
HAL Id: ensl-00920026
https://ens-lyon.hal.science/ensl-00920026v1

Preprint submitted on 17 Dec 2013 (v1), last revised 3 Mar 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An exercise on streams: convergence acceleration
Pierre Lescanne

To cite this version:

Pierre Lescanne. An exercise on streams: convergence acceleration. 2013. �ensl-00920026v1�

https://ens-lyon.hal.science/ensl-00920026v1
https://hal.archives-ouvertes.fr

An exercise on streams: convergence acceleration

Pierre Lescanne
University of Lyon,

École normale supérieure de Lyon,
LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA)

46 allée d’Italie, 69364 Lyon, France

December 17, 2013

Abstract

This paper presents convergence acceleration, a method for computing

efficiently the limit of numerical sequences as a typical application of streams

and higher-order functions.

Keywords: convergence acceleration, streams, numerical analysis, co-algebra

1 Introduction

Assume that we want to compute numerically the limit of a sequence that converges
slowly. If we use the sequence itself, we will get significant figures of the limit after
a very long time. Methods called convergence acceleration have been designed to
shorten the time after which we get reasonable amount of significant digits. In other
words, convergence acceleration is a set of methods for numerically computing the
limit of a sequence of numbers. Those methods are based on sequence transforma-
tions and are a very nice domain of application of streams, with beautiful higher
order functions. This allows us to present very elegantly rather complex methods
and to code them in Haskell [4] replacing long, obscure and special purpose Fortran

programs by short, generic and arbitrary precision Haskell programs.
In this paper we show, how given a sequence (sn)n∈N, we can evaluate efficiently

lim
n→∞

sn. For that we use Levin transforms. There are three kinds of such transforms,

which are the result of three sequence transformations labeled traditionally by t, u
and v ([6], p.58).

2 Presentation of the method

In what follows we speak indistinctly of “sequences” or of “streams” We use Haskell
and we work with arbitrary precision reals based on the implementation due to
David Lester and called CReal. In Haskell the type of streams over a type A is
written [A].

For the numerical aspect, we follows Naoki Osada [6] and we show that the
stream notation of Haskell makes the presentation much simpler. With no sur-
prise, the size of the Haskell code is the same if not shorter than the mathematical
description of the reference [6]. Moreover it provides efficient programs.

Levin transformations are somewhat generic in the sense that they are based on
elementary transformations. Specialists of convergence acceleration propose three

1

such elementary transformations. Let s be a sequence on CReal, i.e., s :: [CReal].
We define first a basic sequence transformation on which we will found our elemen-
tary transformations:

dELTA :: [CReal] → [CReal]
dELTA s = zipWith (−) (tail s) s

which means that dELTA(s)n = sn+1−sn. From this basic sequence transformation
we define the three elementary other sequence transformations as follows. A unique
function depending on a character parameter which is either ′t ′ or ′u ′ or ′v ′ is given.
It corresponds to the traditional notations of numerical analysis for those sequence
transformations:

delta :: Char → [CReal] → [CReal]
delta ′t ′ s = dELTA

delta ′u ′ s = zipWith (∗) (dELTA s) [1..]
delta ′v ′ s = zipWith (/) (zipWith (∗) (tail$dELTA s) (dELTA s))

(dELTA (dELTA s))

In numerical analysis, people speak about E-algorithm. This is a family of
functions eAlgn,k which are also parametrized by a character either ′t ′ or ′u ′ or ′v ′.
It tells which of the basic sequence transformations is chosen. eAlgn,k uses a family
of auxiliary functions which we call gAlgn,k for symmetry and regularity. Here is
the Haskell code for these functions:

eAlg :: Char → Int → [CReal] → [CReal]
eAlg c 0 s = s

eAlg c k s = let

a = (eAlg c (k − 1) s)
b = (gAlg c (k − 1) k s)

in

zipWith (−) a (zipWith (∗) b (zipWith (/) (dELTA a) (dELTA b)))

gAlg :: Char → Int → Int → [CReal] → [CReal]
gAlg c 0 j s = let

nTojMinus1 j = zipWith (∗∗) [1..] (map fromIntegral [j − 1, j − 1..])
in

zipWith (/) (nTojMinus1 j) (delta c s)
gAlg c k j s = let

a = gAlg c (k − 1) j s
b = gAlg c (k − 1) k s

in

zipWith (−) a (zipWith (∗) b (zipWith (/) (dELTA a) (dELTA b)))

Here is the formula as it is given in [6]. Rn is the generic value of (delta c s)n . gAlg

is written g. E
(n)
k is the nth element of the sequence eAlg c k s , the same for g

(n)
k,j .

∆ is the notation for what we write dELTA.

E
(n)
0 = sn, g

(n)
0,j = n1−jRn , n = 1, 2, ...; j = 1, 2, ...,

E
(n)
k = E

(n)
k−1 − g

(n)
k−1,k

∆E
(n)
k−1

∆g
(n)
k−1,k

, n = 1, 2, ...; k = 1, 2, ...,

g
(n)
k,j = g

(n)
k−1,j − g

(n)
k−1,k

∆g
(n)
k−1,j

∆g
(n)
k−1,k

, n = 1, 2, ...; k = 1, 2, ..., j > k

2

3 Levin’s formulas

There is another formula for the E − algorithm:

T
(n)
k =

k
∑

j=0

(−1)j
(

k

j

)(

n+ j

n+ k

)k−1
sn+j

Rn+j

k
∑

j=0

(−1)j
(

k

j

)(

n+ j

n+ k

)k−1
1

Rn+j

T
(n)
k is not easily amenable to a Haskell program.1 We give only the functions for

k = 0, 1, 2, which we call levin 0, levin 1 and levin 2. For k = 0, T
(n)
0 = sn and

levin 1 and levin 2 are the result of small calculations.

levin :: Char → Int → [CReal] → [CReal]
levin c 0 s = s

levin c 1 s = zipWith (−) s (zipWith (/) (zipWith (∗) (dELTA s) (delta c s))
(dELTA (delta c s)))

levin ′u ′ 1 s is called Aitken’s delta-squared process. One notices that the numera-
tor and the denominator of the above formula differ slightly. Indeed sn+j in the
numerator is just replaced by 1 in the denominator.

formulaForLevinTwo :: Char → [CReal] → [CReal] → [CReal]
formulaForLevinTwo c s ′ s =
zipWith (+) (zipWith (−) (foldl (zipWith (∗)) [2..] [tail$tail s ′, tail$delta c s , delta c s])

(foldl (zipWith (∗)) [2, 4..] [tail s ′, tail$tail$delta c s , delta c s]))
(foldl (zipWith (∗)) [0..] [s ′, tail$tail$delta c s , tail$delta c s])

levin c 2 s = zipWith (/) (forLevinTwo c s s) (forLevinTwo c [1, 1..] s)

Brezinski [2] proves that the sequences E
(n)
k and T

(n)
k are the same, in other words:

eAlg == levin

4 Examples

More than any other branch of numerical analysis,

convergence acceleration is an experimental science.

The researcher applies the algorithm and looks at the

results to assess their worth.

Dirk Laurie [5]

Given a sequence we use the convergence acceleration to find the main coefficient of
the asymptotic equivalent. More precisely given an integer sequence sn, we want to
find a number a > 1 such that s ∼ anf(n) where f(n) is subexponential. In other

words, for all b ∈ R, b > 1, lim
n→∞

f(n)

bn
= 0. Actually we compute the limit of the

sequence sn+1/sn. For that we create the function:

1In particular due to many divisions by 0 and to the complexity of the formula.

3

expCoeffAC :: ([CReal] → [CReal]) → [Integer] → Int → CReal

expCoeffAC tranform sequence n = last tranform $ zipWith (/) (tail u) u
where

u = map fromIntegral (take n sequence)

Thus expCoeffAC (levin ′u ′ 2) s 300 gives the approximation of the coefficient one
can get after 300 iterations using the sequence transformation levin ′u ′ 2.

4.1 Catalan numbers

Among astonishing examples are Catalan numbers:

catalan = 1 : [let
cati = take i catalan

in

sum (zipWith (∗) cati (reverse cati)) | i ← [1..]]

We know that

catalan!!n ∼ 4n√
πn3

Actually we get expCoeffAC (levin ′u ′ 2) catalan 5 == 4.0 showing a very fast ac-
celeration. Indeed we get the exponential coefficient after 5 iterations 2 whereas the
ratio catalan!!5 over catalan!!4 is 42/14 that is 3. After 300 iterations we get only
3.98 and after 600 iterations we get 3.99.

4.2 Counting plain lambda terms

Unfortunately, not all the sequences are alike. Now we want to use this technique
to address a conjecture, on the asymptotic evaluation of the exponential coefficient
of the numbers of typable terms of size n when n goes to ∞. First let us give
the recursive definition of the numbers S∞ of plain lambda terms of size n. This
sequence appears on the On-line Encyclopedia of Integer Sequences with the entry
number A114851. We assume that abstractions and applications have size 2 and
variables have size 2 + k where k is the depth of the variable w.r.t. its binder.

S∞,0 = S∞,1 = 0,

S∞,n+2 = 1 + S∞,n +

n
∑

k=0

S∞,kS∞,n−k.

It has been proved in [3] that

S∞,n ∼ An · C

n3/2
,

where A
.
= 1.963447954 and C

.
= 1.021874073. After 300 iterations and using

levin ′u ′ 2 we found

1.9634489522735283291619147713569993355616.

giving six exact digits.

24 iterations give no result.

4

4.3 Counting typable lambda terms

The question is now to find the exponential coefficients for the numbers of typable
terms. We have no formula for computing those numbers. The only fact we know is
the following table of the numbers T∞,n till 42 which has been obtained after heavy
computations (more than 5 days for the 42nd). The method consists in generating
all the lambda terms of a given size and sieving those that are typable to count
them.

n T∞,n

0 0
1 0
2 1
3 1
4 2
5 2
6 3
7 5
8 8
9 13
10 22
11 36
12 58
13 103
14 177
15 307
16 535
17 949
18 1645
19 2936
20 5207

n T∞,n

21 9330
22 16613
23 29921
24 53588
25 96808
26 174443
27 316267
28 572092
29 1040596
30 1888505
31 3441755
32 6268500
33 11449522
34 20902152
35 38256759
36 70004696
37 128336318
38 235302612
39 432050796
40 793513690
41 1459062947
42 2683714350

Therefore the best method to guess the exponential coefficient is by acceleration of
convergence. After 43 iterations we found 1.8375065809.... Knowing that with the
same number 43 we get 1.8925174623... for S∞, this is not enough to conclude. But
this allows us to speculate that the exponential coefficient for the T∞,n could be
1.963447954 like for the S∞,n’s.

5 Conclusion

We have shown how streams can be applied to a field of numerical analysis. It
makes no doubt that they can also be applied to other fields. For instance, one
may imagine applications of acceleration convergence to the computation of limits
of non numerical sequences.

References

[1] Folkmar Bornemann, D. P. Dirk Pieter Laurie, S. Wagon, and Jörg Waldvogel.
The SIAM 100-digit challenge : a study in high-accuracy numerical computing.
Society for Industrial and Applied Mathematics, Philadelphia, 2004.

[2] C. Brezinski. A general extrapolation algorithm. Numer. Math., 35, 1980.

5

[3] Katarzyna Grygiel and Pierre Lescanne. Counting terms in the binary lambda
calculus. unpublished note.

[4] Graham Hutton. Programming in Haskell. Cambridge University Press, 2007.

[5] D. P. Dirk Pieter Laurie. Appendix A: Convergence acceleration, pages 227–261.
In [1], 2004.

[6] Naoki Osada. Acceleration Methods for Slowly Convergent Sequences and their

Applications. PhD thesis, Nagoya University, 1993.

6

