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On the error of computing ab + cd using Cornea, Harrison and Tang's method

In their book Scientific Computing on The Itanium [1], Cornea, Harrison and Tang introduce an accurate algorithm for evaluating expressions of the form ab + cd in binary floating-point arithmetic, assuming an FMA instruction is available. They show that if p is the precision of the floatingpoint format and if u = 2 -p , the relative error of the result is of order u. We improve their proof to show that the relative error is bounded by 2u+7u 2 +6u 3 . Furthermore, by building an example for which the relative error is asymptotically (as p → ∞ or, equivalently, as u → 0) equivalent to 2u, we show that our error bound is asymptotically optimal.

Introduction and notation 1.Computing ab + cd

Expressions of the form ab + cd, where a, b, c, d are floating-point (FP) numbers arise naturally in many numerical computations. Typical examples are complex multiplication and division; discriminant of quadratic equations; crossproducts and 2D determinants. The naive way of computing ab+cd may lead to very inaccurate results, due to catastrophic cancellations. 1 Several algorithms have been introduced, to overcome this problem. An algorithm attributed to Kahan by Higham [2, p. 65] can be used when an FMA instruction is available. It is Algorithm 1 below.

Algorithm 1 Kahan's algorithm for computing x = ab+cd with fused multiplyadds. RN(t) means t rounded to the nearest FP number, so that RN(cd) is the result of the floating-point multiplication c * d, assuming round-to-nearest mode.

ŵ ← RN(cd) e ← RN(cdŵ) // this operation is exact: e = cdŵ. f ← RN(ab + ŵ)

x ← RN( f + e) return x

Jeannerod, Louvet and Muller [START_REF] Jeannerod | Further analysis of Kahan's algorithm for the accurate computation of 2 × 2 determinants[END_REF] show that in radix-β floating-point arithmetic, the relative error of Kahan's algorithm is bounded by 2u, where u = 1 2 β 1-p is the unit roundoff. They also show that this bound is asymptotically optimal, which means that the ratio between the largest attained relative error and the bound goes to 1 as p goes to infinity (or, equivalently, as u goes to 0).

Another algorithm, that also requires the availability of an FMA instruction, was introduced by Cornea, Harrison and Tang in their book Scientific Computing on The Itanium [START_REF] Cornea | Scientific Computing on Itanium Rbased Systems[END_REF]. Cornea, Harrison and Tang provide a quick error analysis to show that the relative error of their algorithm is of the order of u. At the time of the publication of their book, the relative bound 2u on Kahan's algorithm was not known, which made their algorithm a very attractive choice, although it requires slightly more computation than Kahan's algorithm. Now, to choose between these two algorithms, we need to evaluate the largest possible relative error of Cornea et al's algorithm more accurately. This is the purpose of this paper.

Some notation and assumtions

Throughout the paper, we assume a binary floating-point system of precision p ≥ 2, with unbounded exponent range (that is, our results will apply to reallife computations provided that no underflow or overflow occurs). In such a system, a floating-point number is a number x that can be expressed in the form

x = M x • 2 ex-p+1 ,
where M x and e x are integers, and

2 p-1 ≤ |M x | ≤ 2 p -1. We denote u = 2 -p .
If t is a nonzero real number, with 2 k ≤ t < 2 k+1 , we define ulp(t) as 2 k-p+1 . We assume that an FMA instruction is available. The FMA (fused multiplyadd) evaluates expressions of the form FMA(a, b, c) = ab + c with one final rounding only and since it is required by the 2008 revision of the IEEE 754 standard [START_REF]IEEE Standard for Floating-Point Arithmetic. IEEE Standard[END_REF], one can expect that it will soon belong to the instruction set of most general-purpose processors. In the following we assume that the rounding mode is round to nearest even, and we denote RN the rounding function, so that the result returned when computing FMA(a, b, c) is RN(ab + c).

We will frequently use the following properties [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]: for any real number t,

(i) |RN(t) -t| ≤ 1 2 ulp(t) ≤ u • |t|, (ii) |RN(t) -t| ≤ u • |RN(t)|, (iii) ulp(t) ≤ ulp(RN(t)).
An interesting property of the FMA instruction is that it allows to quickly compute the error of a floating-point multiplication. More precisely, if π = RN(xy) is the result of a rounded-to-nearest FP multiplication and e = RN(xyπ) (e is computed using one FMA), then π + e = xy.

Preliminary properties of Algorithm 2

Remark 2.1. If ab = -cd then ab + cd = 0 is exactly computed by the algorithm.

Proof. Straightforward by noticing that π 1 = -π 2 and e 1 = -e 2 .

Remark 2.2. Let cd be the product of two binary floating-point numbers of precision p. Define π 2 = RN(cd) and e 2 = cd -π 2 . We have:

• either e 2 is a multiple of 2 -p+1 ulp(π 2 ) (which implies that it fits in p -2 bits);

• or |cd| ≤ (2 p -2 + 2 -p )ulp(π 2 ).
Proof. Since c and d are precision-p binary floating-point numbers, one has

c = M c • 2 ec-p+1 and d = M d • 2 e d -p+1
, where M c , M d , e c , and e d are integers, with

2 p-1 ≤ |M c |, |M d | ≤ 2 p -1. The number cd is a multiple of 2 ec+e d -2p+2 , hence π 2 = RN(cd) and e 2 = cd -π 2 are multiple of 2 ec+e d -2p+2 too. • if π 2 < 2 ec+e d +1 then ulp(π 2 ) ≤ 2 ec+e d -p+1 , so that (since ulp(π 2 ) is a power of 2) e 2 is a multiple of 2 -p+1 ulp(π 2 ); • if π 2 ≥ 2 ec+e d +1 then ulp(π 2 ) = 2 ec+e d -p+2 , therefore |cd| = |M c M d |•2 ec+e d -2p+2 ≤ (2 p -1) 2 •2 ec+e d -2p+2 = (2 p -2+2 -p )ulp(π 2 ).
Remark 2.3. Denote u = 2 -p . We have,

π + e = (ab + cd)(1 + ǫ 1 ) + γ, with |ǫ 1 | ≤ u and |γ| ≤ 2u 2 • (|ab| + |cd|), so that s = RN(π + e) = ((ab + cd)(1 + ǫ 1 ) + γ) • (1 + ǫ 3 ), with |ǫ 3 | ≤ u.
Proof. We have,

• π 1 + e 1 = ab, |e 1 | ≤ u • |π 1 |, and |e 1 | ≤ u • |ab|; • π 2 + e 2 = cd, |e 2 | ≤ u • |π 2 |, and |e 2 | ≤ u • |cd|; • π = (π 1 + π 2 ) • (1 + ǫ 1 ), with |ǫ 1 | ≤ u; • e = (e 1 + e 2 ) • (1 + ǫ 2 ), with |ǫ 2 | ≤ u.
Therefore, π + e = (ab + cd)(1 + ǫ 1 ) + γ,

with γ = (e 1 + e 2 ) • (ǫ 2 -ǫ 1 ), which implies |γ| = 2u 2 • (|ab| + |cd|) .
3 Discussion on the various cases that occur in Algorithm 2

If ab and cd have the same sign

In that case, |γ| ≤ 2u 2 • |ab + cd|, so that the final relative error is bounded by 2u + 3u 2 + 2u 3 .

If ab and cd have different signs

Without loss of generality, we assume |ab| ≥ |cd|, ab > 0 and cd < 0 (notice that if ab = 0 or cd = 0 the analysis becomes straightforward). In that case, we have,

If |cd| ≤

• |e 1 | ≤ (1/2)ulp(π 1 ) = 2 e-p , • |e 2 | ≤ (1/2)ulp(π 2 ) = 2 e-p ,
• e 1 and e 2 are multiple of 2 e-2p+1 , Hence, e 1 + e 2 is a multiple of 2 e-2p+1 , say

e 1 + e 2 = K • 2 e-2p+1 , k ∈ Z, that satisfies K • 2 e-2p+1 ≤ 2 e-p+1 ,
i.e., |K| ≤ 2 p . This implies that e 1 + e 2 is a floating-point number. Hence, e = RN(e 1 +e 2 ) = e 1 +e 2 , so that ǫ 2 = 0. As a consequence, π+e = ab+cd exactly, and the final relative error is bounded by u. Proof. π 1 and π 2 are obviously multiples of ulp(π 2 ), and if we had (π 1 + π 2 ) ≤ 4ulp(π 2 ), that would imply

|ab+cd| = |π 1 +π 2 +e 1 +e 2 | ≥ 5ulp(π 2 )-ulp(π 2 )- 1 2 ulp(e 2 ) = 7/2ulp(π 2 ), whereas |ab| + |cd| < 2 p ulp(π 1 ) + 2 p ulp(π 2 ) = 3 • 2 p ulp(π 2 ), so that |ab| + |cd| |ab + cd| ≤ 6 7 • 2 p = 6 7u , which contradicts the assumption |ab + cd| < u • (|ab| + |cd|).
The fact that π 1 and π 2 do not have the same floating-point exponent (so that there is a power of 2 between them), and that (π 1 + π 2 ) ≤ 4ulp(π 2 ) implies that there remain only a very few cases to examine. Define e π1 as the floatingpoint exponent of π 1 :

• either π 1 is the floating-point number immediately above 2 eπ 1 . In such a case -π 2 is either 2 eπ 1ulp(π 2 ) or 2 eπ 1 -2ulp(π 2 );

• or π 1 = 2 eπ 1 . In such a case, π 2 = 2 eπ 1 -i • ulp(π 2 ), with i = 1, 2, 3, or 4.

We can even reduce further the number of cases to be considered:

• First, one can apply Remark 2.2. If e 2 is a multiple of 2 -p+1 ulp(π 2 ), then e 1 +e 2 is a multiple of 2 -p+1 ulp(π 2 ), say e

1 +e 2 = K •2 -p+1 •ulp(π 2 ). Since |e 1 + e 2 | ≤ 1 2 (ulp(π 1 ) + ulp(π 2 )) = 3 2 ulp(π 2 ), we deduce that |K| ≤ 3 • 2 p-2 < 2 p
. This shows that e 1 + e 2 is a precision-p floating-point number.

Hence, e = RN(e 1 + e 2 ) = e 1 + e 2 , so that ǫ 2 = 0. As a consequence, π + e = ab + cd exactly, and the final relative error is bounded by u. Now, Remark 2.2 tells us that If e 2 is no a multiple of

2 -p+1 ulp(π 2 ), then |cd| ≤ (2 p -2 + 2 -p )ulp(π 2 ), so that |π 2 | = |RN(cd)| ≤ 2 eπ 1 -2ulp(π 2 ).
Hence the case π 2 = 2 eπ 1ulp(π 2 ) need not be considered.

• If π 1 = 2 eπ 1 , then, since π 1 = RN(ab), 2 eπ 1 -1 4 ulp(π 1 ) ≤ ab ≤ 2 eπ 1 + 1 2 ulp(π 1
). However the case ab ≤ 2 eπ 1 is easily dealt with: in that case, we have |e 1 | ≤ 1 2 ulp(π 2 ), so that it is very similar to a case already met: e 1 + e 2 is a floating-point number. Hence, e = RN(e 1 + e 2 ) = e 1 + e 2 , so that ǫ 2 = 0. As a consequence, π + e = ab + cd exactly, and the final relative error is bounded by u.

Therefore, we only need to consider two cases:

• Case 1 π 1 is the floating-point number immediately above 2 eπ 1 , and 2 eπ 1 -2ulp(π 2 ). When reasoning on the consequences of Remark 2.2, we have seen that we can further assume that |cd| ≤

(2 p -2 + 2 -p )ulp(π 2 ) = 2 eπ 1 -(2 -2 -p )ulp(π 2 )
. This case is exemplified by Figure 1. In that case,

|ab + cd| > (3 -2 -p )ulp(π 2 ),
and

|ab|+|cd| < 2 p-1 + 3 2 ulp(π 1 )+(2 p+1 -2+2 -p )ulp(π 2 ) = (2 p+1 +1+2 -p )ulp(π 2 ), so that γ < u 2 2 p+1 + 1 + 2 -p 3 -2 -p • |ab + cd|.
Elementary manipulations show that as soon as u = 2 -p is less than 1/2 (i.e., p ≥ 1, which always holds), the ratio

2 p+1 + 1 + 2 -p 3 -2 -p = 2 3u + 5 9 + 14u 27 + 14u 2 81 + • • • is less than 2 3u + 1.
As a consequence, γ ≤ 2u 3 + u 2 |ab + cd|, so that the final relative error is less than 5 3 u + 5 3 u 2 + u 3 . • Case 2 π 1 = 2 eπ 1 and -π 2 is π 1 -2ulp(π 2 ), π 1 -3ulp(π 2 ), or π 1 -4ulp(π 2 ).

We have seen that we can further assume |cd| ≤ 2 eπ 1 -(2 -2 -p )ulp(π 2 ), and ab > 2 eπ 1 . This case is exemplified by Figure 2. In that case,

|ab + cd| > (2 -2 -p )ulp(π 2 ),
and

|ab| + |cd| < [(2 p -1) + (2 p -2 -2 -p ]ulp(π 2 ) = (2 p+1 -1 + 2 -p )ulp(π 2 ).
We deduce

γ ≤ u 2 2 p+1 -1 + 2 -p 2 -2 -p |ab + cd|.
We easily find

2 p+1 -1 + 2 -p 2 -2 -p ≤ 1 u + u,
Hence γ ≤ (u + u 3 )|ab + cd|, from which we deduce that the final relative error is bounded by 2u + u 2 + u 3 + u 4 .

2 eπ 1 π 1 -π 2
-cd is located here ab is located here ulp(π 1 ) = 2ulp(π 2 )

Figure 1: Case π 1 = 2 eπ 1 • (1 + 2 -p+1 ). π 1 = 2 eπ 1 -π 2 If π 2 is the largest possible,
-cd is located here ab is located here ulp(π 1 ) = 2ulp(π 2 ) 

General result

The results obtained in the various cases considered in Section 3 can be summarized as follows Now, interestingly enough, we are going to see that the bound given by Theorem 4.1 is asymptotically optimal (as p → ∞ or, equivalently, as u → 0). To show this, it suffices to consider, in radix-2, precision-p floating-point arithmetic:

       a = 2 p -1, b = 2 p-3 + 1 2 , c = 2 p -1, d = 2 p-3 + 1
4 , One easily checks that a, b, c, and d are precision-p FP numbers. One easily finds:

ab

+ cd = 2 2p-2 + 2 p-1 -3 4 , π 1 = 2 2p-3 + 2 p-2 , e 1 = 2 p-3 -1 2 , π 2 = 2 2p-3 , e 2 = 2 p-3 -1 4 , π = 2 2p-2 , e = 2 p-2 -3 4 , s = 2 2p-2 .
The relative error |s -(ab + cd)|/|ab + cd| is equal to

2 p-1 -3 4 2 2p-2 + 2 p-1 -3 4 = 2u -3u 2 1 + 2u -3u 2 = 2u -7u 2 + 20u 3 + • • •
which is asymptotically equivalent to 2u. This shows that our relative error bound is asymptotically optimal.

In the frequent case where the considered floating-point format is the bi-nary64/double precision format of the IEEE 754 Standard, the relative error bound provided by Theorem 4.1 is 

u × 2.000000000000000777156 • • • ,

Conclusion

We have provided a relative error bound for Cornea, Harrison and Tang's algorithm (Algorithm 2), and we have shown that our bound is asymptotically optimal. Since that bound is not better than the (also asymptotically optimal) error bound for Kahan's algorithm (Algorithm 1), it is in general preferable to use Algorithm 1. A possible exception is when one wants to always get the same result when computing ab + cd and cd + ab (for instance to implement a commutative complex multiplication): in this case, the natural symmetry of Algorithm 2 will guarantee the required property, whereas it is easy to build examples for which Algorithm 1 does not satisfy it.
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1 ≤ |π 2 | ≤ π 1 .

Applying Sterbenz Lemma

[START_REF] Sterbenz | Floating-Point Computation[END_REF][START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]

, we find that π = π 1 + π 2 exactly, so that ǫ 1 = 0, which gives π + e = ab + cd + γ,

with γ = (e 2 +

e 1 )ǫ 2 , which implies |γ| ≤ u 2 • (|ab| + |cd|) . 1. if |ab + cd| ≥ u • (|ab| + |cd|) , then |γ| ≤ u • |ab + cd|, so that the final relative error is bounded by 2u + u 2 . 2. if |ab + cd| < u • (|ab| + |cd|) and π 1 and π 2 have the same floatingpoint exponent e.

This is especially true when an FMA is used in a naive way: see for instance the paragraph "Multiply-Accumulate, A Mixed Blessing" in Kahan's on-line document[START_REF] Kahan | Lecture notes on the status of IEEE-754[END_REF].