
HAL Id: ensl-00923203
https://ens-lyon.hal.science/ensl-00923203v1

Submitted on 2 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counting Terms in the Binary Lambda Calculus
Katarzyna Grygiel, Pierre Lescanne

To cite this version:
Katarzyna Grygiel, Pierre Lescanne. Counting Terms in the Binary Lambda Calculus. 25th Inter-
national Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms, Jun 2014, Paris, France. pp.13. �ensl-00923203�

https://ens-lyon.hal.science/ensl-00923203v1
https://hal.archives-ouvertes.fr

COUNTING TERMS IN THE BINARY LAMBDA CALCULUS

KATARZYNA GRYGIEL†

AND

PIERRE LESCANNE†,‡

†JAGIELLONIAN UNIVERSITY,

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE,

THEORETICAL COMPUTER SCIENCE DEPARTMENT,

UL. PROF. LOJASIEWICZA 6, 30-348 KRAKÓW, POLAND

‡UNIVERSITY OF LYON,

ÉCOLE NORMALE SUPÉRIEURE DE LYON,

LIP (UMR 5668 CNRS ENS LYON UCBL INRIA)

46 ALLÉE D’ITALIE, 69364 LYON, FRANCE

Abstract. In a paper entitled Binary lambda calculus and combinatory logic,

John Tromp presents a simple way of encoding lambda calculus terms as bi-

nary sequences. In what follows, we study the numbers of binary strings of a
given size that represent lambda terms and derive results from their generat-

ing functions, especially that the number of terms of size n grows roughly like
1.963447954n.

Keywords: lambda calculus, combinatorics, functional programming, test, ran-
dom generator, ranking, unranking

1. Introduction

In recent years growing attention has been given to quantitative research in
logic and computational models. Investigated objects (e.g., propositional formulae,
tautologies, proofs, programs) can be seen as combinatorial structures, providing
therefore the inspiration for combinatorists and computer scientists. In particular,
several works have been devoted to studying properties of lambda calculus terms.
On a practical point of view, generation of random lambda terms is the core of
debugging functional programs using random tests [3] and the present paper offers
an answer to a open question (see introduction of [3]) since we are able to generate
closed typable terms following a uniform distribution. This work applies beyond
λ-calculus to any system with bound variables, like first order predicate calculus
(quantifiers are binders like λ) or block structures in programming languages.

First traces of the combinatorial approach to lambda calculus date back to the
work of Jue Wang [19], who initiated the idea of enumerating λ-terms. In her report,
Wang defined the size of a term as the total number of abstractions, applications

The first author was supported by the National Science Center of Poland, grant number
2011/01/B/HS1/00944, when the author hold a post-doc position at the Jagiellonian University
within the SET project co-financed by the European Union.

1

2 K. GRYGIEL, P. LESCANNE

and occurrences of variables, which corresponds to the number of all vertices in the
tree representing the given term.

This size model, although natural from the combinatorial viewpoint, turned out
to be difficult to handle. The question that arises immediately concerns the number
of λ-terms of a given size. This non-trivial task has been done by Bodini, Gardy,
and Gittenberger in [1, 2] and Lescanne in [14].

The approach applied in the latter paper has been extended in [9] by the authors
of the current paper to the model in which applications and abstractions are the
only ones that contribute to the size of a λ-term. The same model has been studied
in [4] by David et al., where several properties satisfied by random λ-terms are
provided.

When dealing with the two described models, it is not difficult to define recur-
rence relations for the number of λ-terms of a given size. However, by applying
standard tools of the theory of generating functions one obtains generating func-
tions that are expressed as infinite sequences of radicals. Moreover, the radii of
convergence are in both cases equal to zero, which makes the analysis of those
functions very difficult to cope with.

In this paper, we study the binary encoding of lambda calculus introduced by
John Tromp in [18]. This representation results in another size model. It comes
from the binary lambda calculus he defined in which he builds a minimal self inter-
preter of lambda calculus1 as a basis of algorithmic complexity theory [15]. Set as
a central question of theoretical computer science and mathematics, this approach
is also more realistic for functional programming. Indeed for compiler builders it is
counter-intuitive to assign the same size to all the variables, because in the trans-
lation of a program written in Haskell, Ocaml or LISP variables are put in a stack.
A variable deep in the stack is not as easily reachable as a variable shallow in the
stack. Therefore the weight of the former should be larger than the weight of the
latter. Hence it makes sense to associate a size with a variable proportional to its
distance to its binder. In this model, recurrence relations for the number of terms
of a given size are built using this specific notion of size. From that, we derive
corresponding generating functions defined as infinitely nested radicals. However,
this time the radius of convergence is positive and allows us for further analysis of
the functions. We are able to compute the exact asymptotics for the number of
all (not necessarily closed) terms and we also prove the approximate asymptotics
for the number of closed ones. Moreover, we define an unranking function, i.e., a
generator of terms from their indices from which we derive a uniform generator of
λ-terms (general and typable). This allows us to provide outcomes of computer
experiments in which we estimate the number of simply typable λ-terms of a given
size.

2. Lambda calculus and its binary representation

Lambda calculus is a model of computation that is equivalent to Turing machines
or recursive functions, serving as a powerful tool in the development of the program-
ming theory [16]. Furthermore, it constitutes the basis for functional programming
languages and has many applications in automated theorem provers.

Basic objects of the lambda calculus are λ-terms, which are regarded as denota-
tion for functions or computer programs. Given a countable infinite set of variables

1an alternative to universal Turing machine

COUNTING BINARY LAMBDA TERMS 3

V , we define lambda terms by the following grammar:

M := V | λV.M | (MM).

A term of the form λx.M is called an abstraction. Each occurrence of x in M
is called bound. We say that a variable x is free in a term N if it is not bound by
an enclosing abstraction. A term with no free variable is called closed. Two terms
are considered equivalent if they are identical up to renaming of bound variables.

In order to eliminate names of variables from the notation of a λ-term, de Bruijn
introduced an alternative way of representing equivalent terms. Instead of variables
we are given now a set of de Bruijn indices {1, 2, 3, . . .}. Given a closed λ-term,
we form the corresponding de Bruijn term as follows: an abstraction λx.M is now
written as λM, where M is the result of substituting each occurrence of x by the
index n, where n is the number of λ’s enclosing the given occurrence of x; an
application MN is simply replaced by MN.

Following John Tromp, we define the binary representation of de Bruijn indices
in the following way:

λ̂M = 00M̂,

M̂ N = 01M̂N̂,

î = 1i0.

However, notice that unlike Tromp [18] and Lescanne [13], we start the de Bruijn
indices at 1 like de Bruijn [5]. Given a λ-term, we define its size as the length of
the corresponding binary sequence, i.e.,

|n| = n+ 1,

|λM | = |M |+ 2,

|M N | = |M |+ |N |+ 2.

In contrast to previously studied models, the number of all (not necessarily
closed) λ-terms of a given size is always finite. This is due to the fact that the size
of each variable depends on the distance from its binder.

3. Combinatorial facts

In order to determine the asymptotics of the number of all/closed λ-terms of a
given size, we will use the following combinatorial notions and results.

We say that a sequence (Fn)n≥0 is of

• order Gn, for some sequence (Gn)n≥0 (with Gn 6= 0), if

lim
n→∞

Fn/Gn = 1,

and we denote this fact by Fn ∼ Gn;
• exponential order An, for some constant A, if

lim sup
n→∞

|Fn|1/n = A,

and we denote this fact by Fn BC An.

Given the generating function F (z) for the sequence (Fn)n≥0, we write [zn]F (z)
to denote the n-th coefficient of the Taylor expansion of F (z), therefore [zn]F (z) =
Fn.

4 K. GRYGIEL, P. LESCANNE

The theorems below (Theorem IV.7 and Theorem VI.1 of [8]) serve as powerful
tools that allow to estimate coefficients of certain functions that frequently appear
in combinatorial considerations.

Fact 1. If F (z) is analytic at 0 and R is the modulus of a singularity nearest to
the origin, then

[zn]F (z) BC (1/R)n.

Fact 2. Let α be an arbitrary complex number in C \Z≤0. The coefficient of zn in

f(z) = (1− z)α

admits the following asymptotic expansion:

[zn]f(z) ∼ nα−1

Γ(α)

(
1 +

α(α− 1)

2n
+
α(α− 1)(α− 2)(3α− 1)

24n2
+O

(
1

n3

))
,

where Γ is the Euler Gamma function.

4. The sequences Sm,n

Let us denote the number of λ-terms of size n with at most m distinct free indices
by Sm,n.

First, let us notice that there are no terms of size 0 and 1. Let us consider a
λ-term of size n + 2 with at most m distinct free variables. Then we have one of
the following cases.

• The term is a de Bruijn index n + 1, provided m is greater than or equal
to n+ 1.
• The term is an abstraction whose binary representation is given by 00M̂ ,

where the size of M is n and M has at most m+ 1 distinct free variables.
• The term is an application whose binary representation is given by 01M̂N̂ ,

where M is of size i and N is of size n − i, with i ∈ {0, . . . , n}, and both
terms have at most m distinct free variables.

This leads to the following recursive formula2:

Sm,0 = Sm,1 = 0,(1)

Sm,n+2 = [m ≥ n+ 1] + Sm+1,n +

n∑
k=0

Sm,kSm,n−k.(2)

The sequence S0,n, i.e., the sequence of numbers of closed λ-terms of size n,
can be found in the On-line Encyclopedia of Integer Sequences under the number
A114852. Its first 20 values are as follows:

0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 6, 5, 13, 14, 37, 44, 101, 134, 298, 431.

Now let us define the family of generating functions for sequences (Sm,n)n≥0:

Sm(z) =

∞∑
n=0

Sm,n z
n.

2Given a predicate P , [P (~x)] denotes the Iverson symbol, i.e., [P (~x)] = 1 if P (~x) and [P (~x)] = 0
if ¬P (~x).

COUNTING BINARY LAMBDA TERMS 5

Most of all, we are interested in the generating function for the number of closed
terms, i.e.,

S0(z) =

∞∑
n=0

S0,n z
n.

Applying the recurrence on Sm,n, we get

Sm(z) = z2
∞∑
n=0

Sm,n+2z
n

= z2
∞∑
n=0

[m ≥ n+ 1]zn + z2
∞∑
n=0

Sm+1,n z
n + z2

∞∑
n=0

n∑
k=0

Sm,kSm,n−k z
n

= z2
m−1∑
k=0

zk + z2Sm+1(z) + z2Sm(z)2

=
z2 (1− zm)

1− z
+ z2Sm+1(z) + z2Sm(z)2.

Solving the equation

z2Sm(z)2 − Sm(z) +
z2 (1− zm)

1− z
+ z2Sm+1(z) = 0(3)

gives us

Sm(z) =

1−
√

1− 4z4
(

1−zm
1−z + Sm+1(z)

)
2z2

.(4)

This means that the generating function Sm(z) is expressed by means of infin-
itely many nested radicals, a phenomenon which has already been encountered in
previous research papers on enumeration of lambda terms, see e.g., [1]. However, in
Tromp’s binary lambda calculus we are able to provide more results than in other
representations of lambda terms.

First of all, let us notice that the number of lambda terms of size n has to be
less than 2n, the number of all binary sequences of size n. This means that in
the considered model of lambda terms the radius of convergence of the generating
function enumerating closed lambda terms is positive (even larger that 1/2), which
is not the case in other models, where the radius of convergence is equal to zero.

5. The number of all λ-terms

Let us now consider the sequence enumerating all binary λ-terms, i.e., including
terms that are not closed. Let S∞,n denote the number of all such terms of size
n. Repeating the reasoning from the previous section, we obtain the following
recurrence relation:

S∞,0 = S∞,1 = 0,

S∞,n+2 = 1 + S∞,n +

n∑
k=0

S∞,kS∞,n−k.

6 K. GRYGIEL, P. LESCANNE

The sequence (S∞,n)n∈N can be found in On-line Encyclopedia of Integer Se-
quences with the entry number A114851. Its first 20 values are as follows:

0, 0, 1, 1, 2, 2, 4, 5, 10, 14, 27, 41, 78, 126, 237, 399, 745, 1292, 2404, 4259.

Obviously, we have Sm,n ≤ S∞,n for every m,n ∈ N. Moreover, lim
m→∞

Sm,n =

S∞,n.
Let S∞(z) denote the generating function for the sequence (S∞,n)n∈N, that is

S∞(z) =

∞∑
n=0

S∞,nz
n.

Notice that for m ≥ n− 1 we have Sm,n = S∞,n. Therefore

S∞(z) =

∞∑
n=1

Sn,nz
n,

which yields that [zn]Sn,n = [zn]S∞,n. Furthermore, S∞(z) = lim
m→∞

Sm(z).

Theorem 1. The number of all binary λ-terms of size n satisfies

S∞,n ∼ (1/ρ)n · C

n3/2
,

where ρ
.
= 0.509308127 and C

.
= 1.021874073.

Proof. The generating function S∞(z) fulfills the equation

S∞(z) =
z2

1− z
+ z2S∞(z) + z2S∞(z).

Solving the above equation gives us

S∞(z) =
z3 − z2 − z + 1−

√
z6 + 2 z5 − 5 z4 + 4 z3 − z2 − 2 z + 1

2z2(1− z)
.

The dominant singularity of the function S∞(z) is given by the root of smallest
modulus of the polynomial

R∞(z) = z6 + 2 z5 − 5 z4 + 4 z3 − z2 − 2 z + 1.

The polynomial has four real roots:

0.509308127, −0.623845142, 1, −3.668100004,

and two complex ones that are approximately equal to 0.4 + 0.8i and 0.4− 0.8i.
Therefore ρ

.
= 0.509308127 is the singularity of S∞ nearest to the origin. Let us

write S∞(z) in the following form:

S∞(z) =
1− z2 −

√
ρ(1− z

ρ) · Q(z)
1−z

2z2
,

where Q(z) = R∞(z)
(ρ−z)(1−z) is the polynomial defined for all |z| ≤ ρ.

We get that the radius of convergence of S∞(z) is equal to ρ and its inverse
1
ρ

.
= 1.963447954 gives the growth of S∞,n. Hence, S∞,n BC (1/ρ)n.

Fact 2 allows us to determine the subexponential factor of the asymptotic esti-
mation of the number of terms. Applying it, we obtain that

[zn]S∞(z) ∼
(

1

ρ

)n
· n
−3/2

Γ(− 1
2)
· C̃,

COUNTING BINARY LAMBDA TERMS 7

where the constant C̃ is given by

C̃ =
−
√
ρ · Q(ρ)

1−ρ

2ρ2
.
= −0.288265354.

Since
C̃

Γ(− 1
2)

.
= 1.021874073, the theorem is proved. �

6. The number of closed λ-terms

Proposition 1. Let ρm denote the dominant singularity of Sm(z). Then for every
natural number m we have

ρm = ρ0,

which means that all functions Sm(z) have the same dominant singularity.

Proof. First, let us notice that for every m,n ∈ N we have Sm,n ≤ Sm+1,n. This
means that the radius of convergence of the generating function for the sequence
(Sm,n)n∈N is not smaller that the radius of convergence of the generating function
for (Sm+1,n)n∈N. Therefore, for every natural number m, we have

ρm ≥ ρm+1.

On the other hand, from Equation 4 we see that every singularity of Sm+1(z) is
also a singularity of Sm(z). Hence, the dominant singularity of Sm(z) is less than
or equal to the dominant singularity of Sm+1(z), i.e., we have

ρm ≤ ρm+1.

These two inequalities show that dominant singularities of all functions Sm(z)
are the same. In particular, for every m we have ρm = ρ0. �

Proposition 2. The dominant singularity of S0(z) is equal to the dominant sin-
gularity of S∞(z), i.e.,

ρ0 = ρ
.
= 0.509308127.

Proof. Since the number of closed binary λ-terms is not greater than the number
of all binary terms of the same size, we conclude immediately that ρ0 ≥ ρ.

Let us now consider the functionals

Φm(F) =
1−

√
1− 4z4(1−zm

1−z + F)

2z2
,

Φ∞(F) =
1−

√
1− 4z4(1

1−z + F)

2z2
.

In particular, when m = 0, we have

Φ0(F) =
1−
√

1 + 4z4F

2z2
.

We have also

Sm(z) = Φm(Sm+1(z)).

The Φm’s and Φ∞ are increasing over functions over [0, 1), which means that

F ≤ G ⇒ Φm(F) ≤ Φm(G),

F ≤ G ⇒ Φ∞(F) ≤ Φ∞(G).

8 K. GRYGIEL, P. LESCANNE

For each m ∈ N, let us consider the function S̃m(z) defined as the fixed point of

Φm. In other words, S̃m(z) is defined as the solution of the following equation:

S̃m(z) = Φm(S̃m(z)).

Notice that since Sm,n ≤ Sm+1,n ≤ S∞,n we can claim that Sm(z) ≤ Sm+1(z) ≤
S∞(z). Therefore, we have

Φm(Sm(z)) ≤ Sm(z),(5)

S̃m(z) ≤ Sm(z) ≤ S∞(z).(6)

Since S̃m(z) satisfies

2z2S̃m(z) = 1−
√

1− 4z4
(1− zm

1− z
+ S̃m(z)

)
,

we get

z2S̃2m(z)− (1− z2)2S̃m(z) +
z2(1− zm)

1− z
= 0.

The discriminant of this equation is:

∆m = (1− z2)2 − 4z4(1− zm)

1− z
.

The values for which ∆m = 0 are the singularities of S̃m(z). Let us denote the

main singularity of S̃m(z) by σm. From Equation (6) we see that

σm ≥ ρm ≥ ρ.

The value of σm is equal to the root of smallest modulus of the following poly-
nomial:

Pm(z) := (z − 1)∆m = 4z4(1− zm)− (1− z)3(1 + z)2.

In the case of the function S̃∞(z), we get the polynomial

P∞(z) = z5 + 3z4 − 2z3 + 2z2 + z − 1 =
R∞(z)

z − 1
,

whose root of smallest modulus is, like in the case of R∞(z), equal to ρ.
Now let us show that the sequence (σm)m∈N of roots of polynomials Pm(z) is

decreasing (see Figure 1) and that it converges to ρ.
Notice that Pm(z) = P∞(z) − 4zm+4. Given a value ζ such that ρ < ζ < 1

(for instance ζ = 0.8), Pm(z) converges uniformly to P∞(z) in the interval [0, ζ].
Therefore σm → ρ when m→∞. By σm ≤ ρm ≤ ρ, we get ρm → ρ, as well. Since
all the ρm’s are equal, we obtain that ρm = ρ for every natural m. �

The above proposition leads immediately to the following result.

Corollary 1. The number of closed binary λ-terms of size n is of exponential order
(1/ρ)n, i.e.,

S0,n BC 1.963448n.

The number of closed terms of a given size cannot be greater than the number
of all terms. Therefore, we obtain what follows.

COUNTING BINARY LAMBDA TERMS 9

Figure 1. Roots of the Pm’s

Theorem 2. The number of closed binary λ-terms of size n is asymptotically of
order

S0,n ∼
(

1

ρ

)n
·O
(
n−3/2

) .
= 1.963448n ·O

(
n−3/2

)
.

Figure 2 shows values Sm,n · ρn · n3/2 for a few initial values of m and n up to
600.

Figure 2. Sm,nρ
nn3/2 up to n = 600 for m = 0 to 10

10 K. GRYGIEL, P. LESCANNE

These numerical experiments allow us to state the following conjecture.

Conjecture 1. For every natural number m, we have

Sm,n ∼ 1.963448n · o
(
n−3/2

)
.

7. Unrankings

The recurrence relation (2) for Sm,n allows us to define the function generating
λ-terms. More precisely, we construct bijections sm,n, called unranking functions,
between all non-negative integers not greater than Sm,n and binary λ-terms of
size n with at most m distinct free variables [7]. This approach is also known
as the recursive method, originating with Nijenhuis and Wilf [17] (see especially
Chapter 13). In order to describe unranking functions, we make use of the Cantor
pairing function.

Let us recall that for n ≥ 2 we have, by (2),

Sm,n = Sm+1,n−2 +

n−2∑
j=0

Sm,jSm,n−2−j + [m ≥ n− 1].

The encoding function sm,n takes an integer k ∈ {1, . . . , Sm,n} and returns the term
built in the following way.

• If m ≥ n− 1 and k is equal to Sm,n, the function returns the string 1n−10.
• If k is less than or equal to Sm+1,n−2, then the corresponding term is in the

form of abstraction 00M̂, where M̂ is the value of the unranking function
sm+1,n−2 on k.
• Otherwise (i.e., k is greater than Sm+1,n−2 and less than Sm,n if m ≥ n+ 1

or less than or equal to Sm,n if m < n + 1) then the corresponding term

is in the form of application 01M̂N̂. In order to get strings M̂ and N̂, we
compute the maximal value ` ∈ {0, . . . , n− 2} for which

k − Sm+1,n−2 =

`−1∑
j=0

Sm,jSm,n−2−j + r with r ≤ Sm,`Sm,n−2−`.

The strings M̂ and N̂ are the values sm,`(k
′) and sm,n−2−`(k

′′), respectively,
where (k′, k′′) is the pair of integers encoded by r by the Cantor pairing
function.

In Figure 3 the reader may find a Haskell program [12] which computes the values
sm,n(k). In this program, the function sm,n(k) is written as unrankT m n k and
the sequence Sm,n is written as tromp m n.

8. Number of typable terms

The unranking function allows us to traverse all the closed terms of size n and
to filter those that are typable (see [11] and appendix) in order to count them and
similarly to traverse all the terms of size n to count those that are typable. Figure 4
left gives the number T0,n of closed typable terms of size n and Figure 4 right gives
the number T∞,n of all typable terms of size n.

Thanks to the unranking function, we can build a uniform generator of λ-terms
and, using this generator, we can build a uniform generator of simply typable λ-
terms, which works by sieving the uniformly generated plain terms through a pro-
gram that checks their typability (see for instance [9]). This way, it is possible to

COUNTING BINARY LAMBDA TERMS 11

unrankT :: Int -> Int -> Integer -> Term

unrankT m n k

| m >= n - 1 && k == (tromp m n) = Index $ fromIntegral (n - 1) -- terms 1^{n-1}0

| k <= (tromp (m+1) (n-2)) = Abs (unrankT (m+1) (n-2) k) -- terms 00M

| otherwise = unrankApp (n-2) 0 (k - tromp (m+1) (n-2)) -- terms 01MN

where unrankApp n j h

| h <= tmjtmnj = let (dv,rm) = (h-1) ‘divMod‘ tmnj

in App (unrankT m j (dv+1)) (unrankT m (n-j) (rm+1))

| otherwise = unrankApp n (j + 1) (h -tmjtmnj)

where tmnj = tromp m (n-j)

tmjtmnj = (tromp m j) * tmnj

Figure 3. A Haskell program for computing values of the function sm,n

generate uniformly typable closed terms up to size 450 which is rather good since
Tromp was able to build a self interpreter3 for the λ-calculus of size 210.

9. Conclusion

We have shown that if we use the size yielded by the binary lambda calculus [18],
we get an exponential growth of the number of λ-terms of size n when n goes to
infinity. This applies to closed λ-terms, to λ-terms with a bounded number of
free variables, and to all λ-terms of size n. Except for the size of all λ-terms, the
question of finding the non-exponential factor of the asymptotic approximation of
these numbers is still open. Since the generating functions are not standard, we
were lead to devise new methods for computing these approximations. Beside, we
describe unranking functions (recursive methods) for generating λ-terms from which
we derive tools for their uniform generation and for the enumeration of typable λ-
terms. The generation of random (typable) terms is limited by the performance
of the generators based on the recursive methods aka unranking which needs to
handle huge number. Boltzmann samplers [6] should allow us to generate terms of
larger size.

References

[1] Olivier Bodini, Danièle Gardy, and Bernhard Gittenberger. Lambda-terms of bounded unary

height. 2011 Proceedings of the Eighth Workshop on Analytic Algorithmics and Combina-
torics (ANALCO), 2011.

[2] Olivier Bodini, Danièle Gardy, Bernhard Gittenberger, and Alice Jacquot. Enumeration of

generalized BCI lambda-terms. ArXiv e-prints, May 2013.
[3] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing of Haskell

programs. In Martin Odersky and Philip Wadler, editors, ICFP, pages 268–279. ACM, 2000.

[4] René David, Katarzyna Grygiel, Jakub Kozik, Christophe Raffalli, Guillaume Theyssier, and
Marek Zaionc. Asymptotically almost all λ-terms are strongly normalizing. Logical Methods

in Computer Science, 9(1:02):1–30, 2013.
[5] Nicolaas G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for auto-

matic formula manipulation, with application to the Church-Rosser theorem. Indagationes
Mathematicae, 34(5):381–392, 1972.

[6] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann sam-
plers for the random generation of combinatorial structures. Combinatorics, Probability &

Computing, 13(4-5):577–625, 2004.

3Which is not typable by definition!

12 K. GRYGIEL, P. LESCANNE

n T0,n

0 0
1 0
2 0
3 0
4 1
5 0
6 1
7 1
8 1
9 1
10 5
11 4
12 9
13 13
14 23
15 29
16 67
17 94
18 179
19 285
20 503
21 795
22 1503
23 2469
24 4457
25 7624
26 13475
27 23027
28 41437
29 72165
30 128905
31 227510
32 405301
33 715078
34 1280127
35 2279393
36 4086591
37 7316698
38 13139958
39 23551957
40 42383667
41 76278547
42 137609116
43 248447221
44 449201368
45 812315229
46 1470997501

n T∞,n

0 0
1 0
2 1
3 1
4 2
5 2
6 3
7 5
8 8
9 13
10 22
11 36
12 58
13 103
14 177
15 307
16 535
17 949
18 1645
19 2936
20 5207
21 9330
22 16613
23 29921
24 53588
25 96808
26 174443
27 316267
28 572092
29 1040596
30 1888505
31 3441755
32 6268500
33 11449522
34 20902152
35 38256759
36 70004696
37 128336318
38 235302612
39 432050796
40 793513690
41 1459062947
42 2683714350

Figure 4. Number of typable terms

[7] A. Karttunen et al. Ranking and unranking functions. OEIS Wiki. http://oeis.org/wiki/

Ranking_and_unranking_function.
[8] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University

Press, 2008.

[9] Katarzyna Grygiel and Pierre Lescanne. Counting and generating lambda terms. Journal of
Functional Programming, to appear, 2013.

[10] Katarzyna Grygiel and Pierre Lescanne. Counting terms in the binary lambda calculus. Tech-
nical report, Arxiv, 2013.

[11] J. Roger Hindley. Basic Simple Type Theory. Number 42 in Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 1997.
[12] Simon Peyton Jones, editor. Haskell 98 language and libraries: the Revised Report. Cam-

bridge University Press, 2003.

COUNTING BINARY LAMBDA TERMS 13

[13] Pierre Lescanne. From λσ to λυ, a journey through calculi of explicit substitutions. In Hans

Boehm, editor, Proceedings of the 21st Annual ACM Symposium on Principles Of Program-

ming Languages, Portland (Or., USA), pages 60–69. ACM, 1994.
[14] Pierre Lescanne. On counting untyped lambda terms. Theor. Comput. Sci., 474:80–97, 2013.

[15] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its applications

(3rd ed.). Springer-Verlag New York, Inc., 2008.
[16] John C. Mitchell. Foundations for Programming Languages. MIT Press, sep 1996.

[17] Albert Nijenhuis and Herbert S. Wilf. Combinatorial algorithms, 2nd edition. Computer

science and applied mathematics. Academic Press, New York, 1978.
[18] John Tromp. Binary lambda calculus and combinatory logic. In Marcus Hutter, Wolfgang

Merkle, and Paul M. B. Vitányi, editors, Kolmogorov Complexity and Applications, volume

06051 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.

[19] Jue Wang. The efficient generation of random programs and their applications. Honors Thesis,
Wellesley College, Wellesley, MA, May 2004.

Appendix A. Types and typability

Types determine whether λ-terms actually represent well-defined functions [11].
Here we focus on simple typable terms, because simple typability is decidable.
Simple types are of two forms, either variable types α or arrow types σ → τ :

σ, τ ::= α | σ → τ

A context Γ = τn, . . . , τ1 is a finite sequence of types which correspond to declare
that index 1 has type τ1, index 2 has type τ2 etc. A type judgment Γ `M : τ says
that in the context Γ, the λ-term M has type τ . To type a term we use inference
rules:

V ar
τn, . . . , τi, . . . τ1 ` i : τi

Γ, τ `M : σ
Abs

Γ ` λM : τ → σ
Γ `M : σ → τ Γ ` P : σ

App
Γ `MP : τ

Definition 1 (Typability). A term M is typable if there exists a context Γ and
type σ such that Γ `M : σ.

Notice that an open term with n free indices require a context of size n to be
typable. Therefore a closed term requires an empty context to be typable. Moreover
checking typability is solving constraints, mostly constraints generated by rule App.
For instance, term λ11 cannot be typed since 1 of type say σ cannot be applied
to the term 1 of type σ. For that it should be of type σ → τ . Similarly λλ211 of
type (α → α → β) → α → β cannot be applied to λ1 of type γ → γ. Therefore
(λλ211)λ1 is not typable. We also notice that typability can be described neither
recursively nor structurally.

E-mail address: GRYGIEL@TCS.UJ.EDU.PL,PIERRE.LESCANNE@ENS-LYON.FR

