
HAL Id: ensl-00875366
https://ens-lyon.hal.science/ensl-00875366

Submitted on 21 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Avoiding double roundings in scaled Newton-Raphson
division

Jean-Michel Muller

To cite this version:
Jean-Michel Muller. Avoiding double roundings in scaled Newton-Raphson division. Asilomar Con-
ference on Signals, Systems, and Computers, Nov 2013, Pacific Grove, CA, United States. 4 p.
�ensl-00875366�

https://ens-lyon.hal.science/ensl-00875366
https://hal.archives-ouvertes.fr

Avoiding double roundings in scaled
Newton-Raphson division

Jean-Michel Muller
CNRS, Laboratoire LIP

(CNRS, ENS Lyon, INRIA, Univ. Claude Bernard Lyon 1)
Lyon, France

first-name.last-name@ens-lyon.fr

Abstract—When performing divisions using Newton-Raphson
(or similar) iterations on a processor with a floating-point fused
multiply-add instruction, one must sometimes scale the iterations,
to avoid over/underflow and/or loss of accuracy. This may lead
to double-roundings, resulting in output values that may not be
correctly rounded when the quotient falls in the subnormal range.
We show how to avoid this problem.

I. INTRODUCTION

The availability of a fused multiply-add instruction makes it
possible to design fast algorithms for correctly-rounded division,
that use a variant of the Newton-Raphson iteration. These
algorithms will not return an accurate enough result when the
exact quotient is below the underflow threshold. The iterations
may also overflow if the input operands are too large or too
small. A natural solution to overcome this problem is to scale
the iterations by multiplying one of the input values (or both)
by an adequately chosen power of 2. However, doing this may
lead to a subtle double rounding problem, which sometimes
prevents from obtaining a correctly-rounded quotient. After
defining some notation, we recall some classical results on
the final “correcting step” of Newton-Raphson-based division,
then we give an example that illustrates the double rounding
problem, and we show how that problem can be solved.

A. Notation

Floating-Point numbers: Throughout the paper, we assume
that we use a radix-2, precision-p, floating-point system that
is compliant with the IEEE 754-2008 Standard for Floating-
Point Arithmetic [6]. We denote emin and emax the extremal
exponents of that system. In such a system, a floating-point
(FP) number is a number x such that

x = X ·2e−p+1, (1)

where X and e are integers that satisfy

|X | ≤ 2p−1, and
emin ≤ e≤ emax.

(2)

For a given nonzero FP number x, there may be several pairs
(X ,e) that satisfy (1) with the constraints (2). The one for which
|X | is maximum is called the “normalized representation” of
x. The corresponding X is the integral significand of x, and
the corresponding e is the exponent of x.

Subnormal numbers: A floating-point number is said normal
if its magnitude is larger than 2emin , and it is said subnormal
otherwise. The integral significand of a normal number has
absolute value larger than or equal to 2p−1.

Midpoints: We will call midpoint a number that is exactly
halfway between two consecutive floating-point numbers.

Roundings, faithful approximations: In general, the sum,
product, quotient, etc., of two FP numbers is not exactly equal
to a FP number. It must therefore be rounded. The IEEE
754-2008 Standard defines several rounding functions (round
towards −∞, towards +∞, towards 0, round to nearest ties “to
even”, round to nearest ties “to away”), and stipulates that
once a rounding function ◦ is chosen, each time we perform
the arithmetic operation a>b (>∈ {+,−,×,÷}), where a and
b are FP numbers, the value ◦(a>b) is returned. We say that
operation > is correctly rounded. In the following, we assume
that the rounding function, denoted RN is one of the two
round-to-nearest functions defined by the standard:
• round to nearest ties to even: if t is not a midpoint, RN(t)

is the FP number nearest t, and if t is a midpoint, RN(t)
is the one of the two FP numbers that surround t whose
integral significand is even;

• round to nearest ties to away: if t is not a midpoint, RN(t)
is the FP number nearest t, and if t is a midpoint, RN(t)
is the one of the two FP numbers that surround t that has
the largest magnitude.

Notice that the problem we are dealing with in this paper,
namely double rounding, does not occur with the round towards
±∞ or round towards 0 rounding functions.

We will say that a FP number X is a faithful approximation
to a real number x if:
• x is a FP number and X = x, or
• X is one of the two FP numbers that surround x.
Inexact results, underflows: We will say that the operation

a>b is inexact if a>b is not a FP number (which is equivalent
to saying that the computed result RN(a>b) is not equal to
a>b). We will say that an arithmetic operation underflows if i)
the returned result is a subnormal number, and ii) it is inexact.

Fused Multiply-Add (FMA) instruction: In the following,
we assume that a fused multiply-add (FMA) instruction is
available. The FMA instruction evaluates expressions of the
form

RN(a±bc).

It is available on processors such at the Intel Itanium, IBM
PowerPC, AMD Bulldozer, and Intel Haswell. It allows for
faster and, in general, more accurate dot products, matrix
multiplications, and polynomial evaluations. It also makes
it possible to obtain correctly rounded quotients through a
variant of the Newton-Raphson iteration. The FMA instruction
is required by the IEEE 754-2008 standard for FP arithmetic,
so that within a few years, it will probably be available on
most general-purpose platforms.

B. The final correcting step of Newton-Raphson-based division
iterations

Many algorithms have been suggested for performing divi-
sions, the most common being digit-recurrence algorithms [4]
and variants of the Newton–Raphson iteration [8].

The usual Newton-Raphson iteration for computing 1/a is:

yn+1 = yn(2−ayn). (3)

Assuming an FMA instruction is available, that iteration can
be implemented as follows:{

εn = RN(1−ayn)
yn+1 = RN(yn + ynεn)

. (4)

In this paper, we assume that we wish to evaluate the quotient
b/a of two floating-point numbers, we focus on algorithms
that first provide an approximation y to 1/a—which can be
done using iteration (4)—and an initial approximation q to
the quotient b/a, and refine it using the following “correcting
step” [2], [3], [8], [9]:

r = RN(b−aq),
q′ = RN(q+ ry), (5)

Under some conditions made explicit in Theorem 2 below,
q′ = RN(b/a).

In all applications of that property presented so far in the
literature, the approximations y and q are obtained through
variants of the Newton-Raphson iteration (indeed, (5) can be
viewed as one Newton-Raphson step), but they might as well
result from other means.

What makes the method working is the following lemma,
which shows that under some conditions, r = b−aq exactly.
That lemma can be traced back to Kahan [7] or Markstein [9].
The presentation we give here is close to that of Boldo and
Daumas [1], [10].

Lemma 1 (Computation of division residuals using an FMA).
Assume a and b are precision-p, radix-2, floating-point numbers,
with a 6= 0 and |b/a| below the overflow threshold. If q a faithful
approximation to b/a then b−aq is exactly computed using
one FMA instruction, with any rounding function, provided
that

ea + eq ≥ emin + p−1,

and

q 6= α or |b/a| ≥ α

2 ,

(6)

where ea and eq are the exponents of a and q and α = 2emin−p+1

is the smallest positive subnormal number.

For this result to be applicable, we need ea + eq ≥ emin +
p−1. This condition will be satisfied if eb ≥ emin + p. Other
conditions will be needed for the correcting iterations (5) to
work. They can very roughly be summarized as “the quotient
and the residual r must be far enough from the underflow and
overflow thresholds”. More precisely,

Theorem 2 (Markstein [2], [5], [8], [9]). Assume a precision-p
binary floating-point arithmetic, and let a and b be normal
numbers. If
• q is a faithful approximation to b/a, and
• q is not in the subnormal range, and
• eb ≥ emin + p, and
• y approximates 1/a with a relative error less than 2−p,

and
• the calculations

r = ◦(b−aq), q′ = ◦(q+ ry)

are performed using a given rounding function ◦, taken
among round to nearest even, round toward zero, round
toward −∞, round toward +∞,

then q′ = ◦(b/a), that is, q′ is b/a rounded according to the
same rounding function ◦.

C. Scaled division iterations

Given arbitrary FP inputs a and b, a natural way to make
sure that the conditions of Theorem 2 be satisfied is to scale
the iterations. This can be done as follows: a quick preliminary
checking on the exponents of a and b determines if the
conditions of Theorem 2 may not be satisfied, or if there
is some risk of over/underflow in the iterations that compute y
and q. If this is the case, operand a, or operand b is multiplied
by some adequately chosen power of 2, to get new, scaled,
operands a∗ and b∗ such that the division b∗/a∗ is performed
without any problem. An alternate, possibly simpler, solution
is to always scale: for instance, we chose a∗ and b∗ equal
to the significands of a and b, i.e., we momentarily set their
exponents to zero. In any case, we assume that we now perform
a division b∗/a∗ such that:
• for that “scaled division”, the conditions of Theorem 2

are satisfied;
• the exact quotient b/a is equal to 2σ b∗/a∗, where σ is

an integer straightforwardly deduced from the scaling.
Assuming now that the scaled iterations return a scaled

approximate quotient q∗ and a scaled approximate reciprocal
y∗, we perform a scaled correcting step

r = RN(b∗−a∗q∗),
q′ = RN(q∗+ ry∗), (7)

Notice that q′ is in the normal range (i.e., its absolute value
is larger than or equal to 2emin): the scaling was partly done
in order to make this sure. If 2σ q′ is a floating-point number
(e.g., if 2emin ≤ |2σ q′| ≤ 2emax+1−2emax−p+1), then we clearly

should return 2σ q′. If |2σ q′| > 2emax+1− 2emax−p+1 then we
should return ±∞. The trouble may occur when 2σ q′ falls
in the subnormal range: in that case, if 2σ q′ is not a FP
number, we cannot just return RN(2σ q′) because a double
rounding slip (see below) might occur and lead to the delivery
of a wrong result. Consider the following example. Assume
the floating-point format being considered is binary32 (that
format was called single precision in the previous version of
IEEE 754: precision p = 24, extremal exponents emin =−126
and emax = 127), and that RN is round-to-nearest-ties-to-even1.
Consider the two floating-point input values (the significands
are represented in binary):

b = 1.000000000011000110011012×2−113

= 839495710×2−136,
a = 1.000000000000110110011002×223

= 839034810.

The number b/a is equal to

0.100000000001001000000000000010110100111
10110011001000 · · ·×2−135,

so that the correctly-rounded, subnormal value that must be
returned when computing b/a should be

RN(b/a) = 0.00000000010000000000101×2−126.

Now, if, to be able to use Theorem 2, b was scaled, for instance
by multiplying it by 2128 to get a value b∗, the exact value of
b∗/a would be

0.100000000001001000000000000010110100111
10110011001000 · · ·×2−7,

which would imply that the computed correctly rounded
approximation to b∗/a would be

q′ = 1.00000000001001000000000×2−8.

Multiplied by 2σ = 2−128, this result would be equal equal to

1.00000000001001000000000×2−136,

which means—since it is in the subnormal range: remember
that emin =−126—that, after rounding it to the nearest (even)
floating-point number, we would get

0.00000000010000000000100×2−126 6= RN(b/a).

This phenomenon—let us call it a double rounding slip—will
appear each time the scaled result q′, once multiplied by 2σ ,
is exactly equal to a (subnormal) midpoint, and:
• b/a > 2σ q′ and RN(2σ q′) < 2σ q′;
• or b/a < 2σ q′ and RN(2σ q′) > 2σ q′.

Notice that if we are given q′ as the output of a "black box"
algorithm, i.e., if we just have this scaled result q′ without
any other information, it is impossible to deduce if the exact,
infinitely precise, result is above or below the midpoint, so it
is hopeless to try to return a correctly rounded value.

1One easily builds a similar example with round-to-nearest-ties-to-away.
The method presented below works for both round-to-nearest rounding modes

Fortunately, intermediate values computed during the last
correction iteration contain enough information to allow for a
correctly rounded final result, as we are now going to see.

II. AVOIDING DOUBLE ROUNDINGS IN SCALED DIVISION
ITERATIONS

As stated in the previous section, we assume we have
performed the correcting step:

r = RN(b∗−a∗q∗),
q′ = RN(q∗+ ry∗),

and that the scaled operands a∗, b∗, as well as the approximate
scaled quotient q∗ and scaled reciprocal y∗ satisfy the conditions
of Theorem 2. We assume that the scaling was such that
the exact quotient b/a is equal to 2σ b∗/a∗. As said in the
introduction, we assume that we are interested in quotients
rounded to the nearest (with ties-to-even or ties-to-away):
with the other, “directed”, rounding functions, there is no
double rounding problem. To simplify the presentation, we
assume that a and b (and, therefore, a∗, b∗, y∗, q∗ and q′) are
positive (separately handling the signs of the input operands is
straightforward). Since q∗ is a faithful approximation to b∗/a∗,
we deduce that

q− <
b∗

a∗
< q+,

where q− and q+ are the floating-point predecessor and
successor of q∗. Also, since q′ = RN(b∗/a∗), we immediately
deduce that q′ ∈ {q−,q,q+}. This is illustrated by Figure 1.

excluded

q− q∗ q+

area where b∗/a∗ can be located,
the endpoints q− and q+ being

Fig. 1. The number q∗ is a faithful rounding of b∗/a∗: this means
that q− < b∗/a∗ < q+, where q− and q+ are the FP predecessor and
successor of q∗.

As stated before, a double rounding slip may occur when
2σ q′ is a subnormal midpoint of the considered floating-point
format. In such a case, in order to return a correctly rounded
quotient, one must know if the exact quotient b/a is strictly
below, equal to, or strictly above that midpoint. Of, course,
this is equivalent to knowing if b∗/a∗ is strictly below, equal
to, or strictly above q′.

Lemma 1 says that r = b∗−a∗q∗ exactly. Therefore, when
2σ q′ is a midpoint:

1) if r = 0 then q′ = q∗ = b∗/a∗, hence b/a = 2σ q′ exactly.
Therefore, one should return RN(2σ q′);

2) if q′ 6= q∗ and r > 0 (which implies q′ = q+), then q′

overestimates b∗/a∗. Therefore, one should return 2σ q′

rounded down. This is illustrated by Figure 2;
3) if q′ 6= q∗ and r < 0 (which implies q′ = q−), then q′

underestimates b∗/a∗. Therefore, one should return 2σ q′

q′

q− q∗ q+

b∗/a∗

Fig. 2. q′ is equal to q+. In this case, the “residual” r was positive,
and since q− < b∗/a∗ < q+, q′ is an overestimation of b∗/a∗.

rounded up (this case is symmetrical to the previous
one);

4) if q′ = q∗ and r > 0, then q′ underestimates b∗/a∗.
Therefore, one should return 2σ q′ rounded up. This is
illustrated by Figure 3;

q′

q− q∗ q+

b∗/a∗

Fig. 3. q′ is equal to q∗. In this case, the “residual” r was positive,
and q′ is an underestimation of b∗/a∗.

5) if q′ = q∗ and r < 0, then q′ overestimates b∗/a∗.
Therefore, one should return 2σ q′ rounded down (this
case is symmetrical to the previous one).

Of course, when 2σ q′ is not a midpoint, one should of course
return RN(2σ q′).

Therefore, in all cases, we are able to find which value is
to be returned.

III. CONCLUSION

We have proposed a simple and easily implementable way
of getting a correctly-rounded result when performing scaled
Newton-Raphson divisions.

REFERENCES

[1] S. Boldo and M. Daumas. Representable correcting terms for possibly
underflowing floating point operations. In J.-C. Bajard and M. Schulte,
editors, Proceedings of the 16th Symposium on Computer Arithmetic,
pages 79–86. IEEE Computer Society Press, Los Alamitos, CA, 2003.

[2] M. Cornea, R. A. Golliver, and P. Markstein. Correctness proofs
outline for Newton–Raphson-based floating-point divide and square root
algorithms. In Koren and Kornerup, editors, Proceedings of the 14th
IEEE Symposium on Computer Arithmetic (Adelaide, Australia), pages
96–105. IEEE Computer Society Press, Los Alamitos, CA, April 1999.

[3] M. Cornea, J. Harrison, and P. T. P. Tang. Scientific Computing on
Itanium R○-based Systems. Intel Press, Hillsboro, OR, 2002.

[4] M. D. Ercegovac and T. Lang. Division and Square Root: Digit-
Recurrence Algorithms and Implementations. Kluwer Academic Publish-
ers, Boston, MA, 1994.

[5] J. Harrison. Formal verification of IA-64 division algorithms. In
M. Aagaard and J. Harrison, editors, Proceedings of the 13th International
Conference on Theorem Proving in Higher Order Logics, TPHOLs 2000,
volume 1869 of Lecture Notes in Computer Science, pages 234–251.
Springer-Verlag, 2000.

[6] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, August 2008. available at http://ieeexplore.
ieee.org/servlet/opac?punumber=4610933.

[7] W. Kahan. Lecture notes on the status of IEEE-754. PDF file accessible at
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF, 1996.

[8] P. Markstein. IA-64 and Elementary Functions: Speed and Precision.
Hewlett-Packard Professional Books. Prentice-Hall, Englewood Cliffs,
NJ, 2000.

[9] P. W. Markstein. Computation of elementary functions on the IBM RISC
System/6000 processor. IBM Journal of Research and Development,
34(1):111–119, January 1990.

[10] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-
Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol,
Damien Stehlé, and Serge Torres. Handbook of Floating-Point Arithmetic.
Birkhäuser Boston, 2010. ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1.,
ISBN 978-0-8176-4704-9.

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF

