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Superdiffusion of energy in Hamiltonian systems
perturbed by a conservative noise

Cédric Bernardin

Abstract We review some recent results on the anomalous diffusion of energy in

systems of 1D coupled oscillators and we revisit the role of momentum conserva-

tion.

1 Introduction

Transport properties of one-dimensional Hamiltonian systems consisting of coupled

oscillators on a lattice have been the subject of many theoretical and numerical

studies, see the review papers [7, 8, 12]. Despite many efforts, our knowledge of

the fundamental mechanisms necessary and/or sufficient to have a normal diffusion

remains very limited.

Consider a 1-dimensional chain of oscillators indexed by x ∈ Z, whose formal

Hamiltonian is given by

H = ∑
x∈Z

[
p2

x

2
+V (rx)

]
,

where rx = qx+1 −qx is the “deformation” of the lattice, qx being the displacement

of the atom x from its equilibrium position and px its momentum. The interaction

potential V is a smooth positive function growing at infinity fast enough. The energy

ex of atom x ∈ Z is defined by

ex =
p2

x

2
+V (rx).

Our goal is to understand the macroscopic energy diffusion properties for the

corresponding Hamiltonian dynamics
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drx

dt
= px+1 − px,

d px

dt
= V ′(rx)−V ′(rx−1), x ∈ Z.

Under suitable conditions on V , the infinite dynamics is well defined for a large

class of initial conditions.

Apart from the total energy ∑x ex, observe that the total momentum ∑x px and the

total deformation ∑x rx of the lattice are formally conserved. This is a consequence

of the following microscopic continuity equations:

dex

dt
+∇[ je

x−1,x] = 0, je
x,x+1 = −px+1V ′(rx), (1)

d px

dt
+∇[−V ′(rx−1)] = 0, (2)

drx

dt
+∇[−px] = 0. (3)

The function je
x,x+1 is the current of energy going from x to x + 1. The main open

problem ([11], [17]) concerning the foundation of statistical mechanics based on

classical mechanics is precisely to show that the three quantities above are the only

quantities which are conserved by the dynamics. In some sense, it means that the

dynamics, evolving on the manifold defined by fixing the total energy, the total mo-

mentum and the total deformation, is ergodic. Of course, the last sentence does not

make sense since we are in infinite volume and ∑x ex,∑x px and ∑x rx are typically

infinite. Nevertheless, an alternative meaningful definition will be proposed and dis-

cussed in Section 2.

Numerical simulations provide a strong evidence of the fact that one dimensional

chains of anharmonic oscillators conserving momentum are 1 superdiffusive. It shall

be noticed that there is no explanation of this, apart from heuristic considerations,

and that some models which do not conserve momentum can also display anomalous

diffusion of energy (see [10]).

An interesting area of current research consists in studying this problem for

hybrid models where a stochastic perturbation is superposed to the deterministic

evolution. Even if the problem is considerably simplified, several open challenging

questions can be addressed for these systems. The first benefit of the introduction

of stochasticity in the models is to guarantee the ergodicity that we are not able to

show for purely deterministic systems. The added noise must be carefully chosen

in order not to destroy the conservation laws we are interested in. In particular, the

noise shall conserve energy. But we will consider a noise conserving also some of

the other quantities conserved by the underlying Hamiltonian dynamics, e.g. the

momentum, the deformation or any linear combination of them.

The paper is organized as follows. In Section 2 we discuss the problem of the

ergodicity of the infinite dynamics mentioned above and the possible stochastic per-

turbations we can add to the deterministic dynamics to obtain ergodic dynamics. In

Section 3 we review some results obtained in the context of harmonic chains per-

1 See however the coupled-rotor model which displays normal behavior (see [12], Section 6.4).

This is probably due to the fact that the position space is compact.
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turbed by a conservative noise and we discuss the case of anharmonic chains in the

last section.

2 Ergodicity

Let us first generalize the models introduced above ([6]). Let U and V be smooth

positive potentials growing at infinity fast enough and let H := HU,V be the Hamil-

tonian

HU,V = ∑
x∈Z

[U(px)+V (rx)] .

The corresponding Hamiltonian dynamics satisfy

drx

dt
= U ′(px+1)−U ′(px),

d px

dt
= V ′(rx)−V ′(rx−1), x ∈ Z. (4)

The energy of particle x is defined by ex = U(px)+V (rx). The three formal quanti-

ties ∑x ex, ∑x rx and ∑x px are conserved by the dynamics. The fundamental question

we address in this section is: are they the only ones? In finite volume, i.e. replacing

the lattice Z by a finite box Λ , this would correspond to the usual notion of ergodic-

ity for Hamiltonian flows with a finite number of degrees of freedom. But since we

consider the dynamics in infinite volume the notion of conserved quantity has to be

properly defined. The way we follow to attack the problem is to detect the existence

of a non-trivial conserved quantity through the existence of a non-trivial invariant

state for the infinite dynamics.

Let Ω = (R×R)Z be the phase space of the dynamics and let us denote a typical

configuration by ω = (r, p) ∈ Ω . For simplicity we assume that for any (β ,λ ,λ ′) ∈
(0,+∞)×R×R, the partition function

Z(β ,λ ,λ ′) =
∫

R×R

e−β [U(a)+V (b)]−λb−λ ′adadb

is finite. Let µβ ,λ ,λ ′ be the product Gibbs measures on Ω defined by

dµβ ,λ ,λ ′(ω) = ∏
x∈Z

1

Z(β ,λ ,λ ′)
exp

[
−β [U(px)+V (rx)]−λ rx −λ ′px

]
drxd px.

We assume that (4) is well defined for a subset Ωβ ,λ ,λ ′ of full measure with respect

to µβ ,λ ,λ ′ , that the latter is invariant for (4), and that it is possible to define a strongly

continuous semigroup in L
2(µβ ,λ ,λ ′) with formal generator

AU,V = ∑
x∈Z

[
(U ′(px+1)−U ′(px))∂rx +(V ′(rx)−V ′(rx−1))∂px

]
.

All that can be proved under suitable assumptions on U and V ([9], [5]).
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In order to explain what is meant by ergodicity of the infinite volume dynamics

we need to introduce some notation. For any topological space X equipped with its

Borel σ -algebra we denote by P(X) the convex set of probability measures on X .

The relative entropy H(ν |µ) of ν ∈ P(X) with respect to µ ∈ P(X) is defined as

H(ν |µ) = sup
φ

{∫
φ dν − log

(∫
eφ dµ

)}
, (5)

where the supremum is carried over all bounded measurable functions φ on X .

Let θx,x ∈ Z, be the shift by x: (θxω)z = ωx+z. For any function g on Ω , θxg is

the function such that (θxg)(ω) = g(θxω). For any probability measure µ ∈P(Ω),
θxµ ∈ P(Ω) is the probability measure such that, for any bounded function g :

Ω → R, it holds
∫

Ω gd(θxµ) =
∫

Ω θxgdµ . If θxµ = µ for any x then µ is said to be

translation invariant.

If Λ is a finite subset of Z the marginal of µ ∈ P(Ω) on R
Λ is denoted by

µ|Λ . The relative entropy of ν ∈ P(Ω) with respect to µ ∈ P(Ω) in the box Λ
is defined by H(ν |Λ |µ|Λ ) and is denoted by HΛ (ν |µ). We say that a translation

invariant probability measure ν ∈ P(Ω) has finite entropy density (with respect

to µ) if there exists a finite positive constant C such that for any finite Λ ⊂ Z,

HΛ (ν |µ) ≤C|Λ |. In fact, if this condition is satisfied, then the limit

H(ν |µ) = lim
|Λ |→∞

HΛ (ν |µ)

|Λ |

exists and is finite (see [9]). It is called the entropy density of ν with respect to µ .

We are now in position to define ergodicity.

Definition 1. We say that the infinite volume dynamics with infinitesimal gener-

ator AU,V is ergodic if the following claim is true: If ν ∈ P(Ω) is a probabil-

ity measure invariant by translation, invariant by the dynamics generated by AU,V

and with finite entropy density with respect to µ1,0,0, then ν is a mixture of the

µβ ,λ ,λ ′ ,β > 0,λ ,λ ′ ∈ R.

In the harmonic case (U(z) = V (z) = z2/2) and for the Toda lattice (U(z) =
z2/2, V (z) = e−z +z−1), the infinite system is completely integrable and an infinite

number of conserved quantities can be explicitly written. It follows that they are

not ergodic in the sense above. Nevertheless we expect that for a very large class

of potentials, the Hamiltonian dynamics are ergodic and that these two cases are

exceptional.

In order that the infinite dynamics enjoy good ergodic properties, we superpose

to the deterministic evolution a stochastic noise.

Given a sequence u = (uy)y∈Z ∈ R
Z and a site x ∈ Z, we denote by ux (resp.

ux,x+1) the sequence defined by (ux)y = uy if y 6= x and (ux)x =−ux (resp. (ux,x+1)y =
uy if y 6= x,x+1, (ux,x+1)x = ux+1 and (ux,x+1)x+1 = ux). We consider the following

noises (jump processes) whose generators are defined by their actions on functions

f : Ω → R according to:
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1. (S p
f lip f )(r, p) = ∑x [ f (r, px)− f (r, p)].

2. (S r
f lip f )(r, p) = ∑x [ f (rx, p)− f (r, p)].

3. (S p
ex f )(r, p) = ∑x

[
f (r, px,x+1)− f (r, p)

]
.

4. (S r
ex f )(r, p) = ∑x

[
f (rx,x+1, p)− f (r, p)

]
.

If U is even then the noise S
p
f lip conserves the energy, the deformation but not

the momentum; if U is odd the noise has little interest for us since the energy conser-

vation is destroyed. Similarly, if V is even the the noise S r
f lip conserves the energy

and the momentum but not the deformation. The noises S
p

ex and S r
ex conserve the

energy, the deformation and the momentum.

Let now γ > 0 and denote by L the generator of the infinite Hamiltonian dy-

namics generated by AU,V perturbed by one of the previous noise S with intensity

γ , i.e. L = AU,V + γS .

Theorem 1 ([9], [5], [6]). The dynamics generated by L is ergodic in the sense

that if ν ∈ P(Ω) is a probability measure invariant by translation, invariant by the

dynamics generated by L and with finite entropy density with respect to µ1,0,0, then

it holds:

1. If U even and S = S
p
f lip then ν is a mixture of the µβ ,λ ,0;

2. If V is even and S = S r
f lip then ν is a mixture of the µβ ,0,λ ′ .

3. If S = S
p

ex or S = S r
ex then ν is a mixture of the µβ ,λ ,λ ′ .

The main motivation to establish such a theorem is that by using Yau’s relative

entropy method ([19]) in the spirit of Olla-Varadhan-Yau ([14]), it is possible to

show that if the infinite volume dynamics is ergodic then the propagation of local

equilibrium holds in the hyperbolic time scale, before the appearance of the shocks.

As a consequence, the dynamics has a set of compressible Euler equations as hydro-

dynamic limits ([5], [6]). Observe that this is true also for the deterministic dynamics

so that the rigorous derivation of the Euler equations from the first principles of the

mechanics in the smooth regime is “reduced” to prove that the dynamics generated

by AU,V is ergodic.

3 Harmonic chains

3.1 Role of the conservation of momentum and deformation

We consider here the specific (harmonic) case V (z) =U(z) = z2/2. The dynamics is

then linear and can be solved analytically using Fourier transform. Let us introduce

a new macroscopic variable η ∈ R
Z defined from (p,r) ∈ Ω by setting

η2x = rx, η2x+1 = px+1, x ∈ Z. (6)

Then, the Hamiltonian dynamics can be rewritten in the form
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dηx

dt
= V ′(ηx+1)−V ′(ηx−1), x ∈ Z. (7)

We introduce the kth mode η̂(k, ·) for k ∈ T = R/Z, the one-dimensional torus

of length 1:

η̂(t,k) = ∑
x∈Z

ηx(t)e2iπkx.

Then, the equations of motion are equivalent in the sense of distributions to the

following decoupled system of first order differential equations:

dη̂

dt
(t,k) = iω(k) η̂(t,k),

where the dispersion relation ω(k) reads

ω(k) = −2sin(2πk),

and the group velocity vg is

vg(k) = ω ′(k) = −4π cos(2πk).

By inverting the Fourier transform, the solution can be written as

ηx(t) =
∫

T

η̂(t,k)e−2iπkx dk.

If the initial configuration η(0) is in ℓ2 the well defined energy of the kth mode

Ek(t) =
1

4π
|η̂(t,k)|2 = Ek(0)

is conserved by the time evolution, and the total energy current J̃e = ∑x∈Z je
x,x+1

takes the simple form

J̃e =
∫

T

vg(k)Ek dk.

We interpret the waves η̂(k, t) as fictitious particles (phonons in solid state

physics). In the absence of nonlinearities, they travel the chain without scattering.

The diffusion of energy is then said to be ballistic. If the potential is non-quadratic,

it may be expected that the nonlinearities produce a scattering responsible for the

diffusion of the energy. Nevertheless, the conservation of the deformation and of the

momentum implies that ∑x(rx + px) is conserved

η̂(t,0) = η̂(0,0). (8)

The identity (8) is valid even if U 6= V and U,V are not quadratic. It means that the

0th mode is not scattered at all and crosses the chain ballistically. In fact, the modes

with small wave number k do not experience a strong scattering and they therefore

contribute to the observed anomalous diffusion of energy.
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It is usually explained that momentum conservation plays a major role in the

anomalous diffusion of energy but it is clear that the deformation conservation plays

exactly the same role as momentum and that it is the conservation of their sum which

is the real ingredient producing anomalous diffusion of energy (see Theorem 2 and

Theorem 4).

3.2 Green-Kubo formula

The signature of an anomalous diffusion of energy can be seen at the level of the

Green-Kubo formula. When transport of energy is normal, meaning that the macro-

scopic equations such as the Fourier’s law or heat equation hold, the transport co-

efficient appearing in these equations can be expressed by the famous Green-Kubo

formula. In order to define the latter we need to introduce some notations. Since the

discussion about the Green-Kubo formula is not restricted to the harmonic case we

go back to a generic anharmonic model in the rest of the Subsection.

Recall that the probability measures µβ ,λ ,λ ′ form a family of invariant probabil-

ity measures for the infinite dynamics generated by AU,V . The following thermody-

namic relations (which are valid since we assumed that the partition function Z is

well defined on (0,+∞)×R×R) relate the chemical potentials β ,λ ,λ ′ to the mean

energy e, the mean deformation u, the mean momentum π under µβ ,λ ,λ ′ :

e(β ,λ ,λ ′) = µβ ,λ ,λ ′(U(px)+V (rx)) = −∂β

(
logZ(β ,λ ,λ ′)

)
, (9)

u(β ,λ ,λ ′) = µβ ,λ ,λ ′(rx) = −∂λ

(
logZ(β ,λ ,λ ′)

)
, (10)

π(β ,λ ,λ ′) = µβ ,λ ,λ ′(px) = −∂λ ′

(
logZ(β ,λ ,λ ′)

)
. (11)

These relations can be inverted by a Legendre transform to express β , λ and λ ′ as

a function of e, u and π . Define the thermodynamic entropy S : (0,+∞)×R×R →
[0,+∞] as

S(e,u,π) = inf
λ ,λ ′∈R2,β>0

{
βe+λu+λ ′π + logZ(β ,λ ,λ ′)

}
.

Let U be the convex domain of (0,+∞)×R×R where S(e,u,π) < +∞ and Ů

its interior. Then, for any (e,u,π) := (e(β ,λ ,λ ′),u(β ,λ ,λ ′),π(β ,λ ,λ ′)) ∈ Ů , the

parameters β ,λ ,λ ′ can be obtained as

β = (∂eS)(e,u,π), λ = (∂uS)(e,u,π), λ ′ = (∂π S)(e,u,π) (12)

These thermodynamic relations allow us to parameterize the Gibbs states by

the average values of the conserved quantities (e,u,π) rather than by the chemi-

cal potentials (β ,λ ,λ ′). Thus, we denote by νe,u,π the Gibbs measure µβ ,λ ,λ ′ where

(e,u,π) are related to (β ,λ ,λ ′) by (12). Let Je := Je(e,u,π) = νe,u,π( je
x,x+1) be the
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average of the energy current je
x,x+1 = −U ′(px)V

′(rx) and define the normalized

energy current ĵe
x,x+1 by

ĵe
x,x+1 = je

x,x+1 − Je − (∂eJe)(ex − e)− (∂uJe)(rx −u)− (∂π Je)(px −π).

The normalized energy current is the part of the centered energy current which is

orthogonal in L
2(νe,u,π) to the space spanned by the conserved quantities.

Up to multiplicative thermodynamic parameters (see [15] for details) that we

neglect to simplify the notations, the Green-Kubo formula 2 is nothing but

κ(e,u,π) :=
∫ ∞

0
∑
x∈Z

Eνe,u,π

[
ĵe
x,x+1(ω(t)) ĵe

0,1(ω(0))
]

dt

where Eνe,u,π denotes the expectation corresponding to the law of the infinite vol-

ume dynamics (ω(t))t≥0 generated by AU,V with initial condition ω(0) distributed

according to the equilibrium Gibbs measure νe,u,π . The definition of κ(e,u,π) is

formal but the way we adopt to give it a mathematically well posed definition is to

introduce a small parameter z > 0 and define κ(e,u,π) as

κ(e,u,π) = limsup
z→0

≪ ĵe
0,1 , (z−AU,V )−1 ĵe

0,1 ≫e,u,π (13)

where the inner-product ≪ ·, · ≫e,u,π is defined for local square integrable functions

f ,g : Ω → R by

≪ f , g ≫e,u,π = ∑
x∈Z

[(∫
f θxgdνe,u,π

)
−

(∫
f dνe,u,π

)(∫
gdνe,u,π

)]
.

Since (z−AU,V )−1 ĵe
0,1 is not a local function, the term on the RHS of (13) has to

be interpreted in the Hilbert space obtained by the completion of the space of local

bounded functions with respect to the inner product ≪ ·, · ≫e,u,π .

The superdiffusion (resp. normal diffusion) of energy corresponds to an infinite

(resp. finite) value for κ(e,u,π). In order to study the superdiffusion, it is of interest

to estimate the time decay of the autocorrelation of the normalized current

C(t) := Ce,u,π(t) = ∑
x∈Z

Eνe,u,π

[
ĵe
x,x+1(ω(t)) ĵe

0,1(ω(0))
]
.

It is in general easier to estimate the behavior of the Laplace transform L(z) =∫ ∞
0 e−ztC(t)dt as z → 0. Roughly, if L(z) ∼ z−δ for some δ ≥ 0 then C(t) ∼ tδ−1

as t → +∞. Observe also that

L(z) =≪ ĵe
0,1 , (z−AU,V )−1 ĵ0,1 ≫e,u,π .

2 The transport coefficient is in fact a matrix whose size is the number of conserved quantities.

Since we are interested in the energy diffusion, we only consider the entry corresponding to the

energy-energy flux.
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3.3 Harmonic chain perturbed by a conservative stochastic noise

We consider now the particular case U(z) = V (z) = z2/2 and study the Green-Kubo

formula for the perturbed dynamics generated by L = AU,V + γS where S is one

of the noises introduced in Section 2. Since, depending of the form of the noise,

the momentum conservation law (resp. deformation conservation law) can be sup-

pressed, the corresponding Green-Kubo formula shall be modified by setting π = 0

and ∂π Je = 0 (resp. u = 0 and ∂uJe = 0).

We have the following theorem which shows that if momentum conservation law

or deformation conservation law is destroyed by the noise then a normal behavior

occurs.

Theorem 2 ([4]). Let U and V be quadratic potentials.

1. Consider the system generated by L = AU,V +γS
p
f lip, γ > 0. Then the following

limit

lim
z→0

≪ ĵe
0,1 , (z−L )−1 ĵe

0,1 ≫e,u,0

exists, is finite and strictly positive and can be explicitly computed.

2. Consider the system generated by L = AU,V +γS r
f lip, γ > 0. Then the following

limit

lim
z→0

≪ ĵe
0,1 , (z−L )−1 ĵe

0,1 ≫e,0,π

exists, is finite and strictly positive and can be explicitly computed.

It shall be noticed that the second statement is a direct consequence of the first

one since the process of the second item is equal to the first one by the transforma-

tion

rx → px, px → rx−1.

However, the interest of the second statement is to show that even if momentum is

conserved, a normal diffusion of energy occurs. This is because the deformation is

no longer conserved.

The following theorem shows that if the noise added conserves momentum and

deformation then the situation is very different since an anomalous diffusion of en-

ergy is observed.

Theorem 3 ([1],[2]). Let U and V be quadratic potentials.

1. Consider the system generated by L = AU,V + γS
p

ex, γ > 0. Then the following

limit

lim
z→0

z1/2 ≪ ĵe
0,1 , (z−L )−1 ĵe

0,1 ≫e,u,π

exists, is finite and strictly positive and can be explicitly computed.

2. Consider the system generated by L = AU,V + γS r
ex, γ > 0. Then the following

limit

lim
z→0

z1/2 ≪ ĵe
0,1 , (z−L )−1 ĵe

0,1 ≫e,u,π

exists, is finite and strictly positive and can be explicitly computed.
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In particular, in each of the previous case the Green-Kubo formula yields an infinite

conductivity.

4 Anharmonic chains

We consider now the anharmonic case. For deterministic chains generated by AU,V

we expect usually a superdiffusive behavior of the energy. If a noise S is superposed

to the dynamics, we expect that transport is normal for S = S
p
f lip and S = S r

f lip

and superdiffusive if S = S
p

ex or S = S r
ex.

The following theorem generalizes Theorem 2 to the anharmonic case showing

that a noise destroying momentum conservation law or deformation conservation

law produces normal transport. This shows that, also in the anharmonic case, mo-

mentum conservation alone is not responsible of anomalous diffusion of energy but

that deformation conservation law plays a similar role.

Theorem 4 ([4]). Let U and V be smooth potentials such that there exists a constant

c > 0 such that

c ≤U ′′ ≤ c−1, c ≤V ′′ ≤ c−1.

1. Assume U even and consider the system generated by L = AU,V +γS
p
f lip, γ > 0.

Then the following limit

lim
z→0

≪ ĵe
0,1 , (z−L )−1 ĵe

0,1 ≫e,u,0

exists and is finite.

2. Assume V even and consider the system generated by L = AU,V +γS r
f lip, γ > 0.

Then the following limit

lim
z→0

≪ ĵe
0,1 , (z−L )−1 ĵe

0,1 ≫e,0,π

exists and is finite.

Proof. The second statement is a direct consequence of the first one by the symme-

try argument evoked for Theorem 2. The upper bounds on U ′′ and V ′′ are here to

assure the existence of the infinite volume dynamics.

For simplicity assume that u = 0 and β := β (e,u,0) = 1. The first statement has

been proved in [4] in the particular case U(z) = z2/2. The generalization to a non

quadratic smooth even potential U is straightforward. In [4], since U(z) = z2/2,

we used Hermite polynomials which are orthogonal w.r.t. the Gaussian measure

dµ(z) = (2π)−1/2 exp{−z2/2}dz. In the present case, the only difference is that we

have to replace the Hermite basis by any orthogonal polynomial basis {Pn}n≥0 with

respect to the probability measure N −1 exp(−U(z))dz (with N a normalization

constant) which satisfies Pn odd if n odd and even otherwise. Then the proof is

exactly the same.
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It would be now of interest to show that if we perturb the dynamics generated

by AU,V by S
p

ex or by S r
ex then anomalous diffusion of energy occurs 3. This is an

open question and as far as we know the only result going in this direction has been

obtained in [3].

The model considered in [3] is the dynamics generated by AU,V with U = V tak-

ing the particular form V (z) = e−z + z−1, perturbed by a noise S which conserves

energy and ∑x∈Z(rx + px). More exactly, let us rewrite the Hamiltonian dynamics (4)

by using the variable η := (ηx)x∈Z ∈ R
Z defined by (6). Then we get the equations

of motion given by (7). With these new variables, the total energy is 2∑x V (ηx),
the total deformation is ∑x η2x and the total momentum is ∑x η2x+1. The noise S

superposed to the dynamics acts on local functions f : R
Z → R according to

(S f )(η) = ∑
x∈Z

[
f (ηx,x+1)− f (η)

]
.

Observe that the noise conserves the energy, destroys the momentum and the de-

formation conservation laws but conserves ∑x ηx = ∑x(px + rx), which as explained

above is the quantity (that we call the “volume” to follow the terminology used

in [3]) responsible of the anomalous diffusion of energy. Since we have now only

two conserved quantities (the energy and the volume), the Gibbs states of the per-

turbed dynamics are given by {µβ ,λ ,λ}β>0,λ or equivalently by {νe,π,π ; e > 0,π}.

The normalized energy current is given by

ĵe
x,x+1(η) = −2V ′(ηx)V

′(ηx+1)+2τ2 +2∂e(τ
2)(2V (ηx)− e)+2∂π(τ2)(ηx −π)

with τ := τ(e,π) =
∫

V ′(ηx)dνe,π,π .

Theorem 5 ([3]). Let (e,π) ∈ (0,+∞)×R such that νe,π,π is well defined. Consider

the dynamics with generator L = Aexp + γS , γ > 0, where

Aexp = ∑
x

(V ′(ηx+1)−V ′(ηx−1))∂ηx , (14)

and V (z) = e−z + z−1. Then there exists a constant c > 0 such that for any z > 0

cz−1/4 ≤≪ ĵe
0,1,(z−L )−1 ĵe

0,1 ≫e,π,π≤ c−1z−1/2.

It follows that the Green-Kubo formula of the energy transport coefficient yields an

infinite value.

We expect that the system above belongs to the KPZ class so that ≪ ĵe
0,1,(z−

L )−1 ĵe
0,1 ≫e,π,π should diverge like z−1/3. In the present state of the art no robust

technique is available to show such result apart from the non-rigorous (but powerful)

mode-coupling theory ([13], [16], [18]). A second open problem is to generalize the

previous theorem to other interaction potentials V . Numerical simulations have been

reported in [6].

3 However, if U or V is bounded, like for the rotors model, we expect that diffusion is normal.
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