Pierre Lescanne

An exercise on streams: convergence acceleration

Keywords: convergence acceleration, streams, numerical analysis, co-algebra

published or not. The documents may come

Introduction

Assume that we want to compute numerically the limit of a sequence that converges slowly. If we use the sequence itself, we will get significant figures of the limit after a long time. Methods called convergence acceleration have been designed to shorten the time after which we get reasonable amount of significant digits. In other words, convergence acceleration is a set of methods for numerically computing the limit of a sequence of numbers. Those methods are based on sequence transformations and are a nice domain of application of streams [START_REF] Jan | Behavioural differential equations: a coinductive calculus of streams, automata, and power series[END_REF][START_REF] Bonsangue | Defining context-free power series coalgebraically[END_REF], with beautiful higher order functions. This allows us to present elegantly rather complex methods and to code them in Haskell [START_REF] Hutton | Programming in Haskell[END_REF] replacing long, obscure and special purpose Fortran programs by short, generic and arbitrary precision Haskell programs.

In this paper we show, how given a sequence (s n) n∈N , we can evaluate efficiently lim n→∞ s n . For that we use Levin transforms. There are three kinds of such transforms, which are the result of three sequence transformations labeled traditionally by t, u and v ([START_REF] Osada | Acceleration Methods for Slowly Convergent Sequences and their Applications[END_REF], p.58).

Presentation of the method

In what follows we speak indistinctly of "sequences" or of "streams" We use Haskell and we work with arbitrary precision reals based on the implementation of David Lester called CReal. In Haskell the type of streams over a type A is written [A].

For the numerical aspect, we follows Naoki Osada [START_REF] Osada | Acceleration Methods for Slowly Convergent Sequences and their Applications[END_REF] (for a historical account see [START_REF] Brezinski | Convergence acceleration during the 20th century[END_REF]) and we show that the stream notation of Haskell makes the presentation simpler. With no surprise, the size of the Haskell code is the same if not shorter than the mathematical description of the reference [START_REF] Osada | Acceleration Methods for Slowly Convergent Sequences and their Applications[END_REF]. Moreover it provides efficient programs.

Levin transformations are somewhat generic in the sense that they are based on elementary transformations. Specialists of convergence acceleration propose three such elementary transformations. Let s be a sequence on CReal, i.e., s :: [CReal].

We define first a basic sequence transformation on which we will found our elementary transformations:

dELTA :: [CReal] → [CReal] dELTA s = zipWith (-) (tail s) s
which means that dELT A(s) n = s n+1 -s n . From this basic sequence transformation we define the three elementary other sequence transformations as follows. A unique function depending on a parameter which is either T or U or V is given. For a computer scientist those names T , U , V are meaningless but this terminology (in lower case i.e., u, t, v is traditionally used by mathematicians and we stick to it. It corresponds to the traditional notations of numerical analysis for those sequence transformations.

data Kind = T | U | V delta :: Kind → [CReal] → [CReal] delta T s = dELTA s delta U s = zipWith (*) (dELTA s) [1..] delta V s = zipWith (/) (zipWith (*) (tail $dELTA s) (dELTA s)) (dELTA (dELTA s))
In numerical analysis, people speak about E-algorithm. This is a family of functions eAlg n,k which are also parametrized by a character either T or U or V . It tells which of the basic sequence transformations is chosen. eAlg n,k uses a family of auxiliary functions which we call gAlg n,k for symmetry and regularity. Here is the Haskell code for these functions:

eAlg :: Kind → Int → [CReal] → [CReal] eAlg c 0 s = s eAlg c k s = let a = (eAlg c (k -1) s) b = (gAlg c (k -1) k s) in zipWith (-) a (zipWith (*) b (zipWith (/) (dELTA a) (dELTA b))) gAlg :: Kind → Int → Int → [CReal] → [CReal] gAlg c 0 j s = let nTojMinus1 j = zipWith (* *) [1..] (repeat (fromIntegral (j -1))) in zipWith (/) (nTojMinus1 j) (delta c s) gAlg c k j s = let a = gAlg c (k -1) j s b = gAlg c (k -1) k s in zipWith (-) a (zipWith (*) b (zipWith (/) (dELTA a) (dELTA b)))
Here is the formula as it is given in [START_REF] Osada | Acceleration Methods for Slowly Convergent Sequences and their Applications[END_REF]. R n is the generic value of (delta c s) n . gAlg is written g. E (n) k is the n th element of the sequence eAlg c k s, the same for g

E (n) 0 = s n , g (n) 0,j = n 1-j R n , n = 1, 2, ...; j = 1, 2, ..., E (n) k = E (n) k-1 -g (n) k-1,k ∆E (n) k-1 ∆g (n) k-1,k , n = 1, 2, ...; k = 1, 2, ..., g (n) k,j = g (n) k-1,j -g (n) k-1,k ∆g (n) k-1,j ∆g (n) k-1,k , n = 1, 2, ...; k = 1, 2, ..., j > k

Levin's formulas

There is another formula for the E -algorithm:

T (n) k = k j=0 (-1) j k j n + j n + k k-1 s n+j R n+j k j=0 (-1) j k j n + j n + k k-1 1 R n+j T (n) k
is not easily amenable to a Haskell program. 1 We give only the functions for k = 0, 1, 2, which we call levin c 0, levin c 1 and levin c 2. For k = 0, T (n) 0 = s n and levin k 1 and levin k 2 are the result of small calculations.

levin :: Kind → Int → [CReal] → [CReal] levin c 0 s = s levin c 1 s = zipWith (-) s (zipWith (/) (zipWith (*) (dELTA s) (delta c s)) (dELTA (delta c s)))
levin U 1 s is called Aitken's delta-squared process. One notices that the numerator and the denominator of the above formula differ slightly. Indeed s n+j in the numerator is just replaced by 1 in the denominator. More than any other branch of numerical analysis, convergence acceleration is an experimental science. The researcher applies the algorithm and looks at the results to assess their worth.

formulaForLevinTwo :: Kind → [CReal] → [CReal] → [CReal] formulaForLevinTwo c s ′ s = zipWith (
Dirk Laurie [START_REF] Dirk | Appendix A: Convergence acceleration[END_REF] Given a sequence we use the convergence acceleration to find the main coefficient of the asymptotic equivalent. More precisely given an integer sequence s n , we want to find a number a > 1 such that

s n ∼ a n f (n) where f (n) is subexponential. In other words, for all b ∈ R, b > 1, lim n→∞ f (n)
b n = 0. Actually we compute the limit of the sequence s n+1 /s n . For that we create the function:

expCoeffAC :: ([CReal] → [CReal]) → [Integer] → Int → CReal expCoeffAC transform sequence n = last (transform (zipWith (/) (tail u) u))
where u = map fromIntegral (take n sequence)

Thus expCoeffAC (levin U 2) s 300 gives the approximation of the coefficient one can get after 300 iterations using the sequence transformation levin U 2.

Catalan numbers

A good example to start is Catalan numbers:

catalan = 1 : [let cati = take i catalan in sum (zipWith (*) cati (reverse cati)) | i ← [1..]]
We know that catalan!!n ∼ 4 n √ πn 3

Actually we get expCoeffAC (levin U 2) catalan 800 = 4.0000000237 (with 8 exacts digits) and

expCoef f AC (eAlg T 2) catalan 800 ≈ 3.9849561088 expCoef f AC (eAlg U 2) catalan 800 ≈ 3.9773868157 expCoef f AC (eAlg V 2) catalan 800 ≈ 3.9773869346

Counting plain lambda terms

Now we want to use this technique to address a conjecture2 [START_REF] Grygiel | Counting terms in the binary lambda calculus[END_REF], on the asymptotic evaluation of the exponential coefficient of the numbers of typable terms of size n when n goes to ∞. First let us give the recursive definition of the numbers S ∞ of plain lambda terms of size n. This sequence appears on the On-line Encyclopedia of Integer Sequences with the entry number A114851. We assume that abstractions and applications have size 2 and variables have size 1 + k where k is the depth of the variable w.r.t. its binder.

S ∞,0 = S ∞,1 = 0, S ∞,n+2 = 1 + S ∞,n + n k=0 S ∞,k S ∞,n-k .
It has been proved in [START_REF] Grygiel | Counting terms in the binary lambda calculus[END_REF] that

S ∞,n ∼ A n • C n 3/2 ,
where A . = 1.963447954 and C . = 1.021874073. After 300 iterations and using levin U 2 we found 1.9634489522735283291619147713569993355616.

giving six exact digits.

Conclusion

We have shown how streams can be applied to numerical analysis, namely to convergence acceleration. It makes no doubt that they can also be applied to other fields in numerical analysis or elsewhere. For instance, one may imagine applications of acceleration of convergence to the computation of of non numerical sequences.

We did not use the differential equation approach [START_REF] Jan | Behavioural differential equations: a coinductive calculus of streams, automata, and power series[END_REF][START_REF] Winter | QStream: A suite of streams[END_REF], but presenting acceleration of convergence in this framework should be worthwhile.

 . ∆ is the notation for what we write dELTA.

 +) (zipWith (-) (foldl (zipWith (*)) [2..] [tail $tail s ′ , tail $delta c s, delta c s]) (foldl (zipWith (*)) [2, 4..] [tail s ′ , tail $tail $delta c s, delta c s])) (foldl (zipWith (*)) [0..] [s ′ , tail $tail $delta c s, tail $delta c s]) levin c 2 s = zipWith (/) (formulaForLevinTwo c s s) (forLevinTwo c [1, 1..] s) Brezinski [3] proves that the sequences E (n) k and T (n) k are the same, in other words: eAlg = η levin 4 Classic and non classic examples

In particular due to many divisions by 0 and to the complexity of the formula.

This problem is the origin of the interest of the author for this question.

Counting typable lambda terms

The question is now to find the exponential coefficients for the numbers of typable terms. We have no formula for computing those numbers. The only fact we know is the following table of the numbers T ∞,n till 42 which has been obtained after heavy computations (more than 5 days for the 42 nd). The method consists in generating all the lambda terms of a given size and sieving those that are typable to count them. Therefore the best method to guess exponential coefficient is by acceleration of convergence. After 43 iterations we found 1.8375065809.... Knowing that with the same number 43 we get 1.8925174623... for S ∞ , this is not enough to conclude. But this allows us to speculate that the exponential coefficient for the asymptotic evaluation of T ∞,n could be 1.963447954 like for S ∞,n 's.

Application to divergent series

In his famous paper [START_REF] Euler | De seriebus divergentibus[END_REF] Euler provides a sum to divergent series. See [START_REF] Ramis | Sries divergentes et thories asymptotiques[END_REF][START_REF] Martinet | Elementary acceleration and multisummability[END_REF] and for a light introduction, the reader who understands French is advised to watch the video [START_REF] Ramis | Leonhard euler, ou l'art de donner un sens ce qui n'en avait pas[END_REF] which completes another video [START_REF]+ 4 + 5 +[END_REF] in English.

Among the methods Euler and his followers propose to give a meaning to sum of divergent series there is convergence acceleration. We applied naturally our implementation to some divergent series.

Lets us define the function that associated to a sequence it series.

in map fromIntegral (series s)

Grandi series

Grandi series is also called by Euler, Leibniz series. This is the series

which is sometime written 1 -1 + 1 -1 + In Haskell it is: grandi = let gr = 1 : (-1) : gr in seq2series gr

We get 1/2 after 3 iterations using eAlg T 2 and this does not change when we increase the number of iterations.