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Abstract

One can associate to any bivariate polynomial P (X,Y ) its Newton
polygon. This is the convex hull of the points (i, j) such that the monomial
X iY j appears in P with a nonzero coefficient. We conjecture that when P
is expressed as a sum of products of sparse polynomials, the number of
edges of its Newton polygon is polynomially bounded in the size of such an
expression. We show that this “τ -conjecture for Newton polygons,” even
in a weak form, implies that the permanent polynomial is not computable
by polynomial size arithmetic circuits. We make the same observation for
a weak version of an earlier “real τ -conjecture.” Finally, we make some
progress toward the τ -conjecture for Newton polygons using recent results
from combinatorial geometry.

1 Introduction

Let f ∈ Z[X] be a univariate polynomial computed by an arithmetic circuit
(or equivalently, a straight-line program) of size s starting from the variable
X and the constant 1. According to Shub and Smale’s τ -conjecture [17], the
number of integer roots of f should be bounded by a fixed polynomial function
of s. It was shown in [17] that the τ -conjecture implies a P 6= NP result for the
Blum-Shub-Smale model of computation over the complex numbers [4, 3]. A
similar result was obtained by Bürgisser [7] for another algebraic version of P
versus NP put forward by Valiant [22, 23] at the end of the 1970’s. A succinct
way of stating this VP versus VNP problem goes as follows: can we compute
the permanent of a n×n matrix with a number of arithmetic operations which
is polynomial in n? This question can be formalized using the computation
model of arithmetic circuits. The permanent plays a special role here because
it is VNP-complete, and it can be replaced by any other VNP-complete family
of polynomials. We refer to Bürgisser’s book [6] for an introduction to this
topic and to two recent surveys on arithmetic circuit complexity by Shpilka
and Yehudayoff [16] and by Chen, Kayal and Wigderson [8].

As a natural approach to the τ -conjecture, one can try to bound the number
of real roots instead of the number of integer roots. This fails miserably since
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the number of real roots of a univariate polynomial can be exponential in its
arithmetic circuit size. Chebyshev polynomials provide such an example [18]
(a similar example was provided earlier by Borodin and Cook [5]). A real
version of the τ -conjecture was nevertheless proposed in [14]. In order to avoid
the aforementioned counterexamples, the attention is restricted to arithmetic
circuits of a special form: the sums of products of sparse polynomials. In spite
of this restriction, the real τ -conjecture still implies that the permanent is hard
to compute for general arithmetic circuits [14].

In this paper, we propose a τ -conjecture for Newton polygons of bivari-
ate polynomials. Like the real τ -conjecture, it deals with sums of products of
sparse polynomials and implies that the permanent is hard for general arith-
metic circuits. A common idea to these three τ -conjecture is that “simple”
arithmetic circuits should compute only “simple” polynomials. In the original
τ -conjecture, the simplicity of a polynomial is measured by the number of its
integer roots; in the real τ -conjecture it is measured by the number of its real
roots; and in our new conjecture by the number of edges of its Newton polygon.

Organization of the paper

In Section 2 we review some basic facts about Newton polygons and formulate
the corresponding τ -conjecture. We also state in Theorem 1 the motivating
result for this paper: a proof of the conjecture, even in a very weak form,
implies a lower bound for the permanent. In Section 3 we give a proof of this
result and of a refinement: it suffices to work with sums of powers of sparse
polynomials rather than with sums of arbitrary products. We also point out
that this refinement applies to the real τ -conjecture from [14], and that (like in
Theorem 1) a very weak form of this conjecture implies a lower bound for the
permanent. These observations improve the results stated in [14]. In Section 4
we use a recent result of convex geometry [9] to provide nontrivial upper bounds
on the number of edges of Newton polygons. Our results fall short of establising
the new τ -conjecture (even in the weak form required by Theorem 1) but they
improve significantly on the naive bound obtained by brute-force expansion. For
instance, as a very special case of our results we have that the Newton polygon
of fg + 1 has O(t4/3) edges if the bivariate polynomials f and g have at most
t monomials. The straightforward bound obtained by expanding the product
fg is only O(t2). We conclude the paper with a couple of open problems.
In particular, we ask whether this O(t4/3) upper bound is optimal. In the
appendix, we improve on this upper bound by giving a linear upper bound in
a special case.

2 Newton Polygons

We first recall some standard background on Newton polygons. Much more can
be found in the survey [19]. Consider a bivariate polynomial f ∈ C[X,Y ]. To
each monomial XiY j appearing in f with a nonzero coefficient we associate the
point with coordinates (i, j) in the Euclidean plane. We denote by Mon(f) this
finite set of points. By definition the Newton polygon of f , denoted Newt(f),
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is the convex hull of Mon(f). Note that Newt(f) has at most t edges if f
has t monomials. It is well known that the Newton polygon of a product of
polynomials is the Minkowski sum of their Newton polygons, i.e.,

Newt(fg) = Newt(f) + Newt(g) = {p + q; p ∈ Newt(f), q ∈ Newt(g)}.

As a result, if f has s monomials and g has t monomials then Newt(fg) has
at most s + t edges. More generally, for a product f = g1g2 · · · gm, Newt(f)
has at most

∑m
i=1 ti edges where ti is the number of monomials of gi; but f

can of course have up to
∏m

i=1 ti monomials. The number of edges of a Newton
polygon is therefore easy to control for a product of polynomials. In contrast,
the situation is not at all clear for a sum of products. We propose the following
conjecture.

Conjecture 1 (τ -conjecture for Newton polygons). There is a polynomial p
such that the following property holds.

Consider any bivariate polynomial f ∈ C[X,Y ] of the form

f(X,Y ) =

k∑

i=1

m∏

j=1

fij(X,Y ) (1)

where the fij have at most t monomials. Then the Newton polygon of f has at
most p(kmt) edges.

The “real τ -conjecture” [14] is a similar conjecture for real roots of sums of
products of sparse1 univariate polynomials, and it implies that the permanent
does not have polynomial-size arithmetic circuit. As we shall see shortly, the
same lower bound would follow from Conjecture 1.

By expanding the products in (1) we see that f has at most k.tm monomials,
and this is an upper bound on the number of edges of its Newton polygon. In
order to improve this very coarse bound, the main difficulty we have to face is
that the k-fold summation in the definition of f may lead to cancellations of
monomials. As a result, some of the vertices of Newt(f) might not be vertices
of the Newton polygons of any of the k products

∏m
j=1 fij(X,Y ). We give two

examples of such cancellations below. If there are no cancellations (for instance,
if the fij only have positive coefficients) then we indeed have a polynomial upper
bound. In this case, Newt(f) is the convex hull of the union of the Newton
polygons of the k products. Each of these k Newton polygons has at most mt
vertices, so Newt(f) has at most kmt vertices and as many edges.

Example 1. We define A(X,Y ) = XY +X2+X2Y 2+X3Y +X5Y , B(X,Y ) =
1+XY 2, C(X,Y ) = −X−XY −X2Y 2 and D(X,Y ) = Y +X+X2Y +X4Y .

1Here and in [14], the term “sparse” refers to the fact that we measure the size of a
polynomial fij by the number of its monomials.
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AB

point of Mon(AB)

CD

point of Mon(CD)

Then,

AB + CD =(XY +X2 +X2Y 2 +X3Y +X5Y +X2Y 3 +X3Y 2 +X3Y 4

+X4Y 3 +X6Y 3)− (XY +X2 +X3Y +X5Y +XY 2

+X2Y + 2X3Y 2 +X5Y 2 +X2Y 3 +X4Y 3 +X6Y 3)

=X2Y 2 +X3Y 4 −XY 2 −X2Y −X3Y 2 −X5Y 2

AB + CD AB AB + CD CD
point of Mon(AB + CD)

The two rectangle points lie on the convex hull of Mon(AB + CD), but do not
lie on the convex hulls of Mon(AB) or Mon(CD).

Example 2. We define f(X,Y ) = 1+X2Y +Y 2X, g(X,Y ) = 1+X4Y +XY 4

and we consider Mon(fg − 1).

point of Mon(fg)

The two rectangle points lie on the convex hull of Mon(fg − 1), but do not lie
on the convex hull of Mon(fg).

Conjecture 1 implies that the permanent is hard for arithmetic circuits. In
fact, a significantly weaker bound on the number of edges would be sufficient:

Theorem 1. Assume that for some universal constant c < 2, the upper bound
2(m+log kt)c on the number of edges of Newt(f) holds true for polynomials of the
form (1) whenever the product kmt is sufficiently large. Then the permanent is
not computable by polynomial size, constant-free arithmetic circuits.
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For instance, an upper bound of the form 2O(m)(kt)O(1) would be sufficient.
Note that the parameter m plays a very different role than the parameters k and
t. By “constant-free arithmetic circuit” we mean that −1 is the only constant
allowed as input to the circuit (if subtraction gates are allowed in adition to +
and × gates, one can of course replace −1 by 1). It is possible to give a similar
result for circuits using arbitrary complex constants, but this seems to require
the use of the Generalized Riemann Hypothesis (to learn more on complex
constants and the role of GRH one may consult [7, 6, 13]).

3 Proof of Theorem 1, and a Refinement

Consider the polynomial

fn(X,Y ) =
2n∏

i=1

(X + Y i). (2)

The Newton polygon of fn has exactly 2n+1 edges: each factor X + Y i con-
tributes an edge of horizontal length 1 and slope −i. Each edge appears twice
on the boundary of Newt(fn), once on the lower hull and once on the upper
hull.

Our proof of Theorem 1 is by contradiction. Assuming that the permanent
is computable by polynomial size, constant-free arithmetic circuits we will show
that fn can be put under form (1) with k = nO(

√
n logn), t = nO(

√
n logn) and

m = O(
√
n). Note that the upper bound on m is much smaller than those on k

and t. Then, from the assumption in Theorem 1 we conclude that Newt(fn) has
at most 2(m+log kt)c edges. This is a contradiction since for large enough n, this
upper bound is smaller than the actual number of edges of Newt(fn), namely,
2n+1 (here, we use the fact that the constant c in Theorem 1 is smaller than 2).

Reduction of arithmetic circuits to depth 4 is an important ingredient in
the proof of Theorem 1. This phenomenon was discovered by Agrawal and
Vinay [1]. We will use it under the following form [15] (recall that a depth 4
circuit is a sum of products of sums of products of inputs; sum and product
gates may have arbitrary fan-in).

Theorem 2. Let C be an arithmetic circuit of size t computing a polynomial

of degree d. There is an equivalent depth four circuit Γ of size tO(
√
d log d) with

multiplication gates of fan-in O(
√
d).

Note that Theorem 3 of [15] provides this bound for the case where d is the
so-called “formal degree” of C rather than the degree of the polynomial com-
puted by C. Theorem 2 as stated above can then be derived by an application
of the standard homogenization trick (see e.g. Proposition 5 and Theorem 5
in [15]). It was recently shown [21] that the size bound for Γ can be reduced

from tO(
√
d log d) to tO(

√
d) when d is polynomially bounded in t; this improve-

ment preserves the O(
√
d) bound on the fan-in of multiplication gates.

We can now complete the proof of Theorem 1. We will be brief because the
details are almost exactly the same as in [14], see especially Section 5 of that
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paper (here we have to deal with bivariate instead of univariate polynomials, but
this does lead to any significant complication). First, we expand the polynomial
fn in (2) as an (exponential-size) sum of monomials:

fn(X,Y ) =
∑

α,β

a(n, α, β)XαY β.

Then we expand the integers coefficients a(n, α, β) in base 2:

a(n, α, β) =
∑

i

ai(n, α, β)2
i

where ai(n, α, β) ∈ {0, 1}. Putting these two expansions together, we obtain

fn(X,Y ) =
∑

i,α,β

ai(n, α, β)2
iXαY β.

We now expand the exponents i, α and β in base 2. This leads to the equality

fn(X,Y ) = hn(X
20 ,X21 ,X22 , . . . , Y 20 , Y 21 , Y 22 , . . . , 22

0

, 22
1

, 22
2

, . . .) (3)

where hn(x0, x1, x2, . . . , y0, y1, y2, . . . , z0, z1, z2, . . .) is the multilinear polyno-
mial ∑

i,α,β

ai(n, α, β)x
α0

0 xα1

1 xα2

2 · · · yβ0

0 yβ1

1 yβ2

2 · · · zi00 zi11 zi22 · · ·

Here the exponents ij , αj , βj denote the binary digits of the integers i, α, β.
Note that hn is a polynomial in O(n) variables since those integers have O(n)
bits. Next, we use our hypothesis that the permanent is computable by poly-
nomial size, constant-free arithmetic circuits. This implies that the coefficients
ai(n, α, β) can be computed non-uniformly in time polynomial in n (a detailed
argument for the case of univariate polynomials is provided in Lemma 3 and
Theorem 6 of [14]; it hinges on the fact that these coefficients lie uncondi-
tionally in the couting hiearchy, and this hierarchy collapses if the permanent
is easy to compute). By Valiant’s criterion [6], this implies that the polyno-
mial family (hn) belongs to the complexity class VNP. Since the permanent is
VNP-complete and is assumed to have polynomial-size circuits, (hn) also has
polynomial-size circuits. By Theorem 2, it follows that the polynomials hn are
computable by depth 4 circuits of size nO(

√
n logn) with multiplication gates of

fan-in O(
√
n). Using (3), we can plug in powers of X, Y and powers of 2 into

those circuits to express fn as a sum of products like in (1). The resulting
parameters k and t are of order nO(

√
n logn), and m = O(

√
n). As explained at

the beginning of this section, this leads to a contradiction with the assumption
in Theorem 1. �

In the remainder of this section we give a refinement of Theorem 1. We
show that it suffices to bound the number of edges of the Newton polygons of
sums of powers of sparse polynomials in order to obtain a lower bound for the
permanent.
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Theorem 3. Fix a universal constant c < 2, and assume that we have the
upper bound 2(m+log kt)c on the number of edges of Newt(f) for polynomials of
the form

f(X,Y ) =
k∑

i=1

aifi(X,Y )m (4)

where ai ∈ C and the fi have at most t monomials (as in Theorem 1, we require
this upper bound to hold only if kmt is sufficiently large). Then the permanent
is not computable by polynomial size, constant-free arithmetic circuits.

Clearly, we can assume that all the coefficients ai are equal to 1 (multiply
fi by a m-th root of ai if necessary).

Theorem 3 is an easy consequence of Theorem 1 and Fischer’s formula [10].
This formula shows that any monomial z1z2 · · · zm can be expressed as a linear
combination of 2m−1 powers of linears forms.

Lemma 1. For any m, we have

2m−1m!z1z2 · · · zm =
∑

r=(r2,...,rm)∈{−1,1}m−1

(
m∏

i=2

ri)(x1 +
m∑

i=2

rixi)
m.

Note that the exponential blowup entailed by Fischer’s formula is acceptable
because we will apply it with a value of m which is small compared to the main
complexity parameter n, i.e., with m = O(

√
n). Other recent applications of

this formula to arithmetic circuit complexity can be found in [11, 12].

Proof of Theorem 3. We show that the assumption in Theorem 3 implies that
of Theorem 1. Consider therefore a polynomial f of the form (1). We rewrite
it as a sum of powers by applying Lemma 1 to each of the k products in (1).
This yields an identity of the form

f(X,Y ) =

k′∑

i=1

aifi(X,Y )m

where ai ∈ C, the fi have at most mt monomials, and k′ = 2m−1k. We are now
in position to apply Theorem 3: Newt(f) has at most 2(m+log k′t′)c edges. For

any constant c′ > c, this is less than 2(m+log kt)c
′

if kmt is sufficiently large. We
have therefore derived the hypothesis of Theorem 1 from that of Theorem 3,
and we can conlude that the permanent is hard for arithmetic circuits.

Remark 1. As pointed out in the introduction, we gave in [14] similar re-
sults for real roots of univariate polynomials rather than for Newton polygons
of bivariate polynomials. More precisely, let us measure the size of a sum of
products of sparse polynomials by s = kmt. This definition of “size” applies to
bivariate polynomials of the form (1) as well as to their univariate analogues.
We showed that for any constant c < 2, a 2(log s)

c

upper bound on the number
of real roots implies that the permanent is hard for arithmetic circuit (see Con-
jecture 3 in [14] and the remarks following it). In fact, the same proof shows
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than an upper bound of the form 2(m+log kt)c as in Theorem 1 is sufficient. This
is clearly a better way of stating our result since it allows for a much worse
dependency of the number of real roots with respect to m. Moreover, as in The-
orem 3 it is sufficient to establish this bound for sums of powers. As in the
proof of Theorem 3, this follows from a straightforward application of Fischer’s
formula.

4 Upper Bounds from Convexity Arguments

In this section we improve the coarse upper bound k.tm upper bound on the
number of edges of Newton polygons of polynomials of the form (1). Our main
tool is a result of convex geometry [9].

Theorem 4. Let P and Q be two planar point sets with |P | = s and |Q| = t. Let
S be a subset of the Minkowski sum P+Q. If S is convexly independent (i.e., its
elements are the vertices of a convex polygon) we have |S| = O(s2/3t2/3+s+ t).

It is known that this upper bound is optimal up to constant factors [2] (a
non-optimal lower bound was also given in [20]).

We first consider sums of products of two polynomials.

Theorem 5. Consider a bivariate polynomial f ∈ C[X,Y ] of the form

f(X,Y ) =

k∑

i=1

figi(X,Y ) (5)

where the fi have at most r monomials and the gi have at most s monomials.
The Newton polygon of f has O(k(r2/3s2/3 + r + s)) edges.

Proof. Let Si be the set of monomials of figi which appear in f with a nonzero
coefficient. Since Newt(f) is the convex hull of

⋃k
i=1 conv(Si), it is enough

to bound the number of vertices of conv(Si). Those vertices form a convexly
independent subset of the Minkowski sum Mon(fi)+Mon(gi). By Theorem 4, it
follows that conv(Si) has O(r2/3s2/3+ r+s) vertices. Multiplying this estimate
by k yields an upper bound on the number of vertices and edges of Newt(f).

From this result it is easy to derive an upper bound for the general case,
where we have products of m ≥ 2 polynomials. We just divide the m factors
into two groups of approximately m/2 factors, and in each group we expand
the product by brute force.

Theorem 6. Consider any bivariate polynomial f ∈ C[X,Y ] of the form

f(X,Y ) =
k∑

i=1

m∏

j=1

fij(X,Y ) (6)

where m ≥ 2 and the fij have at most t monomials. The Newton polygon of f
has O(k.t2m/3) edges.
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Proof. As suggested above, we write each of the k products as a product of

two polynomials Fi =
∏⌊m/2⌋

i=1 fi and Gi =
∏⌈m/2⌉

i=1 fi. We can now apply

Theorem 5 to f =
∑k

i=1 FiGi, with r = t⌊m/2⌋ and s = t⌈m/2⌉. In the re-
sulting O(k(r2/3s2/3 + r+ s)) upper bound the term kr2/3s2/3 dominates since
r2/3s2/3 = t2(⌊m/2⌋+⌈m/2⌉)/3 = t2m/3 and m ≥ 2.

In order to avoid the brute force expansion in the proof of this theorem
it is natural to consider for each i a convexly independent subset Si of the
Minkowski sum of the m sets Mon(fi1), . . . ,Mon(fim). This is exactly the
open problem at the end of [2]: determine the maximal cardinality Mm(t) of a
convexly independent subset of the Minkowski sum of m sets P0, . . . , Pm−1 of
t points in the Euclidean plane. For instance, the lower bound of [2] combined
with the upper bound of [9] shows that M2(t) = Θ(t4/3). Unfortunately, we
shall see that Mm(t) = tΩ(m), so that brute force expansion is not very far from
the optimum.

Example 3. Fix an integer b ≥ 2. Let Pk be the b× b grid made of the integer
points whose coordinates have all their base b digits equal to zero, except possibly
the digit of weight bk. More explicitly,

Pk = {(bk.i, bk.j; 0 ≤ i, j ≤ b− 1}.

Clearly, the Minkowksi sum P0+ . . .+Pm−1 is the bm×bm grid {0, . . . , bm−1}2.
The next lemma (which is certainly not optimal) shows how to find a fairly

large set of convexly independent points in a grid.

Lemma 2. If n(n − 1)/2 < N it is possible to find n convexly independent
points in the grid [N ]2.

Proof. We start from the origin and build a sequence of n − 1 line segments.
The i-th segment has horizontal length i and slope 1/i. We can keep going as
long as we do not go out of the grid, i.e., as long as n(n−1)/2 < N . Altogether,
the n− 1 segments have n endpoints and they are convexly independent.

Proposition 1. For all m and infinitely many values of t we have:

Mm(t) ≥
√
2tm/4.

Proof. From Example 3 and Lemma 2 we have Mm(b2) ≥ n if n(n− 1) < 2bm.
Hence Mm(b2) ≥

√
2bm. The result follows by setting t = b2.

This result shows that other ingredients than Theorem 4 will be needed to
answer Conjecture 1 positively. A similar argument can be made for the case
where the sets P0, P1, . . . , Pm−1 in the Minkowski sum are all equal (this is a
natural case to look at in light of Theorem 3, which shows that it suffices to
deal with sums of powers in order to obtain a lower bound for the permanent).
More precisely, let M ′

m(t) be the maximal cardinality of a convexly independent
subset of an m-fold Minkoski sum P + P + · · ·+ P where P is a set of at most
m points. By definition we have M ′

m(t) ≤ Mm(t). In the other direction we
have M ′

m(t) ≥ Mm(⌊t/m⌋): just replace the m sets of size ⌊t/m⌋ by their union.

Hence we have M ′
m(t) ≥

√
2⌊t/m⌋m/4.
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5 Final Remarks

In this paper we have proposed a conjecture on the number of edges of the
Newton polygon of a sum of products of sparse polynomials; and we have shown
in Theorem 1 that even a weak version of this conjecture implies a lower bound
for the permanent. We conclude with a couple of additional open problems.

1. Consider two polynomials f, g ∈ C[X,Y ] with at most t monomials each.
What is the maximum number of edges on the Newton polygon of fg+1?
Theorem 5 provides a O(t4/3) upper bound, but as far as we know the
“true” bound could be linear in t. In the appendix we prove a linear upper
bound under the assumption that f and g have the same supports (i.e.,
Mon(f) = Mon(g)) and that the square of any nonconstant monomial
appearing in f and g does not appear.

2. More generally, what is the maximum number of edges on the Newton
polygon of f1 . . . ...fm + 1, where the fi again have at most t monomials?
Theorem 6 provides a O(t2m/3) upper bound, but the true bound could
be of the form 2O(m)tO(1); it could even be polynomial in m and t, as
implied by Conjecture 1.
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Appendix: the Newton polygon of fg + 1

We give here (in Theorem 7) a linear upper bound assuming the following two proper-
ties:

(i) The polynomials f and g have the same support, i.e., Mon(f) = Mon(g). We
denote by {p0, . . . , pt−1} this common support.

(ii) If f and g have a constant term we assume without loss of generality that
p0 = 0 and we add the following requirement: if pj is an extremal point of
conv(p1, p2, . . . , pt−1) then 2pj is not in the support of f and g.

We do not know how to prove a linear upper bound assuming only (i). Condition (ii) is
satisfied in particular when the points in Mon(f) = Mon(g) are convexly independent.

The interesting case, which we consider first, is when f and g have a constant term
but fg + 1 has no constant term. As explained above we assume that p0 corresponds
to the constant terms of f and g, i.e., p0 = 0. Under these hypotheses we have the
following result.

Proposition 2. Newt(fg+1) = conv(2p1, . . . , 2pt−1, (pi)i∈I) where (pi)i∈I is the sub-
set of those monomials in Mon(f) which appear in fg + 1 with a nonzero coefficient.

Proof. We first prove the inclusion from left to right. Since fg + 1 has no constant
term, all monomials of fg + 1 are of the form pi + pj where i ≥ 1 or j ≥ 1. Consider
first the case where i and j are both nonzero. If i = j this monomial appears in the
right-hand side, and if i 6= j it is the middle point of two points (namely, 2pi and 2pj)
appearing in the right-hand side. The remaining case is when i = 0 or j = 0. If e.g.
j = 0 we have pi + pj = pi and we see from the definition of I that this monomial also
appears in the right-hand side.

Now we prove the inclusion from right to left. Again by definition of I, all the pi
with i ∈ I are monomials of fg + 1. Hence it remains to show that

conv(2p1, . . . , 2pt−1) ⊆ Newt(fg + 1).

The left-hand side can be written as conv((2pj)j∈J ) where the pj form a convexly
independent subset of {p1, . . . , pt−1}. Any monomial of the form 2pj with j ∈ J
appears in fg + 1 with a nonzero coefficient because it can be obtained in a unique
way by expansion of the product fg. Assume indeed that 2pj = pi + pk with i, k 6= j.
Then pj is the middle point of pi and pk. If i ≥ 1 and k ≥ 1, this is impossible by
construction of J . If i = 0 or k = 0, this is also impossible by hypothesis (ii). We thus
have conv((2pj)j∈J ) ⊆ Newt(fg + 1), and the proof is complete.

We note that this proposition does not hold without assumption (ii), as shown
by the following example: take f = 1 +X2Y +XY 2 + (1/2)X2Y 4 + (1/2)X4Y 2 and
g = −1+X2Y +XY 2−(1/2)X2Y 4−(1/2)X4Y 2. Then fg+1 = 2X3Y 3−(1/2)X6Y 6−
(1/4)X4Y 8 − (1/4)X8Y 4. The monomial X3Y 3 is a vertex of Newt(fg+ 1) but is not
of the form pi or 2pj prescribed by Proposition 2.

Theorem 7. Under the same assumptions (i) and (ii) as above, Newt(fg + 1) has at
most t+ 1 edges where t denotes the number of monomials of f and g.

Proof. We continue to denote the common support of f and g by {p0, . . . , pt−1}. If
0 does not belong to this support then Newt(fg + 1) is the disjoint union of {0} and
Newt(fg). Moreover, Newt(fg) = Newt(f) + Newt(g) = conv(2p0, . . . , 2pt−1).

If 0 is in the support and fg+1 has a constant term then Newt(fg+1) = Newt(fg)
has at most t edges.
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In the remaining case (0 is in the support but fg + 1 has no constant term) we
need to use hypothesis (ii). This case is treated in Proposition 2. At first sight it seems
that Newt(fg+1) can have up to 2(t− 1) vertices, but the list of possible vertices can
be shortened by picking a convexly independent subsequence. More precisely, write
conv(2p1, . . . , 2pt−1, (pi)i∈I) = conv((2pj)j∈J , (pk)k∈K) where J ⊆ {1, . . . , t − 1} and
K ⊆ I are chosen so that the points in this sequence are convexly independent. By
the lemma below, |J ∩ K| ≤ 2. As a result, the number of points in the sequence is
|J |+ |K| = |J ∪K|+ |J ∩K| ≤ (t− 1) + 2 = t+ 1.

Lemma 3. If p, q, r are 3 distinct nonzero points in the plane then the 6 points p, q,
r, 2p, 2q, 2r are not convexly independent.

This is clear from a picture and can be proved for instance by considering the 4
points 0, p, q, r. There are two cases.

1. If these 4 points are convexly independent, assume for instance that pq is a
diagonal of the quadrangle 0pqr. Then the line pq separates 0 from r. As a
result, r ∈ conv(p, q, 2r).

2. If the 4 points are not convexly independent, assume for instance that r ∈
conv(0, p, q). In this case, 2r ∈ conv(2p, 2q, r). �

13


	Introduction
	Newton Polygons
	Proof of Theorem 1, and a Refinement
	Upper Bounds from Convexity Arguments
	Final Remarks

