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A τ -Conjecture for Newton Polygons

One can associate to any bivariate polynomial P (X, Y ) its Newton polygon. This is the convex hull of the points (i, j) such that the monomial X i Y j appears in P with a nonzero coefficient. We conjecture that when P is expressed as a sum of products of sparse polynomials, the number of edges of its Newton polygon is polynomially bounded in the size of such an expression. We show that this "τ -conjecture for Newton polygons," even in a weak form, implies that the permanent polynomial is not computable by polynomial size arithmetic circuits. We make the same observation for a weak version of an earlier "real τ -conjecture." Finally, we make some progress toward the τ -conjecture for Newton polygons using recent results from combinatorial geometry.

Introduction

Let f ∈ Z[X] be a univariate polynomial computed by an arithmetic circuit (or equivalently, a straight-line program) of size s starting from the variable X and the constant 1. According to Shub and Smale's τ -conjecture [START_REF] Shub | On the intractability of Hilbert's Nullstellensatz and an algebraic version of "P=NP[END_REF], the number of integer roots of f should be bounded by a fixed polynomial function of s. It was shown in [START_REF] Shub | On the intractability of Hilbert's Nullstellensatz and an algebraic version of "P=NP[END_REF] that the τ -conjecture implies a P = NP result for the Blum-Shub-Smale model of computation over the complex numbers [START_REF] Blum | On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines[END_REF][START_REF] Blum | Algebraic settings for the problem "P =NP?[END_REF]. A similar result was obtained by Bürgisser [START_REF] Bürgisser | On defining integers and proving arithmetic circuit lower bounds[END_REF] for another algebraic version of P versus NP put forward by Valiant [START_REF] Valiant | Completeness classes in algebra[END_REF][START_REF] Valiant | Reducibility by algebraic projections[END_REF] at the end of the 1970's. A succinct way of stating this VP versus VNP problem goes as follows: can we compute the permanent of a n × n matrix with a number of arithmetic operations which is polynomial in n? This question can be formalized using the computation model of arithmetic circuits. The permanent plays a special role here because it is VNP-complete, and it can be replaced by any other VNP-complete family of polynomials. We refer to Bürgisser's book [START_REF] Bürgisser | Completeness and Reduction in Algebraic Complexity Theory[END_REF] for an introduction to this topic and to two recent surveys on arithmetic circuit complexity by Shpilka and Yehudayoff [START_REF] Shpilka | Arithmetic circuits: A survey of recent results and open questions[END_REF] and by Chen, Kayal and Wigderson [START_REF] Chen | Partial derivatives in arithmetic complexity and beyond[END_REF].

As a natural approach to the τ -conjecture, one can try to bound the number of real roots instead of the number of integer roots. This fails miserably since the number of real roots of a univariate polynomial can be exponential in its arithmetic circuit size. Chebyshev polynomials provide such an example [START_REF] Smale | Mathematical problems for the next century[END_REF] (a similar example was provided earlier by Borodin and Cook [START_REF] Borodin | On the number additions to compute specific polynomials[END_REF]). A real version of the τ -conjecture was nevertheless proposed in [START_REF] Koiran | Shallow circuits with high-powered inputs[END_REF]. In order to avoid the aforementioned counterexamples, the attention is restricted to arithmetic circuits of a special form: the sums of products of sparse polynomials. In spite of this restriction, the real τ -conjecture still implies that the permanent is hard to compute for general arithmetic circuits [START_REF] Koiran | Shallow circuits with high-powered inputs[END_REF].

In this paper, we propose a τ -conjecture for Newton polygons of bivariate polynomials. Like the real τ -conjecture, it deals with sums of products of sparse polynomials and implies that the permanent is hard for general arithmetic circuits. A common idea to these three τ -conjecture is that "simple" arithmetic circuits should compute only "simple" polynomials. In the original τ -conjecture, the simplicity of a polynomial is measured by the number of its integer roots; in the real τ -conjecture it is measured by the number of its real roots; and in our new conjecture by the number of edges of its Newton polygon. These conjectures are independent in the sense that we know of no implication between two of them.

Organization of the paper

In Section 2 we review some basic facts about Newton polygons and formulate the corresponding τ -conjecture. We also state in Theorem 1 the motivating result for this paper: a proof of the conjecture, even in a very weak form, implies a lower bound for the permanent. In Section 3 we give a proof of this result and of a refinement: it suffices to work with sums of powers of sparse polynomials rather than with sums of arbitrary products. We also point out that this refinement applies to the real τ -conjecture from [START_REF] Koiran | Shallow circuits with high-powered inputs[END_REF], and that (like in Theorem 1) a very weak form of this conjecture implies a lower bound for the permanent. These observations improve the results stated in [START_REF] Koiran | Shallow circuits with high-powered inputs[END_REF]. In Section 4 we use a recent result of convex geometry [START_REF] Eisenbrand | Convexly independent subsets of the Minkowski sum of planar point sets[END_REF] to provide nontrivial upper bounds on the number of edges of Newton polygons. Our results fall short of establising the new τ -conjecture (even in the weak form required by Theorem 1) but they improve significantly on the naive bound obtained by brute-force expansion. For instance, as a very special case of our results we have that the Newton polygon of f g + 1 has O(t 4/3 ) edges if the bivariate polynomials f and g have at most t monomials. The straightforward bound obtained by expanding the product f g is only O(t 2 ). We conclude the paper with a couple of open problems. In particular, we ask whether this O(t 4/3 ) upper bound is optimal. In the appendix, we improve on this upper bound by giving a linear upper bound in a special case.

Newton Polygons

In the following we will consider a field K of characteristic 0. In fact, most of the results of this paper are valid for a general field.

We first recall some standard background on Newton polygons. Much more can be found in the survey [START_REF] Sturmfels | Polynomial equations and convex polytopes[END_REF]. Consider a bivariate polynomial f ∈ K[X, Y ]. To each monomial X i Y j appearing in f with a nonzero coefficient we associate the point with coordinates (i, j) in the Euclidean plane. We denote by Mon(f ) this finite set of points. If A is a set of points in the plane, we denote by conv(A) the convex hull of A. By definition the Newton polygon of f , denoted Newt(f ), is the convex hull of Mon(f ) (In particular, Newt(f ) = conv(Mon(f ))). Note that Newt(f ) has at most t edges if f has t monomials. It is well known [START_REF] Ostrowski | ber die Bedeutung der Theorie der konvexen Polyeder fr die formale Algebra[END_REF] that the Newton polygon of a product of polynomials is the Minkowski sum of their Newton polygons, i.e., Newt(f g) = Newt(f ) + Newt(g) = {p + q; p ∈ Newt(f ), q ∈ Newt(g)}.

A short proof of this fact can be found in [START_REF] Gao | Absolute irreducibility of polynomials via Newton polytopes[END_REF]. As a result, if f has s monomials and g has t monomials then Newt(f g) has at most s + t edges. More generally, for a product f = g 1 g 2 • • • g m , Newt(f ) has at most m i=1 t i edges where t i is the number of monomials of g i ; but f can of course have up to m i=1 t i monomials. The number of edges of a Newton polygon is therefore easy to control for a product of polynomials. In contrast, the situation is not at all clear for a sum of products. We propose the following conjecture.

Conjecture 1 (τ -conjecture for Newton polygons).

There is a polynomial p such that the following property holds.

Consider any bivariate polynomial

f ∈ K[X, Y ] of the form f (X, Y ) = k i=1 m j=1 f ij (X, Y ) (1) 
where the f ij have at most t monomials. Then the Newton polygon of f has at most p(kmt) edges.

Note that the bound only depends on k, m and t, and so does not depend on the degrees and coefficients of the polynomials f i,j .

The "real τ -conjecture" [START_REF] Koiran | Shallow circuits with high-powered inputs[END_REF] is a similar conjecture for real roots of sums of products of sparse1 univariate polynomials, and it implies that the permanent does not have polynomial-size arithmetic circuits. We are not able to compare these two conjectures. However, as we shall see shortly, Conjecture 1 also implies that the permanent does not have polynomial-size arithmetic circuits.

One can also formulate a τ -conjecture for the multiplicities of (complex) nonzero roots of univariate polynomials (see Corollary 2.4.1 in [START_REF] Hrubeš | On the Real τ -Conjecture and the Distribution of Complex Roots[END_REF]). This conjecture again implies that the permanent is hard for arithmetic circuits.

By expanding the products in [START_REF] Agrawal | Arithmetic circuits: A chasm at depth four[END_REF] we see that f has at most k.t m monomials, and this is an upper bound on the number of edges of its Newton polygon. In order to improve this very coarse bound, the main difficulty we have to face is that the k-fold summation in the definition of f may lead to cancellations of monomials. As a result, some of the vertices of Newt(f ) might not be vertices of the Newton polygons of any of the k products m j=1 f ij (X, Y ). We give two examples of such cancellations below. If there are no cancellations (for instance, if the f ij only have positive coefficients) then we indeed have a polynomial upper bound. In this case, Newt(f ) is the convex hull of the union of the Newton polygons of the k products. Each of these k Newton polygons has at most mt vertices, so Newt(f ) has at most kmt vertices and as many edges.

Example 1. We define A(X, Y ) = XY +X 2 +X 2 Y 2 +X 3 Y +X 5 Y , B(X, Y ) = 1 + XY 2 , C(X, Y ) = -X -XY -X 2 Y 2 and D(X, Y ) = Y + X + X 2 Y + X 4 Y . AB point of Mon(AB) CD point of Mon(CD) Then, AB + CD =(XY + X 2 + X 2 Y 2 + X 3 Y + X 5 Y + X 2 Y 3 + X 3 Y 2 + X 3 Y 4 + X 4 Y 3 + X 6 Y 3 ) -(XY + X 2 + X 3 Y + X 5 Y + XY 2 + X 2 Y + 2X 3 Y 2 + X 5 Y 2 + X 2 Y 3 + X 4 Y 3 + X 6 Y 3 ) =X 2 Y 2 + X 3 Y 4 -XY 2 -X 2 Y -X 3 Y 2 -X 5 Y 2 AB + CD AB AB + CD CD point of Mon(AB + CD)
The two rectangle points lie on the convex hull of Mon(AB + CD), but do not lie on the convex hulls of Mon(AB) or Mon(CD).

Example 2. We define f (X, Y ) = 1 + X 2 Y + Y 2 X, g(X, Y ) = 1 + X 4 Y + XY 4
and we consider Mon(f g -1).

point of Mon(f g)

The two rectangle points lie on the convex hull of Mon(f g -1), but do not lie on the convex hull of Mon(f g).

Conjecture 1 implies that the permanent is hard for arithmetic circuits. In fact, a significantly weaker bound on the number of edges would be sufficient: Theorem 1. Assume that for some universal constant c < 2, the upper bound 2 (m+log kt) c on the number of edges of Newt(f ) holds true for polynomials of the form (1) whenever the product kmt is sufficiently large. Then the permanent is not computable by polynomial size arithmetic circuits.

For instance, an upper bound of the form 2 O(m) (kt) O(1) would be sufficient. Note that the parameter m plays a very different role than the parameters k and t.

Remark 1. Theorem 1 holds true even in the case of a field of positive characteristic different from two. In characteristic two, the permanent is equal to the determinant and is therefore easy for arithmetic circuits. However, the conclusion of Theorem 1 remains true in characteristic two if we replace the permanent by the Hamiltonian polynomial (or any other polynomial family which is VNP-complete in characteristic two).

Proof of Theorem 1, and a Refinement

Consider the polynomial

f n (X, Y ) = 2 n -1 i=0 X i Y i 2 .
(

) 2 
The Newton polygon of f n has exactly 2 n edges. Our proof of Theorem 1 is by contradiction. Assuming that the permanent is computable by polynomial size arithmetic circuits we will show that f n can be put under form [START_REF] Agrawal | Arithmetic circuits: A chasm at depth four[END_REF] 

with k = n O( √ n log n) , t = n O( √ n log n) and m = O( √ n).
Note that the upper bound on m is much smaller than those on k and t. Then, from the assumption in Theorem 1 we conclude that Newt(f n ) has at most 2 (m+log kt) c edges. This is a contradiction since for large enough n, this upper bound is smaller than the actual number of edges of Newt(f n ), namely, 2 n (here, we use the fact that the constant c in Theorem 1 is smaller than 2).

Reduction of arithmetic circuits to depth 4 is an important ingredient in the proof of Theorem 1. This phenomenon was discovered by Agrawal and Vinay [START_REF] Agrawal | Arithmetic circuits: A chasm at depth four[END_REF]. We will use it under the following form [START_REF] Koiran | Arithmetic circuits: the chasm at depth four gets wider[END_REF] (recall that a depth 4 circuit is a sum of products of sums of products of inputs; sum and product gates may have arbitrary fan-in). Note that Theorem 3 of [START_REF] Koiran | Arithmetic circuits: the chasm at depth four gets wider[END_REF] provides this bound for the case where d is the so-called "formal degree" of C rather than the degree of the polynomial computed by C. Theorem 2 as stated above can then be derived by an application of the standard homogenization trick (see e.g. Proposition 5 and Theorem 5 in [START_REF] Koiran | Arithmetic circuits: the chasm at depth four gets wider[END_REF]). It was recently shown [START_REF] Tavenas | Improved bounds for reduction to depth 4 and depth 3[END_REF] that the size bound for Γ can be reduced from t O(

√ d log d) to t O( √ d)
when d is polynomially bounded in t; this improvement preserves the O( √ d) bound on the fan-in of multiplication gates. We can now complete the proof of Theorem 1. The idea of this proof is based on the one of Proposition 2 in [START_REF] Koiran | Shallow circuits with high-powered inputs[END_REF], but is simpler since it doesn't use the counting hierarchy. A similar simplification can be done for the real τconjecture [START_REF] Tavenas | Bornes inférieures et supérieures pour les circuits arithmétiques[END_REF].

We can expand the exponents i and i 2 of (2) in base 2. This leads to the equality

f n (X, Y ) = h n (X 2 0 , X 2 1 , . . . , X 2 n-1 , Y 2 0 , . . . , Y 2 2n-1 ) (3) 
where h n (x 0 , x 1 , . . . , x n-1 , y 0 , . . . , y 2n-1 ) is the multilinear polynomial

α∈{0,1} n ,β∈{0,1} 2n a(n, α, β)x α 0 0 x α 1 1 • • • x α n-1 n-1 y β 0 0 • • • y β 2n-1 2n-1 .
Here the exponents α j , β j denote the coordinates of the vectors α, β. The coefficient a(n, α, β) equals 1 if the vector β corresponds to the square of the vector α and 0 otherwise. Note that h n is a polynomial in 3n variables. The coefficients a(n, α, β) can be computed in time polynomial in n. By Valiant's criterion [START_REF] Bürgisser | Completeness and Reduction in Algebraic Complexity Theory[END_REF], this implies that the polynomial family (h n ) belongs to the complexity class VNP. Since the permanent is VNP-complete and is assumed to have polynomial-size circuits, (h n ) also has polynomial-size circuits. By Theorem 2, it follows that the polynomials h n are computable by depth 4 circuits of size n O( √ n log n) with multiplication gates of fan-in O( √ n). Using (3), we can plug in powers of X, Y and powers of 2 into those circuits to express f n as a sum of products like in [START_REF] Agrawal | Arithmetic circuits: A chasm at depth four[END_REF]. The resulting parameters k and t are of order n O( √ n log n) , and m = O( √ n). As explained at the beginning of this section, this leads to a contradiction with the assumption in Theorem 1.

In the remainder of this section we give a refinement of Theorem 1. We show that it suffices to bound the number of edges of the Newton polygons of sums of powers of sparse polynomials in order to obtain a lower bound for the permanent.

Theorem 3. Fix a universal constant c < 2, and assume that we have the upper bound 2 (m+log kt) c on the number of edges of Newt(f ) for polynomials of the form

f (X, Y ) = k i=1 a i f i (X, Y ) m (4)
where a i ∈ K and the f i have at most t monomials (as in Theorem 1, we require this upper bound to hold only if kmt is sufficiently large). Then the permanent is not computable by polynomial size arithmetic circuits.

Clearly, we can assume that all the coefficients a i are equal to 1 (multiply f i by a m-th root of a i if necessary).

Theorem 3 is an easy consequence of Theorem 1 and Fischer's formula [START_REF] Fischer | Sums of like powers of multivariate linear forms[END_REF]. This formula shows that any monomial z 1 z 2 • • • z m can be expressed as a linear combination of 2 m-1 powers of linear forms.

Lemma 1. For any m, we have

2 m-1 m!z 1 z 2 • • • z m = r=(r 2 ,...,rm)∈{-1,1} m-1 ( m i=2 r i )(z 1 + m i=2 r i z i ) m .
Note that the exponential blowup entailed by Fischer's formula is acceptable because we will apply it with a value of m which is small compared to the main complexity parameter n, i.e., with m = O( √ n). The idea of using Fischer's formula to turn a product into sums of powers comes from [START_REF] Gupta | Arithmetic circuits: A chasm at depth three[END_REF][START_REF]An exponential lower bound for the sum of powers of bounded degree polynomials[END_REF].

Proof of Theorem 3. We show that the assumption in Theorem 3 implies that of Theorem 1. Consider therefore a polynomial f of the form (1). We rewrite it as a sum of powers by applying Lemma 1 to each of the k products in (1). This yields an identity of the form

f (X, Y ) = k ′ i=1 a i f i (X, Y ) m
where a i ∈ K, the f i have at most mt monomials, and k ′ = 2 m-1 k. We are now in position to apply Theorem 1: Newt(f ) has at most 2 (m+log k ′ t ′ ) c edges. For any constant c ′ > c, this is less than 2 (m+log kt) c ′ if kmt is sufficiently large. We have therefore derived the hypothesis of Theorem 1 from that of Theorem 3, and we can conclude that the permanent is hard for arithmetic circuits.

Remark 2. For Theorem 3, the fact that K has characteristic 0 is important. Indeed, in positive characteristic Lemma 1 does not allow to rewrite a monomial z 1 z 2 • • • z m as a linear combination of powers of linear forms. Remark 3. As pointed out in the introduction, we gave in [START_REF] Koiran | Shallow circuits with high-powered inputs[END_REF] similar results for real roots of univariate polynomials rather than for Newton polygons of bivariate polynomials. More precisely, let us measure the size of a sum of products of sparse polynomials by s = kmt. This definition of "size" applies to bivariate polynomials of the form (1) as well as to their univariate analogues. We showed that for any constant c < 2, a 2 (log s) c upper bound on the number of real roots implies that the permanent is hard for arithmetic circuit (see Conjecture 3 in [START_REF] Koiran | Shallow circuits with high-powered inputs[END_REF] and the remarks following it). In fact, the same proof shows than an upper bound of the form 2 (m+log kt) c as in Theorem 1 is sufficient. This is clearly a better way of stating our result since it allows for a much worse dependency of the number of real roots with respect to m. Moreover, as in Theorem 3 it is sufficient to establish this bound for sums of powers. As in the proof of Theorem 3, this follows from a straightforward application of Fischer's formula.

Upper Bounds from Convexity Arguments

In this section we improve the coarse upper bound k.t m upper bound on the number of edges of Newton polygons of polynomials of the form (1). These results apply to fields of arbitrary characteristic. Our main tool is a result of convex geometry [START_REF] Eisenbrand | Convexly independent subsets of the Minkowski sum of planar point sets[END_REF]. Theorem 4. Let P and Q be two planar point sets with |P | = s and |Q| = t. Let S be a subset of the Minkowski sum P +Q. If S is convexly independent (i.e., its elements are the vertices of a convex polygon) we have |S| = O(s 2/3 t 2/3 + s + t).

It is known that this upper bound is optimal up to constant factors [START_REF] Bílka | A tight lower bound for convexly independent subsets of the Minkowski sums of planar point sets[END_REF] (a non-optimal lower bound was also given in [START_REF] Swanepoel | Large convexly independent subsets of Minkowski sums[END_REF]). A linear upper bound is known [START_REF] Halman | The convex dimension of a graph[END_REF] for the case where P and Q are convexly independent.

We first consider sums of products of two polynomials.

Theorem 5. Consider a bivariate polynomial f ∈ K[X, Y ] of the form

f (X, Y ) = k i=1 f i g i (X, Y ) (5) 
where the f i have at most r monomials and the g i have at most s monomials. The Newton polygon of f has O(k(r 2/3 s 2/3 + r + s)) edges.

Proof. Let S i be the set of points in the plane corresponding to the monomials of f i g i which appear in f with a nonzero coefficient. Since Newt(f ) is the convex hull of k i=1 conv(S i ), it is enough to bound the number of vertices of conv(S i ). Those vertices form a convexly independent subset of the Minkowski sum Mon(f i )+Mon(g i ). By Theorem 4, it follows that conv(S i ) has O(r 2/3 s 2/3 + r + s) vertices. Multiplying this estimate by k yields an upper bound on the number of vertices and edges of Newt(f ).

From this result it is easy to derive an upper bound for the general case, where we have products of m ≥ 2 polynomials. We just divide the m factors into two groups of approximately m/2 factors, and in each group we expand the product by brute force.

Theorem 6. Consider any bivariate polynomial

f ∈ K[X, Y ] of the form f (X, Y ) = k i=1 m j=1 f ij (X, Y ) (6) 
where m ≥ 2 and the f ij have at most t monomials. The Newton polygon of f has O(k.t 2m/3 ) edges.

Proof. As suggested above, we write each of the k products as a product of two polynomials

F i = ⌊m/2⌋ i=1 f i and G i = ⌈m/2⌉ i=1 f i .
We can now apply Theorem 5 to f = k i=1 F i G i , with r = t ⌊m/2⌋ and s = t ⌈m/2⌉ . In the resulting O(k(r 2/3 s 2/3 + r + s)) upper bound the term kr 2/3 s 2/3 dominates since r 2/3 s 2/3 = t 2(⌊m/2⌋+⌈m/2⌉)/3 = t 2m/3 and m ≥ 2.

In order to avoid the brute force expansion in the proof of this theorem it is natural to consider for each i a convexly independent subset S i of the Minkowski sum of the m sets Mon(f i1 ), . . . , Mon(f im ). This is exactly the open problem at the end of [START_REF] Bílka | A tight lower bound for convexly independent subsets of the Minkowski sums of planar point sets[END_REF]: determine the maximal cardinality M m (t) of a convexly independent subset of the Minkowski sum of m sets P 0 , . . . , P m-1 of t points in the Euclidean plane. For instance, the lower bound of [START_REF] Bílka | A tight lower bound for convexly independent subsets of the Minkowski sums of planar point sets[END_REF] combined with the upper bound of [START_REF] Eisenbrand | Convexly independent subsets of the Minkowski sum of planar point sets[END_REF] shows that M 2 (t) = Θ(t 4/3 ). Unfortunately, we shall see that M m (t) = t Ω(m) , so that brute force expansion is not very far from the optimum. More explicitly,

P k = {(b 2k .i, b k .j); 0 ≤ i ≤ b 2 -1 and 0 ≤ j ≤ b -1}.
Clearly, the Minkowksi sum P 0 + . . .

+ P m-1 is the grid {0, . . . , b 2m -1} × {0, . . . , b m -1} of size b 2m × b m .
The next lemma (which is certainly not optimal) shows how to find a fairly large set of convexly independent points in a grid. Lemma 2. If n(n -1)/2 < M and n < N it is possible to find n convexly independent points in the grid M × N .

Proof. We start from the origin and build a sequence of n -1 line segments. The i-th segment has horizontal length i and slope 1/i. We can keep going as long as we do not go out of the grid, i.e., as long as n(n -1)/2 < M and n < N . Altogether, the n -1 segments have n endpoints and they are convexly independent.

Proposition 1. For all m and infinitely many values of t we have: This result shows that other ingredients than Theorem 4 will be needed to answer Conjecture 1 positively. A similar argument can be made for the case where the sets P 0 , P 1 , . . . , P m-1 in the Minkowski sum are all equal (this is a natural case to look at in light of Theorem 3, which shows that it suffices to deal with sums of powers in order to obtain a lower bound for the permanent). More precisely, let M ′ m (t) be the maximal cardinality of a convexly independent subset of an m-fold Minkoski sum P + P + • • • + P where P is a set of at most m points. By definition we have M ′ m (t) ≤ M m (t). In the other direction we have M ′ m (t) ≥ M m (⌊t/m⌋): just replace the m sets of size ⌊t/m⌋ by their union. Hence we have M ′ m (t) ≥ ⌊t/m⌋ m/3 -1.

M m (t) ≥ t m/3 -1.

Final Remarks

In this paper we have proposed a conjecture on the number of edges of the Newton polygon of a sum of products of sparse polynomials; and we have shown in Theorem 1 that even a weak version of this conjecture implies a lower bound for the permanent. We conclude with a couple of additional open problems.

1. Consider two polynomials f, g ∈ K[X, Y ] with at most t monomials each. What is the maximum number of edges on the Newton polygon of f g + 1?

The difficult case appears when the constant term of f g equals -1.

Theorem 5 provides a O(t 4/3 ) upper bound, but as far as we know the "true" bound could be linear in t. In the appendix we prove a linear upper bound under the assumption that f and g have the same supports (i.e., Mon(f ) = Mon(g)) and that the square of any nonconstant monomial appearing in f and g does not appear in f g.

2.

More generally, what is the maximum number of edges on the Newton polygon of f 1 . . . f m + 1, where the f i again have at most t monomials? Theorem 6 provides a O(t 2m/3 ) upper bound, but the true bound could be of the form 2 O(m) t O (1) ; it could even be polynomial in m and t, as implied by Conjecture 1.

Theorem 2 .

 2 Let C be an arithmetic circuit of size t computing a polynomial of degree d. There is an equivalent depth four circuit Γ of size t O( √ d log d) with multiplication gates of fan-in O( √ d).

Example 3 .

 3 Fix an integer b ≥ 2. Let P k be the b 2 × b grid made of the integer points (x, y) such that: -all the digits in base b 2 of x are equal to zero, except possibly the digit of weight b 2k ; -all the digits in base b of y are equal to zero, except possibly the digit of weight b k .

Proof.

  From Example 3 and Lemma 2 (choosing M = b 2m and N = b m ) we have M m (b 3 ) ≥ n if n(n -1) < 2b 2m and n < b m . Hence M m (b 3 ) ≥ b m -1. The result follows by setting t = b 3 .

Here and in[START_REF] Koiran | Shallow circuits with high-powered inputs[END_REF], the term "sparse" refers to the fact that we measure the size of a polynomial fij by the number of its monomials.
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Appendix: the Newton polygon of f g + 1

In this section we denote by 0 the point in the plane with coordinates (0, 0).

We give here (in Theorem 7) a linear upper bound assuming the following two properties:

(i) The polynomials f and g have the same support, i.e., Mon(f ) = Mon(g). We denote by {p 0 , . . . , p t-1 } this common support.

(ii) If f and g have a constant term we assume without loss of generality that p 0 = 0 and we add the following requirement: if p j is an extremal point of conv(p 1 , p 2 , . . . , p t-1 ) then 2p j is not in the support of f and g.

We do not know how to prove a linear upper bound assuming only (i). Condition (ii) is satisfied in particular when the points in Mon(f ) = Mon(g) are convexly independent.

The interesting case, which we consider first, is when f and g have a constant term but f g + 1 has no constant term. As explained above we assume that p 0 corresponds to the constant terms of f and g, i.e., p 0 = 0. Under these hypotheses we have the following result.

Proposition 2. Under assumptions (i) and (ii),

where (p i ) i∈I is the subset of those monomials in Mon(f ) which appear in f g + 1 with a nonzero coefficient.

Proof. We first prove the inclusion from left to right. Since f g + 1 has no constant term, all monomials of f g + 1 are of the form p i + p j where i ≥ 1 or j ≥ 1. Consider first the case where i and j are both nonzero. If i = j this monomial appears in the right-hand side, and if i = j it is the middle point of two points (namely, 2p i and 2p j ) appearing in the right-hand side. The remaining case is when i = 0 or j = 0. If e.g. j = 0 we have p i + p j = p i and we see from the definition of I that this monomial also appears in the right-hand side. Now we prove the inclusion from right to left. Again by definition of I, all the p i with i ∈ I are monomials of f g + 1. Hence it remains to show that conv(2p 1 , . . . , 2p t-1 ) ⊆ Newt(f g + 1).

The left-hand side can be written as conv((2p j ) j∈J ) where the (p j ) j∈J form a convexly independent subset of {p 1 , . . . , p t-1 }. Any monomial of the form 2p j with j ∈ J appears in f g + 1 with a nonzero coefficient because it can be obtained in a unique way by expansion of the product f g. Assume indeed that 2p j = p i + p k with i = k. Then p j is the middle point of p i and p k . If i ≥ 1 and k ≥ 1, this is impossible by construction of J. If i = 0 or k = 0, this is also impossible by hypothesis (ii). We thus have conv((2p j ) j∈J ) ⊆ Newt(f g + 1), and the proof is complete.

We note that this proposition does not hold without assumption (ii), as shown by the following example: take

The monomial X 3 Y 3 is a vertex of Newt(f g + 1) but is not of the form p i or 2p j prescribed by Proposition 2.

Theorem 7. Under the same assumptions (i) and (ii) as above, Newt(f g + 1) has at most t + 1 edges where t denotes the number of monomials of f and g.

Proof. We continue to denote the common support of f and g by {p 0 , . . . , p t-1 }. If 0 does not belong to this support then Newt(f g + 1) is the convex hull of {0} and Newt(f g). Moreover, Newt(f g) = Newt(f ) + Newt(g) = conv(2p 0 , . . . , 2p t-1 ).

If 0 is in the support and f g +1 has a constant term then Newt(f g +1) = Newt(f g) has at most t edges (t and not 2t since f and g have the same support).

In the remaining case (0 is in the support but f g + 1 has no constant term) we need to use hypothesis (ii). This case is treated in Proposition 2. At first sight it seems that Newt(f g + 1) can have up to 2(t -1) vertices, but the list of possible vertices can be shortened by picking a convexly independent subsequence. More precisely, write conv(2p 1 , . . . , 2p t-1 , (p i ) i∈I ) = conv((2p j ) j∈J , (p k ) k∈K ) where J ⊆ {1, . . . , t -1} and K ⊆ I are chosen so that the points in this sequence are convexly independent. By the lemma below, |J ∩ K| ≤ 2. As a result, the number of points in the sequence is

Lemma 3. If p, q, r are 3 distinct nonzero points in the plane then the 6 points p, q, r, 2p, 2q, 2r are not convexly independent. This is clear from a picture and can be proved for instance by considering the 4 points 0, p, q, r. There are two cases.

1. If these 4 points are convexly independent, assume for instance that pq is a diagonal of the quadrangle 0prq. Then the line pq separates 0 from r. As a result, r ∈ conv(p, q, 2r).

2. If the 4 points are not convexly independent, assume for instance that r ∈ conv(0, p, q). In this case, 2r ∈ conv(2p, 2q, r).