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Université de Lyon and CNRS, UMPA, UMR-CNRS 5669, ENS-Lyon, 46, allée

d’Italie, 69364 Lyon Cedex 07 - France.

E-mail: Cedric.Bernardin@umpa.ens-lyon.fr

Gabriel Stoltz
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Abstract. We introduce a class of one dimensional deterministic models of energy-

volume conserving interfaces. Numerical simulations show that these dynamics are

genuinely super-diffusive. We then modify the dynamics by adding a conservative

stochastic noise so that it becomes ergodic. System of conservation laws are derived

as hydrodynamic limits of the modified dynamics. Numerical evidence shows these

models are still super-diffusive. This is proven rigorously for harmonic potentials.
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1. Introduction

Over the last decade, transport properties of one-dimensional systems consisting of

coupled oscillators on a lattice have been the subject of many theoretical and numerical

studies, see the review papers [5, 8, 28]. Despite many efforts, our knowledge of the

fundamental mechanisms necessary and/or sufficient to have a normal diffusion remains

very limited. Nevertheless, it has been recognized that conservation of momentum plays

a major role and numerical simulations provide a strong evidence of the fact that one

dimensional chains of anharmonic oscillators conserving momentum are super-diffusive.

In this paper we propose a new class of models for which anomalous diffusion

is observed. The system under investigation presents several analogies with standard

chains of oscillators, but, and it is our main motivation, has a simpler mathematical

structure.

1.1. Description of the model

Let U and V be two potentials on R and consider the Hamiltonian system (ω(t))t≥0 =

( r(t),p(t) )t≥0 described by the equations of motion

dpx

dt
= V ′(rx+1) − V ′(rx),

drx

dt
= U ′(px) − U ′(px+1), x ∈ Z, (1)

where px is the momentum of particle x, qx its position and rx = qx − qx−1 the

“deformation”. Standard chains of oscillators are recovered for a quadratic kinetic

energy U(p) = p2/2. The dynamics conserves three physical quantities: the total

momentum
∑

x px, the total deformation
∑

x rx and the energy
∑

x Ex with Ex =

V (rx) + U(px). Consequently, every product probability measure νβ,λ,λ′ defined by

dνβ,λ,λ′(η) =
∏

x∈Z

Z(β, λ, λ′)−1 exp {−βEx − λpx − λ′rx} drx dpx (2)

is invariant under the evolution. For later purposes, let us also introduce the short-hand

notation

εx =




Ex

px

rx


 , u =




β

λ

λ′


 , ε̄ =




νβ,λ,λ′(E0)

νβ,λ,λ′(p0)

νβ,λ,λ′(r0)


 .

In this paper, we are mainly interested in the case U = V (except for instance in

Section 4.4), which has the advantage of introducing more symmetries into the problem.

The state of the system at time t is then more conveniently described by the variable

η(t) = {ηx(t);x ∈ Z} ∈ R
Z with η2x−1 = rx and η2x = px. The dynamics can be

rewritten as:

dηx(t) =
(
V ′(ηx+1) − V ′(ηx−1)

)
dt. (3)

The system can therefore also be interpreted as a fluctuating interface where the

algebraic volume of the interface at site x ∈ Z is given by ηx and the energy by V (ηx).

We focus our study on the (anomalous) diffusion of the energy. The three quantities,
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momentum
∑

x η2x, deformation
∑

x∈Z
η2x+1 and energy

∑
x∈Z

V (ηx)), are conserved

but, for reasons which will become clear later, our interest lies only in the “volume”∑
x∈Z

ηx and in the energy.

1.2. Hydrodynamic limit

Energy transport properties depend strongly on the chosen time-scale. The first natural

scale to consider is the hyperbolic scale where the system is followed on long times Nt,

the space being renormalized by a factor N−1, with N → ∞.

To this end, we define the empirical energy/momentum/deformation measure as

follows:

πN(t, dq) = N−1
∑

x∈Z

εx(tN) δx/N(dq), q ∈ R. (4)

At time t = 0, this measure is supposed to converge in probability to some macroscopic

profile Π0(q) dq which has a density w.r.t. the Lebesgue measure. If we assume

that a local equilibrium hypothesis holds, it is not difficult to show that the expected

macroscopic evolution equation for Π(t, q) dq = limN→∞ πN(t, dq) is given by a triplet

of compressible Euler equations:

∂tΠ + ∂qI(Π) = 0, Π(0, ·) = Π0(·), (5)

where I(Π) ∈ R
3 is the macroscopic current whose explicit expression is not important

here. Unfortunately, proving the local equilibrium hypothesis for (1) is out of the

range of the current mathematical techniques. The main difficulty comes from our

inability to show that the dynamics is ergodic (in the sense of Definition 1 below).

If the ergodicity is proved, in the time interval where (5) has a smooth solution, the

relative entropy method of Yau (see [43]) can be adapted to show that the system

has (5) as a hydrodynamic limit. Hence, the problem can be reduced to proving the

ergodic behavior of the underlying dynamics. Deriving the convergence to (5) after the

shocks is considerably more difficult since even the concept of a solution to a system of

conservation laws is not fully understood.

To overcome the above mentioned lack of ergodicity of deterministic systems, it

has been proposed to add a stochastic perturbation to the dynamics. The theory

of stochastic perturbations of Hamiltonian dynamics has a long history. To our

knowledge, the first paper on the ergodicity of infinite lattice models is [11] (see also

[1, 2, 16, 17, 18, 26, 32]). The added noise must be carefully chosen in order not to

destroy the conservation laws we are interested in. In the general case U 6= V , the

Hamiltonian dynamics can be perturbed by a local noise acting on the velocities (as

proposed in [16]) but conserving the three physical invariants mentioned at the end of

Section 1.1 (see Section 4.4). With such additional noises, the perturbed dynamics can

be proved to be ergodic (see Theorem 3), so that (5) is obtained as a hydrodynamic

limit. However, our motivation being to simplify as much as possible the dynamics

considered in [1, 2] without destroying the anomalous behavior of the energy diffusion,
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we mainly focus on the symmetric case U = V with a noise conserving only the two

important quantities responsible of the anomalous transport behavior, namely the the

energy and the volume. Thus, we introduce a new stochastic energy-volume conserving

dynamics, which is still described by (3) between random exponential times where two

nearest neighbors heights ηx and ηx+1 are exchanged (see Subsection 2.3 for a precise

definition). Observe that the noise still conserves the total energy and the total volume

but destroys the conservation of momentum and deformation. Therefore, only two

quantities are conserved and the invariant Gibbs measures of the stochastic dynamics

correspond to the choice λ = λ′ in (2). We denote νβ,λ,λ (resp. Z(β, λ, λ)) by µβ,λ (resp.

Z(β, λ)) and we use in the sequel the short-hand notation

ξx =

(
V (ηx)

ηx

)
, w =

(
β

λ

)
, ξ̄ =

(
µβ,λ(V (η0))

µβ,λ(η0)

)
. (6)

The first main result of this paper is that the perturbed dynamics informally

described above is ergodic (see Theorem 2). Consequently, before the appearance of

shocks, the stochastic energy-volume conserving dynamics has a hyperbolic system of

two conservation laws as a hydrodynamic limit (see Theorem 1).

1.3. (Super)Diffusive limit

In the second part of the paper we investigate the diffusion of the energy at a longer time-

scale. If the process has a diffusive behavior then the relevant time scale is the diffusive

one, where the system is studied over long times N2t with space renormalized by a

factor N−1. We claim that the system genuinely displays an anomalous energy diffusion

so that the diffusive scale is not the relevant one. Heuristically, we can interpret this

anomalous diffusion as a consequence of the volume conservation law (see Section 2.2).

We start the infinite system under the equilibrium distribution µβ,λ,λ′ and consider

first the fluctuation field in the hyperbolic time scaling:

YN(t,G) =
1√
N

∑

x∈Z

G
( x
N

)
⊗ (εx(tN) − ε̄) , (7)

where

G(y) =




G1(y)

G2(y)

G3(y)




is a smooth vector valued test function with compact support. We expect that YN(t, ·)
converges in law to Y(t, ·), where Y is solution of the linearized equation

∂tY +DI(ε̄) ∂qY = 0, (8)

where DI(ε̄) is the differential of I at ε̄. Hence, in the hyperbolic scaling, fluctuations

evolve deterministically according to

Y(t,G) = Y
(
0, etU∗

G
)
,
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where U = [DI(ε̄)]∂q and U∗ = −[DI(ε̄)]∗∂q with [DI(ε̄)]∗ the transpose matrix of

DI(ε̄).

To see a nontrivial behavior of the fluctuation field, we need to look at YN on a

longer time scale tN1+α, for some α > 0. It is expected that, after subtracting the

transport term appearing in the hyperbolic time scale, the field

ỸN(t,G) = YN

(
tNα, e−tN1+αU∗

G
)

(9)

converges to some limiting field Ỹ . The case α = 1 would correspond to a diffusive

behavior with Ỹ the solution of the linear stochastic partial differential equation

∂tỸ = ∇ ·
(
D̃∞∇Ỹ

)
+

√
2χ̃D̃∞∇ ·W,

where W (x, t) is a standard space-time white noise. Here, χ̃ is the compressibility and

D̃∞ = limt→∞ D̃β,λ,λ′(t) the limiting diffusivity (see (41) and (43) for the definitions of

these quantities). We refer the reader to [39] for a general background reference, and to

[27] for a rigorous proof of the convergence for asymmetric simple exclusion processes.

For the class of models we consider, our conjecture is that α is in general strictly

lower than 1. The value of α and the nature of Ỹ are not expected to be universal and

should depend on some specific properties of the potential V . We also expect a similar

picture when the deterministic dynamics is replaced by the stochastic energy-volume

conserving dynamics (we then denote by Dβ,λ and Cβ,λ the corresponding diffusivity and

current-current correlation function). This anomalous value of α should be reflected in

the divergence of the diffusivity D̃β,λ,λ′(t) (Dβ,λ(t) for the stochastic dynamics) in the

large time limit t→ ∞.

We are not able to study theoretically this problem for the deterministic dynamics

and we have to turn to computer simulations of nonequilibrium systems in their steady-

states. A chain of length 2N+1 is coupled at each extremity (left and right) to a thermal

reservoir fixing the temperature (Tℓ on the left, Tr on the right). In the stationary state

〈·〉ss, the average current 〈JN〉ss is measured (see Section 6 for more precise definitions).

The quantity of interest is the divergence exponent δ of the transport coefficient

κN =
〈NJN〉ss
Tℓ − Tr

≍ N δ.

Anomalous diffusion corresponds to δ > 0.

For a normal transport, the link between the two situations can be seen through a

Green-Kubo formula for the limiting diffusivity, which expresses the latter as a quantity

proportional to the time integral of the equilibrium current-current correlation function

(see (49) and (48) for a precise definition). It is widely accepted, but not proved, that for

normal diffusive systems the limiting diffusivity coincides with the transport coefficient

κ = limN→∞ κN . For anomalous diffusion transport, κ = +∞ and the current-current

autocorrelation function which appears in the Green-Kubo formula is not integrable

because it decays too slowly. Consequently the limiting diffusivity is infinite.

Our second main results are the following. First, we show numerically that, for

generic anharmonic potentials V , the dynamics (3) has an anomalous diffusion. We
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also show that this phenomenon persists if the deterministic dynamics is replaced by

the stochastic energy-volume conserving dynamics, and that the divergence exponent δ

depends on the strength of the random perturbation. Secondly, for the stochastic

energy-volume conserving dynamics and a harmonic potential V (r) = r2/2, we compute

explicitly the equilibrium current-current correlation function Cβ,λ(t) and show that it

decays as t−1/2 for large t (see Theorem 4). This implies that the diffusivity Dβ,λ(t)

diverges as
√
t, which is a clear manifestation of the super-diffusion of the energy for

this model.

1.4. Organization of the paper

We present more precisely the model under investigation in Section 2. We first study the

hydrodynamic limit in Sections 3 (presentation of the general result) and 4 (proof of the

fundamental ingredient for the limit to hold, namely the ergodicity of the dynamics). We

then consider diffusion properties, starting with analytical results on the longtime tail

of the current autocorrelation function, which can be obtained for harmonic potentials

(see Section 5), and providing then scalings of the energy current obtained by numerical

simulations of nonequilibrium systems in their steady-states in Section 6. Some proofs

are gathered in the Appendix.

2. The models

2.1. The deterministic models

2.1.1. Finite systems Consider the finite box ΛN = {−N, . . . , N} ⊂ Z (with N ≥ 1).

The product space R
ΛN is denoted by ΩN , and a typical element of ΩN is η = {ηx ∈

R ; x ∈ ΛN}. The deterministic finite volume dynamics (ηN(t))t≥0 ∈ ΩN is defined by

its generator

AN =
N−1∑

x=−(N−1)

(
V ′(ηx+1) − V ′(ηx−1)

)
∂ηx − V ′(ηN−1) ∂ηN

+ V ′(η−N+1) ∂η−N
, (10)

where V is a smooth convex potential such that the partition function

Z(β, λ) =

∫ ∞

−∞
exp (−βV (r) − λr) dr

is well defined for β > 0 and λ ∈ R. The following microscopic energy-volume

conservation laws hold for x = −N + 1, . . . , N − 1:

ANV (ηx) = −∇
[
je
x−1,x

]
, ANηx = −∇

[
jv
x−1,x

]
,

where ∇ is the discrete gradient defined, for any function u : Z → R, by (∇u)(x) =

u(x+1)−u(x), and where the microscopic energy and volume currents are respectively

je
x,x+1 = −V ′(ηx+1)V

′(ηx), jv
x,x+1 = −

(
V ′(ηx) + V ′(ηx+1)

)
.
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2.1.2. Infinite systems. The dynamics in the infinite volume Λ = Z, with formal

generator

A =
∑

x∈Z

(
V ′(ηx+1) − V ′(ηx−1)

)
∂ηx

is also very important. Since the state space is unbounded, explosion problems can

arise and the construction of solutions of the dynamics in infinite volume may become

a technically non trivial problem. To avoid such issues, we restrict ourselves (apart

from Section 6) to the case 0 ≤ V ′′ ≤ C for some positive constant C > 0. Then, the

construction is quite standard since the pioneering work [25] of Lanford et al. We refer

the interested reader to [12, 16] for further precisions. For any α > 0, let Ωα be the set

of configurations η such that
∑

x∈Z

η2
x e

−α|x| < +∞,

and equip Ω = ∩α>0Ωα with its natural product topology and its Borel σ-field. The set

of Borel probability measures on Ω is denoted by P(Ω). A function f : Ω → R is said to

be local if it depends of η only through the coordinates {ηx ; x ∈ Λf}, Λf being a finite

box of Z. We also introduce the sets Ck
0 (Ω) (k ≥ 1) of bounded local functions on Ω

which are differentiable up to order k with bounded partial derivatives.

For each initial condition σ ∈ Ω the existence and uniqueness of a solution to (3) can

be proved by a classical fixed-point argument à la Picard. The solution η(·) := η(·, σ)

defines a process with continuous trajectories. Moreover each path η(·, σ) is a continuous

and differentiable function of the initial data σ. We define the corresponding semigroup

(Pt)t≥0 by (Ptf)(σ) = f(η(t, σ)) for any bounded measurable function f on Ω. The

differentiability with respect to initial conditions shows that the Chapman-Kolmogorov

equations

(Ptf)(σ) = f(σ) +

∫ t

0

(APsf)(σ) ds, f ∈ C1
0(Ω)

(Ptf)(σ) = f(σ) +

∫ t

0

(PsAf)(σ) ds, f ∈ C1
0(Ω).

(11)

are valid. With these equations, probability measures ν ∈ P(Ω) invariant by the

deterministic dynamics are characterized by the stationary Kolmogorov equation:

∀f ∈ C1
0(Ω),

∫
(Af)(η)dν(η) = 0.

Denoting the usual scalar product between two vectors a, b ∈ R
2 by a · b, and recalling

the notation introduced in (6), it is easily seen that every product measure µβ,λ defined

by

dµβ,λ(η) =
∏

x∈Z

Z(β, λ)−1 exp {−w · ξx} dηx

is invariant for the infinite dynamics. In the sequel, we denote the average of a function

f with respect to µβ,λ by 〈f〉β,λ.
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Depending on the potential V at hand, the properties of the dynamics can be

very different. In the next subsection we discuss the case V (r) = r2/2, which leads

to a linear dynamics. A second remarkable potential is the exponential potential

VKVM(q) = e−q + q − 1, corresponding to the so-called Kac-van-Moerbecke system,

which is integrable (see [23]). The corresponding system is related to the famous

Toda lattice [41], i.e. a chain of oscillators with coupling potential VKVM, by a simple

transformation.

2.2. The deterministic linear model

We consider here the specific case V (r) = r2/2. The dynamics is then linear and can

be solved analytically using Fourier transform. To simplify the exposition we consider

the dynamics in infinite volume. We introduce the kth mode η̂(k, ·) for k ∈ T = R/Z,

the one-dimensional torus of length 1:

η̂(t, k) =
∑

x∈Z

ηx(t) e
2iπkx.

Then, the equations of motion are equivalent to the following decoupled system of first

order differential equations:

dη̂

dt
(t, k) = iω(k) η̂(t, k),

where the dispersion relation ω(k) reads

ω(k) = −2 sin(2πk),

and the group velocity vg is

vg(k) = ω′(k) = −4π cos(2πk).

By inverting the Fourier transform, the solution can be written as

ηx(t) =

∫

T

η̂(t, k) e−2iπkx dk.

Note also that the energy of the kth mode

Ek(t) =
1

4π
|η̂(t, k)|2 = Ek(0)

is conserved by the time evolution, and that the total energy current Je =
∑

x∈Z
je
x,x+1

takes the simple form

Je =

∫

T

vg(k)Ek dk.

We interpret the waves η̂(k, t) as fictitious particles similar to phonons in solid state

physics. In the absence of nonlinearities, they travel the chain without scattering. If

the potential is non-quadratic, it may be expected that the nonlinearities produce a

scattering responsible for the diffusion of the energy. Nevertheless, the conservation of

the volume, which is expressed by

η̂(t, 0) = η̂(0, 0), (12)
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plays a crucial role. The identity (12) is valid even if V is not quadratic. It means

that the 0th mode is not scattered at all and crosses the chain ballistically. In fact,

the modes with small wave number k do not experience a strong scattering and they

therefore contribute to the observed anomalous diffusion of energy. For anharmonic

chains of oscillators, a similar picture arises with η̂(k) replaced by the phonons. As

the conservation of momentum for these chains is responsible for the small scattering

of phonons with small wave numbers, the conservation of the volume for the model

considered in this paper is responsible for the small scattering of the waves η̂(k) with

small wave numbers.

2.3. Stochastic energy-volume conserving dynamics

We now consider energy-volume conserving stochastic perturbations of the deterministic

dynamics generated by A or AN . The generator of the finite volume perturbed dynamics

is written as

LN = AN + γSN , (13)

where SN is the generator of the noise and γ > 0 its intensity. The generator SN reads

(SNf)(η) =
N−1∑

x=−N

[
f(ηx,x+1) − f(η)

]
, (14)

where ηx,x+1 is the configuration obtained from η by exchanging the variables ηx and

ηx+1.

By arguments similar to the one used to prove the well-posedness of the infinite

deterministic dynamics, it can be shown that the stochastic energy-volume conserving

dynamics in infinite volume is also well defined (see [16] for details). Its formal generator

is given by L = A + γS where

(Sf)(η) =
∑

x∈Z

[
f(ηx,x+1) − f(η)

]
,

and the corresponding Chapman-Kolmogorov equations (11) are valid for this process

upon replacing A by L. In particular the probability measures µβ,λ are still invariant.

3. Hyperbolic scaling

We present in this section the hydrodynamic limit of the models described in the previous

section. To this end, we first need to define some thermodynamic quantities useful

to describe local equilibria (Section 3.1). We then informally describe the expected

hydrodynamic limit in Section 3.2, and conclude this section by stating precisely the

convergence result (Theorem 1) in Section 3.3.
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3.1. Definition of thermodynamic variables

Recall that the probability measures µβ,λ form a family of invariant probability measures

for the infinite dynamics defined in Section 2. The following thermodynamic relations

(which are valid since we assumed that the partition function Z is well defined on

(0,+∞) × R) relate the chemical potentials β, λ to the mean volume v and the mean

energy e under µβ,λ:

v(β, λ) = µβ,λ(ηx) = −∂λ

(
logZ(β, λ)

)
,

e(β, λ) = µβ,λ(V (ηx)) = −∂β

(
logZ(β, λ)

)
.

(15)

These relations can be inverted by a Legendre transform to express β and λ as a function

of e and v. Define the thermodynamic entropy S : (0,+∞) × R → [−∞,+∞) as

S(e, v) = inf
λ∈R,β>0

{
βe+ λv + logZ(β, λ)

}
.

Let U be the convex domain of (0,+∞) × R where S(e, v) > −∞ and Ů its interior.

Then, for any (e, v) := (e(β, λ), v(β, λ)) ∈ Ů , the parameters β, λ can be obtained as

β = (∂eS)(e, v), λ = (∂vS)(e, v). (16)

We also introduce the tension τ(β, λ) = µβ,λ(V
′(η0)) = −λ/β. Then,

µβ,λ(j
e
x,x+1) = −τ 2, µβ,λ(j

v
x,x+1) = −2τ. (17)

In the sequel, with a slight abuse of notation, we also write τ for τ(β(e, v), λ(e, v)) where

β(e, v) and λ(e, v) are defined by the relations (16).

3.2. Description of the hydrodynamic limit

Consider the finite closed stochastic energy-volume dynamics with periodic boundary

conditions, that is the dynamics generated by LN,per = AN,per + γSN,per where
(
AN,perf

)
(η) =

∑

x∈TN

[V ′(ηx+1) − V ′(ηx−1)] ∂ηxf(η), (18)

and

(SN,perf)(η) =
∑

x∈TN

[
f(ηx,x+1) − f(η)

]
,

with TN = R/(NZ) is the discrete torus of length N . We choose to consider the

dynamics on TN rather than on Z to avoid nontrivial technicalities. We are interested

in the macroscopic behavior of the two conserved quantities on a macroscopic time-scale

Nt as N → ∞.

We assume that the system is initially distributed according to a local Gibbs

equilibrium state corresponding to a given energy-volume profile X0 : T → Ů :

X0 =

(
e0

v0

)
,
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in the sense that, for a given system size N , the initial state of the system is described

by the following product probability measure:

dµN
e0,v0

(η) =
∏

x∈TN

exp {−β0(x/N)V (ηx) − λ0(x/N)ηx}
Z(β0(x/N), λ0(x/N))

dηx, (19)

where (β0(x/N), λ0(x/N)) is actually a function of (e0(x/N), v0(x/N)) through the

relations (16).

Starting from such a state, we expect the state of the system at time t to be close,

in a suitable sense, to a local Gibbs equilibrium measure corresponding to an energy-

volume profile

X(t, ·) =

(
e(t, ·)
v(t, ·)

)
,

satisfying a suitable partial differential equation with initial condition X0 at time t = 0.

In view of (17), and assuming local equilibrium, it is not difficult to show that the

expected partial differential equation is the following system of two conservation laws:

∂te − ∂qτ
2 = 0,

∂tv − 2∂qτ = 0,
(20)

with initial conditions e(0, ·) = e0(·), v(0, ·) = v0(·). We write (20) more compactly as

∂tX + ∂qJ(X) = 0, X(0, ·) = X0(·),
with

J(X) =

(
−τ 2(e, v)

−2τ(e, v)

)
. (21)

The system of conservation laws (20) has other nontrivial conservation laws. In

particular, the thermodynamic entropy S is conserved along a smooth solution of (20):

∂tS(e, v) = 0. (22)

Since the thermodynamic entropy is a strictly concave function on Ů , the system (20)

is strictly hyperbolic on Ů (see [37]). The two real eigenvalues of (DJ)(ξ̄) are 0 and

− [∂e(τ
2) + 2∂v(τ)], corresponding respectively to the two eigenvectors

(
−∂vτ

∂eτ

)
,

(
τ

1

)
. (23)

It is well known that classical solutions to systems of n ≥ 1 conservation laws

develop shocks, even when starting from smooth initial conditions. Nevertheless, the

Cauchy problem is locally well-posed in the Sobolev spaces Hs(T) (for s > 3/2). If

we consider weak solutions rather than classical solutions, then a criterion is needed to

select a unique, relevant solution among the weak ones. For scalar conservation laws

(n = 1), this criterion is furnished by the so-called entropy inequality and existence

and uniqueness of solutions is fully understood. If n ≥ 2, only partial results exist

(see [37, 6]). This motivates the fact that we restrict our analysis to smooth solutions

before the appearance of shocks.
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3.3. Derivation of the hydrodynamic limit

We now turn to the question of deriving the system of conservation laws as the

hydrodynamic limit of the interacting particle system under investigation. We assume

that the potential V satisfies the following

Assumption 1. The potential V is a smooth, non-negative function such that the

partition function Z(β, λ) =
∫∞
−∞ exp (−βV (r) − λr) dr is well defined for β > 0 and

λ ∈ R and there exists a positive constant C such that

0 < V ′′(r) ≤ C, (24)

and

lim sup
|r|→+∞

rV ′(r)

V (r)
∈ (0,+∞), (25)

lim sup
|r|→+∞

[V ′(r)]2

V (r)
< +∞. (26)

The hypothesis (24) allows to define easily the dynamics in infinite volume; (25)

is needed in the proof of Theorem 2; (26) ensures that the currents of the conserved

quantities are bounded by the energy. This is useful to introduce a suitable cutoff for

the derivation of hydrodynamic limits (see [2, Section 3]).

Provided we can prove that the infinite volume dynamics is ergodic in a suitable

sense (see Definition 1 below), then we can rigorously prove, using the relative entropy

method of Yau, that (5) is indeed the hydrodynamic limit in the smooth regime, i.e. for

times t up to the appearance of the first shock (see for example [24, 42]). Recall indeed

that a simple computation shows that the stochastic perturbation does not modify the

hydrodynamic limit since the effect of the latter is observed in the diffusive scale only.

In most cases, the derivation of hydrodynamic limits is performed for stochastic

interacting particle systems which are trivially ergodic by construction. For

deterministic systems on the other hand, the ergodicity is extremely difficult to prove.

We are only able to show a weaker form of such ergodicity for the process generated by

A (with the additional assumption that the invariant measure is exchangeable). This

weaker form is nonetheless sufficient to show that the process generated by L is ergodic

(see Theorem 2 below).

As argued in [42], it turns out that when there are more than one conservation

laws, the conservation of thermodynamic entropy (22) must hold for the hydrodynamic

limit to be well defined. This relation is indeed fundamental for Yau’s method where,

in the expansion of the time derivative of relative entropy, the cancelation of the linear

terms is a consequence of the preservation of the thermodynamic entropy.

Averages with respect to the empirical energy-volume measure are defined, for
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continuous functions G,H : T → R, as

(
EN(t, G)

VN(t,H)

)
=




1

N

∑

x∈TN

G
( x
N

)
V (ηx(t))

1

N

∑

x∈TN

H
( x
N

)
ηx(t)


 .

We can then state the following result.

Theorem 1. Fix some γ > 0 and consider the dynamics on the torus TN generated

by LN,per where the potential V satisfies Assumption 1. Assume that the system is

initially distributed according to a local Gibbs state (19) with smooth energy profile e0

and volume profile v0. Consider a positive time t such that the solution (e, v) to (20)

belongs to Ů and is smooth on the time interval [0, t]. Then, for any continuous test

functions G,H : T → R, the following convergence in probability holds as N → +∞:
(
EN(tN,G),VN(tN,H)

)
−→

(∫

T

G(q)e(t, q)dq,

∫

T

H(q)v(t, q)dq

)
.

The derivation of the hydrodynamic limits beyond the shocks for systems of

conservation laws of dimension n ≥ 2 is very difficult and is one of the most challenging

problems in the field of hydrodynamic limits. The first difficulty is of course our poor

understanding of the solutions to such systems. Recently, J. Fritz proposed in [13] to

derive hydrodynamic limits for hyperbolic systems (in the case n = 2) by some extension

of the compensated-compactness approach [31, 40, 10] to stochastic microscopic models.

This program has been achieved in [15] (see also [14]), where the authors derive the

classical n = 2 Leroux system of conservation laws. In fact, to be exact, only the

convergence to the set of entropy solutions is proved, the question of uniqueness being

left open. It remains nonetheless the best result available at this time. The proof is based

on a strict control of entropy pairs at the microscopic level by the use of logarithmic

Sobolev inequality estimates. It would be very interesting to extend these methods to

systems such as the ones considered in this paper.

4. Ergodicity

We prove here the ergodicity of the stochastic dynamics, which is the fundamental

ingredient for the hydrodynamic limit.

4.1. Definitions and notation

In order to explain what is meant by ergodicity of the infinite volume dynamics we

need to introduce some notation. For any topological space X equipped with its Borel

σ-algebra we denote by P(X) the convex set of probability measures on X. The relative

entropy H(ν|µ) of ν ∈ P(X) with respect to µ ∈ P(X) is defined as

H(ν|µ) = sup
φ

{∫
φ dν − log

(∫
eφ dµ

)}
, (27)
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where the supremum is carried over all bounded measurable functions φ on X. Recall

also the entropy inequality, which states that for every positive constant a > 0 and every

bounded measurable function φ, it holds
∫
φ dν ≤ a−1

{
log

(∫
eaφ dµ

)
+H(ν|µ)

}
. (28)

Let θx, x ∈ Z, be the shift by x: (θxη)z = ηx+z. For any function g on Ω, θxg

is the function such that (θxg)(η) = g(θxη). For any probability measure µ ∈ P(Ω),

θxµ ∈ P(Ω) is the probability measure such that, for any bounded function g : Ω → R,

it holds
∫

Ω
g d(θxµ) =

∫
Ω
θxg dµ. If θxµ = µ for any x then µ is said to be translation

invariant.

If Λ is a finite subset of Z the marginal of µ ∈ P(Ω) on R
Λ is denoted by µ|Λ.

The relative entropy of ν ∈ P(Ω) with respect to µ ∈ P(Ω) in the box Λ is defined by

H(ν|Λ |µ|Λ) and is denoted by HΛ(ν|µ). We say that a translation invariant probability

measure ν ∈ P(Ω) has finite entropy density (with respect to µ) if there exists a finite

positive constant C such that for any finite Λ ⊂ Z, HΛ(ν|µ) ≤ C|Λ|. In fact, if this

condition is satisfied, then the limit

H(ν|µ) = lim
|Λ|→∞

HΛ(ν|µ)

|Λ|
exists and is finite (see [16]). It is called the entropy density of ν with respect to µ.

We are now in position to define ergodicity.

Definition 1. We say that the infinite volume dynamics with infinitesimal generator G
is ergodic if the following claim is true: If ν ∈ P(Ω) is a probability measure invariant

by translation, invariant by the dynamics generated by G and with finite entropy density

with respect to µ1,0, then ν is a mixture of the µβ,λ, β > 0, λ ∈ R.

4.2. Ergodicity of the stochastic dynamics

We are not able to prove the ergodicity of the deterministic dynamics in general, but we

can prove it under the additional assumption that the invariant measure is exchangeable.

Theorem 2. Assume that the potential V satisfies (24)-(25). Let ν be a translation

invariant measure with a finite local entropy density w.r.t. µ1,0 such that

∀f ∈ C1
0(Ω),

∫
Af dν = 0. (29)

If ν is exchangeable then ν is a mixture of µβ,λ, β > 0, λ ∈ R.

The proof of Theorem 2 is provided in Section 4.3. This result has an interesting

consequence.

Corollary 1. The infinite volume dynamics generated by L is ergodic.

The proof of this corollary is similar to the proof given in [16] (or [4]). It is based on

the fact that, if ν is invariant for L, then it can be shown, by some entropy arguments,

that ν is invariant separately for A and for S. The invariance with respect to S implies

that ν is exchangeable and we can then apply Theorem 2 to conclude.
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4.3. Proof of Theorem 2

We call Finv the σ-field generated by the θ1-invariant sets and F2
inv the σ-field generated

by the θ2-invariant sets. We denote by ν̄ the conditional measure ν(·|F2
inv).

By the entropy inequality (28), it is easy to show that

ν(η0) < +∞, ν(η0V
′(η0)) < +∞.

Thus, the ergodic theorem gives the existence of the F2
inv-measurable functions

V1(η) = lim
ℓ→∞

1

2ℓ+ 1

∑

|x|≤ℓ

η2x+1 = ν̄(η1),

α1(η) = lim
ℓ→∞

1

2ℓ+ 1

∑

|x|≤ℓ

(η2x+1 − V1)V ′(η2x+1) = ν̄
[
(η1 − V1)V ′(η1)

]
,
(30)

where the convergence occurs in L1(ν) and ν-almost surely. The random variable V1

can be considered as a constant under ν̄. Let us fix x ∈ Z and define

f(η) = (η2x+1 − V1)φ(η),

where φ ∈ C1
0(Ω) is a function depending only on the even sites {η2z}z∈Z. By Lemma 2,

the conditional probability measure ν̄ is A invariant. Therefore,∫
Af dν̄ = 0 =

∫
(V ′(η2x+2) − V ′(η2x))φ dν̄(η)

+
∑

z∈Z

∫
(V ′(η2z+1) − V ′(η2z−1))(η2x+1 − V1)∂η2zφ dν̄

=

∫
(V ′(η2x+2) − V ′(η2x))φ dν̄(η)

+

∫
(η2x+1 − V1) [V ′(η2x+1) − V ′(η2x−1)] ∂η2xφ dν̄

+

∫
(η2x+1 − V1) [V ′(η2x+3) − V ′(η2x+1)] ∂η2(x+1)

φ dν̄

+
∑

z 6=x,x+1

∫
(η2x+1 − V1) [V ′(η2z+1) − V ′(η2z−1)] ∂η2zφ dν̄.

By Lemma 1, ν̄ is exchangeable. By exchanging η2z+1 and η2z−1 in the terms appearing

in the last sum above, we see that the sum over z 6= x, x + 1 is actually equal to 0.

Moreover, by Lemma 1 again, the functions depending on even sites are independent of

functions depending on odd sites under ν̄, so that

0 =

∫
(V ′(η2x+2) − V ′(η2x))φ dν̄

+

(∫
(η2x+1 − V1)V ′(η2x+1) dν̄

)(∫ (
∂η2x − ∂η2(x+1)

)
φ dν̄

)

−
(∫

(η2x+1 − V1)V ′(η2x−1)dν̄

)(∫
∂η2xφ dν̄

)

+

(∫
(η2x+1 − V1)V ′(η2x+3)dν̄

)(∫
∂η2(x+1)

φ dν̄

)
.

(31)
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By exchangeability of ν̄, it holds, for any k 6= −1:

ν
(
(η2x+1 − V1)V ′(η2x−1)|F2

inv

)
= ν

(
(η2x+2k+1 − V1)V ′(η2x−1)|F2

inv

)
.

Thus,

ν̄
(
(η2x+1 − V1)V ′(η2x−1)

)
= ν


 1

2ℓ

∑

|k|≤ℓ, k 6=−1

(η2x+2k+1 − V1)V ′(η2x−1)

∣∣∣∣∣∣
F2

inv


 .

The L1(ν) limit in (30) then gives

ν̄
(
(η2x+1 − V1)V ′(η2x−1)

)
= 0.

Similarly, it can be shown that ν̄ ((η2x+1 − V1)V ′(η2x+3)) = 0. Since

α1 = ν̄
[
(η1 − V1)V ′(η1)

]
= ν̄

[
(η2x+1 − V1)V ′(η2x+1)

]
,

(31) implies




0 =

∫
(V ′(η2(x+1)) − V ′(η2x))φ dν̄(η) + α1

∫ (
∂η2x − ∂η2(x+1)

)
φ dν̄,

0 =

∫
(η2x+1 − V1) dν̄.

(32)

In the same way, it can be shown that



0 =

∫
(V ′(η2(x+1)+1) − V ′(η2x+1))φ dν̄(η) + α0

∫ (
∂η2x+1 − ∂η2(x+1)+1

)
φ dν̄,

0 =

∫
(η2x − V0) dν̄,

(33)

where φ = φ((η2z+1)z∈Z) ∈ C1
0(Ω) is now a test function depending on the odd sites

only, and V0, α0 are the F2
inv measurable functions defined by

V0 = ν(η0|F2
inv), α0 = ν

(
V ′(η0)(η0 − V0)|F2

inv

)
.

In fact, the θ1-invariance of ν gives

V0 = V1 = ν(η0|Finv) := V , α0 = α1 = ν((η0 − V)V ′(η0)|Finv) := α.

By Lemma 3, it holds α > 0 ν-almost surely. Taking into account the fact that (η2z)z∈Z

and (η2z+1)z∈Z are independent under ν̄, (32) and (33) allow to show, by Lemma 4, that

the probability measure ν̄ is a product measure with marginals given by

dν̄(ηx ∈ [r, r + dr]) = Z̃(V , α)−1 exp (−αV (r) − λr) dr,

where Z̃(V , α) is a normalizing constant, and λ := λ(V , α) is such that

Z̃(V , α)−1

∫
r exp (−αV (r) − λr) dr = V .

Let us summarize our results: Denoting by P the law of the random variables

(α(ω),V(ω)) ∈ (0,+∞) × R under ν, we have proved that, for any bounded local

function f ,

ν(f) = ν(ν(f |Finv)) = ν
[
µα(ω),V(ω)(f)

]
=

∫
µβ,λ(f) dP(β, λ).

This concludes the proof of Theorem 2.
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Lemma 1. Let ν be an exchangeable translation invariant measure with a finite entropy

density w.r.t. µ1,0. Then, ν̄(·) = ν(·|F2
inv) is exchangeable and under ν̄, the variables

(η2x)x∈Z and (η2x+1)x∈Z are independent.

Proof. For a given x ∈ Z, consider the function T x,x+1 : Ω → Ω defined as (T x,x+1η) =

ηx,x+1, and denote by T be the set of local transformation T : Ω → Ω which are obtained

as compositions of transformations T y,y+1, y ∈ Z. To show that ν̄ is exchangeable, we

prove that, for a given x ∈ Z and for any bounded function g,
∫
g ◦ T x,x+1 dν̄ =

∫
g dν̄.

This amounts to proving that, for any F2
inv-measurable bounded function ρ,

ν(gρ) = ν
(
ν
(
g| F2

inv

)
ρ
)

= ν
(
ν
(
g ◦ T x,x+1

∣∣F2
inv

)
ρ
)

= ν
(
g ◦ T x,x+1ρ

)
.

By exchangeability of ν, it is therefore sufficient to show that any F2
inv-measurable

bounded function ρ is invariant by T x,x+1.

To prove this result, we write ρ as an ergodic limit of local functions. Observe first

that ρ = limk→∞ ν(ρk|F2
inv), ν a.s. and in L1(ν), where the local functions ρk are defined

as ρk = ν(ρ | FΛk
), with FΛk

the σ-algebra generated by {ηx ; x ∈ Λk}. Besides,

ν(ρk|F2
inv) = lim

ℓ→∞

1

2ℓ+ 1

ℓ∑

j=−ℓ

θ2jρk,

so that

ρ = lim
k→∞

lim
ℓ→∞

1

2ℓ+ 1

ℓ∑

j=−ℓ

θ2jρk. (34)

Now, since ρk is a local function, (θ2jρk)◦T x,x+1 = θ2jρk for |j| large enough. Therefore,
[

1

2ℓ+ 1

ℓ∑

j=−ℓ

θ2jρk

]
◦ T x,x+1 =

1

2ℓ+ 1

ℓ∑

j=−ℓ

θ2jρk + O(ℓ−1),

which, together with (34), gives indeed ρ ◦ T x,x+1 = ρ.

We turn now to the second part of the lemma. Let φ0 (resp. φ1) be a bounded

local measurable function depending only on the even (resp. odd) sites. We have to

show that

ν
(
φ0φ1|F2

inv

)
= ν

(
φ0|F2

inv

)
ν
(
φ1|F2

inv

)
. (35)

Fix k, j ∈ Z and consider a local transformation T ∈ T such that φ0 ◦ T = θ2kφ
0 and

φ1 ◦ T = θ2jφ
1. This is possible because φ0 (resp. φ1) depends only on the even (resp.

odd) sites. Now, for any F2
inv-measurable positive bounded function ρ,

ν
(
ν
(
φ0φ1|F2

inv

)
ρ
)

= ν
(
φ0φ1ρ

)
= ν

(
(φ0 ◦ T ) (φ1 ◦ T ) (ρ ◦ T )

)
= ν

(
θ2kφ

0 θ2jφ
1 ρ
)
,
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where the second equality is a consequence of the exchangeability of ν, and the third

one is obtained thanks to the invariance of ρ by T proved above. It follows that

ν
(
ν
(
φ0φ1|F2

inv

)
ρ
)

= ν

((
1

2ℓ+ 1

ℓ∑

k=−ℓ

θ2kφ
0

)(
1

2m+ 1

m∑

j=−m

θ2jφ
1

)
ρ

)
.

Taking first the limit ℓ → ∞ and then the limit m → ∞, we obtain, by the ergodic

theorem,

ν
(
ν
(
φ0φ1|F2

inv

)
ρ
)

= ν
(
ν
(
φ0|F2

inv

)
ν
(
φ1|F2

inv

)
ρ
)
,

which is indeed (35).

Lemma 2. Let ν a probability measure invariant by translation, invariant by A and

with finite entropy density. Let f ∈ C1
0(Ω) and ρ be a F2

inv bounded measurable function.

Then ∫
(Af) ρ dν = ν

(
ν(Af |F2

inv)ρ
)

= 0. (36)

In other words, ν(·|F2
inv) is A-invariant.

Proof. The tail σ-field Ftail is defined by Ftail = ∩k≥1FΛc
k

where FΛc
k

is the σ-field

generated by {ηx ; |x| > k}. Any F2
inv-measurable function ρ coincides ν almost surely

with a Ftail-measurable function (this can be seen for example as a consequence of (34)).

In particular, for any k ∈ Z, ∂ηk
ρ = 0 ν a.s. . Thus, if f ∈ C1

0(Ω), then ρf ∈ C1
0(Ω) and

by (29) applied to the latter, we obtain 0 =
∫
A(ρf) dν =

∫
(Af) ρ dν.

Lemma 3. Let α = ν ((η0 − V)V ′(η0)|Finv) where V = ν(η0|Finv). Then,

ν({α ≤ 0}) = 0. (37)

Proof. Let ν̃ = ν(·|Finv) and remark first that α = ν̃ ((η0 − η1)V
′(η0)), so that the

exchangeability of ν implies α = ν̃ ((η1 − η0)V
′(η1)), and

α =
1

2
ν̃ ((η0 − η1)(V

′(η0) − V ′(η1))) .

The convexity of V already gives α ≥ 0. It remains to show that ν({α = 0}) = 0. To

prove this, it is sufficient to show that the restriction of ν̃|Λ to the box Λ = {0, 1}, has

(ν a.s.) a density with respect to the Lebesgue measure. In fact, we claim that the

relative entropy of ν̃|Λ w.r.t. µ0,1|Λ is finite, which implies the existence of the desired

density. Indeed, consider any non-negative Finv-measurable function ρ and any positive

bounded FΛ-measurable function ϕ. By the same argument as in the proof of Lemma 2,

ρ is Ftail-measurable. Consequently, by using this and the definition of the conditional

expectation, we have

ν(ρ ν̃|Λ(ϕ)) = ν(ρ ν̃(ϕ)) = ν(ρϕ) = ν(ρ ν|Λ(ϕ)).
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By the variational definition (27) of the relative entropy and the previous equality, we

get

ν(ρ ν̃|Λ(ϕ)) ≤ ν

(
ρ

[
H
(
ν|Λ
∣∣∣µ0,1|Λ

)
+ log

(∫
eϕdµ0,1

)])
.

By assumption, ν has a finite entropy density so that H
(
ν|Λ
∣∣∣µ0,1|Λ

)
< +∞. Since

the previous inequality is valid for any Finv-measurable function ρ ≥ 0, the claim

H
(
ν̃|Λ
∣∣∣µ0,1|Λ

)
< +∞ follows by the variational formula of the relative entropy (27).

Lemma 4. Let V : R → R be a potential satisfying Assumption 1 and β > 0 a constant.

Let µ be a probability measure on Ω satisfying, for any j ∈ Z and any ϕ ∈ C1
0(Ω),

∫
(V ′(ηj+1) − V ′(ηj))ϕdµ+ β−1

∫ (
∂ηj
ϕ− ∂ηj+1

ϕ
)
dµ = 0.

Then, µ is a product probability measure whose marginals are given by

[Z(β, λ)]−1 exp(−βV (ηj) − ληj) dηj where λ is such that v(β, λ) defined in (15) coin-

cides with µ(ηj).

Proof. Define ψℓ(η) = e
Pℓ

i=1(βV (ηi)+ληi), where the value of λ is chosen so that

v(β, λ) =

∫

R

η0 e
−βV (η0)−λη0 dη0

∫

R

e−βV (η0)−λη0 dη0

= µ(η0).

Choosing φ(η) = χ(η)ψℓ(η) with χ(η) a local compactly supported smooth function, we

obtain, for any j = 1, . . . , ℓ− 1,

β−1

∫ (
∂ηj
χ− ∂ηj+1

χ
)
ψℓ(η) dµ(η) = 0 .

We now consider

χ(η) = χb(η)g

(
ℓ∑

i=1

ηi

)
χ0(η1, . . . , ηℓ)

where χb is a local function not depending on η1, . . . , ηℓ, and g is a smooth function on

R. Since

∂ηj
χ(η) − ∂ηj+1

χ(η) = χb(η)g

(
ℓ∑

i=1

ηi

)
(
∂ηj
χ0(η) − ∂ηj+1

χ0(η)
)

if j = 1, . . . , ℓ − 1, we can further condition on
∑ℓ

k=1 ηk = ℓu and on the exterior

configuration {ηi, i 6= 1, . . . , ℓ}, and obtain, for all j = 1, . . . , ℓ− 1,

∫ [
∂ηj
χ0(η) − ∂ηj+1

χ0(η)
]
ψℓ(η) µ

(
dη1, . . . , dηℓ

∣∣∣∣∣

ℓ∑

k=1

ηk = ℓu, ηi, i 6= 1, . . . , ℓ

)
= 0. (38)
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These relations allow to show that the Borel measure

ψℓ(η)µ

(
dη1, . . . , dηℓ

∣∣∣∣∣

ℓ∑

k=1

ηk = ℓu, ηi, i 6= 1, . . . , ℓ

)
,

which has support on the hyperplane Hℓ = {(η1, . . . , ηℓ) :
∑ℓ

k=1 ηk = ℓu}, is invariant by

any translation of Hℓ. By Theorem 2.20 in [36], this measure is therefore the Lebesgue

measure on Hℓ up to a multiplicative constant. This multiplicative constant is fixed by

ensuring that the correct value of µ(η0) is recovered, so that finally

µ(dη1, . . . , dηℓ|ηi, i 6= 1, . . . , ℓ) =
e−

Pℓ
i=1(βV (ηi)+ληi)

Z(β, λ)ℓ
dη1 . . . dηℓ.

Il manque ici un argument pour moi... This concludes the proof of the lemma.

4.4. Derivation of a triplet of compressible Euler equations from a perturbed Hamilton

dynamics

It is also natural to consider the Hamiltonian dynamics (1) perturbed by the random

exchange of neighboring velocities px and px+1, so that
∑

x px,
∑
rx and

∑
x(U(px) +

V (rx)) are preserved during the time evolution. This has been considered in [16] in the

case of a quadratic kinetic energy U(p) = p2/2. In the case of a non-quadratic kinetic

energy U , it is possible to adapt the arguments of [16] to show that the corresponding

dynamics is ergodic and that the triplet of compressible Euler equations (5) is obtained

as a hydrodynamic limit by Yau’s method. We give only a sketch of the proof of the

ergodicity of the perturbed dynamics.

Let U and V be two convex potentials satisfying Assumptions 1. We state the

dependence of the partition function with respect to the potential V (resp. U) by the

notation ZV (resp. ZU).

We consider the set Ω̃ = Ω × Ω equipped with its natural product topology and

its Borel σ-field. A typical configuration ω ∈ Ω̃ is denoted by ω = (r,p). Let

{ω(t)}t≥0 = {r(t),p(t)}t≥0 be the the dynamics generated by L = A + γS, γ > 0,

with

A =
∑

x∈Z

(V ′(rx) − V ′(rx−1)∂px +
∑

x∈Z

(U ′(px+1) − U ′(px))∂rx

and S the momenta exchange noise operator, acting on test functions f : Ω × Ω → R

as

(Sf)(ω) =
∑

x∈Z

[
f(r,px,x+1) − f(r,p)

]
,

where p
x,x+1 is the configuration obtained from p by exchanging the momentum px with

px+1. Observe that L,A and S conserve the energy, the momentum and the deformation.

All the equilibrium Gibbs measures {νβ,λ,λ′ , β > 0, λ, λ′ ∈ R} are invariant.

Theorem 3. Assume that the potentials U, V satisfy Assumptions 1. The infinite

volume dynamics generated by L is ergodic.
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Proof. Let ν be a translation invariant probability measure with finite entropy density

invariant for L. We have to show this is a mixture of the νβ,λ,λ′ . As stated before, it

can be shown by entropy arguments that ν is separately invariant for A and for S. The

invariance w.r.t. S implies that the law of p is exchangeable under ν. Thus, we are

reduced to proving that if ν is invariant for A, shift invariant with finite entropy density

and such that the law of p is exchangeable, then ν is a mixture of the νβ,λ,λ′ ’s.

Let ν as above and call Finv the σ-field of invariant events for the shift. As in

Lemma 1 or in the proof of Theorem 2.1 of [16], one can show that p and r are

independent under ν̄(·) = ν(·|Finv).

Moreover, since an invariant set is, up to a ν-negligible set, a tail invariant set, as

argued in Lemma 2, it can be proved that ν̄ is invariant for A. Observe also that the

law of p under ν̄ is exchangeable. Now, we can identify the distribution of r as follows.

The thermodynamic relations give a one to one correspondence between the averages of

the momentum and kinetic energy, (π, T ), and the chemical potentials, β > 0, λ ∈ R,

through the relations

π(β, λ) = −∂λ logZU(β, λ), T (β, λ) = −∂β logZU(β, λ).

Let β, λ be the Finv-measurable functions defined by the relations

π(β, λ) = ν̄(pk), T (β, λ) = ν̄(U(pk)). (39)

Consider a test function of the form ψ(r,p) = ϕ(r)(pj − π) for a smooth function

ϕ. Since
∫
Aψ dν̄ = 0, by using the independence of r and p under ν̄ and the

exchangeability of the law of p under ν̄, we obtain easily that
∫

(V ′(rj) − V ′(rj−1))ϕdν̄ + β̂−1

∫ (
∂rj−1

ϕ− ∂rj
ϕ
)
dν̄ = 0 (40)

where β̂−1 =
∫
U ′(pj)(pj − π)dν̄. The fact that β̂−1 is well defined, i.e. β̂ is stricly

positive ν a.s., can be proved as in Lemma 3.

By Lemma 4, the equation (40) is sufficient to identify the distribution of r under

ν̄ as a product measure
∏

x∈Z
ZV (β̂, λ̂′) exp{−β̂V (rx) − λ̂′rx} drx. Moreover, β̂ and λ̂′

satisfy

−∂λ logZV (β̂, λ̂′) = ν̄(rk), −∂β logZV (β̂, λ̂′) = ν̄(V (rk)).

Setting u = ν̄(rk) and using a test function of the form ϕ(p)(rj −
u), a similar computation shows that the law of p under ν̄ is in the form∏

x∈Z
ZU(β̃, λ̃) exp{−β̃U(px) − λ̃px} dpx where β̃−1 =

∫
V ′(rj)(rj − u)dν̄ and

−∂λ logZU(β̃, λ̃) = ν̄(pk), −∂β logZU(β̃, λ̃) = ν̄(U(pk)).

As above, β̃ is ν a.s. strictly positive. In view of (39), we have β̃ = β and λ̃ = λ.

Injecting these informations in the definition of β̂−1, we obtain β̂ = β.

We have therefore proved that ν̄ = νβ,λ,λ̂′ and the conclusion easily follows.



22

5. (Sub)Diffusive scaling

The hydrodynamic limit is nothing but a law of large numbers. The second step of the

study consists in looking at the fluctuations. As explained in the introduction, we expect

that fluctuations appear at a shorter time-scale than the diffusive one. The study of

the fluctuation field (9) for the deterministic system is very difficult. A more tractable

quantity which allows to decide whether α = 1 or α < 1 is the diffusivity Dβ,λ,λ′(t).

To define this quantity, we introduce some notation. The equilibrium

compressibility matrix χ̃ is the symmetric matrix defined by:

χ̃ =




µβ,λ,λ′(E0; E0) µβ,λ,λ′(E0; p0) µβ,λ,λ′(E0; r0)

µβ,λ,λ′(p0; E0) µβ,λ,λ′(p0; p0) µβ,λ,λ′(p0; r0)

µβ,λ,λ′(r0; E0) µβ,λ,λ′(r0; p0) µβ,λ,λ′(r0; r0)


 . (41)

Here, µβ,λ,λ′(f ; g) denotes the covariance of the two functions f and g w.r.t. µβ,λ,λ′ .

Let Îx.x+1 be the normalized current associated to the three conservation laws. We do

not give a precise definition of the latter for the deterministic dynamics but the reader

will translate easily in this case the one we give in (47) below for the energy-volume

conserving dynamics. Roughly speaking, Îx,x+1 is obtained from the usual microscopic

currents of the three conserved quantities by a change of frame prescribed by the

linearized flow (8) of the hydrodynamic equations. Let C̃β,λ,λ′ be the current-current

correlation function defined as

C̃β,λ,λ′(t) =
∑

x∈Z

〈
Îx,x+1(t) Î0,1(0)∗

〉
β,λ
.

Then, the diffusivity is given by

D̃β,λ,λ′(t) = χ̃−1

∫ ∞

0

(
1 − s

t

)+

C̃β,λ,λ′(s)ds. (42)

When the current-current correlation function is integrable, the limit when t→ +∞
of the diffusivity is well defined, and the following Green-Kubo formula is obtained:

D̃∞
β,λ,λ′ = lim

t→∞
D̃β,λ,λ′(t) = χ̃−1

∫ ∞

0

C̃β,λ,λ′(s) ds. (43)

The existence of the above limit depends on the time decay of C̃β,λ,λ′ . For a diffusive

(resp. super-diffusive) behavior, D̃β,λ(t) is of order O(1) (resp. of order O(t1−α)).

The super-diffusive behavior of the deterministic dynamics (γ = 0) can be proved

easily for the linear dynamics, i.e. V (r) = r2/2, and the Kac-van-Moerbecke dynamics,

i.e. V (r) = e−r + r − 1. In these cases, the dynamics is actually ballistic since the

diffusivity is of order O(t). For the linear dynamics, this follows from the fact that

the total current is a constant of motion. For the Kac-van-Moerbecke dynamics, an

application of the Mazur inequality (see [30]), as done in [45] and [3] for the Toda

lattice, shows that the diffusivity is also of order O(t). Apart from these two cases,

showing a super-diffusive behavior for general potentials remains challenging.

We now turn to the energy-volume conserving dynamics. In this case, we also do

not know, in general, what the large time behavior of the diffusivity is. Nevertheless,
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when V (r) = r2/2, we can compute explicitly the value of the current-current correlation

function and deduce the behavior of the diffusivity. However, before stating precisely

the result, we first need to modify the definition (42) of the diffusivity to account for

the stochastic perturbation. We have now only two conserved quantities. The local

energy-volume conservation is expressed by the formulas

V (ηx(t)) − V (ηx(0)) = −∇
[∫ t

0

je,γ
x−1,x(s)ds+M e,γ

x−1(t)

]
,

ηx(t) − ηx(0) = −∇
[∫ t

0

jv,γ
x−1,x(s)ds+M v,γ

x−1(t)

]
,

where the instantaneous currents je,γ
x,x+1, j

v,γ
x,x+1 are

je,γ
x,x+1 = je

x,x+1 − γ∇ [V (ηx)] , jv,γ
x,x+1 = jv

x,x+1 − γ∇ [ηx] , (44)

while the local martingales M e,γ
x (t),M v,γ

x (t) read

M e,γ
x (t) =

∫ t

0

[
V (ηx+1(s

−)) − V (ηx(s
−))
]
d [Nx−1,x(s) − γs] ,

M v,γ
x (t) =

∫ t

0

[
ηx+1(s

−) − ηx(s
−)
]
d [Nx−1,x(s) − γs] ,

where (Nx−1,x(t))x∈Z are independent Poisson processes of intensity γ. Denoting by

[X, Y ]t the quadratic variation at time t between two adapted processes X and Y , it is

easy to see that the martingales M e,γ
x , M v,γ

x are such that
[
Ma,γ

y ,M b,γ
z

]
t
= 0, a, b ∈ {e, v}, y 6= z,

[M e,γ
x ,M e,γ

x ]t = γ

∫ t

0

[V (ηx+1(s)) − V (ηx(s))]
2 ds,

[M v,γ
x ,M v,γ

x ]t = γ

∫ t

0

[ηx+1(s) − ηx(s)]
2 ds,

[M e,γ
x ,M v,γ

x ]t = γ

∫ t

0

[V (ηx+1(s)) − V (ηx(s))] [ηx+1(s) − ηx(s)] ds.

(45)

Let us also introduce the equilibrium compressibility matrix χ:

χ =

(
µβ,λ(V (η0);V (η0)) µβ,λ(V (η0); η0)

µβ,λ(η0;V (η0)) µβ,λ(η0; η0)

)
=

(
−∂βe −∂βv

−∂λe −∂λv

)
. (46)

Observe that χ is symmetric since ∂βv = ∂λe. We define the normalized current Ĵx.x+1

as

Ĵx,x+1 = Jx,x+1 − J(ξ̄) −DJ(ξ̄)
(
ξx − ξ̄

)
, Jx,x+1 =

(
je
x,x+1

jv
x,x+1

)
, (47)

where the term DJ(ξ̄)
(
ξx − ξ̄

)
has been subtracted in order to study fluctuations in the

transport frame. We introduce now

Wx,x+1(t) =

∫ t

0

[
Ĵx,x+1(s) − γ∇

(
V (ηx(s)

ηx(s)

)]
ds+Mγ

x (t), Mγ
x (t) =

(
M e,γ

x (t)

M v,γ
x (t)

)
.
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Then, the diffusivity is defined by

Dβ,λ(t) = lim
N→∞

χ−1

2

1

(2N + 1)t

〈

∑

|x|≤N

Wx,x+1(t)





∑

|x|≤N

Wx,x+1(t)




∗〉

β,λ

. (48)

Let us rewrite this expression in a more convenient way, introducing he current-

current correlation function

Cβ,λ(t) =
∑

x∈Z

〈
Ĵx,x+1(t) Ĵ0,1(0)∗

〉
β,λ
. (49)

Remark first that the terms in (48) coming from the discrete gradients in Wx,x+1

disappear. Indeed, after summation over |x| ≤ N , only two boundary terms at x = ±N
remain and since they are divided by 2N + 1, their contribution vanishes in the limit

N → +∞. Besides, the cross terms between the martingales and the normalized currents

Ĵy,y+1 cancel. The argument is based on a time-reversal property of the current and can

be read in [2]. Moreover, by (45),
〈

∑

|x|≤N

Mγ
x (t)





∑

|x|≤N

Mγ
x (t)




∗〉

β,λ

= 2t (2N + 1) γ χ.

In conclusion, the diffusivity for the stochastic energy-volume conserving dynamics is

given by

Dγ
β,λ(t) = χ−1

∫ ∞

0

(
1 − s

t

)+

Cβ,λ(s)ds+ γ Id2, (50)

where Id2 is the 2 × 2 identity matrix. Observe that the long time behavior of Dβ,λ(t)

is clearly driven by the long time behavior of the current-current correlation function.

Theorem 4. Define the function g : [0, π/2] × (0,+∞) → R by

g(ω, t) =
4

π
e−8γt sin2(ω) cos2(ω),

and consider the infinite volume dynamics generated by L, with the potential V (r) =

r2/2, started at equilibrium under the Gibbs measure µβ,λ. Then,

∑

x∈Z

〈
Ĵx,x+1(t) Ĵ0,1(0)∗

〉
β,λ

=




β−2

∫ π/2

0

g(ω, t) dω 0

0 0


 . (51)

It follows that the only non-trivial term of this matrix is of order t−1/2 as t goes to

infinity. In particular Dγ
β,λ(t) is of order O(t1/2). More precisely,

Dγ
β,λ(t) ∼

8
√
t

3β
√

2πγ

(
β 0

λ 0

)
.

Proof. To simplify the notation we omit the indices β, λ. We denote by ≪ ·, · ≫ the

semi-inner product defined on local integrable functions by

≪ f, g ≫=
∑

x∈Z

[〈f(θxg)〉 − 〈f〉〈g〉] = lim
N→+∞

1

2N + 1

∑

|x|,|y|≤N

〈θxf, θyg〉 − 〈f〉〈g〉,
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and by H the Hilbert space obtained by the completion of the vector space of local

functions with respect to ≪ ·, · ≫. Note that every discrete gradient, i.e. a local

function of the form θ1f − f , is equal to 0 in H.

We introduce the Laplace transform matrix L(z) (for z > 0) of the current-current

correlation function:

L(z) =

∫ ∞

0

e−zs ≪ Ĵ0,1(s) , Ĵ0,1(0)∗ ≫ ds =≪ (z − L)−1Ĵ0,1 , Ĵ
∗
0,1 ≫,

where we adopted the short notation (z − L)−1Ĵ0,1 for
(

(z − L)−1Ĵ1
0,1

(z − L)−1Ĵ2
0,1

.

)
(52)

Since V (r) = r2/2, it holds Z(β, λ) = (β/2π)−1/2eλ2/2β, v = τ = −λ/β and

e = 1
2β

(λ2/β + 1). It follows that

χ =




1

2β2
+
λ2

β3
− λ

β2

− λ

β2

1

β


 ,

DJ(ξ̄) =

(
0 −2τ

0 −2

)
, Ĵ0,1 = −

(
(η0 − τ)(η1 − τ) + τ(η1 − η0)

η1 − η0

)

Since any discrete gradient is equal to zero in H, the only non-zero entry of L(z) is the

(1, 1) component

L1,1(z) =≪ (z − L)−1η̂0,1 , η̂0,1 ≫,

where η̂x,y = (ηx − τ)(ηy − τ).

The determination of the current-current correlation function therefore amounts to

solving the resolvent equation (z−L)u = η̂0,1. Consider the vector space V spanned by

the orthogonal basis {η̂x,x+k}x∈Z,k≥1 (which is also the space spanned by the family η̂x,y

for x 6= y). This space is stable by L since

(a) Aη̂x,x+k = (θ1−1)η̂x,x+k−1−(θ1−1)η̂x−1,x+k is the difference of two discrete gradients,

hence is equal to 0 in H;

(b) when k ≥ 2, S η̂x,x+k = (1 + θ1)η̂x,x+k−1 + (1 + θ−1)η̂x,x+k+1 − 4η̂x,x+k, while

S η̂x,x+1 = η̂x−1,x+1 + η̂x,x+2 − 2η̂x,x+1.

We may thus look for a solution of the form

u =
∑

x∈Z

∑

k≥1

ρk(x)η̂x,x+k, (53)

with the condition
∑

x∈Z

∑

k≥1

|ρk(x)|2 < +∞ (54)
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since u is sought in H. In view of point (a) above, u should actually be a solution to

(z − γS)u = η̂0,1 =
∑

x∈Z

∞∑

k=1

Fk(x)η̂x,x+k,

with F1(x) = (z + 2γ)ρ1(x) − γ(ρ2(x) + ρ2(x− 1)) and, for k ≥ 2,

Fk(x) = (z + 4γ)ρk(x) − γ
(
ρk−1(x) + ρk−1(x+ 1) + ρk+1(x) + ρk+1(x− 1)

)
.

Using the fact that {η̂x,x+k}x∈Z,k≥1 is an orthogonal basis of V , and identifying the

coefficients in front of the different terms, it follows that

Fk(x) = 1{k=1,x=0}. (55)

Introducing the Fourier transform ĥ(ω) (for ω ∈ T1) of a given function h ∈ l2(Z,R):

ĥ(ω) =
∑

x∈Z

e2iπωxh(x),

the conditions (55) can be equivalently reformulated as
{

(z + 2γ)ρ̂1(ω) − γ(1 + e2iπω)ρ̂2(ω) = 1,

(z + 4γ)ρ̂k(ω) − γ(1 + e−2iπω)ρ̂k−1(ω) − γ(1 + e2iπω)ρ̂k+1(ω) = 0, k ≥ 2.
(56)

By Parseval’s relation, condition (54) is equivalent to
∑

k≥1

∫

T

|ρ̂k(ω)|2 dω < +∞.

It is then easy to show that (56) and the above integrability condition lead to ρ̂k(ω) =

ρ̂1(ω)(X(ω))k−1, with

X(ω) =
2 + z/(2γ)

1 + e2iπω


1 −

√

1 −
(

cos(πω)

1 + z/(4γ)

)2

 ,

and the boundary condition (z + 2γ)ρ̂1(ω)− γ(1 + e2iπω)ρ̂1(ω)X(ω) = 1. It follows that

L1,1(z) =≪ u, η̂0,1 ≫= β−2
∑

x∈Z

ρ1(x) = β−2ρ̂1(0) =
1

2γβ2
T
(
z

4γ

)
,

where

T (y) =
[
y +

√
(1 + y)2 − 1

]−1

.

A simple computation shows that, for any y > 0,
∫ ∞

0

e−yt

[
2

π

∫ π/2

0

e−2t sin2(x) cos2(x)dx

]
dt =

2

π

∫ π/2

0

cos2(x)

y + 2 sin2(x)
dx = T (y).

Since the Laplace transform uniquely characterizes the underlying function, we deduce

that the current-current correlation function is indeed given by (51).
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Now, by dominated convergence, the following limit holds as t→ +∞:

√
t

∫ π/2

0

g(ω, t) dω =
4

π

∫ π
√

t/2

0

exp

(
−8γt sin2

(
ω√
t

))
cos2

(
ω√
t

)
dω

−→ 4

π

∫ +∞

0

e−8γω2

dω =
1√
2πγ

.

We then obtain the desired result with (50).

6. Steady-state nonequilibrium systems

6.1. General setting

The results of the previous section were limited to harmonic potentials (and the Kac-

van-Moerbecke potential in the special case γ = 0). For generic anharmonic potentials,

we can only provide numerical evidence of the super-diffusivity. However, it is difficult

to estimate numerically the time autocorrelation functions of the currents because of

their expected long-time tails, and because statistical errors are very large (in relative

value) when t is large. Also, for finite systems (the only ones we can simulate on a

computer), the autocorrelation is generically exponentially decreasing for anharmonic

potentials, and, to obtain meaningful results, the thermodynamic limit should be taken

before the long-time limit.

A more tenable approach consists in studying a nonequilibrium system in its steady-

state. We consider a finite system of length 2N + 1 in contact with two thermostats

which fix the value of the energy at the boundaries. The generator of the dynamics is

given by

LN,open = AN + γSN + λℓB−N,Tℓ
+ λrBN,Tr , (57)

where AN (resp. SN) is defined by (10) (resp. (14)) with ΛN = {−N, . . . , N} and

Bx,T = T∂2
ηx

− V ′(ηx)∂ηx . The positive parameters λℓ and λr are the intensities of the

thermostats.

The generator Bx,T can be seen as a thermostatting mechanism since the semigroup

(St)t≥0 generated by Bx,T has, under suitable assumptions on V , a unique (reversible)

invariant probability measure on R given by

νT (dξ) = Z(β, 0)e−βV (ξ) dξ, β = T−1, (58)

and Stf converges exponentially fast to νT (f) for any observable f ∈ L2(νT ) (we will

however not use these facts in the sequel). Observe that

νT (V ) = −∂β(logZ(β, 0)) = e(β, 0).

Hence, in order to fix the energy at site −N (resp. N) to the value eℓ (resp. er), we

have to choose βℓ = T−1
ℓ (resp. βr = T−1

r ) such that e(βℓ, 0) = eℓ (resp. e(βr, 0) = er).

In the special case when Tℓ = Tr, the Gibbs measure µβ,0|ΛN
is invariant, and it can

then be shown (see Appendix A) that the the law of the stochastic process associated

to (57) converges exponentially fast to µβ,0|ΛN
.
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The proof of the existence and uniqueness of an invariant measure in the case when

Tℓ 6= Tr is given in Proposition 1 for a suitable class of potentials (see Appendix A for

a proof in the case γ = 0 and Appendix B for a proof when γ > 0). We denote by 〈·〉ss
the unique stationary state for the dynamics generated by LN,open.

Proposition 1. Assume that the smooth potential V satisfies

• [Growth at infinity] there exist real constants k ≥ 2, ak > 0, C > 0 such that

lim
λ→+∞

λ−kV (λq) = ak|q|k,

lim
λ→+∞

λ1−kV ′(λq) = kak|q|k−1sign(q),
(59)

lim
|q|→∞

V ′′(q)

(V ′(q))2
= 0; (60)

• [Non-degeneracy] For any q ∈ R there exists m := m(q) ≥ 2 such that

V (m)(q) 6= 0. (61)

Then, there exists a unique stationary probability measure for the Markov process

generated by LN,open. This stationary state has a smooth positive density with respect to

the Lebesgue measure.

The energy currents je,γ
x,x+1, which are such that LN,open(V (ηx)) = −∇je

x−1,x (for

x = −N, . . . , N + 1), are given by the expressions (44) for x = −N + 1, . . . , N − 1 while

je,γ
−N−1,−N = λℓ

[
TℓV

′′(η−N) − (V ′(η−N))2
]
,

je,γ
N,N+1 = −λr

[
TrV

′′(ηN) − (V ′(ηN))2
]
.

Since 〈LN,open(V (ηx))〉ss = 0, it follows that, for any x = −N, . . . , N + 1, 〈je,γ
x,x+1〉ss is

equal to a constant Jγ
N(Tℓ, Tr) independent of x. In fact,

Jγ
N(Tℓ, Tr) = 〈J γ

N〉ss , J γ
N =

1

2N

N−1∑

x=−N

je,γ
x,x+1. (62)

The latter equation is interesting from a numerical viewpoint since it allows to perform

some spatial averaging, hence reducing the statistical error of the results. Finally, let

us mention that, for finite systems, standard results of linear response theory (see

for instance [4, 34]) allow to relate the nonequilibrium current Jγ
N to the current

autocorrelation at equilibrium as

lim
Tℓ,Tr→T

Jγ
N(Tℓ, Tr)

Tℓ − Tr

=
2N

T 2

∫ +∞

0

EµT−1,0
[J γ

N(t)J γ
N(0)] dt,

where the expectation is over all initial conditions and realizations of the paths.
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6.2. Harmonic potentials

The current can be computed explicitly for harmonic potentials when no stochastic

perturbation is present. In this case, a ballistic behavior (no damping of the current

with the system size) is found, as for standard harmonic oscillator chains [35]. It can

also be shown that the macroscopic profile of energy q ∈ [−1, 1] → 〈V (η[xq/N ])〉ss is flat

and equal to (Tℓ + Tr)/4.

Proposition 2. Consider the system described by the generator (57) with γ = 0, for

the harmonic potential V (r) = r2/2. Then the steady-state energy current is

J0
N(Tℓ, Tr) =

Tℓ − Tr

λℓ + λ−1
ℓ + λr + λ−1

r

. (63)

Proof. Introduce Cx,y = 〈ηxηy〉ss = Cy,x for (x, y) ∈ Λ2. First, note that the stationarity

of the current implies Cx,x+1 = −J0
N(Tℓ, Tr) for x = −N, . . . , N and

λℓ(Tℓ − C−N,−N) = −λr(Tr − CN,N) = J0
N(Tℓ, Tr). (64)

Besides, for x = −N + 1, . . . , N − 2, it holds

〈LN,open(ηxηx+1)〉ss = 0 = Cx+1,x+1 + Cx,x+2 − (Cx,x + Cx−1,x+1).

Therefore, CN−1,N−1 + CN−2,N = C−N+1,−N+1 + C−N,−N+2. Now,

〈LN,open(η−Nη−N+1)〉ss = 0 = C−N+1,−N+1 + C−N+2,N − λℓC−N,−N+1 − C−N,−N ,

and, similarly, CN,N−2 + CN−1,N−1 = CN,N − λrCN,N−1. In conclusion,

λℓC−N,−N+1 + C−N,−N = CN,N − λrCN,N−1.

The expression (63) is then obtained by combining the above equality with (64) and the

relation CN,N−1 = C−N,−N+1 = −J0
N(Tℓ, Tr).

When γ > 0, we expect to observe an anomalous diffusion with divergence rate

δ = 1/2, i.e. NJγ
N ∼ Cγ

√
N when N is large enough. This is indeed confirmed by

numerical simulations, see Figure 1.

6.3. Anharmonic potentials

The nonlinear case is much more difficult. We estimate the exponent δ ≥ 0 such that

NJγ
N ∼ N δ (65)

using numerical simulations. If δ = 0, the system is a normal conductor of energy. If

on the other hand δ > 0, it is a superconductor.
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6.3.1. Numerical scheme. The time-discretization of the dynamics with generator (57)

is done with a standard splitting strategy, decomposing the generator as the sum of

a deterministic part AN , a thermostat part λℓB−N,Tℓ
+ λrBN,Tr , and the stochastic

perturbation γSN , and integrating each part in this order. We denote by ∆t the time-

step.

A simple numerical scheme for the deterministic part of the dynamics by relying on

the Hamiltonian interpretation of the system. The longtime integration of Hamiltonian

system is well understood. The most standard scheme used in practice is the so-called

Störmer-Verlet scheme (see again [20]), which, for separable Hamiltonians (where the

total energy is the sum of a kinetic part depending only on the momenta, and a potential

part depending only on the positions) can be seen as a Strang approximation of the

Hamiltonian evolution with positions and momenta updated successively. This amounts

here to updating successively variables with odd and even indices. This corresponds to

the Strang splitting based on the following decomposition of the generator:

AN = Aeven
N + Aodd

N ,

with, in the case when N is even,

Aeven
N =

N−1∑

x=1

(
V ′(η2x+1−N) − V ′(η2x−1−N)

)
∂η2x−N

+ V ′(η−N+1)∂η−N
− V ′(ηN−1)∂ηN

,

and a similar definition for Aodd
N . This splitting is particularly convenient since the time

evolutions generated by Aeven
N are Aodd

N are both analytically integrable. In conclusion,

the numerical scheme used for the deterministic part reads:




ηn+1/2
x = ηn

x +
∆t

2

(
V ′(ηn

x+1) − V ′(ηn
x−1)

)
, x = −N + 1,−N + 3, . . . , N − 1

ηn+1
y = ηn

y + ∆t
(
V ′(η

n+1/2
y+1 ) − V ′(η

n+1/2
y−1 )

)
, y = −N,−N + 2, . . . , N

ηn+1
x = ηn+1/2

x +
∆t

2

(
V ′(ηn+1

x+1) − V ′(ηn+1
x−1)

)
, x = −N + 1, . . . , N − 1.

The thermostat part is taken care of by a simple Euler-Maruyama discretization:
{
ηn+1
−N = ηn

−N − λℓ∆t V
′(ηn

−N) +
√

2λℓTℓ∆tG
n
−N ,

ηn+1
N = ηn

N − λr∆t V
′(ηn

N) +
√

2λrTr∆tG
n
N ,

where (Gn
±N) are independent and identically distributed standard Gaussian random

variables. Finally, the noise term with generator γS is simulated by exchanging ηx

and ηx+1 (for x = −N, . . . , N − 1) at exponentially distributed random times, with an

average time γ−1 between two such exchanges. More precisely, we attach to each couple

(x, x+ 1) a random time τm
x , with τ 0

i drawn from an exponential law with parameter γ,

and where (τm
i )i,m are independent. This time is updated as follows: If τm

x ≥ ∆t, then

τm+1
x = τm

x − ∆t, otherwise ηx and ηx+1 are exchanged and a new exchange time τm+1
x

is resampled from an exponential law of parameter γ.
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Figure 1. Current Jγ
N as a function of the system size 2N +1 for harmonic potentials

V (r) = r2/2 (in log
2
− log

2
scale), with three values of γ: γ = 0 (black), γ = 0.1 (blue)

and γ = 1 (red).

6.3.2. Numerical results. We considered the following potentials:

(i) harmonic potential V (r) = r2/2;

(ii) anharmonic FPU-like potential V (r) = r2/2 + r4/4;

(iii) Kac-van-Moerbecke potential V (r) = e−r + r − 1;

(iv) rotor V (r) = 1 − cos(r).

The time-step ∆t is chosen to ensure a good longtime preservation of energy for the

deterministic dynamics in the absence of stochastic perturbation. In order to have a

relative error in energy less than 10−5, we used ∆t = 0.005 except for rotors where

∆t = 0.025. We set λℓ = λr = 1 (this choice maximizes the observed current in

the harmonic case according to (63)), and considered a small temperature difference

Tℓ = 1.1, Tr = 0.9. We performed 109 iterations for N ≤ 212, 5 × 108 iterations for

N = 213, 2.5 × 108 iterations for N = 214 and 1.25 × 108 iterations for N = 215. The

corresponding system size in the latter case is 2N + 1 = 65, 537.

The simulation results are presented in Figures 1 to 4. The conductivity exponents

extracted from the numerical simulations presented in Figures 1 to 3 are reported in

Table 1. Exponents in the harmonic case agree with their expected values (see the

discussion in Section 6.2). For nonlinear potentials, except for the singular value δ = 1

when γ = 0, the exponents seem to be monotonically increasing with γ. We conjecture

that these exponents should attain the limiting value 0.5 as γ → +∞. A similar behavior

of the exponents is observed for Toda chains [22]. Note also that the value found for
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Figure 2. Current as a function of the system size 2N + 1 for anharmonic potentials

V (r) = r2/2+r4/4 (in log
2
− log

2
scale), with four values of γ: γ = 0 (black), γ = 0.01

(blue), γ = 0.1 (pink) and γ = 1 (red).
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Figure 3. Current as a function of the system size 2N +1 for the Kac-van-Moerbecke

potential V (r) = e−r + r− 1 (in log
2
− log

2
scale), with five values of γ: γ = 0 (black),

γ = 0.001 (blue), γ = 0.01 (green), γ = 0.1 (pink) and γ = 1 (red).
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Figure 4. Current as a function of the system size 2N + 1 for a chain of rotors:

V (r) = 1− cos(r). A normal conductivity is observed since the estimated conductivity

exponent is δ ≃ 0.02.

Table 1. Conductivity exponents δ (see (65) for the definition of δ).

γ harmonic anharmonic KVM

0 1 0.13 1

0.01 – 0.14 0.12

0.1 0.50 0.27 0.25

1 0.50 0.43 0.33

γ = 0 with the anharmonic FPU potential V (r) = r2/2 + r4/4 is smaller than the

corresponding value for standard oscillator chains, which is around 0.33 (see [29]).

Appendix A. Existence and uniqueness of the stationary state for γ = 0

We adapt in our context the methods introduced in [9] (see [34] for a review) for

the chains of coupled oscillators, following closely the exposition given in [7]. The

proof is divided in 3 steps: (i) the aim of Appendix A.2 is to prove the Lyapunov

condition (A.5); (ii) we then prove the smoothness of the transition probability using

hypoellipticity arguments (Appendix A.3), and finally (iii) show that the process is

irreducible (Appendix A.4). These three arguments, together with [33, Theorem 8.9]

allow to conclude the existence and the uniqueness of an invariant measure with smooth

density, as well as the exponential convergence of the law of the process to the invariant

measure.
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Appendix A.1. Definition of the process

The process generated by LN,open is denoted by (η(t))t≥0 and is the solution of the system

(S)





dη−N(t) = V ′(η−N+1)dt− λℓV
′(η−N)dt+

√
2λℓTℓ dB−N(t),

dηx(t) = (V ′(ηx+1) − V ′(ηx−1))dt, x = −N + 1, . . . , N − 1,

dηN(t) = −V ′(ηN−1)dt− λrV
′(ηN)dt+

√
2λrTr dBN(t),

where B−N , BN are two standard independent Brownian motions. Since the drift

coefficients are only locally Lipschitz, it is unclear whether a solution to (S) exists

for any time. This problem can however easily be solved by using a suitable Lyapunov

function, as we now show. For α > 0, consider

Wα(η) = exp

{
α

N∑

x=−N

V (ηx)

}
. (A.1)

A simple computation shows that

(LN,openWα)(η) = α
[
λrTrV

′′(ηN) + λr(Trα− 1)(V ′(ηN))2

+ λℓTℓV
′′(η−N) + λℓ(Tℓα− 1)(V ′(η−N))2

]
Wα,

so that, using the assumption (60), LN,openWα ≤ AWα for some positive constant A

as soon as α is sufficiently small. This is sufficient to prove the existence of a unique

solution to (S) for any initial condition and for any time t ≥ 0. We denote by (Tt)t≥0

the corresponding semigroup.

Appendix A.2. Proof of the Lyapunov condition (A.5)

Given a solution (η(t))t≥0 of (S), we define the scaled process ηE (for E > 0) as follows:

ηE(t) = E−1/kη(tE2/k−1). (A.2)

The scaling is chosen so that there is no explicit dependence in E in the formal limit

E → +∞ (see the system (S∞) below). The process ηE is a solution of

(SE)





dηE
−N(t) = E1/k−1

(
V ′(E1/kηE

−N+1) − λℓV
′(E1/kηE

−N)
)
dt

+

√
2λℓTℓ

E
dB−N(t),

dηE
x (t) = E1/k−1

(
V ′(E1/kηE

x+1) − V ′(E1/kηE
x−1)

)
dt,

x = −N + 1, . . . , N − 1,

dηE
N(t) = −E1/k−1

(
V ′(E1/kηE

N−1) + λrV
′(E1/kηE

N)
)
dt

+

√
2λrTr

E
dBN(t),

(A.3)
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where B−N , BN are two standard independent Brownian motions. Observe that the

scaled process is such that if H(η(0)) = E then HE(ηE(0)) = 1, where the scaled energy

HE is

HE(η) =
1

E

N∑

x=−N

V (E1/kηx).

In the limit E → +∞, the noise disappears and, by the scaling property (59) of the

potential, (SE) reduces formally to the following deterministic system:

(S∞)





dη−N(t) =
(
θ′(η−N+1) − λℓθ

′(η−N)
)
dt,

dηx(t) =
(
θ′(ηx+1) − θ′(ηx−1)

)
dt, x = −N + 1, . . . , N − 1,

dηN(t) = −
(
θ′(ηN−1) + λrθ

′(ηN)
)
dt,

where θ(q) = ak|q|k is a C1 function since k ≥ 2. We also introduce the corresponding

limiting energy function

H∞(η) =
N∑

x=−N

θ(ηx).

Arguing by contradiction, it is easy to show that if (η̃(t))t≥0 is a solution of (S∞)

starting from an initial condition η̃(0) such that H∞(η̃(0)) = 1, then, for any τ > 0,
∫ τ

0

[
(θ′(η̃−N(s)))2 + (θ′(η̃N(s)))2

]
ds > 0. (A.4)

By using the continuity of solutions of stochastic differential equations with respect to

both parameters and starting points, we can then state the following asymptotic result.

Lemma 5. Assume that ((ηn(t))t≥0)n∈N is a sequence of solutions of (S) starting from

ηn(0), with En = H(ηn(0)) → +∞. Then there exists a subsequence ((ηm(t))t≥0)m∈N

such that, for any C > 0 and t0 > 0,

lim
m→+∞

Eηm(0)

[
exp

(
−C

∫ t0

0

[
(θ′(ηm

−N(s))2 + (θ′(ηm
N (s))2

]
ds

)]
= 0.

Proof. Recall that (ηn,En(t))t≥0 is the solution of (SEn) starting from ηn,En(0), which is

such that HEn(ηn,En(0)) = 1. This implies that the sequence (ηn,En(0))n∈N remains in

a compact set and we can extract a subsequence, denoted by (ηm,Em(0))m∈N, such that

ηm,Em(0) converges to some element η̃∗ ∈ R
{−N,...,N}. By continuity, H∞(η̃∗) = 1. Let

(η̃(t))t≥0 be the solution to (S∞) starting from η̃∗.

We fix C > 0 and t0 > 0. For any τ > 0, thanks to the continuity of solutions of

stochastic differential equations with respect to both parameters and starting points, it

holds

lim
m→∞

E

[
sup
t≤τ

∣∣ηm,Em(t) − η̃(t)
∣∣2
]

= 0.
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For any η ∈ R
{−N,...,N}, we denote the term [(θ′(η−N))2 + (θ′(ηN))2] by K(η). Then, for

any a > 0,

lim
m→∞

Eηm,Em (0)

[
exp

(
−a
∫ τ

0

K
(
ηm,Em(s)

)
ds

)]
= e−aI(τ),

where I(τ) =
∫ τ

0
K (η̃(s)) ds > 0 by (A.4). Observe also that, for Em ≥ 1,

∫ t0

0

K(ηm(s)) ds = Em

∫ E
1−2/k
m t0

0

K(ηm,Em(u)) du ≥ Em

∫ t0

0

K(ηm,Em(u)) du.

Now, consider some arbitrary constant A > 0. By choosing m sufficiently large so that

A ≤ CEm, it follows

lim
m→+∞

Eηm(0)

[
exp

(
−C

∫ t0

0

K(ηm(s))ds

)]
≤ e−AI(t0).

The result is then obtained by letting A go to infinity.

We now claim that there exist a time t0 > 0, finite constants bn and κn ∈ (0, 1)

with limn→∞ κn = 0, and compact sets Kn such that

∀η ∈ R
{−N,...,N}, Tt0W (η) ≤ κnW (η) + bn1Kn(η), (A.5)

where W := Wα is the Lyapunov function (A.1). By choosing compact sets Kn of the

form {η ∈ R
{−N,...,N} |W (η) ≤ an} with an → +∞, it is enough to show that

lim
n→+∞

sup
η 6∈Kn

Tt0W (η)

W (η)
= 0.

Therefore, (A.5) is a consequence of Lemma 5 and the following result.

Lemma 6. If α is sufficiently small, there exist c, C > 0 and q > 1 such that, for all

η(0) ∈ R
{−N,...,N},

Tt0W (η(0))

W (η(0))
≤ ect0 Eη(0)

[
exp

(
−C

∫ t0

0

[
(θ′(η−N(s)))2 + (θ′(ηN(s)))2

]
ds

)]1/q

.

Proof. It holds

H(η(t)) = H(η(0)) +

∫ t

0

LN,openH(η(s)) ds+M(t),

where M(t) is a continuous martingale of quadratic variation

[M ]t =

∫ t

0

(
LN,open(H

2) − 2HLN,openH
)
(η(s)) ds

= 2

∫ t

0

(
λℓTℓ[V

′(η−N(s))]2 + λrTr[V
′(ηN(s))]2

)
ds.
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Now, for any constants p, q ≥ 1 such that p−1 + q−1 = 1,

TtW (η(0))

W (η(0))
= Eη(0)

[
eα(H(η(t))−H(η(0))

]

= Eη(0)

[
exp

(
αM(t) + α

∫ t

0

(LN,openH)(η(s))ds

)]

= Eη(0)

[
exp

(
αM(t) − p

α2

2
[M ]t + p

α2

2
[M ]t + α

∫ t

0

(LN,openH)(η(s))ds

)]

= Eη(0) [XtYt] ≤ Eη(0)[X
p
t ]1/p

Eη(0) [Y q
t ]1/q ,

where

Xp
t = exp

(
pαM(t) − (pα)2

2
[M ]t

)

is an exponential martingale with constant mean equal to 1. Moreover,

Y q
t = exp

(
pq
α2

2
[M ]t + αq

∫ t

0

(LN,openH)(η(s))ds

)

= exp

(∫ t

0

(
F (η−N(s), λℓ, Tℓ) + F (ηN(s), λr, Tr)

)
ds

)
,

with

F (r, λ, T ) = λαq
[
(pαT − 1)(V ′(r))2 + TV ′′(r)

]
.

Taking α sufficiently small, and using (59) and (60), we see that there exists two

constants C, c > 0 (depending on α, p, Tℓ, Tr, λℓ, λr and V ) such that

∀(r, λ, T ) ∈ R × {λℓ, λr} × {Tℓ, Tr} F (r, λ, T ) ≤ qc− C[θ′(r)]2.

This completes the proof of the lemma.

Appendix A.3. Smoothness of the transition probability

The generator LN,open can be written as

LN,open = X0 + λℓTℓX
2
−N + λrTrX

2
N ,

where X0, X±N are first-order differential operators:

X0 = AN − λℓV
′(η−N)∂η−N

− λrV
′(ηN)∂ηN

, X±N = ∂η±N
.

If the Lie algebra L generated by the vector fields X0, X±N , i.e. the smallest Lie algebra

containing

{Xi}i∈{−N,0,N}, {[Xi, Xj]}i,j∈{−N,0,N}, {[Xi, [Xj, Xk]}i,j,k∈{−N,0,N}, . . .

has full rank at every point η, then the generator LN,open is hypoelliptic, and,

by Hörmander’s theorem on hypoelliptic operators (see [21]), the semigroup (Tt)t≥0

generated by LN,open has a smooth transition probability density, is strong Feller and

the invariant measures, if they exist, also have a smooth density.
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To show that L has full rank, we first observe that ∂ηN
∈ L. We then prove that

∂ηN−1
∈ L. Indeed, [X0, ηN ] = −V ′′(ηN)∂ηN−1

+ λrV
′′(ηN)∂ηN

, so that −V ′′(ηN)∂ηN−1
∈

L. If V ′′(ηN) 6= 0 we already have ∂ηN−1
∈ L. Otherwise we compute the iterated

Lie bracket [. . . , [X0, ∂ηN
], . . . , ∂ηN

] and obtain V (m)(ηN)∂ηN−1
∈ L for any m ≥ 2. The

non-degeneracy condition (61) on V therefore gives ∂ηN−1
∈ L. By iterating the above

argument, it follows easily that ∂ηx ∈ L for every x ∈ {−N, . . . , N}.

Appendix A.4. Irreducibility of the dynamics

We show here that the semigroup (Tt)t≥0 is strongly irreducible, that is, for every η,

every t > 0, and every non-empty open set A, it holds Tt(η, A) > 0. Recall that, in

general, irreducibility is not a consequence of hypoellipticity.

Irreducibility can be proved by using a well-known relationship between stochastic

differential equations and control theory (see for instance the discussions in [9, Section 3]

or [7, Section 4]). In [19], a general approach for obtaining the desired controllability

is presented for divergence-free systems having a conserved quantity and satisfying

a Hörmander condition. Since our system satisfies these assumptions, we can apply

Theorem 2.1 of [19] and deduce that the semigroup (Tt)t≥0 is strongly irreducible.

Appendix B. Existence and uniqueness of the stationary state for γ > 0

We denote by (Tt)t≥0 the semigroup generated by LN,open for some given γ > 0, and

by (T̃t)t≥0 the semigroup corresponding to LN,open for γ = 0. The same arguments as

for the case γ = 0 can be used to show that (Tt)t≥0 satisfies some Lyapunov condition

similar to (A.5). Relying on [33, Theorem 8.1] for instance, it is then enough to show

that the process is irreducible and that the transition probability has a smooth density.

Appendix B.1. Irreducibility of the dynamics

We show first that (Tt)t≥0 is strongly irreducible. Let us denote the probability transition

of T̃t by p̃t(η, ξ) dξ and the probability transition of Tt by pt(η, dξ).

Let σ1 be the stopping time defined as the first time when two variables ηx and

ηx+1 are exchanged. Observe that σ1 has an exponential law of parameter 2γN . For

every bounded measurable function f : R
{−N,...,N} → R, it holds

(Ttf)(η) = Eη [f(η(t))1σ1≥t] + Eη [f(η(t))1σ1<t]

= e−2Nγt

∫

ξ

p̃t(η, ξ)f(ξ)dξ

+ γ

∫ t

0

ds e−2γNs

N−1∑

x=−N

∫

ξ

dξ p̃s(η, ξ)

(∫

ξ′
pt−s(ξ

x,x+1, dξ′)f(ξ′)

)
.

(B.1)
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Iterating the above argument, we obtain the following formula for pt:

pt(η, dξ) = e−2γNtp̃t(η, ξ)dξ

+
∞∑

k=1

γk

N−1∑

x1,...,xk=−N

[∫ ∞

0

. . .

∫ ∞

0

ds1 . . . dsk+1e
−2γN(s1+...+sk+1)1{s1+...+sk≤t<s1+...sk+1}

∫

ξ1,...,ξk

p̃s1(η, ξ1)p̃s2(ξ
x1,x1+1
1 , ξ2) . . .

. . . p̃sk
(ξ

xk−1,xk−1+1
k−1 , ξk)p̃t−(s1+...sk)(ξ

xk,xk+1
k , ξ)dξ1 . . . dξk

]
dξ.

This shows that pt(η, dξ) = pt(η, ξ)dξ is absolutely continuous with respect to the

Lebesgue measure. Moreover, the semigroup (Tt)t≥0 is strongly irreducible because

T̃t is strongly irreducible.

Lemma 7. The semigroup (Tt)t≥0 is strongly Feller, i.e. it maps bounded measurable

functions to continuous bounded functions.

Proof. The semigroup (T̃t)t≥0 is strongly Feller. This implies (see e.g. [38, Corollary 2.4])

that for every t > 0 and every compact set K,

lim
δ→0

sup
|η−η′|≤δ
η,η′∈K

sup
‖u‖∞≤1

∣∣∣
(
T̃tu
)

(η) −
(
T̃tu
)

(η′)
∣∣∣ = 0. (B.2)

Let f be a bounded measurable function with ‖f‖∞ ≤ 1. We have to show that, for

any fixed t > 0, Ttf is a continuous bounded function. By (B.1) we have

(Ttf)(η′) − (Ttf)(η) = e−2γNt
(
(T̃tf)(η′) − (T̃tf)(η)

)

+ γ

N−1∑

x=−N

∫ t

0

e−2γN(t−s)
{(
T̃t−s ◦ Fx ◦ Ts ◦ f

)
(η) −

(
T̃t−s ◦ Fx ◦ Ts ◦ f

)
(η′)
}
ds.

Here, Fx is the operator acting on functions f ≡ f(η) as (Fxf)(η) = f(ηx,x+1). Observe

that the absolute value of the second term on the right hand side is bounded above by

γ

N∑

x=−N

∫ t

0

e−2Nγ(t−s) sup
‖g‖∞≤1

∣∣∣
(
T̃t−sg

)
(η) −

(
T̃t−sg

)
(η′)
∣∣∣ ds.

By the bounded convergence theorem and (B.2) we have

lim
η′→η

(Ttf)(η′) − (Ttf)(η) = 0,

which concludes the proof.

These two last properties (irreducibility and strong Feller property) are sufficient

to have uniqueness of the invariant measure µss. To show that the latter has a density,

we observe that for any t > 0, the condition µssTt = Tt implies that, for any measurable

set A of R
{−N,...,N},

µss(A) =

∫
dµss(η)

(∫
1A(ξ)pt(η, ξ)dξ

)
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=

∫
1A(ξ)

(∫
dµss(η)pt(η, ξ)

)
dξ,

where the second line follows from Fubini’s theorem.
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