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Abstract

We study both experimentally and theoretically the statistical properties of the energy exchanged
between two electrical conductors, kept at different temperature by two different heat reservoirs, and
coupled by the electric thermal noise. Such a system is ruled by the same equations as two Brownian
particles kept at different temperatures and coupled by an elastic force. We measure the heat flowing
between the two reservoirs, the thermodynamic work done by one part of the system on the other, and
we show that these quantities exhibit a long time fluctuation theorem. Furthermore, we evaluate the
fluctuating entropy, which satisfies a conservation law. These experimental results are fully justified by
the theoretically analysis. Our results give more insight into the energy transfer in the famous Feymann
ratchet widely studied theoretically but never in an experiment.
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1 Introduction

In the study of the out-of-equilibrium dynamics of small systems (Brownian particles[1, 2, 3, 4], molecular
motors [5], small devices [6], etc.) the role of thermal fluctuations is central. Indeed the thermodynamics
variables, such as work, entropy and heat, fluctuate and the study of their statistical properties is important
as it can provide several constrains on the system design and mechanisms[7, 8]. In recent years several
experiments have analyzed systems in contact with a single heat bath and driven out of equilibrium by
external forces [1, 2, 3, 4, 5, 6, 9, 10, 11]. On the other hand the important case in which the system is
driven out of equilibrium by a temperature gradient and the energy exchanges are produced only by the
thermal noise has been analyzed in many theoretical studies on model systems [12, 13, 14, 15, 16, 17, 18, 19]
but only a few times in very recent experimental studies because of the intrinsic difficulties of dealing with
large temperature differences in small systems [20, 21].

We report here an experimental and theoretical analysis of the energy exchanged between two conductors
kept at different temperature and coupled by the electric thermal noise. This system is probably the simplest
one to test recent ideas of stochastic thermodynamics, but in spite of its simplicity the interpretation of the
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observations proves far from elementary. We determine experimentally the heat flux, the out of equilibrium
variance as functions of the temperature difference, and a conservation law for the fluctuating entropy,
which we justify theoretically. We show that our system can be mapped into a mechanical one, where two
Brownian particles are kept at different temperatures and coupled by an elastic force [14, 17, 19]. Thus
our study gives more insight into the properties of the heat flux, produced by mechanical coupling, in the
famous Feymann ratchet [22, 23] widely studied theoretically [14] but never in an experiment. Our results
set strong constrains on the energy exchanged between coupled nano-systems kept at different temperature.
Therefore our investigation has implications well beyond the simple system we consider here.
The system analyzed in this article is inspired by the proof developed by Nyquist [24], who gave, in 1928,
a theoretical explanation of the measurements of Johnson [25] on the thermal noise voltage in conductors.
Nyquist’s explanation is based on equilibrium thermodynamics and considers the power exchanged by two
electrically coupled conductors, which are at same temperature T in an adiabatic environment. Imposing the
condition of thermal equilibrium he concluded correctly that the thermal noise voltage across a conductor
of resistance R has a power spectral density |η̃ω|2 = 4 kB T R, i.e. the Nyquist noise formula where kB is the
Boltzmann constant and T the temperature of the conductor. Notice that, in 1928, many years before the
proof of the fluctuation dissipation theorem (FDT), this was the second example, after the Einstein relation
for Brownian motion, relating the dissipation of a system to the amplitude of the thermal noise. Specifically,
in the Einstein relation it is the viscosity of the fluid which is related to the variance of the Brownian particles
positions, whereas in the Nyquist equation it is the variance of the voltage across the conductor which is
proportional to its resistance. Surprisingly, since 1928 nobody has analyzed the consequences of keeping the
two resistances, used in the Nyquist’s proof, at two different temperatures, when the Nyquist’s equilibrium
condition cannot be used. One is thus interested in measuring the statistical properties of the energy
exchanged between the two conductors via the electric coupling of the two thermal noises. In this article
we address this question both experimentally and theoretically and show the analogy with two Brownian
particles kept at different temperatures and coupled by an elastic force. The key feature in the system we
consider, is that the coupling between the two reservoirs is obtained only by either electrical or mechanical
thermal fluctuations.

In a recent letter [20] we presented several experimental results and we briefly sketched the theoretical
analysis concerning the system we consider in the present paper. In this extended article we want to give
a full description of the theoretical analysis and present new experimental results and the details of the
calibration procedure.

The paper is organized as follows: in section 2 we describe the experimental apparatus and the stochastic
equations governing the relevant dynamic and thermodynamic quantities. We also discuss the analogy with
two coupled Brownian particles. In section 3 we develop the theoretical analysis on the fluctuations of the
different forms of energy flowing across the system, and discuss the corresponding fluctuation theorems. In
section 4 we discuss the data analysis and the main experimental results on fluctuation theorems. Further-
more, we show experimental data confirming the validity of an entropy conservation law holding at any
time. Finally we conclude in section 5.

2 Experimental set-up and stochastic variables

Our experimental set-up is sketched in fig.1a). It is constituted by two resistances R1 and R2, which
are kept at different temperature T1 and T2 respectively. These temperatures are controlled by thermal
baths and T2 is kept fixed at 296K whereas T1 can be set at a value between 296K and 88K using the
stratified vapor above a liquid nitrogen bath. In the figure, the two resistances have been drawn with their
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Figure 1: a) Diagram of the circuit. The resistances R1 and R2 are kept at temperature T1 and T2 =
296K respectively. They are coupled via the capacitance C. The capacitances C1 and C2 schematize the
capacitance of the cables and of the amplifier inputs. The voltages V1 and V2 are amplified by the two low
noise amplifiers A1 and A2 [26]. b) The circuit in a) is equivalent to two Brownian particles (m1 and m2)
moving inside two different heat baths at T1 and T2. The two particles are trapped by two elastic potentials
of stiffness K1 and K2 and coupled by a spring of stiffness K (see text and eqs.1,2).

associated thermal noise generators η1 and η2, whose power spectral densities are given by the Nyquist
formula |η̃m|2 = 4kBRmTm, with m = 1, 2 (see eqs. (1)-(2) ). The coupling capacitance C controls the
electrical power exchanged between the resistances and as a consequence the energy exchanged between the
two baths. No other coupling exists between the two resistances which are inside two separated screened
boxes. The quantities C1 and C2 are the capacitances of the circuits and the cables. Two extremely low
noise amplifiers A1 and A2 [26] measure the voltage V1 and V2 across the resistances R1 and R2 respectively.
All the relevant quantities considered in this paper can be derived by the measurements of V1 and V2, as
discussed below.

2.1 Stochastic equations for the voltages

We now proceed to derive the equations for the dynamical variables V1 and V2. Furthermore, we will discuss
how our system can be mapped onto a system with two interacting Brownian particles, in the overdamped
regime, coupled to two different temperatures, see fig. 1-b). Let qm (m = 1, 2) be the charges that have
flowed through the resistances Rm, so the instantaneous current flowing through them is im = q̇m. A circuit
analysis shows that the equations for the charges are:

R1q̇1 = −q1
C2

X
+ (q2 − q1)

C

X
+ η1 (1)

R2q̇2 = −q2
C1

X
+ (q1 − q2)

C

X
+ η2 (2)

where ηm is the usual white noise: 〈ηi(t)ηj(t′)〉 = 2δijkBTiRjδ(t − t′), and where we have introduced the
quantity X = C2C1 + C (C1 + C2). Eqs. 1 and 2 are the same of those for the two coupled Brownian
particles sketched in fig.1b) when one regards qm as the displacement of the particle m, im as its velocity,
Km = 1/Cm as the stiffness of the spring m, K = 1/C as the coupling spring and Rm the viscosity. The
analogy with the Feymann ratchet can be made by assuming as done in ref.[14] that the particle m1 has an
asymmetric shape and on average moves faster in one direction than in the other one.

We now rearrange eqs. (1)-(2) to obtain the Langevin equations for the voltages, which will be useful in
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the following discussion. The relationships between the measured voltages and the charges are:

q1 = (V1 − V2)C + V1C1 (3)

q2 = (V1 − V2)C − V2C2. (4)

By plugging eqs. (3)-(4) into eqs.(1)-(2), and rearranging terms, we obtain

(C1 + C)V̇1 = CV̇2 +
1

R1
(η1 − V1), (5)

(C2 + C)V̇2 = CV̇1 +
1

R2
(η2 − V2). (6)

We rearrange these equations in a standard form, and obtain

V̇1 = f1(V1, V2) + σ11η1 + σ12η2 = f1(V1, V2) + ξ1 (7)

V̇2 = f2(V1, V2) + σ21η1 + σ22η2 = f2(V1, V2) + ξ2 (8)

where the “forces” acting on the circuits read

f1(V1, V2) = −
[
(C + C2)V1

R1X
+
CV2
R2X

]
, (9)

f2(V1, V2) = −
[
CV1
R1X

+
(C + C1)V2

R2X

]
, (10)

the coefficients σij read

σ11 =
C2 + C

XR1

R2σ12 = R1σ21 =
C

X

σ22 =
C1 + C

XR2
,

and the noises ξi introduced in eqs. (7)-(8) are now correlated
〈
ξiξ

′

j

〉
= 2θijδ(t− t′), where

θ11 =
kBT1(C2 + C)2

R1X2
+
kBT2C

2

R2X2
, (11)

θ12 =
kBT1C(C2 + C)

R1X2
+
kBT2C(C1 + C)

R2X2
, (12)

θ22 =
kBT1C

2

R1X2
+
kBT2(C1 + C)2

R2X2
, (13)

and θ12 = θ21.

2.2 Stochastic equations for work and heat exchanged between the two circuits

Two important quantities can be identified in the circuit depicted in fig. 1: the electric power dissipated in
each resistor, and the work exerted by one circuit on the other one. We start by considering the first quantity
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Qm, defined through the dissipation rate Q̇m = Vmim, where im is the current flowing in the resistance m.
As the voltages Vm can be measured, one can obtain the currents as im = iC − iCm , where

iC = C
(
V̇2 − V̇1

)
, iCm = CmV̇m, (14)

are the current flowing in the capacitance C and in Cm, respectively. Thus the total energy dissipated by
the resistance m in a time interval τ reads

Qm,τ =

∫ t0+τ

t0

im(t)Vm(t)dt =

∫ t0+τ

t0

Vm

[
CV̇m′ − (Cm + C)V̇m

]
dt, (15)

We see that in equation (15) we can isolate the term CVmV̇m′dt, denoting the work rate done by one
circuit on the other one, from which we obtain the integrated quantities

Wm,τ =

∫ t0+τ

t0

CVm(t)V̇m′(t)dt. (16)

and

∆Um,τ =
1

2
(Cm + C)(V 2

m(t+ τ)− V 2
m(t) (17)

The quantities Wm,τ can be thus identified as the thermodynamic work performed by the circuit m′ on
m [27, 28, 29]. As the two variables Vm are fluctuating voltages, the derived quantities Qm,τ and Wm,τ

fluctuate too.
By plugging eqs. (7)-(8) into the definitions of dissipated energy and work, eqs. (15) and (16), respectively,

we obtain the Langevin equations governing the time evolution of the two thermodynamic quantities:

Ẇm = CVmV̇m′ = CVm(fm′ + ξm′), (18)

Q̇m = Vmim = Vm

[
CV̇m′ − (Cm + C)V̇m

]
=
Vm
Rm

(Vm − ηm). (19)

It is instructive to reconsider the quantity Qm,τ in terms of the stochastic energetics [7]. If we introduce
the circuit total potential energy, defined as

U =
C1

2
V 2
1 +

C

2
(V1 − V2)

2 +
C2

2
V 2
2 =

C2q
2
1 + C(q1− q2)2 + C1q

2
2

2X
, (20)

by noticing that eqs.(1)-(2) can be written as Rmq̇m = −∂qmU + ηm, and following Sekimoto [7] we see that
we can write the dissipated energy as

Qm,τ = −
∫ t0+τ

t0

∂U

∂qm
dqm =

∫ t0+τ

t0

Vm
Rm

(Vm − ηm)dt, (21)

where we have expressed the charges in terms of the voltages by inverting eqs. (3)-(4). With the analogy of
the Brownian particles, depicted in fig. 1-b), we see that our definition of dissipated energy Qm corresponds
exactly to the work performed by the viscous forces and by the bath on the particle m, and it is consistent
with the stochastic thermodynamics definition [7, 8, 19, 27, 28, 29, 30]. Thus, the quantity Q1,τ (Q2,τ ) can
be interpreted as the heat flowing from the reservoir 2 to the reservoir 1 (from 1 to 2), in the time interval
τ , as an effect of the temperature difference.

6



Hence we have derived the set of Langevin equations, describing the time evolution of the dynamical vari-
ables for Vm, and of the thermodynamic variables Qm andWm. One expects that both these thermodynamic
quantities satisfy a fluctuation theorem (FT) of the type [13, 15, 19, 30, 31, 32]

ln
P (Em,τ )

P (−Em,τ )
= β12 Em,τΣ(τ) (22)

where Em,τ stands either for Wm,τ or Qm,τ , β12 = (1/T1 − 1/T2)/kB and Σ(τ) → 1 for τ → ∞. In order to
prove this relation, we need to discuss the statistics of the fluctuations of the quantity of interests, namely
Vm, Wm, and Qm.

3 Fluctuations of Vm, Wm and Qm

3.1 Probability distribution function for the voltages

We now study the joint probability distribution function (PDF) P (V1, V2, t), that the system at time t has
a voltage drop V1 across the resistor R1 and a voltage drop V2 across the resistor R2. As the time evolution
of V1 and V2 is described by the Langevin equations (7)-(8), it can be proved that the time evolution of
P (V1, V2, t) is governed by the Fokker-Planck equation [33]

∂tP (V1, V2, t) = L0P (V1, V2, t) = − ∂

∂V1
(f1P )−

∂

∂V2
(f2P ) + 2θ12

∂2

∂V1∂V2
P

+θ11
∂2

∂V 2
1

P + θ22
∂2

∂V 2
2

P (23)

We are interested in the long time steady state solution of eq. (23), which is time independent P (V1, V2, t→
∞) = Pss(V1, V2). As the deterministic forces in eqs. (7)-(8) are linear in the variables V1 and V2, such a
steady state solution reads

Pss(V1, V2) =
πe−mijViVj

√
detm

, (24)

where the sum over repeated indices is understood, and where the m matrix entries read

m11 =
Y
[
T2(C + C1)Y + C2R2(T1 − T2)

]

2kB [Y 2T1T2 + C2R1R2(T1 − T2)2]
,

m12 = m21 = −Y C[(C2 + C)R2T1 + (C1 + C)R1T2]

2kB [Y 2T1T2 + C2R1R2(T1 − T2)2]
,

m22 =
Y
[
T1(C + C2)Y − C2R1(T1 − T2)

]

2kB [Y 2T1T2 + C2R1R2(T1 − T2)2]
,

where we have introduced the quantity Y = [(C1 + C)R1 + (C2 + C)R2].
Such a solution can be obtained by replacing eq. (24) into eq. (23), and by imposing the steady state

condition ∂tP = 0. We are furthermore interested in the unconstrained steady state probabilities P1,ss(V1),
and P2,ss(V2), which are obtained as follows

P1,ss(V1) =

∫
dV2Pss(V1, V2) =

e
−

V 2
1

2σ2
1

√
2πσ21

(25)

P2,ss(V2) =

∫
dV1Pss(V1, V2) =

e
−

V 2
2

2σ2
2

√
2πσ22

(26)
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where the variances read

σ21 = kB
T1(C + C2)Y + (T2 − T1)C

2R1

XY
(27)

σ22 = kB
T2(C + C1)Y − (T2 − T1)C

2R2

XY
(28)

3.2 Average value and long time FT for W1

In eqs. (15)-(16) t0 denote the instant when one begins to measure the thermodynamic quantities. In the
following we will assume that the system is already in a steady state at that time and take t0 = 0 for
simplicity. We will discuss the case of W1 without loss of generality, the mathematical treatment for W2

being identical. We first notice that the dynamics of W1 is described by the Langevin equation (18): the
noise affecting W1 is CV1ξ2, which is thus correlated to the noises ξ1, ξ2 affecting V1 and V2 through the
diffusion matrix defined in eqs. (11)-(13). We introduce the joint probability distribution φ(V1, V2,W1, t):
the time evolution of such a PDF is described by the Fokker-Planck equation

∂tφ(V1, V2,W1, t) = − ∂

∂V1
(f1φ)−

∂

∂V2
(f2φ) + θ11

∂2

∂V 2
1

φ+ θ22
∂2

∂V 2
2

φ

+2θ12
∂2

∂V1∂V2
φ− C

∂

∂W1
(V1f2φ)

+θ12C

[
∂

∂V1

(
V1

∂

∂W1
φ

)
+

∂

∂W1

(
V1

∂

∂V1
φ

)]

+2θ22C
∂

∂V2

(
V1

∂

∂W1
φ

)
+ θ22(CV1)

2 ∂2

∂W 2
1

φ. (29)

We now introduce the generating function defined as ψ(V1, V2, λ, t) =
∫
dW1 exp(λW1)φ(V1, V2,W1, t), whose

dynamic is described by the Fokker-Planck equation

∂tψ(V1, V2, λ, t) = Lλψ, (30)

where the operator Lλ reads

Lλψ = − ∂

∂V1
(f1ψ)−

∂

∂V2
(f2ψ) + θ11

∂2

∂V 2
1

ψ + θ22
∂2

∂V 2
2

ψ + 2θ12
∂2

∂V1∂V2
ψ

−λθ12C
[
∂

∂V1
(V1ψ) +

(
V1

∂

∂V1
ψ

)]

−2θ22λC
∂

∂V2
(V1ψ) + λCV1(θ22λCV1 + f2)ψ. (31)

For the average value of the work, after a straightforward calculation, one finds

∂t 〈W1〉 =

[
∂λ∂t

∫
dV1dV2ψ(V1, V2, λ, t)

]

λ=0

=
C2kB(T2 − T1)

XY
, (32)

As we are interested in the large time limit of the unconstrained generating function, we notice that∫
dV1dV2ψ(V1, V2, λ, t) ∝ exp [tµ0(λ)], where µ0(λ) is the largest eigenvalue of the operator Lλ. Thus,
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proving that the unconstrained PDF P (W1, τ) =
∫
dV1dV2φ(V1, V2,W1, t) satisfies the FT (22) is equivalent

to prove that µ0(λ) exhibits the following symmetry:

µ0(λ) = µ0(−λ− β12). (33)

In order to prove such an equality, following [19] we introduce the operator

L̃λ = eHLλe
−H , (34)

where H(V1, V2) is some dimensionless Hamiltonian to be determined: thus this transformation corresponds
to a “rotation” of the operator Lλ, or more precisely L̃λ and Lλ are related by a unitary transformation.

Let’s consider an eigenvector ψn(V1, V2, λ) of the original operator Lλ, with eigenvalue µn(λ), then one
easily finds that the following equality holds

L̃λe
Hψn(V1, V2, λ) = eHLλe

−HeHψ(V1, V2, λ) = µn(λ)e
Hψ(V1, V2, λ), (35)

thus, Lλ and L̃λ have the same eigenvalues, only the eigenvectors are “rotated” by the operator exp(H).
Note that eq. (35) holds for any choice of H.

Our goal is still to prove eq. (33). By choosing

H =
C1 + C

2kBT1
V 2
1 − C

kBT2
V1V2 +

C2 + C

2kBT2
V 2
2 . (36)

one finds that the following equality holds

L̃λ = L∗

−λ−β12
, (37)

where L∗

λ is the adjoint operator of Lλ. From the above discussion we know that Lλ and L̃λ have the same
eigenvalues, while eq. (37) shows that L̃λ and L∗

−λ−β12
are the same operator, and so that Lλ and L∗

−λ−β12

have the same spectra of eigenvalues, and in particular identical maximal eigenvalues. Thus we conclude
that µ0(λ) = µ0(−λ− β12), which is the FT (22) in the form of eq. (33).

3.3 Average value and long time FT for Qm

We now consider the dissipated heat, defined through its time derivative, as given by eq. (19). Similarly
to what we have done for W1, we now introduce the joint PDF π(V1, V2, Q1, t), and the corresponding
generating function χ(V1, V2, λ, t) =

∫
dQ1 exp(λQ1)π(V1, V2, Q1, t), obtaining the Fokker-Planck equation

∂tχ(V1, V2, λ, t) = Kλχ, (38)

where the operator Kλ reads

Kλχ = − ∂

∂V1
(f1χ)−

∂

∂V2
(f2χ) + θ11

∂2

∂V 2
1

χ+ θ22
∂2

∂V 2
2

χ+ 2θ12
∂2

∂V1∂V2
χ

+λr11

[
∂

∂V1
(V1χ) +

(
V1

∂

∂V1
χ

)]

+2λr12
∂

∂V2
(V1χ) + λV 2

1

(
λr22 +

1

R1

)
χ, (39)
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with

r11 = k1θ11 + k2θ12,

r12 = k1θ12 + k2θ22,

r22 = k21θ11 + k22θ22 + 2k1k2θ12,

(40)

and k1 = (C1 +C), k2 = −C. Thus, after a straightforward calculation, we obtain the heat rate as given by

∂t 〈Q1〉 =

[
∂λ∂t

∫
dV1dV2χ(V1, V2, λ, t)

]

λ=0

=
C2kB(T2 − T1)

XY
. (41)

The last result is identical to eq. (32), thus the averages of the two energies are equal 〈W1(t)〉 = 〈Q1(t)〉. This
can be easily understood by noticing that Qm,τ andWm,τ differ by a term proportional to

∫
VmV̇mdt′ = ∆V 2

m,
which vanishes on average in the steady state.

We can now relate the variance of V1 and V2 to the mean heat flux: using eq.(41) we can express eq. (27)
and eq. (28) in the following way:

σ2m = σ2m,eq+ < Q̇m > Rm (42)

where σ2m,eq = kBTm(C + Cm′)/X is the equilibrium value of σ2m, when Tm = Tm′ , and so < Q̇m >= 0.
Equation (42) represents an extension to the two temperatures case of the Harada-Sasa relation [35], which
relates the difference of the equilibrium and out-of-equilibrium power spectra to the heat fluxes.

Following the same route described in section 3.2, we now want to prove the FT for the unconstrained
heat distribution PDF P (Q1, τ) =

∫
dV1dV2π(V1, V2, Q1, t) satisfies the FT (22), which is equivalent to the

requirement
ν0(λ) = ν0(β12 − λ), (43)

where ν0(λ) is the largest eigenvalue of the operator Kλ, and so in the large time limit one expects∫
dV1dV2χ(V1, V2, λ, t) ∝ exp [ν0(λ)t] . We introduce the transformation

K̃λ = eHKλe
−H , (44)

where the “Hamiltonian” generator of the transformation reads H = U/(kBT2) and where U is given by
eq. (20). We then find, after a lengthy but straightforward calculation that K̃λ = K∗

β12−λ where K∗

λ is the
adjoint operator of Kλ. Thus we infer that Kλ and K∗

β12−λ have the same spectra of eigenvalues, and in
particular identical maximal eigenvalues, and so eq. (43) and the FT (22) follow.

4 Analysis of the experimental data

4.1 Experimental details

The electric systems and amplifiers are inside a Faraday cage and mounted on a floating optical table to
reduce mechanical and acoustical noise. The resistance R1, which is cooled by liquid Nitrogen vapors,
changes of less than 0.1% in the whole temperature range. Its temperature is measured by a PT1000 which
is inside the same shield of R1. The signal V1 and V2 are amplified by two custom designed JFET amplifiers
[26] with an input current of 1pA and a noise of 0.7nV/

√
Hz at frequencies larger than 1Hz and increases

at 8nV/
√
Hz at 0.1Hz, see fig. 2. The resistances R1 and R2 have been used as input resistances of the
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amplifiers. The two signals V1 and V2 are amplified 104 times and the amplifier outputs are filtered (at
4kHz to avoid aliasing) and acquired at 8kHz by 24 bits-ADC. We used different sets of C1, C2 and C.
The values of C1 and C2 are essentially set by the input capacitance of the amplifiers and by the cable
length 680pF < C1 < 780pF and 400pF < C2 < 500pF . Instead C has been changed from 100pF to
1000pF . In the following we will take C = 100pF,C1 = 680pF,C2 = 420pF and R1 = R2 = 10MΩ, if not
differently stated. The longest characteristic time of the system is Y = [(C1 + C)R1 + (C2 + C)R2] which
for the mentioned values of the parameters is : Y = 13ms.

4.1.1 Check of the calibration

When T1 = T2 = 296K the system is in equilibrium and exhibits no net energy flux between the two
reservoirs. This is indeed the condition imposed by Nyquist to prove his formula, and we use it to check all
the values of the circuit parameters. Applying the Fluctuation-Dissipation-Theorem (FDT) to the circuit
in fig.1a), one finds the Nyquist’s expression for the variance of V1 and V2 at equilibrium, which reads
σ2m,eq(Tm) = kBTm(C + Cm′)/X with X = C2C1 +C (C1 +C2), m

′ = 2 if m = 1 and m′ = 1 if m = 2. For
example one can check that at T1 = T2 = 296 K, using the above mentioned values of the capacitances and
resistances, the predicted equilibrium standard deviations of V1 and V2 are 2.33µV and 8.16µV respectively.
These are indeed the measured values with an accuracy better than 1%. The equilibrium spectra of V1 and
V2 at T1 = T2 used for calibration of the capacitances are:

Sp1(ω) =
4kBT1R1[1 + ω2(C2R1R2 +R2

2(C2 + C)2)]

(1− ω2X R1R2)2 + ω2Y 2
, (45)

Sp2(ω) =
4kBT2R2[1 + ω2(C2R1R2 +R2

1(C1 + C)2)]

(1− ω2X R1R2)2 + ω2Y 2
. (46)

This spectra can be easily obtained by applying FDT to the circuit of fig.1.
The two computed spectra are compared to the measured ones in fig. 2a). This comparison allows us to

check the values of the capacitances C1 and C2 which depend on the cable length. We see that the agreement
between the prediction and the measured power spectra is excellent and the global error on calibration is of
the order of 1%. This corresponds exactly to the case discussed by Nyquist in which the two resistances at
the same temperature are exchanging energy via an electric circuit (C in our case).

4.1.2 Noise spectrum of the amplifiers

The noise spectrum of the amplifiers A1 and A2 (Fig.1a), measured with a short circuit at the inputs, is
plotted in fig.2a) and compared with the spectrum Sp1 of V1 at T1 = 88K. We see that the useful signal is
several order of magnitude larger than the amplifiers noise.

4.2 The statistical properties of Vm

4.2.1 The power spectra and the variances of Vm out-of-equilibrium

When T1 6= T2 the power spectra of V1 and V2 are:

Sp1(ω) =
4kBT1R1[1 + ω2(C2R1R2 +R2

2(C2 + C)2)]

(1− ω2X R1R2)2 + ω2Y 2
+

4kB(T2 − T1)ω
2C2R2

1R2

(1− ω2X R1R2)2 + ω2Y 2
(47)

Sp2(ω) =
4kBT2R2[1 + ω2(C2R1R2 +R2

1(C1 + C)2)]

(1− ω2X R1R2)2 + ω2Y 2
+

4kB(T1 − T2)ω
2C2R2

2R1

(1− ω2X R1R2)2 + ω2Y 2
(48)
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Figure 2: a) The power spectra Sp1 of V1 measured at T1 = 88K (blue line) (C = 100pF,C1 = 680pF,C2 =
430pF ) is compared to the spectrum of the amplifier noise. b) The equilibrium spectra Sp1(red line) and
Sp2 (green line) measured at T1 = T2 = 296K are compared with prediction of eqs. (45) and (46) in order
to check the values of the capacitances (C1, C2).

These equations have been obtained by Fourier transforming the stochastic equations for the voltages
eqs. (7)–(8), solving for Ṽ1(ω) and Ṽ2(ω) and computing the modula. The integral of eqs. (47) and (48)
gives the variances of Vm (as given by eq. (27)-(28)) directly computed from the distributions. Notice that
the spectra eqs. (47) and (48) contains the equilibrium parts given by eqs. (45) and (46) and an out of
equilibrium component proportional to the temperature difference. A comparison of eqs. (47)–(48) to the
experimental power spectra is shown in fig. 3a). In fig. 3b) we compare the measured probability distribution
function (PDF) of V1 and V2 with the equilibrium and the out-of-equilibrium distributions as computed by
using the theoretical predictions eqs. (27)–(28) for the variance.

4.2.2 The joint probability of V1 and V2

As discussed in sections 2 and 3, all the relevant thermodynamic quantities can be sampled once one has
measured the voltage across the resistors V1, V2. The fluctuations of these quantities are thus to be fully
characterized before one can proceed and study the fluctuations of all the derived thermodynamic quantities.
Thus, we first study the joint probability distribution P (V1, V2), which is plotted in fig. 4a) for T1 = T2 and
in fig. 4b) for T1 = 88K. The fact that the axis of the ellipses defining the contours lines of P (V1, V2) are
inclined with respect to the x and y axis indicates that there is a certain correlation between V1 and V2.
This correlation, produced by the electric coupling, plays a major role in determining the mean heat flux
between the two reservoirs, as we discuss below. We are mainly interested in the out-of-equilibrium case,
when T1 6= T2, and in the following, we will characterize the heat flux and the entropy production rate, and
discuss how the variance of V1 an V2 are modified by the presence of a non-zero heat flux.

4.3 Heat flux fluctuations

In fig. 5a) we show the probability density function P (Q1,τ ), at various temperatures: we see that Q1,τ is
a strongly fluctuating quantity, whose PDF P (Q1,τ ) has long exponential tails. Notice that although for
T1 < T2 the mean value of Q1,τ is positive, instantaneous negative fluctuations may occur, i.e., sometimes
the heat flux is reversed. The mean values of the dissipated heat are expected to be linear functions of the
temperature difference ∆T = T2−T1, i.e. 〈Q1,τ 〉 = Aτ ∆T , where A = kBC

2/XY is a parameter dependent
quantity, that can be obtained by eq. (41). This relation is confirmed by our experimental results, as
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Figure 3: a) The power spectra Sp1 of V1 and Sp2 of V2 measured at T1 = 120K and T2 = 296K
(C = 100pF,C1 = 680pF,C2 = 430pF ) are compared with the prediction of eq. (47) and (48) (dashed lines)
The measured PDF of V1 and V2 are compared with the theoretical predictions in equilibrium and out of
equilibrium obtained using the variance computed from eq. (42). b) The corresponding Probability Density
Function P (V1) of V1 (green line) and P (V2) of V2 (blue line) measured at T1 = 120K and T2 = 296K.
Dotted lines are the out-of-equilibrium PDF, whose variance is estimated from the measure of the heat flux
(see fig.5) and eq.42. The continuous red line is the equilibrium P (V2) at T1 = T2 = 296K and the black
continuous line corresponds to the equilibrium P (V1) at T1 = T2 = 120K.

shown in fig. 5b. Furthermore, the mean values of the dissipated heat satisfy the equality 〈Q2〉 = −〈Q1〉,
corresponding to an energy conservation principle: the power extracted from the bath 2 is dissipated into
the bath 1 because of the electric coupling.

As we discuss in section 3.3, the mean heat flow is related to a change in the variances σ2m(Tm) of Vm
with respect to the equilibrium value σ2m,eq(Tm), see eq. (42). The experimental verification of eq. (42)

is shown in the inset of fig. 5b) where the values of
〈
Q̇m

〉
directly estimated from the experimental data

(using the steady state P (Qm)) are compared with those obtained from the difference of the variances of V1
measured in equilibrium and out-of-equilibrium. The values are comparable within the error bars and show
that the out-of-equilibrium variances are modified only by the heat flux.

4.4 Fluctuation theorem for work and heat

As the system is in a stationary state, we have 〈Wm,τ 〉 = 〈Qτ,m〉. Instead the comparison of the pdf of
Wm,τ with those of Qτ,m, measured at various temperatures, presents several interesting features. In fig.
6(a) we plot P (W1,τ ), P (−W2,τ ), P (Q1,τ ) and P (−Q2,τ ) measured in equilibrium at T1 = T2 = 296K
and τ ≃ 0.1s ≃ 10Y . We immediately see that the fluctuations of the work are almost Gaussian whereas
those of the heat presents large exponential tails. This well known difference [28] between P (Qm,τ ) and
P (Wm, τ) is induced by the fact that Qm,τ depends also on ∆Um,τ (eq.17), which is the sum of the square
of Gaussian distributed variables, thus inducing exponential tails in P (Qm,τ ). In fig. 6(a) we also notice that
P (W1,τ ) = P (−W2,τ ) and P (Q1,τ ) = P (−Q2,τ ), showing that in equilibrium all fluctuations are perfectly
symmetric. The same pdfs measured in the out of equilibrium case at T1 = 88K are plotted in fig. 6(b). We
notice here that in this case the behavior of the pdfs of the heat is different from those of the work. Indeed
although 〈Wm,τ 〉 > 0 we observe that P (W1,τ ) = P (−W2,τ ), while P (Q1,τ ) 6= P (−Q2,τ ). Indeed the shape
of P (Q1,τ ) is strongly modified by changing T1 from 296K to 88K, whereas the shape of P (−Q2,τ ) is slightly
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Figure 4: The joint probability log10 P (V1, V2) measured at T1 = 296K equilibrium (a) and out of equilibrium
T1 = 88K(b). The color scale is indicated on the colorbar on the right side.

modified by the large temperature change, only the tails of P (−Q2,τ ) presents a small asymmetry testifying
the presence of a small heat flux. The fact that P (Q1,τ ) 6= P (−Q2,τ ) whereas P (W1,τ ) = P (−W2,τ ) can be
understood by noticing that Qm,τ = Wm,τ − ∆Um,τ . Indeed ∆Um,τ (eq.17) depends on the values of Cm

and V 2
m. As C1 6= C2 and σ2 ≥ σ1, this explains the different behavior of Q1 and Q2. Instead Wm depends

only on C and the product V1 V2.
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Figure 5: a) The probability P (Q1,τ ) measured at T1 = 296K (blue line) equilibrium and T1 = 88K
(magenta line) out of equilibrium. Notice that the peak of the P (Q1,τ ) is centered at zero at equilibrium
and shifted towards a positive value out of equilibrium. The amount of the shift is very small and is
∼ kB(T2 − T1). b) The measured mean value of 〈Q1,τ 〉 is a linear function of (T2 − T1). The red points
correspond to measurements performed with the values of the capacitance C1, C2, C given in the text and
τ = 0.2s. The other symbols and colors pertain to different values of these capacitance and other τ : (black
◦) τ = 0.4s, C = 1000pF , (green ⊳) τ = 0.1s, C = 100pF , (magenta +) τ = 0.5s, C = 100pF . The values of
〈Q1,τ 〉 have been rescaled by the parameter dependent theoretical prefactor A, which allows the comparison
of different experimental configurations. The continuous blue line with slope 1 is the theoretical prediction
of eq. 41. In the inset the values of < Q̇1 > (at C = 1000pF ) directly measured using P (Q1) (blue square)
are compared with those (red circles) obtained from the eq. (42).

We have studied whether our data satisfy the fluctuation theorem as given by eq. (22) in the limit of
large τ . It turns out that the symmetry imposed by eq. (22) is reached for rather small τ for W . Instead it
converges very slowly for Q. We only have a qualitative argument to explain this difference in the asymptotic
behavior: by looking at the data one understands that the slow convergence is induced by the presence of
the exponential tails of P (Q1,τ ) for small τ .

To check eq. 22, we plot in fig. 6c) the symmetry function Sym(E1,τ ) = ln
P (E1,τ )
P (−E1,τ )

as a function of

E1,τ/(kBT2) measured at different T1, but τ = 0.1s for Sym(W1,τ ) and τ = 2s ≃ 200Y for Sym(Q1,τ ).
Indeed for Sym(Q1,τ ) reaches the asymptotic regime only for τ < 2s. We see that Sym(W1,τ ) is a linear
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function of W1,τ/(kBT2) at all T1. These straight lines have a slope α(T1) which, according to eq.22 should
be (β12kBT2). In order to check this prediction we fit the slopes of the straight lines in fig.22c). From the
fitted α(T1) we deduce a temperature Tfit = T2/(α(T1)+1) which is compared to the measured temperature
T1 in fig.22d). In this figure the straight line of slope 1 indicates that Tfit ≃ T1 within a few percent. These
experimental results indicate that our data verify the fluctuation theorem, eq.22, for the work and the heat
but that the asymptotic regime is reached for much larger time for the latter.
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Figure 6: a) Equilibrium: P (Wm,τ ) and P (Qm,τ ), measured in equilibrium at T1 = T2 = 296K and
τ = 0.1s, are plotted as functions of E, where E stands either for W or Q. Notice that, being the system
in equilibrium P (W1,τ ) = P (−W2,τ ), P (Q1,τ ) = P (−Q2,τ ). b) Out of equilibrium: same distributions as in
a) but the PDFs are measured at T1 = 88K, T2 = 296K and τ = 0.1s. Notice that in out of equilibrium
P (W1,τ ) = P (−W2,τ ) but P (Q1,τ ) 6= P (−Q2,τ ). The reason of this difference is explained in the text. c)
The symmetry function Sym(E1,τ ), measured a various T1 is plotted as a function of E1 (W1 or Q1). The
theoretical slope of these straight lines is T2/T1 − 1. d) The temperature Tfit estimated from the slopes of
the lines in c) is plotted as a function of the T1 measured by the thermometer. The slope of the line is 1
showing that Tfit ≃ T1 within a few percent.

4.5 Statistical properties of entropy

We now turn our attention to the study of the entropy produced by the total system, circuit plus heat
reservoirs. We consider first the entropy ∆Sr,τ due to the heat exchanged with the reservoirs, which reads
∆Sr,τ = Q1,τ/T1 + Q2,τ/T2. This entropy is a fluctuating quantity as both Q1 and Q2 fluctuate, and
its average in a time τ is 〈∆Sr,τ 〉 = 〈Qr,τ 〉 (1/T1 − 1/T2) = Aτ(T2 − T1)

2/(T2 T1). However the reservoir
entropy ∆Sr,τ is not the only component of the total entropy production: one has to take into account
the entropy variation of the system, due to its dynamical evolution. Indeed, the state variables Vm also
fluctuate as an effect of the thermal noise, and thus, if one measures their values at regular time interval,
one obtains a “trajectory” in the phase space (V1(t), V2(t)). Thus, following Seifert [34], who developed
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this concept for a single heat bath, one can introduce a trajectory entropy for the evolving system Ss(t) =
−kB logP (V1(t), V2(t)), which extends to non-equilibrium systems the standard Gibbs entropy concept.
Therefore, when evaluating the total entropy production, one has to take into account the contribution over
the time interval τ of

∆Ss,τ = −kB log

[
P (V1(t+ τ), V2(t+ τ))

P (V1(t), V2(t))

]
. (49)

It is worth noting that the system we consider is in a non-equilibrium steady state, with a constant external
driving ∆T . Therefore the probability distribution P (V1, V2) (as shown in fig. 4b)) does not depend explicitly
on the time, and ∆Ss,τ is non vanishing whenever the final point of the trajectory is different from the initial
one: (V1(t+τ), V2(t+τ)) 6= (V1(t), V2(t)). Thus the total entropy change reads ∆Stot,τ = ∆Sr,τ+∆Ss,τ , where
we omit the explicit dependence on t, as the system is in a steady-state as discussed above. This entropy
has several interesting features. The first one is that 〈∆Ss,τ 〉 = 0, and as a consequence 〈∆Stot〉 = 〈∆Sr〉
which grows with increasing ∆T . The second and most interesting result is that independently of ∆T and
of τ , the following equality always holds:

〈exp(−∆Stot/kB)〉 = 1, (50)

for which we find both experimental evidence, as discussed in the following, and provide a theoretical proof
in appendix A. Equation (50) represents an extension to two temperature sources of the result obtained
for a system in a single heat bath driven out-of-equilibrium by a time dependent mechanical force [34,
4] and our results provide the first experimental verification of the expression in a system driven by a
temperature difference. Eq. (50) implies that 〈∆Stot〉 ≥ 0, as prescribed by the second law. From symmetry
considerations, it follows immediately that, at equilibrium (T1 = T2), the probability distribution of ∆Stot
is symmetric: Peq(∆Stot) = Peq(−∆Stot). Thus Eq. (50) implies that the probability density function
of ∆Stot is a Dirac δ function when T1 = T2, i.e. the quantity ∆Stot is rigorously zero in equilibrium,
both in average and fluctuations, and so its mean value and variance provide a measure of the entropy
production. The measured probabilities P (∆Sr) and P (∆Stot) are shown in fig. 7a). We see that P (∆Sr)
and P (∆Stot) are quite different and that the latter is close to a Gaussian and reduces to a Dirac δ function in
equilibrium, i.e. T1 = T2 = 296K (notice that, in fig.7a, the small broadening of the equilibrium P (∆Stot)
is just due to unavoidable experimental noise and discretization of the experimental probability density
functions). The experimental measurements satisfy eq. (50) as it is shown in fig. 7b). It is worth to note that
eq. (50) implies that P (∆Stot) should satisfy a fluctuation theorem of the form log[P (∆Stot)/P (−∆Stot)] =
∆Stot/kB, ∀τ,∆T , as discussed extensively in reference [8, 36]. We clearly see in fig.7c) that this relation
holds for different values of the temperature gradient. Thus this experiment clearly establishes a relationship
between the mean and the variance of the entropy production rate in a system driven out-of-equilibrium by
the temperature difference between two thermal baths coupled by electrical noise. Because of the formal
analogy with Brownian motion the results also apply to mechanical coupling as discussed in the following.

5 Conclusions

We have studied experimentally and theoretically the statistical properties of the energy exchanged between
two heat baths at different temperatures which are coupled by electric thermal noise. We have measured
the heat flux, the thermodynamic work and the total entropy, and shown that each of these quantities
exhibits a FT, in particular we have shown the existence of a conservation law for entropy which is not
asymptotic in time. Our results hold in full generality since the electric system considered here is ruled by
the same equations as for two Brownian particles, held at different temperatures and mechanically coupled
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Figure 7: a) The probability P (∆Sr) (dashed lines) and P (∆Stot) (continuous lines) measured at T1 = 296K
(blue line) which corresponds to equilibrium and T1 = 88K (green lines) out of equilibrium. Notice that
both distributions are centered at zero at equilibrium and shifted towards positive value in the out-of-
equilibrium. b) 〈exp(−∆Stot)〉 as a function of T1 at two different τ = 0.5s and τ = 0.1s. c) Symmetry
function Sym(∆Stot) = log[P(∆Stot)/P(−∆Stot)] as a function of ∆Stot. The black straight line of slope 1
corresponds to the theoretical prediction.

by a conservative potential. Therefore these results set precise constraints on the energy exchanged between
coupled nano and micro-systems held at different temperatures. Our system can be easily scaled to include
more than two heat reservoirs, and more electric elements to mimic more complex dynamics in a system
of Brownian particles. We thus believe that our study can represent the basis for further investigation in
out-of-equilibrium physics.

Acknowledgments

This work has been partially supported by the French Embassy in Denmark through the French-Danish
scientific co-operation program, by ESF network Exploring the Physics of Small Devices and by the ERC
contract OUTEFLUCOP. AI gratefully acknowledges financial support from the Danish Research Council
(FNU) through the project ”Manipulating small objects with light and heat”.

A Entropy conservation law

We now turn our attention to eq. (2), in the main text, and provide a formal proof for it. In the present
appendix we provide a formal proof of eq. (50). Let’s divide the time into small intervals ∆t, and let
V = (V1, V2) denote the system’s stat at time t, and V′ = (V1+∆V1, V2+∆V2) its state at time t+∆t. Let
PF (V → V′|V, t) be the probability that the system undergoes a transition from V to V′ provided that
its state at time t is V, and let PR(V

′ → V|V′, t + ∆t) be the probability of the time-reverse transition.
By noticing that the time evolution of the dynamic variables Vm is ruled by eqs. (7)-(8), we find that the
probability of the forward trajectory can be written as

PF (V → V′|V, t) =

∫
dη1dη2 δ(∆V1 −∆t · (f1(V1, V2) + σ11η1 + σ12η2))

×δ(∆V2 −∆t · (f2(V1, V2) + σ21η1 + σ22η2))p1(η1)p2(η2), (51)

where δ(x) is the Dirac delta function, and pm(ηm) is the probability distribution of the m-th Gaussian
noise

pm(ηm) = exp

[
− η2m∆t

4RmkBT

]√
∆t

4πRmkBTm
. (52)
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Expressing the Dirac delta in Fourier space δ(x) = 1/(2π)
∫
dq exp(iqx), eq. (51) becomes

PF (V → V′|V, t) =

∫
dq1dq2
(2π)2

exp [ı(q1∆V1 + q2∆V2)]

∫ ∏

m

dηm e
∆t

[

ıqm(fm+σm1η1+σm2η2)−
η2m

4RmkBT

]

(53)

= exp

{
− ∆t

4kBT1T2

[
C2
1R1T2(V̇1 − f1)

2 + C2
2R2T1(V̇2 − f2)

2

+2C(V̇1 − f1 − V̇2 + f2)(C1R1T2(V̇1 − f1)− C2R2T1(V̇2 − f2))

+C2(R2T1 +R1T2)(V̇1 − f1 − V̇2 + f2)
2
]} X

4πkB∆t

√
R1R2

T1T2
; (54)

where we have taken ∆Vm/∆t ≃ V̇m. A similar calculation for the reverse transition gives

PR(V
′ → V|V′, t+∆t) =

∫
dη1dη2 δ(∆V1 +∆t(f1(V ′

1 , V
′

2) + σ11η1 + σ12η2))

×δ(∆V2 +∆t(f2(V
′

1 , V
′

2) + σ21η1 + σ22η2))p1(η1)p2(η2) (55)

= exp

{
− ∆t

4kBT1T2

[
C2
1R1T2(V̇1 + f1)

2 + C2
2R2T1(V̇2 + f2)

2

+2C(V̇1 + f1 − V̇2 − f2)(C1R1T2(V̇1 + f1)− C2R2T1(V̇2 + f2))

+C2(R2T1 +R1T2)(V̇1 + f1 − V̇2 − f2)
2
]} X

4πkB∆t

√
R1R2

T1T2
. (56)

We now consider the ratio between the probability of the forward and backward trajectories, and by substi-
tuting the explicit definitions of f1(V1, V2) and f2(V1, V2), as given by eqs. (9)-(10), into eqs. (54) and (56),
we finally obtain

log
PF (V → V′|V, t)

PR(V′ → V|V′, t+∆t)
= −∆t

(
V1

(C1 + C)V̇1 − CV̇2
kBT1

+ V2
(C2 + C)V̇2 − CV̇1

kBT2

)
= ∆t

(
Q̇1

kBT1
+

Q̇2

kBT2

)
,

(57)
where we have exploited eq. (19) in order to obtain the rightmost equality. Thus, by taking a trajectory
V → V′ over an arbitrary time interval [t, t+ τ ], and by integrating the right hand side of eq. (57) over such
time interval, we finally obtain

kB log
PF (V → V′|V, t)

PR(V′ → V|V′, t+ τ)
=

(
Q1

T1
+
Q2

T2

)
= ∆Sr,τ (58)

We now note that the system is in an out-of-equilibrium steady state characterized by a PDF Pss(V1, V2),
and so, along any trajectory connecting two points in the phase space V and V′ the following equality holds

exp [∆Stot/kB] = exp
[
(∆Sr,τ +∆Ss,τ)/kB

]

=
PF (V → V′|V, t)Pss(V)

PR(V′ → V|V′, t+ τ)Pss(V′)
, (59)

where we have exploited eq. (58), and the definition of ∆Ss,τ as given in eq. (49). Thus we finally obtain

PF (V → V′|V, t)Pss(V) exp [−∆Stot/kB] = PR(V
′ → V|V′, t+ τ)Pss(V

′) (60)
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and summing up both sides over all the possible trajectories connecting any two points V, V′ in the phase
space, and exploiting the normalization condition of the backward probability, namely

∑

V′,V

PR(V
′ → V|V′, t+ τ)Pss(V

′) = 1, (61)

one obtains eq. (50). It is worth noting that the explicit knowledge of Pss(V) is not required in this proof.
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