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Abstract. - We report experimental and numerical evidences that the dynamics of the director
of a liquid crystal driven by an electric field close to the critical point of the Fréedericksz Transi-
tion(FT) is not described by a Landau-Ginzburg (LG) equation as it is usually done in literature.
The reasons are related to the very crude approximations done to obtain this equation, to the
finite value of the anchoring energy and to small asymmetries on boundary conditions. We also
discuss the difference between the use of LG equation for the statics and the dynamics. These
results are useful in all cases where FT is used as an example for other orientational transitions.

Transitions between different orientational orders are
an important feature of several systems characterized by
strong anisotropy such as for example biological systems
[1,2], anisotropic phase in superfluids [3,4], ferromagnetic
[5] and elastic media [6]. Liquid crystals (LC), being con-
stituted by elongated molecules, have a strong anisotropy
of their physical properties, and are certainly the most
common and general system where such a kind of transi-
tions can be observed [7, 8]. For example, a nematic liq-
uid crystal, whose molecules are initially homogeneously
aligned between two parallel plates, undergoes a transi-
tion to an elastically deformed state when a sufficiently
high external electric, magnetic or optical field E is ap-
propriately applied. This is the Fréedericksz transition
(FT) characterized by its critical field Ec ; this transition
is very important, not only for its obvious industrial ap-
plications, but also because it is used as an example to
understand other systems. The relevant order parameter
of the FT is the unit pseudo vector ~n (the director) which
defines the local direction of alignment of the molecules.
A stability analysis at the mean-field level of FT shows
that the transition is of second order and that the dynam-
ics of the order parameter can be described by a Landau
equation for ~n [7, 8], E being the control parameter.

The purpose of this letter is to show (experimentally and

(a)Corresponding Author: sergio.ciliberto@ens-lyon.fr

numerically) that although the static equilibrium mea-
surements seem to agree with the Landau prediction, the
experimental study of the fluctuations and the dynamics
of ~n demonstrates that such a simple model is unable to
describe the time dependent behavior.

We consider in this letter the dynamics of FT of a ne-
matic liquid crystal (NLC), subjected to an electric field
~E [7, 8], but the results are general enough to be applied
to other systems where FT is used as a reference of orien-
tational instability. In order to fix the framework of this
letter, let us recall that FT must not be confused with
electroconvective instabilities which occur at much higher
values of E ; indeed in the static FT, no stationary fluid
motion exists. However time dependent hydrodynamic ef-
fects, such as the backflow, may eventually influence the
dynamics of the FT and must be taken into account.

Because of their importances, the static properties of
FT have been widely studied both theoretically [9] and
experimentally [10] and the main mechanisms are well un-
derstood. On the contrary, the study of the characteristic
times of the dynamics of ~n above threshold, which is also
very important, did not receive the same attention. In
ref. [11] the growth rate has been measured, but, as we
will see, this is a different information from the dynamics
when the order parameter is not zero. The properties of
fluctuations above the threshold of FT have been studied

p-1



A. Caussarieu, A. Petrosyan, S. Ciliberto 2

through light scattering in ref. [12] but the characteristic
times were not studied, and no comparison with theory has
been done. In ref. [13], the relaxation time above thresh-
old has been measured and a detailed analysis of fig.9a) of
ref. [13] shows a discrepancy between the measured char-
acteristic times and those theoretically estimated. The
article does not discuss this inconsistence. Finally Zhou
and Ahlers [14] pointed out that there were problems in
modeling the FT as a second order phase transition. They
explained this with a random driven first order phase tran-
sition. Our observations strength the experimental obser-
vations of ref. [14] but show that the explanation is dif-
ferent from the one proposed in that reference. Indeed we
will explain the main discrepancies between theory and
observations with boundary effects which wipe out all the
critical region.

0 10 20 30 40
0

0.5

1

1.5

φ (rad)

θ m2
 (r

ad
2 )

 

 

numerical computation

θm

a) b)

c)

nθ

z

x
PHASE 

QUADRATURE 
INTERFEROMETER

LASER BEAM

Ø1mm

15 μm

U

θS

linear !t 
polynomial !t 

x

zy

Fig. 1: a) Experimental setup. A polarized laser beam crosses
the LC cell and a polarization interferometer measures the
phase shift φ between the ordinary an extraordinary rays [22].
The geometry of Fréedericksz transition : director configura-
tion for U0 > Uc. b) Definition of angular displacement θ of
one nematic ~n. c) Dependence of θ2m on φ, used to calibrate
the measure.

The system under consideration is a NLC having a pos-
itive dielectric anisotropy (p-pentyl-cyanobiphenyl, 5CB,
produced by Merck). The LC is confined between two par-
allel glass plates at a distance L = 15µm (see fig. 1). The
surfaces of the confining plates in contact with LC have
transparent Indium-Tin-Oxyde (ITO) electrodes to apply
the electric field. Furthermore, to induce parallel align-
ment of the directors at the surfaces, a thin layer of poly-
mer (PVA) is deposited and mechanically rubbed in one
direction. Therefore, all the molecules in the vicinity of
the plates have their director ~n parallel to the x, z plane ; ~n
can be written ~n = (cos θ(z), 0, sin θ(z)) (see fig. 1) [15,16],
where θ(z) is the angle between the director and the sur-
face. In the absence of any electric field, the functional
form of θ(z) is determined by the boundary conditions at

z = 0 and z = L, that is the pretilt angle θs formed by the
director of the molecules anchored on the surfaces and the
rubbing direction (see fig.1a). For the 5CB in contact with
PVA, θs ' 0.05 rad. During the assembling of our cell, the
rubbing directions on the two plates have been oriented
for obtaining an antiparallel alignment [17], which imposes
θ(L/2) = 0 : θ(0) = −θ(L) = −θs and θ(z) = (2z/L−1)θs
at E = 0. 1 The LC is then submitted to an electric field
perpendicular to the confining plates. To avoid the elec-
trical polarization of the LC, the electric field has a zero
mean value which is obtained by applying a sinusoidal
voltage V at a frequency of fd = 10 kHz between the ITO
electrodes, i.e. V =

√
2U0 cos(2π · fd · t) [7, 8].

The free energy per unit surface for such a system takes
the form [9,20]:

Fs =
k1
2

∫ L

o

[
(1 + k sin2(θ(z)))

(
dθ(z)

dz

)2
]
dz +

− U2
0 ε⊥

2
∫ L
o

dz
1+Υ sin2 θ(z)

(1)

where k = (k3 − k1)/k1 and Υ = (ε‖ − ε⊥)/ε⊥ are re-
spectively the elastic and dielectric anisotropy parameters
of the LC, with ki (i = 1, 3) its elastic constants, ε‖ the
parallel dielectric constant and ε⊥ the perpendicular one.

The FT, in the vicinity of the threshold, is usually de-
scribed through a Landau-Ginzburg (LG) equation ob-
tained from equation (1) [7, 8]. In fact, one assumes
θs = 0 and the sinusoidal form of the solution θ(z, t) =
θm(t) sin(πz/L) ; then the free energy can be developed
to fourth order in θm. In this way, one gets expression
(2) for the free energy, where ε = (U0/Uc)

2 − 1 is the
reduced control parameter and Uc =

√
k1π2/(ε⊥Υ ) the

critical voltage for FT [7, 8]. In order to have a precise
comparison we recall that the commonly accepted values
for 5CB for these parameters are : Uc = 0.710V , κ = 0.36
and Υ = 2 and k1 = 6.15 10−11N.

Fs =
π2k1
2L

[
−ε0ε⊥U

2

π2k1
− θ2m

2
ε+

θ4m
8

(κ+ 1 + Υ )

]
(2)

The dynamical equation for θ(z) is γdθ/dt = −δFs/δθ
where γ is the rotational viscosity of the LC [7, 8]. Intro-

ducing the characteristic time τ0 = γL2

π2k1
, the dynamical

equation of θm is therefore :

τ0
dθm
dt

= ε θm −
1

2
(κ+ Υ + 1)θ3m + η (3)

1Notice that this is not the most common configuration : indeed
the parallel one, i.e. θ(0) = θ(L), is the most used because it induces
a tilt in the center of the cell which facilitates the FT at a value of the
control parameter E much smaller than the theoretically predicted
value [18, 19]. In our experiment we used the antiparallel because
theoretically it should give a sharp transition, as we will see in the
following.
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where η is a thermal noise delta-correlated in time [21]
describing the director thermal fluctuations. Eq.3, whose
stationary solution is θ2m = 2ε/(κ + Υ + 1), shows that
if θm remains small, then its dynamics is described by a
LG equation and one expects mean-field critical phenom-
ena [7, 8, 21]. Indeed from eq.3, calling δθ the thermal
fluctuations around θm, i.e. θm = θm + δθ, we can write a
Langevin equation for δθ : τ0δ̇θ = −2εδθ+η, which implies
that the linear response time of the system is τ = τ0/(2ε)
and the variance is < δθ2 >∝ kBT/(2ε), where kB is the
Boltzman constant and T the temperature. However, eq.3
is a crude approximation and in the following we want to
understand to which extent, in a real system, the dynam-
ics of θ(z) is well described by this equation. This is an
important and useful question because the FT is used as a
model of transition between different orientational orders.

Let us now describe how θ(z) is measured in our exper-
iment. The deformation of the director field produces an
anisotropy of the refractive index of the LC cell. This op-
tical anisotropy can be precisely estimated by measuring
the optical path difference φ between a light beam crossing
the cell linearly polarized along x-axis (ordinary ray) and
another beam crossing the cell polarized along the y-axis
(extraordinary ray). The experimental set-up employed
is schematically shown in fig.1a). The beam is produced
by a stabilized He-Ne laser (λ = 632.8 nm) and its ra-
dius is about 0.5mm ; the beam is normal to the cell and
linearly polarized at 45◦ from the x-axis.The phase shift,
between the ordinary and extraordinary beams, is mea-
sured by a very sensitive polarization interferometer [22].
The optical phase shift φ can be expressed in terms of
the maximum θ2m of θ2(z), integrating numerically the
non-linear equation of ref. [9]. The results for our ex-
periment is plotted in fig.1c). For small θ2m < 0.3 rad2 we

find φ =
Lπne(n

2
e−n

2
o)

2λn2
o

θ2m with (no, ne) the two anisotropic

refractive indices (notice that the use of the interferometer
allows a quantitative measure of θ2m as a function of φ be-
cause all the other parameters are known, see ref [23] for
details). The linear approximation is compared in fig.1c)
with the general solution computed for the parameters of
our experiment. Using a polynomial fit, this numerical
solution can be reversed to compute θ2m from the measure
of φ. The fact that φ is a function of θ2m has important
consequences in the measure of the thermal fluctuations
of θm. Indeed the amplitude of the fluctuations δφ of φ
depends on the θm, because δφ = 2θm δθ.

The phase φ, measured by the interferometer, is ac-
quired with a resolution of 24 bits at a sampling rate of
1024 Hz. The instrumental noise of the apparatus [22] is
three orders of magnitude smaller than the amplitude δφ
of the fluctuations of φ induced by the thermal fluctua-
tions of θm.

Let us first discuss the experimental results shown in
fig.2. In fig.2a) we plot the measured θ2m as a function of
U2
0 . On the same figure, the red dashed line represents the

stationary solution of eq.3, : this approximated solution
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Fig. 2: a) Amplitude diagram of θ2m versus U2
o . Experimental

data(?) and solution of LG equation with Uc = 0.704V (red
dashed line) b) Expanded view of the plot in (a). The variance
< δθ2 > of θm is plotted in b) as a function of U2

o . As the
amplitude of the fluctuations of θm is very small the plotted
values (+) correspond to < δθ2 > ×2 106.

seems to fit the data within the interval 0.5V 2 < U2
0 < 1V 2

(corresponding to 0 < ε < 1), which is rather large taking
into account the crude approximations done to obtain eq.3.
An expanded view of fig.2a) around U0 ' Uc(i.e. ε ≈ 0) is
plotted in fig.2b) where the imperfection of the transition
can be seen. The dashed red line corresponds to the best
fit with the LG solution which is obtained for Uc = 0.704V .
In that figure we also plot < δθ2 > ×2 106 measured in
the experiment (+). This quantity has a peak exactly at
U0 = 0.710V which defines the critical threshold 3 used
to calculate ε in this letter. It appears clearly that the
the transition is not sharp and the real curve is shifted
towards smaller values of U0 , showing that the transition
occurs before the expected threshold.

To study the dynamics of the system, we start measur-
ing τ0 with the standard technique [11,24] of the quench at
zero field (ε = −1) starting at an ε1 in the interval [0 0.1].
The decay of θ2m at long time after the quench should go,
on the basis of eq.3, as exp(−2t/τ0). The results of the
measurements are reported in fig.3a) where the depen-
dence of θ2m as a function of time after the quench is plot-
ted for two different initial values of ε1. We see that the
decay rate is independent of ε1 and that τ0 = 0.28±0.01 s.
From this value and the definition of τ0 one gets that
γ = 0.078 ± 0.005 Pa.s which is close to the value re-
ported in literature for 5CB (γ = 0.08 Pa.s [24]), with
well-defined error bars due to the high resolution of our
measurement.

As τo is known, we can focus on the characteristic time
dependence of θm on ε for ε > 0. We measure this time
through three different quantities : 1) The decay rate after
a quench in ε of very small amplitude; 2) The character-
istic time of the autocorrelation function of the thermal
fluctuations of θm ; 3) The linear response to a Dirac per-
turbation of ε. In fact, the dependence of θ2m as a function
of time for a quench of δε = 0.01 starting at two differ-
ent initial values ε1 are plotted in fig.3b). From the long

3This method allows to measure Uc without any fit (see ref. [23]
for details) and is coherent which what is found in literature [10].
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Fig. 3: a)Evolution of θ2m as a function of time during quenches
at zero field. Solid lines represents experimental datas whereas
dotted lines represents each fit. The upper curve corresponds
to εi = 0.2 and the other one corresponds to εi = 0.03. The
slopes of the fits are -7.1 and -7.0 s−1 respectively. b) Quenches
in ε of very small amplitude ; c) Autocorrelation function ; d)
Linear response to an impulsionnal perturbation in ε ; e) Nor-
malized response time vs ε : experimental data from quenches
(◦), auto-correlations (×) and Dirac (�). The red dashed line
corresponds to the LG prediction (eq3). f) Expansion of e) and
linear fit of the data (continuous green line).

time behavior one gets the τ at ε1 − δε. This values are
plotted in fig.3e-f) as a function of ε. In fig.3c-d) we also
show that the autocorrelation function and the response
to a perturbation relax with the same characteristic time
when taken at the same ε. Repeating the measure for dif-
ferent ε, one can get the evolution of these characteristic
times as a function of ε. The results normalized by τ0 are
plotted on fig.3e) and we can clearly see that the mea-
sured values of τ are independent on the method as it is
enhanced by the continuous line on fig.3f).

In the figure the prediction of the eq.3, i.e. τ0/τ = 2ε,
is also plotted for comparison (red dash line). We clearly
see that even for ε < 1 , where eq.3 seems to reproduce
the data of θm (see fig.2a), the measured τ0/τ are about
thirty percent smaller than the prediction. Furthermore
τ0/τ does not vanish when ε = 0 as predicted by eq.3 .

To sum up the experimental data in the dynamic regime,
we see that we have two points that cannot be explained
by the LG equation even for small values of ε : 1) the non
divergence of the response time 2)the deceleration of the
system for ε < 1 (τ0/τ smaller than what was expected
from LG). To understand these facts, one cannot neglect
the role played by the boundary effects and the non linear-
ities during the dynamics. Therefore, we need to write re-
alistic boundary condition that take into account both the
anchoring surface energy W and the pretilt angle θs. For
small θs, the boundary conditions for the torque [10, 25]
are:[
k1(1 + k sin2 θ(z))

dθ(z)

dz
+W (−θ(z)± α(z)θs)

]
z=0,L

= 0

(4)

where the ± correspond to z = 0 and z = L respectively
(antiparallel alignment). The parameters α allow us to
take into account small experimental alignment defects,
produced during the assembly of the cell, which make
θ(0) 6= −θ(L). In the case of an ideal alignment, we have
α(0) = α(L) = 1, otherwise the ratio SR = α(0)/α(L)
is different from 1 and SR identifies the magnitude of the
alignment defect, i.e. θ(0) = −SR ·θ(L).We will show that
these asymmetries play a crucial role in the dynamics and
the static of θ close to FT threshold.

The dynamical equation for θ(z) is γdθ/dt = −δFs/δθ
where γ is the rotational viscosity of the LC [7, 8]. From
eq.1 one gets:

τo
dθ

dt
=

(ε+ 1) sin(2θ)

2
[(

1
L

∫ L
0

dz
(1+Υ sin2(θ) )

)
(1 + Υ sin2(θ))

]2 +

(
L2

π2

)[
∂2θ

∂z2
(1 + k sin2(θ)) +

k

2
sin(2θ)

(
∂θ

∂z

)2
]

(5)

For the 5CB in contact with the PVA, the real boundary
conditions are approximately θs ' 0.05 rad and W '
3 10−4J/m2. In the very specific case in which θs = 0,
W →∞, the zero field solution of the equation is θ(z) = 0
and the dynamic equation becomes the previously defined
eq(3).

We discuss first the influence of the boundary condi-
tions and non-linearities on the stationary case; in fact,
to obtain eq.(2) and eq.(3) we neglected their influence.
To understand the role of W , θs and SR (see eq.4 ) on
the transition, we perform several numerical simulations of
eq.5 with different boundaries conditions. The stationary
solutions of eq.5 are compared to the experimental data
in fig.4a). In the inset of fig.4a) we see that the numerical
solution (solid orange line) with ideal boundary conditions
(θs = 0, W →∞) fits the data in the whole interval of ε 4.
We find that, whatever the boundary conditions are, we
reproduce the data for large ε, their influence being strong

4The accuracy of the numerical simulation has been checked with
the direct numerical minimization of eq.1 as done using refs. [9, 10]
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in the vicinity of the threshold. In particular in fig.4a) we
plot the stationary solution for SR = 1, θs = 0.05 rad and
W = 3 10−4J/m2 (black ♦). We see that the finite anchor-
ing energy is responsible for a shift of the critical threshold
but this shift is too small with respect to the experimen-
tal measured values. Moreover, the finite anchoring energy
with antiparallel symmetric boundary conditions does not
explain the roundness of the transition : indeed the nu-
merical data show that the transition remains sharp. In
order to reproduce the imperfect bifurcation, observed in
the experiment, one has to introduce an asymmetry on
the boundary conditions on the two plates. Therefore, by
keeping the same values of θs and W , we fix the ”asym-
metry ” at SR = 1.1 which is a rather reasonable value.
The stationary solution of eq.5 with these ”asymmetric”
boundary conditions is plotted in fig.4b) (green ◦). It fits
quite well the experimental data, indicating that our as-
sumptions are able to reproduce the stationary behavior
of the mean value of the order parameter.

Now, we want to see if this framework is also able to ex-
plain the cut-off of the variance. We therefore study the
variance < δθ2 > of the thermal fluctuations of θm. This
result is confirmed by the numerical simulation of eq.5 in
which we added a noise delta correlated both in space and
time. The computed variances are plotted in fig.4b) for
different values of the boundary conditions. We see that
the solution with ”asymmetric” boundary conditions, i.e.
SR = 1.1 (green ◦), fits the data quite well whereas the
”symmetric” one with SR = 1 (black ♦) presents a true
divergence of the variance at the critical point 6. Summa-
rizing the stationary results, we see that the smoothness
of the transition around ε ' 0, can be simply explained
by a small asymmetry on the anti-parallel boundary con-
ditions which also reproduce the experimental values of
the variance as a function of ε.

We discuss now the dynamics of the system through
its characteristic time. The question is how to explain
the discrepancy between the prediction of the eq.3 (linear
dependance, dashed red line on the figure 2c-d) and the
measured values. In order to answer to this question, we
numerically integrate eq.5. Making small quenches in ε we
measure the relaxation time of θ2m of this equation using
the boundary conditions of W and θs used for the sym-
metric and the asymmetric cases in fig.4. The computed
values of τo/τ are plotted in fig.5. We immediately see
that for ε > 0.15 the two solutions give the same results
whereas for ε < 0.1 the asymmetric solution SR = 1.1 fits
the data confirming our hypothesis of imperfect boundary
conditions. Instead the symmetric case perfectly agrees
with the LG solution for ε < 0.1. This is an important
statement because it means that although the solution of
eq.3 reproduces the static behavior of θ2m for ε < 1, this
equation is unable to reproduce the dynamical features in
the same region. We therefore wonder about the exper-

6 Notice that we do not plot directly the variance of φ, as it is
usually done in literature.
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Fig. 4: a) Main figure and inset : experimental θ2m (∗ blue) and
numerical integration (orange solid line) with ideal boundary
conditions (θs = 0, W →∞) . Numerical simulation with an-
tiparallel boundary conditions and realistic anchoring energy
(SR=1, black ♦) and the same numerical simulation (antipar-
allel) with asymmetry of about 10 percent (SR=1.1, green ◦).
b) Experimental variance (σ2

θ×2.106, purple +), and numerical
simulation of the variance (SR=1, black −♦− ; SR=1.1, green
◦)

imental results on the growth-rate starting from ε = −1
presented in ref. [11], which shows the agreement with LG
predictions. To check this point we performed the numer-
ical simulation on the growth rates as done in ref. [11]
and we find that the results are exactly what LG predicts.
This is due to the fact that when the instability starts,
the mean value of θm is very small and the non-linear
terms are negligible). Instead when studying the dynam-
ics above threshold for ε > 0.1, the non-linear terms,
although negligible for the static, play an important role
and they completely modify the dynamics of eq.3. In the
region at small ε < 0.1, where the dynamics of the ideal
symmetric solution agrees with that of eq.3 (see fig.5), the
experimental imperfections wipe out the LG dynamics.
Therefore one concludes that eq.3 can never be used to
have a quantitative behavior of the relaxation time in the
region where the static solution seems to fit the static ex-
perimental data. Here we have shown only the results for
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anti-parallel anchoring, but in the case of parallel anchor-
ing the roundness of the transition is larger and the effect
of the dynamics induced by the imperfect bifurcation is
more important than in our case .
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Fig. 5: Normalized response time (τ0/τ) as a function of ε
: LG prediction (dashed red line) ; experimental data from
correlations (purple ×). Numerical solution of eq.5, (SR=1
black ♦; SR=1.1 green ◦ )

In ref [13, 26] there are experimental studies of the dy-
namic of the director when the electrical field is abruptly
changed above threshold. In both studies, in agreement
with our observations, the experimental data cannot be
reproduced by the analytical solution of LG. This is ob-
vious in the light of fig.5 where we show that there is no
region in ε where the LG equation can be used to study
the experimental dynamics.

Before concluding a few words about the back-flow. For
the parameters of 5CB the effect of the back flow on the
dynamics is certainly negligible for ε < 2 [7, 8, 11]. Fur-
thermore the back-flow corresponds to an acceleration of
the dynamics and not to a slower dynamics with respect
to that predicted by the simple LG equation. This is con-
firmed by the excellent agreement between the experimen-
tal results and the numerical solution of eq.5, which does
not take into account the back-flow.

The main conclusion of this paper is that although the
LG equation has been used since several decades to study
the LC dynamics close to the FT, it is actually useless, be-
cause in the region where it is valid the critical behavior is
completely destroyed by small asymmetries in boundary
conditions and the presence of a finite W . The fact that
the stationary solution seems to be correct till ε < 1 is
just accidental and it is actually the origin of this misun-
derstanding. Notice that the non-divergence at the crit-
ical points had originated in the past several doubts on
the nature of the FT, leading to rather complex explana-
tion. In fact, it is only related to the relationship between
δθ and the real measured variable δφ = 2δθ θm, there-
fore < δθ2 >=< δφ2 > /(4θ2m). As LG is used in many

other fields this example is very useful in general because it
shows that the agreement of the stationary solution does
not guarantee that the equations describe correctly the
dynamical behavior.
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