,iνn) =
∫ ∞

0
dk

izkJ0(kr) − vF k2(σ+e−iθ − σ−eiθ )J1(kr) − iλk4 cos(3θ )σ zJ3(kr)

2π

√(
z2 + v2

F k2
)(

z2 + v2
F k2 + λ2k6

) (B4)

≡ iz

2π
I − vF

2π
(σ+e−iθ − σ−eiθ )I ′ − iλ

2π
cos(3θ )σ zI ′′. (B5)

In the limit λ → 0, we have from Eq. (11.4.44) in Ref. 74

I →
∫ ∞

0
dk

kJ0(kr)

z2 + v2
F k2

= 1

v2
F

K0

( |νn| − iμ sgn(νn)

vF

r

)
, (B6)

I ′ →
∫ ∞

0
dk

k2J1(kr)

z2 + v2
F k2

= |νn| − iμ sgn(νn)

v3
F

K1

( |νn| − iμ sgn(νn)

vF

r

)
, (B7)

with corrections of order λ2. We are thus left with the evaluation of the following integral:

I ′′ =
∫ +∞

0

k4J3(kr)dk√
[z2 + (vF k)2][z2 + (vF k)2 + λ2k6]

. (B8)
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In the expression (B8) we cannot take the limit λ → 0 directly before integrating as we would obtain a divergent integral. Instead,
we will first make integrations by parts using Eq. (9.1.30) in Ref. 74 to obtain an asymptotic expansion. The first integration by
parts gives

I ′′ = 1

r

∫ +∞

0
dk k4J4(kr)

[
v2

F k(
z2 + v2

F k2
)3/2(

z2 + v2
F k2 + λ2k6

)1/2 + v2
F k + 3λ2k5(

z2 + v2
F k2

)1/2(
z2 + v2

F k2 + λ2k6
)3/2

]
(B9)

= v2
F

r

∫ +∞

0
dk k5J4(kr)

[
1(

z2 + v2
F k2

)3/2(
z2 + v2

F k2 + λ2k6
)1/2 + 1(

z2 + v2
F k2

)1/2(
z2 + v2

F k2 + λ2k6
)3/2

]
+ · · · , (B10)

where · · · denotes the third term in Eq. (B9), which will be shown to be negligible in the limit λ → 0 in Appendix C. Using
another integration by parts, we thus have

I ′′ � v2
F

r2

∫ +∞

0
k5J5(kr)

[
3v2

F k(
z2 + v2

F k2
)5/2(

z2 + v2
F k2 + λ2k6

)1/2
+ v2

F k + 3λ2k5(
z2 + v2

F k2
)3/2(

z2 + v2
F k2 + λ2k6

)3/2

]

+ v2
F

r2

∫ +∞

0
k5J5(kr)

[
v2

F k(
z2 + v2

F k2
)3/2(

z2 + v2
F k2 + λ2k6

)3/2 + 3
(
v2

F k + 3λ2k5
)

(
z2 + v2

F k2
)1/2(

z2 + v2
F k2 + λ2k6

)5/2

]
. (B11)

If we take the limit λ → 0 (justification for this can be found in Appendix C) in the above expression, we obtain a convergent
integral:

I ′′ → 8v4
F

r2

∫ +∞

0

k6J5(kr)(
z2 + v2

F k2
)3 = [|νn| − iμ sgn(νn)]3

v5
F

K3

( |νn| − iμ sgn(νn)

vF

r

)
. (B12)

We can check that the terms proportional to λ2 give contributions that are vanishing in the limit λ → 0.
Invoking the asymptotic expressions (B6), (B7), and (B12) together in Eq. (B5), we obtain the following approximation for

the Green’s function in the limit of small warping:

G(r,θ,iνn) � iνn + μ

2πv2
F

[
K0

( |νn| − iμ sgn(νn)

vF

r

)
+ i(σ+e−iθ − σ−eiθ )K1

( |νn| − iμ sgn(νn)

vF

r

)
sgn(νn)

+ λ

vF

σ z

(
iνn + μ

vF

)2

K3

( |νn| − iμ sgn(νn)

vF

r

)
sgn(νn) cos 3θ

]
. (B13)

APPENDIX C: EVALUATION OF THE REMAINDERS

We consider the integral giving the remainder in Eq. (B9):

I3 = 3λ2

r

∫ +∞

0
dk

k9J4(kr)

[z2 + (vk)2]1/2[z2 + (vk)2 + λ2k6]3/2
. (C1)

With the change of variables k = √
vF /λu, the integral I3 is rewritten:

I3 = 3

λvF r

∫ +∞

0
du

u9J4(au)

(b2 + u2)1/2(b2 + u2 + u6)3/2
, (C2)

with a = r(vF /λ)1/2 and b2 = λz2/v3
F . To obtain an upper bound for the integral, we use three successive integration by parts to

rewrite

I3 = 3

a3λvF r

∫ +∞

0
du

u7J7(ua)P (u)

(b2 + u2)7/2(b2 + u2 + u6)9/2
, (C3)

where the polynomial P (u) has the following expression:

P (u) = 480u22 + 1200b2u20 + 1050b4u18 − 360u18 + 315b6u16 − 3276b2u16 − 7200b4u14 − 6084b6u12 − 432b2u12

−1800b8u10 − 432b4u10 + 1152b6u8 − 96b2u8 + 1872b8u6 − 192b4u6 + 720b10u4 + 192b8u2 + 96b10. (C4)

The numerator in Eq. (C3) is O(u57/2), while the denominator is O(u34) for u → ∞ making the integral in Eq. (C3)
convergent. Moreover, an upper bound for the integral is given by∫ +∞

0
du

|P (u)|√
2(b2 + u2 + u6)9/2

, (C5)
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where we have used the inequalities74 |J7(u)| < 1/
√

2 and (b2 + u2)−7/2 < u−7. We can them majorize the polynomial P (u) by
the sum of the absolute value of its monomials. For monomials of degree n � 9, we can also use the inequality (b2 + u2 + u6)9/2 >

u9(1 + u4) to obtain an upper bound larger than b. For the monomials of degree n < 8, we obtain an upper bound of the following
form:

bm

∫ +∞

0

undu

(b2 + u2 + u6)9/2
< bm

∫ +∞

0

undu

(b2 + u2)9/2
= bn+m−8

∫ +∞

0

undu

(1 + u2)9/2
. (C6)

From the expression (C4) of P (u), we see that these terms contribute expressions O(b2). In the case of n = 8, we have to consider∫ +∞

0

undu

(b2 + u2 + u6)9/2
�

∫ 1/b

0
du

u8

(1 + u2)9/2
+

∫ +∞

1

du

u(1 + u4)9/2
. (C7)

Inspecting the polynomial P (u), we see that the contribution of the u8 terms will be O(b2| ln b|). Putting all contributions together,
we see that

I3 � 3

a3λvF r
[C + O(b2|lnb|)] (C8)

� 3

v2
F r3

√
λ

vF

[C + O(λ| ln λ|)]. (C9)

So I3 = O(λ1/2) for λ → 0. This establishes that this term gives a subdominant contribution to the Matsubara Green’s function.
We can apply the same method to the remaining integrals appearing in Eq. (B11). If we consider the integral

I4 =
∫ ∞

0

λ2k10J5(kr)(
z2 + v2

F k2
)3/2(

z2 + v2
F k2 + λ2k6

)3/2 , (C10)

by the same change of variables k = (v/λ)1/2u, we can transform it into

I4 = 1

v
7/2
F λ1/2

∫ +∞

0

u10J5(ua)

(b2 + u2)3/2(b2 + u2 + u6)3/2
. (C11)

Integrating by parts twice, we rewrite

I4 = 1

v
7/2
F a2λ1/2

∫ ∞

0
du

u7J7(ua)P4(u)

(b2 + u2)7/2(b2 + u2 + u6)7/2
, (C12)

where

P4(u) = 80u17 + 100b2u15 + 35b4u13 + 28u13 − 84b2u11 − 204b4u9 + 8u9 − 92b6u7 − 16b2u7 − 48b4u5 − 16b6u3 + 8b8u.

(C13)

We can show that the integral remains finite in the limit of λ → 0 and, as a result, I4 = O(λ1/2).
Similarly, for the integral,

I5 =
∫ +∞

0

λ2k10J5(kr)(
z2 + v2

F k2
)1/2(

z2 + v2
F k2 + λ2k6

)5/2
, (C14)

we can rewrite

I5 = 1

v
7/2
F λ1/2

∫ +∞

0

u10J5(ua)

(b2 + u2)1/2(b2 + u2 + u6)5/2
, (C15)

and by integrating by parts twice, we find

I5 = 1

a2v
7/2
F λ1/2

∫ +∞

0

u7J7(ua)P5(u)

(b2 + u2)5/2(b2 + u2 + u6)9/2
, (C16)

where

P5(u) = 168u17 + 308b2u15 + 143b4u13 + 36u13 − 108b2u11 − 308b4u9

+ 8u9 − 164b6u7 − 16b2u7 − 48b4u5 − 16b6u3 + 8b8u. (C17)

Repeating the previous reasoning, we again establish that I5 = O(λ1/2).
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It should be noted that the integrations by part can be iterated as long as the resulting integrals have a finite upper bound
for small λ. This implies that our O(

√
λ) estimate for I3, I4, and I5 is only a conservative one. If the integrations by part can be

repeated indefinitely, the result of the process is that I3,4,5 = O(λn) for any n > 0, a hint that the integrals may actually vanish
with an essential singularity in the limit of λ → 0.
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