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Céline Robardet
LIRIS, CNRS UMR 5205

INSA Lyon, Université de Lyon
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Abstract—Dynamic graphs are commonly used for describing
networks with a time evolution. Shimada et al. [1] recently
proposed to transform these graphs into a collection of signals
indexed by vertices. This approach is here further explored in a
number of different directions. First, the importance of a good
indexing of a graph is stressed, and a solution is proposed using a
node labeling algorithm which follows the structure of the graph.
Second, a spectral analysis of identified signals is performed to
compute features linked to graph properties such as regularity or
structure in communities. Finally, these features can be tracked
over time to evidence the structure evolution of the graph. As a
case study, the approach is applied to a dynamic graph based on
a dataset of trips made using the bike sharing system Vélo’v in
use in Lyon, France. This is shown to offer specific insights on
behaviors of bike users over time in two districts of the city.

Index Terms—Dynamic networks, transportation networks,
classical multidimensional scaling, cyclic bandwidth, bike sharing
system

I. INTRODUCTION

Many data associated to networks, whether physical, biolog-
ical or social, can be described by graphs that can become large
when the data gets big. Also, the size of the data increases
when the network becomes dynamic with some time evolution.
These graphs are difficult to study because there exist only a
few tools to describe these objects. A method to map a graph
into a collection of signals has been proposed by Shimada et al.
[1], based on classical multidimensional scaling (CMDS). The
interest of this transformation is that it allows for a possible
data reduction by restricting the expansion to a limited number
of dominant contributions.

A first objective of the present work is to show how this
idea can be made practical for arbitrary networks if care is
taken to estimate a suitable labeling of the nodes reflecting
the “bigger picture” of the network [2]. Indeed, the order in
which the nodes are taken is critical to uncover information
on the structure of the network using the approach described
in [1]. An originality of our analysis is to adopt a signal
theory approach by computing frequency analysis on signals
representing the graphs. A second contribution is to show how
to use the method to visualize synthetically the evolution of
dynamic graphs.

Finally, an example of such a complex network evolving in
time is visualized and studied thanks to the proposed approach

on the basis of a dataset of trips made using the bike sharing
system of Lyon, called Vélo’v.

Section II recalls the mapping from network to signals,
and its shortcoming on unsorted nodes. A labeling algorithm
is proposed in Section III. Then, we study the frequency
analysis of the components for some examples of networks
in Section IV, and show how to visualize thanks to that
a simplified dynamics of a network. Section V applies the
methodology to provide a simplified representation of the
evolution of the Vélo’v bike sharing system. A conclusion
is given in Section VI.

II. FROM NETWORKS TO SIGNALS

Let G = (V, E) a simple undirected and unweighted graph
where V is the set of nodes (or vertices) of size #V = n and
E is the set of links (or edges) of size #E = m. We note
A = (aij)i,j=1,..,n its adjacency matrix.

A. Method using CMDS

Shimada et al. [1] proposed a method to transform a graph
into a collection of signals with n points indexed by the
vertices of the graph by using classical multidimensional
scaling (CMDS). The interest of this transformation is based
on the fact that if n signals enable us to reconstruct exactly the
original graph, it is also possible to reduce the representation
retaining only a small number of signals, yet with a good
approximation.

This transformation consists of applying CMDS on a matrix
distance between vertices of a graph, noted ∆ = (δ)i,j=1,..,n

and defined for i, j ∈ V by

δij =

 0 if i = j
1 if aij = 1 and i 6= j
w > 1 if aij = 0 and i 6= j

Following [1], we choose w = 1.1.
Multidimensional scaling (MDS) [3] is a set of mathemat-

ical techniques used to represent measurements of similarity
(or dissimilarity) among pairs of objects as distances between
points in a multidimensional space whose dimension is low.
Classical MDS is a particular case of metric MDS where
the dissimilarities are assumed to be Euclidean distances.



Watts-Strogratz model with n = 100 and p = 0.0 Graph with 3 communities
(a1) (a2) (a3) (b1) (b2) (b3)

Fig. 1. Examples of transformation for 2 graphs with 100 nodes (a) Watts-Strogatz with k = 4 and p = 0.0 (b) Graph with 3 communities. 1. Representation
of the graph. 2. Visualization of the 1st 4 components when the labeling is ordered. 3. Visualization of the four first components when the labeling is random.
The obtained signals with an ordered labels highlights the structure of graphs while a random labeling ends up with signals with high variability.

The matrix X of coordinates in the low-dimensional, trans-
formed space can be computed analytically. Starting with the
distance matrix ∆, we first compute a double centering of
the matrix whose terms are squared : B = − 1

2J∆(2)J with
J = In − 1

n1n1Tn where In is the identity matrix and 1n1Tn
an n× n matrix of ones.

The CMDS solution is given by X = Q+Λ
1
2
+ with Λ+ a

diagonal matrix whose terms are the eigenvalues of the matrix
B sorted in an increasing order and Q+ is the matrix of
the corresponding eigenvectors. The obtained signals are the
components (or columns) of the matrix X and the j-th signal
is noted X(j). These signals are indexed by the vertices of the
graph.

B. The necessity of ordering labels of nodes

Shimada et al. show that ring lattices are transformed to
periodic signals : each component is a cosine whose frequency
depends on the number of the components. More generally, it
can be relevant to describe signals using spectral analysis and
hence link frequency features with graph properties. Neverthe-
less the spectral analysis is closely related to the indexation
of signals and so to the numbering of the graph. It becomes
necessary to find a good numbering of nodes in order to have
therefore good spectral properties. We propose a method based
on the fact that we want to avoid brutal variations of signals.
That means that it is necessary to have close indices between
neighbor vertices, which are defined closer in the distance
matrix than unlinked vertices. We propose in the next section
an algorithm to relabel nodes such that the indices between
neighbors nodes are close. In particular, abrupt variations
of signals are to be avoided. Figure 1 shows examples of
transformation for two graphs with 100 nodes. The first one
is a Watts-Strogatz graph with a degree k = 4 and and no
probability of relinkage (p = 0) [4] (Figure 1a) which is
transformed into cosines if the label of nodes follows the
cycle. A random labeling gives signals with high variability.
The second example consists of the transformation of a graph
with 3 communities (Figure b1). The first two components
highlight the community structure of the graph when the
labeling browses nodes by community. In both graphs, when
the labeling is random, the signals have a high variability.

III. ALGORITHM OF NODE LABELING

The labeling of a graph with n nodes assigns to each node
an integer between 0 and n − 1. One possible labeling that
will have the property advocated above comes from the cyclic
bandwidth sum problem [5] that can be formalized as follows.
Let d be a distance between two labels i and j defined by
d(i, j) = min(|i−j|, n−|i−j|). Solving the cyclic bandwidth

Before After

Fig. 2. 2d grid graph of 5*20 nodes, each connected to its nearest neighbors
with periodic boundary conditions, before (a) and after (b) nodes relabeling.
The color of nodes denotes the labels according to the cyclic bandwidth i.e.
two close colors mean two close labels. The labeling clearly follows the
structure of the graph.

problem consists of finding a one-to-one and onto mapping λ̂
of V to {0, · · · , n− 1} defined by

λ̂ = min
λ
f(λ) with f(λ) =

∑
{u,v}∈E

d(λ(u), λ(v))

We propose to solve this problem thanks to a two-step
algorithm. The first step is based on the depth-first search
algorithm and enables us to obtain a collection of independent
paths. An approximation of the longuest path starting from
node u is computed using the following procedure, where u
is the node with highest eccentricity [4] :
Require: G = {V, E}, u the starting node, AllPaths the

collection of already computed paths
Ensure: P a path

1: NextNode ← u
2: while NextNode 6= ∅ do
3: NextNode ← ∅
4: Push u in P
5: for all v such that (u, v) ∈ E , v /∈ AllPaths, v /∈ P do
6: if degree of v = 1 then
7: Push v in P
8: else
9: if NextNode = ∅ or Topological Similarity(u,v) >

Topological Similarity(u, NextNode) then
10: NextNode ← v

The topological similarity is an index based on a Jaccard index
which considers both local and global structure of the graph.
The procedure is repeated until all nodes are in a path.

The second step aims to aggregate these paths in order to
minimize the cyclic bandwidth sum . The paths are considered
following their decreasing lengths. The longest path is first
considered and inserted into a empty list called labeling. The
second longest path is then considered and inserted at all
available indices in the labeling : for each insertion, the cyclic
bandwidth sum is computed limited to the labeled nodes. The
path is inserted definitively at the index which minimized this
criterion. The algorithm goes on until all the paths have been
inserted.1

1The full description of this algorithm can be found at http://perso.ens-lyon.
fr/ronan.hamon/files/relabeling.pdf.



Watts-Strogratz model with n = 100 and p = 0.0 Graph with 3 communities
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Fig. 3. (a) and (b) refer to the graphs defined in Figure 1. 4. Energy with respect to components and frequencies. The color is coded from dark blue (low
value) to dark red (high value) 5. Energy of components. 6. Energy of frequencies averaged over components. Both graphs have specific signatures : the
regular graph has only one frequency per component while the graph with communities has a high energy for low frequencies in the first components.

Figure 2 shows the labeling of a 2d grid graph before and
after nodes relabeling : the labeling follows the structure of
the graph.

IV. FREQUENCY ANALYSIS OF NETWORK’S SIGNALS

Let us consider a collection of K signals indexed by n ver-
tices. Several features can be computed to describe the com-
ponents. We note S(k, f) = |FX(k)(f)|2 which is estimated,
for positive frequencies, on n

2 + 1 bins, ∀k ∈ {1, · · · ,K}, F
being the Fourier transform. We then compute the following
features :

1) Energy of components:
∀k ∈ {1, · · · ,K}, Ek = ‖X(k)‖2

2) Energy of frequencies:
∀f ∈ {1, · · · , n2 + 1}, S̄(f) =

∑K
k=1 S(k, f)

Figure 3 shows the frequency analysis corresponding to
graphs introduced in section II, evidencing that specific fre-
quency patterns can be linked to graph properties such as
regularity or presence of communities.

Extension to dynamic graphs

Spectral analysis of signals derived from a transformation
of a graph enables us to highlight relations between feature
patterns and graph properties. This approach can be extended
to dynamic graphs : considering that at each time step a the
snapshot of a dynamic graph as a static graph, the extension
to dynamic graphs consists of the application of the method
described previously on the derived static graph. The features
described for static graphs can be visualized over time and
hence help to track the structure of the dynamic graph.

V. APPLICATION TO THE VÉLO’V BIKE SHARING SYSTEM

Many big cities in the World propose a bike sharing system
in which bikes are made available at any time for short trips. In
Lyon, the Vélo’v program 2 has been deployed since May 2005
and consists of 350 stations spread over all the urban area in
which bikes can be hired or returned back. Anonymized data
for the year 2011 were made available to us by the operator
JCDecaux and the “Grand Lyon” City Hall. Data consists of
the records of trips, each documented with its starting date
and departure station, its ending date and destination station
and specific tags. Using these trips, we built a dynamic graph
of the system Vélo’v for the year 2011: for each time step
of 1 hour, a static graph is generated where the vertices are
the stations which have an activity and an edge between two
stations denotes that at least one user has been riding a bike
from one of the two stations to the other one. The system

2http://www.velov.grandlyon.com/

Vélo’v has been intensively studied in [6] for the period from
May 2005 to December 2007.

A. View of the complete graph

We focus for the analysis on seven consecutive days of
2011 from Monday 6th June to Sunday 12th June. These days
are a typical working week without public holiday nor school
holidays. Figure 4a shows the graph for the time step in June
6th, 2011 at 8am. The transformation described in section II
is performed on the dynamic graph to reduce the collection of
graphs at each time step in a collection of signals. Figure 4b
shows the energy of components of these signals over time.
We can easily notice the presence of a weekly cycle with
the five working days and the week-end where the energy is
lower. It is closely related to the activity of the system which
has also peaks during the busiest times of highest usage as
described in [6]. The analysis of the energy of frequencies
in Figure 4c over all components is less obvious. It shows
nonetheless the presence of high energy of low frequencies
in the first few components which indicates the presence of
hidden structures inside the graph as suggested in Figure 3b. In
order to highlight these structures, a subgraph of the Vélo’v
graph based on geographical consideration is generated and
analyzed in the next section.

B. Study of a subgraph

A subgraph is generated from the Vélo’v graph where the
retained nodes correspond to the stations belonging either
to the 7th district of Lyon or to the city of Villeurbanne.
The study is hence focused on the relation between these
two geographical areas which are not contiguous but close
enough to enable short distance trips by bike. To determine
if there two areas can be considered as two communities, i.e.
in this context an area where users who rent a bike tend to
stay, a normalized averaged distance in labeling between the
two areas is computed. This criterion is equal to zero if all
edges between both communities link stations whose labels
are contiguous and is equal to 1 if these labels have the highest
distance. Figure 5c displays this value over time : at 10am, this
value is minimum, meaning that the areas are not separated
by labeling, and the opposite occurs at 9pm where the value
is maximal, meaning that the two areas are well separated.
Figures 5a and 5b illustrate this results by displaying colors
of nodes using geographical positions, highlighting the fact
that geographical areas can be seen as communities at 9pm.
Finally the spectra of graphs enable us to find a structure in
communities as described in section IV at time 9pm while the
much less concentrated energy at time 10am suggests no such
organization.
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Fig. 4. Analysis of the Vélo’v graph for one week (a) Snapshot of the graph in June 6, 2011 at 8am. The red circles represent the stations and the black
links the connection between stations. (b) Energy of components over time. (c) Energy of frequencies averaged over all components over time. The color is
coded from dark blue (low value) to dark red (high value). The high energy of components reflects the high activity of the system as described in [6].

(a) 10am (b) 9pm

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Hour

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
o

rm
a

liz
e

d
la

b
e

lin
g

d
is

ta
n

ce

(c)

0 2 4 6 8

Components

0

2

4

6

8

Fr
e
q
u
e
n
ci

e
s

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

(d) 10am

0 2 4 6 8

Components

0

2

4

6

8

Fr
e
q
u
e
n
ci

e
s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(e) 9pm

Fig. 5. Analysis of a subgraph of the Vélo’v graph composed of the stations of the 7th district of Lyon and the city of Villeurbanne. (a) (b) Snapshots of
the graph. The color of nodes denotes the labels according to the cyclic bandwidth. (c) Normalized labeling distance between linked nodes belonging to two
different areas. A high value means a strong separation in labeling between the two areas. (d) (e) Energy with respect to frequencies and components.

VI. CONCLUSION

A signal theory approach has been proposed for studying
dynamic graphs. It has been shown to offer new ways of
highlighting key features in time evolving networks, and in
particular in social networks such as bike sharing systems..
Paving the way for further extensions and investigations, the
present study is expected to contribute to a better understand-
ing of urban rhythms and, more generally, of the structure
evolution over time of complex networks in other domains.
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