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Abstract: We discuss nonlinear dynamic models for the fluctuational opening of the base pairs
in DNA and show that a standard model which is satisfactory for time-independent properties
has to be improved to properly describe the time scales of the fluctuations. The existence of an
energy barrier for the closing of the base pairs has to be taken into account. This introduces
a model which sustains a new class of Intrinsically Localized Modes (ILMs). We investigate
their properties numerically, and then consider two simplified versions of the improved DNA
model allowing an analytical study of some properties of those ILMs. The models are different
because the effective barrier necessary for the existence of this new class of ILMs is obtained
either through the on-site potential or through the nonlinear stacking interaction, but they
nevertheless sustain similar nonlinear localized excitations. An extension of the usual anti—
continuum has to be introduced for the analysis, and relies on a continuation of localized
equilibria from infinity.
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1. Introduction

The famous paper of A.J. Sievers and S. Takeno [1] pointed out the possibility that nonlinear coupling
between the sites of an atomic lattice could lead to the localization of vibrations even if the absence
of any defect or disorder. As noticed in this paper such modes may be thermally generated. However
atomic crystals are usually characterized by strong interatomic bonds so that, in order to excite
the nonlinearity one has to reach high excitation levels or high temperatures [2]. On the contrary
biological molecules are “soft” objects, which often have to undergo large conformational changes
at physiological temperature in order to perform their function, so that they are good candidates
to observe nonlinear phenomena. Among them DNA is particularly interesting as an example of
a nonlinear lattice because it has a regular structure. In his book What is life?, published in 1944
before the discovery of the DNA structure [3], Erwin Schrodinger introduced the concept of “aperiodic
crystal” to describe a gene. The famous double helix of DNA, proposed by J.D. Watson and F.H.C.
Crick [4] confirmed this remarkable intuition. The molecule, with its two strands rolling around a stack
of base pairs, appears as a one-dimensional lattice in which the perfect periodicity of the structure is
only broken by the existence of different possibilities for the base pairs. The four bases, A, T, G, C,
are associated in two types of pairs only, AT and GC. These “Watson—Crick pairs” have remarkably



similar sizes in spite of the difference in their chemical formula, allowing the regular, crystal-like,
structure of DNA. Within a pair the bases are linked by hydrogen bonds (two for AT, three for GC)
which hold the two helices together.

However this remarkable structure is only the average structure. DNA is a highly dynamic entity.
The hydrogen bonds linking the bases in a pair can break, allowing the bases to move out of the
stack, into the surrounding solvent, before the base pair closes again. The lifetime of a closed base
pair is only of the order of a few milli-seconds [5], and the lifetime of the open state of the pair is of
the order of 100 nano-seconds. Experiments show that a base pair can open while its neighbors stay
closed. Owing to its structure and dynamics DNA can therefore be viewed as a lattice of coupled
oscillators, the base pairs, undergoing large amplitude fluctuations which are are strongly localized.

Section 2. presents a simple model for the statistical physics and fluctuations of DNA. In this
framework the local openings of the base pairs appear as discrete breathers. It is interesting that
the biologists who first noticed these large fluctuations called them the “breathing of DNA” [6].
Independently from each other, the scientists in biology and theoretical physics had converged to the
same vocable.

However, although the model quantitatively describes the statistical properties of DNA, when its
dynamics is tested against experiments, the model presented in Sec. 2.1 appears to lead to time
scales of the base-pair fluctuations which do not match experiments. Section 2.2 shows how it can be
improved by modifying the potential that describes the interactions between the two bases in a pair.
Instead of a simple well representing the bonding between the bases, one must introduce a barrier for
the pair closing to take into account the interactions of the open bases with the solvent. This new
model turns out to be interesting for nonlinear science because it sustains a new class of Intrinsic
Localized Modes (ILM).

The last section examine the properties of these new ILMs more thoroughly by considering two
special cases: i) the intra-pair potential has a barrier but the stacking interaction is assumed to be
harmonic (Sec. 3.1), ii) the intra-pair potential is a Morse potential without barrier, but a strong
nonlinearity in the stacking interaction introduces nevertheless a barrier for the closing of a base pair

(Sec. 3.2).

2. A model for nonlinear dynamics and statistical mechanics of DNA.

2.1 The PBD model and its statistical physics.
When DNA is heated in the range 70° to 90° Celsius, depending on the base-pair sequence, the
occurrence of base pair breaking increases so much that segments of consecutive pairs open together,

giving rise to the so-called “DNA bubbles” and then the open regions grow until they extend to the
full molecule, leading to a complete separation of the two strands. This thermal denaturation, also
called “DNA melting” started to attract the attention of theoreticians soon after the discovery of
the structure of the molecule [7-10] because it poses the question of a phase transition in a quasi
one-dimensional system, where it is unexpected. The first models described a base pair as a two-state
system, which can be either closed or open. Such models are convenient for statistical physics, but they
cannot be used to study the dynamics of the opening and closing events because they do not describe
the intermediate states. The PB model [11,12] is the simplest model which tries to go beyond Ising-
like descriptions. It does not intend to describe the helicoidal structure of the molecule and defines
the status of base pair n in terms of a single real number y,, which measures the stretching of the bond
linking the two bases. This allows a description of intermediate states between fully closed and fully
open and therefore the investigation of the dynamics of the fluctuations of DNA at all amplitudes.
The Hamiltonian of the PB model is

2
Dy,
H = E om T Wi(Yns Yn—1) + V(yn) . (1)



The first term corresponds to the kinetic energy of bases with momentum p,, and mass m. The next
term Wi(yn,yn—1) describes the stacking interactions between the pairs. If base n moves out of the
stack, i.e. when g, increases, it tends to pull the adjacent bases too. In the PB model this coupling
is described by its simplest form, the harmonic approximation

1
I/Vl(ynayn—l) = iK(yn - yn—1)2 . (2)

The last term of the Hamiltonian is the intra-pair potential that links the two bases in a pair. It comes
from the hydrogen bonds between the bases but is also affected by the repulsion between the charged
phosphates of the backbone. This binding corresponds to a potential well around the equilibrium
position y, = 0. At large distance, the force between the bases vanish, i.e. the potential tends to a
constant value, while at very short distance the two bases strongly repel each other, which corresponds
to a sharp rise of the potential. A potential function which satisfies these conditions is the Morse
potential (Fig. 1)

Var(yn) = D (e —1)° . (3)

V(y)

Fig. 1. Intra-pair potentials used in the DNA models. The full line shows
the Morse potential of the PB and PBD models. The dotted line shows the
potential with a barrier introduced in Sec. 2.2.

For this one-dimensional model, with nearest neighbor coupling, the statistical physics properties
can be determined by an explicit calculation of the partition function

7 - / T dpndyn P En0nd) )

In the strong coupling limit (large K) this can be done analytically by the transfer integral method
[11,13]. For lower values of K, which are appropriate for DNA, an efficient numerical integration can
be performed [14,15] to get exact results. A thermal denaturation, with a divergence of the mean
value of the base-pair stretching (y) at a critical temperature T, is found for this model. However,
for realistic parameters, the results show that the model leads to a broad, second order, transition
(Fig. 2) while experiments indicate that the transition is very sharp for a DNA homopolymer, where
all base pairs are the same.

Therefore the simplest nonlinear model is not sufficient to quantitatively describe the physics of
DNA. Tt can be improved by modifying the stacking potential [12,16] W, into a nonlinear expression

1 -
W ynr) = 5K [14 pe o] (g, —y,1)” (5)

In this form the model is known as the PBD model. This expression for W means that the effective
stacking interaction decreases from K (1 + p), when both interacting pairs are closed, to K when



Dar = 0.12905 eV Dge = 0.16805 eV
apr = 4.2 At ace = 6.9 A1
K = 0.00045 eV /A2 p =150 §=02A""1

m = 300 atomic mass units

Table I. Parameters for the calculations using the PBD DNA model. With

energies in eV, lengths in A and masses in atomic mass units, the time unit is
107 s.

either one is open. This is reasonable because the opening of a base pair leads to a decrease of the
overlap of the m—electrons of adjacent bases, which is mostly responsible of the stacking interaction.
Equation (5) means that the DNA chain becomes much more flexible when base pairs are open. This
is consistent with the observed sharp decrease of the persistence length of DNA when the two strands
separate. This is consistent with the observed sharp decrease of the persistence length of DNA when
the two strands separate. This is the characteristic length of the decay of the angular correlations
along the molecule, which measures the rigidity of the molecule. It is of the order of 50 nm for double
stranded DNA, but it drops by a factor of about 50 when single strands of DNA are considered. This
extra flexibility allows large fluctuations of the open segments, which rise the entropy of the system,
hence decrease its free energy F' = E — T'S, making the melting transition easier. As a consequence,
when open regions start to appear by heating, this leads to an entropy driven transition and a sharp
“melting” of the double helix (Fig. 2).

0.5

0.4

L
dg(T)

0.2

0.0
-
0.0

280 300 320 340 360

Fig. 2. Melting curves of homopolymer poly-A DNA calculated with the
PBD and PB models. Full line with circles: fraction ¢(7") of open base pairs
versus temperature calculated with the PBD model using the parameters of
table I. A base pair is defined as open when its average stretching is beyond
1.5 A. The full line without symbols is the derivative versus T of ¢(T').

Dash line with triangles: fraction of open base pairs calculated with the PB
model, i.e. by setting p = 0 in the parameters. As this also slightly changes
the transition temperature, the parameter D 7 = 0.105 eV has been selected
for this calculation instead of Dapr = 0.12905 eV for the PBD model to get
similar transition temperatures for both cases. The dash line without symbols
shows the derivative of the melting curve for the PB model, magnified by a
factor 20 to make it visible on the same vertical scale as d¢(1")/dT in the PBD
case.

The change in the stacking potential to introduce the anharmonic potential W is sufficient to give
a model that quantitatively describes the thermal denaturation of DNA. The analysis of the melting
profiles of many long DNA sequences shows that they can be calculated to a good accuracy with a
single set of 7 parameters. This gives a predictive power to the PBD model to determine melting
profiles of various sequences, provided they are long enough to avoid subtle effects which are observed
when the thermal denaturation is studied with a high resolution on DNA segments of a few tens of
base pairs [17]. The parameter set used in our study is listed in Table I.

To describe the two types of base pairs in actual DNA sequences, the intra-base potential V (y)



uses different parameters for the AT and GC pairs. In this work, as we want to emphasize nonlinear
phenomena to localize the fluctuations in DNA, we will only consider homopolymers of DNA made of
AT base pairs. Therefore all results of the present paper correspond to homogeneous systems, without
spatial disorder. They are obtained with D = Dap, a = aar.

The parameter set of Table I has been applied to analyze a neutron scattering investigation of the
thermal denaturation of films made of oriented DNA molecules [18]. A quantitative analysis of the
neutron data, and further experiments to get some insight on the length of the fragments that stay
closed immediately before the full melting transition of DNA [19], show that the PBD model gives a
good quantitative analysis of the experiments. This indicates that this model can provide an accurate
description of the statistical physics of DNA, i.e. of its equilibrium statistical properties.

2.2 Improving the model to describe the dynamics of the opening.

Let us now examine the time-dependence of the base-pair fluctuations given by the PBD model.
To compare with experimental data we need to study the dynamics of the model in contact with a
thermal bath. This can be done with molecular dynamics (MD) simulations by coupling the model
to suitably chosen fluctuating degrees of freedom. We use the Nose-Hoover thermostat for this study
[20] with a chain of 5 thermostats to achieve a good ergodicity.
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Fig. 3. Fluctuations of the PBD DNA model for a DNA segment of 256 AT
base pairs at 300K. The horizontal axis corresponds to the position along the
molecule and the vertical axis corresponds to time. It extends over a time
range of 0.4 ns. The amplitude of the base-pair stretching is shown by a color
scale, indicated on the right of each figure. Blue corresponds to closed base
pairs (y < 0) while red shows the base pairs which have a stretching at least
equal to 1.5 A. The left figure (a) shows the fluctuations of the whole DNA
segment, while the right figure (b) is a magnification by a factor 8 in space and
time, only showing the central part of the left figure.



Figure 3 shows the amplitude of the fluctuations of the base-pair stretching at 300 K along a DNA
homopolymer of 256 AT pairs, over a time interval of 0.4 ns. The blue background of this figure,
which corresponds to closed base pairs according to the color scheme used to display the stretching
of the base pairs, indicates that most of the base pairs are closed, as expected at 300 K. However the
figure shows vertical lines in colors corresponding to large stretchings. They correspond to sites which
open while their neighbors stay closed, in agreement with the experimental observations on DNA [5].
The magnification of one part of this diagram (Fig. 3-b) shows how this opening occurs. The colored
lines are actually dotted lines including blue segments i.e. y < 0, which alternate with segments where
y > 0. This indicates that, at those particular sites, the base pair stretching oscillates, or, in other
words that the thermal fluctuations have generated discrete breathers in the DNA lattice. As shown
in Fig. 3-b the amplitude of those breathers can exceed 1.5 A (red color on the figure). Figure 1
indicates that this value corresponds to the beginning of the plateau of the Morse intra-pair potential,
which means that the corresponding base pair can be considered as temporarily open.

Therefore the molecular dynamics simulations show that the PBD model of DNA has a small
number of base pairs which temporarily open at temperatures well below the melting temperature
of the double helix. Those openings are similar to the breathing of DNA observed by biologists. It
occurs locally, generally concerning only one base pair at a time at 300 K while the adjacent pairs
only have small amplitude displacements. Qualitatively the results seem to agree with experimental
observations, but, to determine the validity of the model one must checks the quantitative properties
of this DNA “breathing”. This can be done by performing long MD simulations and making statistics
of the times during which a base pair stays closed (the lifetime of a base pair) and how long does an
average opening event lasts. Figure 4 shows the results of such a calculation. In this study a base
pair is defined as “opened” when its stretching exceeds 1.5 A, which is the beginning of the plateau
on the Morse intra-pair potential, and closed again when y falls below 0.3 A. The quantitative results
slightly depend on the definition of the threshold but tests show that, as long as the threshold stays
in the same order, the variation is only marginal.
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Fig. 4. Histogram of the duration of the open state (a) and lifetime of the
closed base pairs (b) in the PBD model at 300 K, computed by simulation of
DNA segment of 256 pairs for a total time of 6.5 ns.

Figure 4 shows that the durations of the opening events lie in a rather narrow range of 1 to
7 x 10712 5. The average duration of the open state is 2.3 x 1072 s. This time, in the ps range,
is very short. It is of the order of the typical periods of the lowest frequency vibrational modes in
DNA. This is consistent with the numerical observation that the opening of the base pairs occurs via
discrete breathers. The durations of the opening events given by the PBD model are much smaller
than the lifetime of the open base pairs of about 100 ns [5] inferred from experiments. The lifetimes



of closed pairs observed in the MD simulations have a much broader distribution, but they are found
to lie in the ns range (Fig. 4) with an average value of 2.9 ns, which is again far below the few ms
estimated lifetime of an AT pair [5].

This disagreement with experiments, by orders of magnitude, shows that, although it is satisfactory
when static properties of DNA are concerned, the PBD model is missing an essential ingredient to
describe the dynamics of the molecule. Some ideas to find what is missing can come from all-atom
molecular dynamics simulations [21] biased to observe the free energy pathway associated to base-pair
openings, in spite of the fact that it is a very rare event. Adding a geometrical constraint with a bias
potential, it is possible to force the opening and observe the probability distribution of the fluctuations
to reconstruct a free energy corrected from the bias potential. The results are highly sensitive to the
detail of the solvent and counterion dynamics but they show nevertheless that the free energy of the
open state may have a shallow minimum, which explains why a base pair can stay open for a long time
rather than vibrating as a breather around the closed state. In defining the potentials of a mesoscopic
model like the PBD model one should think that the model only describes a subset of all degrees of
freedom. Therefore one micro-state of the model actually corresponds to a set of microscopic states of
the real systems, where all the degrees of freedom which are not present in the mesoscopic model are
fluctuating. It means that the “potentials” of a mesoscopic model are actually free energies averaged
over the degrees of freedom which are not represented at the mesoscopic scale. This suggests that
the Morse intra-pair potential, which had been motivated by only considering the stretching of the
base pairs, should be modified to take into account other hidden degrees of freedom which generate
a barrier for reclosing. This barrier could have different origins. The open bases can make hydrogen
bonds with the solvent, which must be broken before the base pair can close again. Moreover, when
they are out of the stack that they form in the double helix, the bases gain new degrees of freedom;
Their plane can rotate, which makes reclosing difficult.

To model these effects we have therefore introduced a new intra-pair potential

Alemov —1]? if y<0,
Vi(y) = ay® + by? + cy? if 0<oy<d, (6)
D—i—Ee"’y(y—}—%) if oy>d.

This potential, which replaces the Morse potential of the PBD model is plotted in Fig.1 (dotted line).
It is determined by the parameters D, F, «, o, and the choice of d. The other parameters a, b, ¢, A, are
derived by imposing the continuity of the potential and its two first derivatives in y = 0 and y = d/o.
The analytical form has been chosen to preserve the expression of the Morse potential for y < 0, and
for analytical convenience in the range oy > d, while giving the required shape of a potential that
tends to a constant value for large y, and with a barrier between the open and closed states. To study
DNA with this new model we have used D = 0.13945¢V, E=10eVA~! a =42A"1 ¢ =50A""!
and d =o.

2.3 Properties of the improved DNA model.
Let us now examine the validity of this new model to describe the statistical and dynamic properties
of the base pair fluctuations in DNA.

The parameters of the potential V3 have been chosen to give the same thermal denaturation tem-
perature as the PBD model for a DNA homopolymer made of AT base pairs. Figure 5 shows that this
choice leads to melting profiles for DNA homopolymers which are very similar for the two models,
although the potential with a barrier gives a slightly sharper transition. This feature has also been
observed in another statistical physics study of DNA where a barrier attributed to the solvent has
been introduced in order to sharpen the transition [22]. Studies of inhomogeneous sequences show
that this extra sharpness of the transition for a homopolymer also leads to melting profiles which are
more sensitive to the details of the local sequence than with the PBD model, however when thermal
averages are concerned the two models give results which are comparable.
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Fig. 5. Comparison of the melting profiles for poly-A DNA sequences com-
puted with the modified PBD model with a closing barrier (full line with circles)
and the PBD model with the Morse potential (dotted line with triangles)

2.4 Dynamics of the fluctuations
Conversely strong differences between the two models appear when one considers dynamical effects,
i.e. time dependent properties.

Figure 6 shows the amplitude of the fluctuations of the base-pair stretching at 300 K in the model
with potential V}. It should be compared with Fig. 3 for the PBD model. Except for the intra-pair
potential all conditions are the same for the two figures, for the MD simulations and for the plots
which use the same color scale. Instead of many short-lived open states (corresponding to red spots
on the figures) for the PBD model, Fig. 6 shows a single, long-lived, open state that extends over the
whole time interval shown in the figure, i.e. 0.41 ns. The magnified image provides further information
about the nature of this open state. The maximum stretching at the open site is not constant. It
varies between a value larger than 1.5 A (red color) and a lower value of about 1.1 A (yellow color).
Therefore this figure suggests that, in the model with a barrier in the intra-pair potential, the thermal
fluctuations have generated a new kind of nonlinear localized excitation, different from the breathers
oscillating around the minimum of the intra-pair potential (y = 0) observed in the PBD model.

Before studying these excitations in the next subsection, let us examine the consequences of the
barrier in the potential on the time scales of the open and closed states of DNA. The histograms
of the duration of the open states and lifetimes of the closed base pairs in the new model (Fig. 7)
show that the distributions of these characteristic times is qualitatively changed by the barrier in the
intra-pair potential. Both the duration of the open states and the lifetimes of the closed pairs have an
exponentially decaying distribution. The average value of the duration of the open state is 3.3 ns i.e.
more than three orders of magnitude longer than for the PBD model with a Morse potential. Similarly
the lifetime of a closed base pair is 0.59 us in the presence of the potential barrier, i.e. 2000 times
longer than for the PBD models. The duration of the open state is still about 30 times smaller than
the measured value, while the lifetime of a closed pair is still about three orders of magnitude smaller
than the values measured experimentally. The model is still not quantitatively correct to describe the
dynamics of the base-pair fluctuations in DNA, but the improvement brought by the new intra-pair
potential is nevertheless really significant. The discrepancy with experiments shows the limits of an
oversimplified model where a single degree of freedom is used to describe the complex phenomena that
take place in the actual molecular structure of DNA in contact with the solvent. Using an effective
potential such as Vj, can correct some of the weaknesses of the simplified description but not all of
them.

Figure 8 shows that the temperature dependence of the lifetime of a closed base pair t. and the
duration of the open state t, follow Arrhenius laws

to =t /FeT = ggeto ke T (7)

which are characteristic of a thermal activation. As discussed in the next subsection the activation
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Fig. 6. Fluctuations of the DNA model with a barrier in the intra-pair po-
tential, for a DNA segment of 256 AT base pairs at 300 K. The horizontal
axis corresponds to the position along the molecule and the vertical axis cor-
responds to time. It extends over a time range of 0.4 ns. The amplitude of
the base-pair stretching is shown by a color scale, indicated on the right of
each figure. Blue corresponds to closed base pairs (y < 0) while red shows the
base pairs which have a stretching at least equal to 1.5 A. The left figure (a)
shows the fluctuations of the whole DNA segment, while the right figure is a
magnification by a factor 8 in space and time, showing only one part of the left
figure.

energies Fy = 0.250 eV and E; = 0.086 eV can be estimated from the properties of the ILM of the
model.

2.4.1 A new class of ILM

As shown by Fig. 6-b the MD simulations of the improved DNA model find that thermal fluctuations
can lead to highly localized nonlinear excitations in which the base-pair stretching at one site is
large and oscillates around a non-zero average, while the neighboring sites only show a very small
stretching. To understand the nature of those ILM it is useful to consider a reduced system made of
only 3 sites, the central site iy of the ILM, and its two adjacent sites 7g+1. In a first approximation
the two adjacent sites are assumed to be fixed at their equilibrium value y;,,, = 0. The potential
energy of this reduced system is

‘/(eﬂ(yi()) = W(yimo) + W(O’ yio) + Vh(yio) . (8)

It can be viewed as an effective potential for the stretching at site 4.

Figure 9 shows the shape of this effective potential. It is an asymmetric double-well (DW) potential.
The deeper well is the ground state at y = 0, but the combination of the stacking interaction W and
intra-pair potential V}, generates a second, shallower, minimum, with a higher energy, at y = yo # 0.
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Fig. 7. Histogram of the duration of the open state (a) and lifetime of the
closed base pairs (b) in the PBD model at 300K, computed by simulation of
DNA segment of 256 pairs for a total time of 3.28 us.
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Fig. 8. Arrhenius plot of the duration of the open state ¢, (a) and of the
lifetime of a closed base pair t. (b) in the model with a barrier in the intra-pair
potential. The figure shows In(¢y) and In(¢.) versus 1/7T.

The shape of the potential immediately suggests the possibility of two types of localized modes.
The first one is a “conventional” breather, oscillating with a large amplitude around the minimum
y = 0 of the on-site potential V},. The second one is a new kind of breather, which oscillates around
yo which is an unstable point for the on-site potential V},, stabilized in the effective potential by
the coupling with the two adjacent sites. We call Double-Well breather (DW-breather) this type of
ILM as a reminder that its existence comes from the double well shape of the effective potential. As
discussed below it can oscillate in the second well only or even span both wells when its amplitude
becomes very large.

However this conjecture is based on the reduced system of three atoms, and it must be checked for
the full nonlinear lattice. We have used MD simulations to confirm its validity. These calculations
are performed without any thermal bath as we want to study an intrinsic property of the model. We
simulate the equations of motions that derive from the Hamiltonian of the DNA model

d2yn aW(yny ynfl) + 8W(yn7 ynJrl)
dt? OYn OYn

The lattice comprises N = 512 sites. The initial condition imposes a given amplitude to the central

+Vilyn) =0 9)

site yn/2(t = 0) = ye, all other sites starting from y, = 0. All initial velocities are equal to 0.
This initial condition does not correspond to an exact periodic solution of the equations of motions
and we observe the emission of small amplitude waves from the central site, together with a large
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Fig. 9. The effective potential Ve (y) defined by Eq. (8) (full line) and the
intra-pair potential V},(y) (dotted line). The parameters for W and V}, are
those listed above for the improved DNA model with potential V},.

oscillatory motion at this site. In the finite lattice these waves would be reflected at the boundaries and
perturb the long term evolution of the dynamics near the center. This can be avoided by introducing
a damping term 7y (n)dy,/dt in Eq. (9) in two regions near the end. In our calculation these regions
extend over 64 sites at both ends and the damping coefficient decays linearly from «(n) = 0.2 at the
boundaries of the lattice to 0 at the boarder of the damped regions.

Figure 10 shows that, after a transient during which the central site emits very small amplitude
waves which are damped out at the boundaries, the dynamics evolves towards a stable oscillatory
state, with a DW-breather at the excited site. We can then record the properties of this breather, its
energy, amplitude, frequency, as a function of the amplitude of the initial excitation. The results are
shown in Figs. 11 and 12.

As shown by these figures the model has a rich variety of ILMs. When the excitation is sufficiently
small, it generates an ordinary breather that oscillates around the bottom of the main well (y = 0).
Its spectrum, which is quasi-harmonic at very low amplitude, becomes richer when the amplitude
increases, as shown in Fig. 12(a). When y. exceeds a threshold defined by the maximum of the
effective potential of Fig. 9, the nature of the breather changes. It turns into a DW-breather which
oscillates in the second well. Its frequency drops sharply, in agreement with the shallow shape of the
second well. As shown by Fig. 11-b the frequency of the DW-breather always stays small, and shows
a maximum when the amplitude drops to 0 around the minimum of the second well. In the vicinity
of this point the calculation of the spectrum of the breather shows that it is again single-frequency,
i.e. the DW-breather is quasi-harmonic. When 3. passes a second threshold y. ~ 4.7 A, the nature
of the oscillation of the DW-breather changes because it spans both wells. This is accompanied by a
new decrease of the frequency. Figure 12 shows that the oscillation yx/2(t) of the central particle is
highly anharmonic in this case, and this shows up in the complex spectrum of the breather.

Figure 11-b, showing the energies of the DW-breathers, provides some insight on the activation
energies measured in MD simulations for the lifetime of a base pair Ey = 0.250 eV and for the
duration of the open state F; = 0.086 eV. It appears that FEj is slightly above the minimum of
the DW-breathers energy (= 0.2 eV) while F; corresponds to the energy difference between Ey and
the maximum energy of the DW-breather (~ 0.32 eV). This is reasonable because it corresponds
to the energy that should be given to the DW-breather associated with the open state to allow it
to overcome the energy barrier which separates the DW-breathers in the second minimum from the
breathers around the closed state (Fig. 11-b).

3. ILMs in nonlinear models inspired by DNA.

The results on the DNA improved model have shown that it can sustain a rich variety of intrinsic
localized modes. However this model is complex because it has both an on-site (intra-pair) potential V},
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Fig. 10. Dynamics of the improved DNA model when only the central par-
ticle is excited, in the presence of damping at both ends of the lattice. The
horizontal axis corresponds to the position along the lattice. The vertical axis
corresponds to time. (a) Initial stage of the dynamics, showing the complete

lattice (512 particles) between t = 0 and t = 0.8 1078 s. The color scale
has been selected to show very small amplitude waves (in the range from 0

to 0.1 1072 A, (b) steady state solution obtained after t = 1.2 10~% s. The
picture is magnified to show only the 16 central particles of the lattice. The

color scale extends from 0 to 2 A and the time scale is also magnified to display
a few periods of the breather only (the time interval shown extends over 6 ps
only). This figure shows that the DW-breather oscillates between a minimum

of about 1 A (green color) and a maximum reaching 2 A (red color).

with a barrier and a coupling W which is nonlinear. This is consistent with the properties of DNA,
and necessary to quantitatively describe the experimental results, but it makes analytical studies
difficult. In this section we show that this complexity is not necessary if we are interested in the new
class of excitations, the DW-breathers, that the DNA model has exhibited. We examine two models,
inspired by the DNA model, but simpler, and show that they can also sustain DW-breathers.

3.1 Model 1: on-site potential with a barrier, and harmonic coupling
In this first simplified version of the DNA model, the intra-pair potential with a barrier, V3, (Eq. (6) )
is preserved but the stacking interaction W is replaced by the linear approximation W; (Eq. (2) ) so
that the equations describing the dynamics of the model are
d2yn /
mﬁ"‘vh(yn) =K (Ynt1 — 2Yn +Yn-1), n€Z (10)
A preliminary step to find time-dependent solutions is to determine the stationary points, i.e. the
equilibria of the system which are determined by the system
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Fig. 11. Properties of the breathers created by exciting the central particle
of the lattice. (a) amplitude of its oscillations versus the amplitude y,. of the
excitation of the central particle. For each value of y. the vertical line extends
between the extrema of the oscillations of the breather. The circles show the
initial value yn/2 = y..  (b) Frequency (stars) and energy (squares) of the
breather versus vy,
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Fig. 12. Some examples of the the breathers created by exciting the central
particle of the lattice. In each case the top image shows the time dependence
of the oscillations yy/o(t) of the central particle, and the bottom image shows
the Fourier transform of yx/5(t), i.e. the spectrum of the breather. (a) for an
excitation of amplitude y. = 0.66 A the breather oscillates in the main potential
well. (b) an excitation of amplitude y. = 0.86 A creates a DW-breather, which
oscillates in the second well. Its frequency is much lower than the frequency of
the breather in the main well. (c) a very large excitation y. = 4.76 A creates
a DW-breather that spans the two wells.

K (yn—i-l - 2yn + yn—l) = V}Z(yn)7 n c Z. (11)
If they are spatially localized they must moreover satisfy
nllgloo yn = 0. (12)

A standard method to analyze spatially localized equilibria in nonlinear lattices is the anti—continuum
limit technique (see [23-25] and section 9 of [31]). The usual anti-continuum limit starts from an
exact solution 32 of (11)-(12) obtained for K = 0. For a finite number of sites n, y9 is set to the
local maximum of V}, at the top of the potential barrier, and to the global minimum y = 0 at all the



remaining sites (in infinite number). In a second step, one continues this solution for K ~ 0 using the
implicit function theorem, which yields an exponentially localized solution of Eq. (11). In the present
case, all these solutions are unstable at small coupling because the only nontrivial critical point of
Vi, is a local maximum. Consequently, the usual anti—continuum limit technique cannot be readily
applied to the model that we consider here in order to find stable localized equilibria and it must be
extended.

Localized equilibria can nevertheless be obtained from an extension of the anti—continuum limit,
introduced in reference [33]. This method relies on the observation that V}, admits a “critical point at
infinity”, which should allow to construct highly localized equilibria of (11) at small coupling. This
requires to extend the above perturbative analysis to the singular situation when the excited site lies
at infinity on the plateau of the potential Vj, for K = 0. In Ref. [33], localized equilibria are obtained
by “continuation from infinity” for arbitrarily small values of K, but without reaching K = 0. The
perturbative analysis is performed near an approximate solution ¢, of Egs. (11)-(12) for K ~ 0,
instead of an exact solution for K = 0 as in the classical anti—continuum limit. This initial guess
satisfies ¢, = 0 for n # 0, and g is a critical point of the modified potential

Vi (y) = Va(y) + Ky,

which incorporates a restoring force due to nearest-neighbors. This is the effective potential introduced
in Eq. (8) written in the context of the particular model that we study here. As shown by Fig. 13,
it has a double-well shape, qualitatively similar to the shape of the effective potential found for the
improved DNA model (Fig. 9) so that we can expect to find the same kind of ILMs in the two models.
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Fig. 13. Effective potential for model 1, with the linear stacking interaction
W; and the intra-pair potential V},. The parameters are K = 0.01 eV A~2,
D=0087eV,E=4eVA a=4A"1 6 =4A"

The special potential V}, defined by Eq. (6) allows simple computations because (for K small enough)
the solution of V/(3p) = 0 in the interval [d o', 00) reads explicitly

1 2K
jo = —— In(==). 13
Jo=—> () (13)
An exact solution y&% of (11)-(12) is obtained in [33] for K =~ 0, using the contraction mapping
theorem in some neighborhood of g,,.

Theorem 1 There exists a constant Ky > 0 such that for all K € (0, Kj), problem (11)-(12) admits
a solution y5(K) satisfying

Sup [y 1(K) = §n(K) | = O(| K In(K) ), K —0. (14)

Moreover, y24 decays to 0 exponentially as n — +o0o and has the symmetry 3! = 3.



Note that estimate (14) implies
1 cq e 1 eq =
Il(lino Yo (K) = +o0, Il{lino yp(K) =0 for n#0, (15)

i.e. the equilibrium is highly localized when K is small. The equilibrium is spatially symmetric, but
more general (not necessarily symmetric) solutions could be obtained by the same method. Figure 14
shows a numerical test of this theorem. The equilibrium solution has been found by minimizing the
energy of the system, with the condition that the central site should have yy larger than the value
that corresponds to the barrier of the effective potential. It shows that the localized equilibrium exists
and that it decays exponentially away from the center as indicated by theorem 1.
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Fig. 14. Shape of the equilibrium solution in model 1 with the parame-
ters for V}, indicated in the caption of Fig. 13, and 4 values of K: K =
0.01, 0.005, 0.0025, 0.00125 eV A=2. The different curves correspond to the
different values of K, the curves decaying more rapidly corresponding to smaller
K. This solution, obtained from a numerical solution of the equilibrium equa-
tions Egs. (11) confirms the results resulting from Theorem 1: ¢ decays
exponentially to 0 away from the center and moreover smaller Ks lead to a
more localized state.

The linear spectrum of this equilibrium solution shows the existence of a low frequency with an
associated localized eigenvector, and suggests the existence of Lyapunov periodic orbits emanating
from the localized equilibrium. These solutions correspond to the discrete breathers numerically
computed in references [29,33]. Figure 15 shows the numerical calculation of the spectrum of one
of the equilibrium solutions shown in Fig. 14 (case K = 0.01 eV A~2). As predicted theoretically it
exhibits a frequency well below the bottom of the phonon band, which is associated with a localized
symmetric eigenvector which corresponds to the shape of the corresponding discrete breather in the
small amplitude limit. Moreover the spectrum shows two other frequencies slightly below the phonon
band, which are associated with localized modes. All other frequencies belong to the phonon band
and correspond to extended modes.

An existence theorem for discrete breathers oscillating in some finite-size neighborhood of 354 has
been proved in reference [29]. As above, the proof requires to extend the classical anti—continuum
limit for periodic solutions [31,34] to the case when the excited site lies at infinity for K = 0, with
the additional difficulty that breather frequencies depend on K and vanish as K — 0. The existence
result of Ref. [29] is valid for small values of K, and under a non-resonance condition implying that
all multiples of the breather frequency wy, lie outside the phonon band. More precisely, equation (10)
linearized at y, = 0 admits solutions in the form of linear waves (phonons) v, (t) = C cos (kn — w,t),
whose frequency satisfies the dispersion relation

mwg =2Ac® +2K(1 — cosk). (16)
12 and wiee = (W2, +
4K /m)'/?. For a fixed value of K, figure 16 shows the forbidden frequency bands for discrete breathers,

Phonon frequencies belong to the band [winin, Wmaz], Where wiim = a(24/m)

consisting of the phonon band and its submultiples.
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Fig. 15. (a) Linear spectrum of the equilibrium solution shown in Fig. 14 for

the case K = 0.01 eV A=2. The circles attract the attention on three particular
frequencies which are outside of the phonon band. One of them is far below
the band. It is the frequency wj, of the discrete breather. The two others also
correspond to localized modes. The inset shows a magnification of the lower k
part of the phonon band. The two frequencies right below the band are clearly
visible. (b) Plot of the eigenvectors associated with the three modes which are
outside of the phonon spectrum. The full line corresponds to the lowest mode,
and, as expected it has the shape on the discrete breather. The dotted line
corresponds to mode 2 and the dash line to mode 3. These numerical results
show that modes 2 and 3 are also highly localized in spite of the fact that their
frequencies are close to the phonon band.
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Fig. 16. (a) Frequency wy, of breather solutions of equation (10) numerically
computed by the Newton’s method [29], as a function of breather amplitude

0(0) (expressed in A). Resonances with phonons, represented by black bands,
prevent the existence of breathers (only the first ten resonance bands have

been represented for clarity). Parameters are « = o = 4A-1, D =0.0857eV,

E = 4¢V A~!. Particle masses are set to m = 300 atomic mass units and
K = 0.01 eVA=2. (b) Frequency of the breathers obtained numerically by
exciting only the central particle of the lattice, as explained in Sec. 2.4. The
numerical results given by the two different methods are in excellent agreement.

The condition of non-resonance with linear waves is classical in the context of discrete breathers
[31,32], but yields unusual feature in the continuation from infinity of Ref. [29], because the maximal
frequency of discrete breathers beyond the potential barrier goes to 0 with K. As we have seen,
close to their maximal frequency, the breathers beyond the barrier correspond to (weakly-nonlinear)
localized modes of a spatially localized equilibrium y24. When K is small, y5? goes to infinity on the
flat part of the potential, which induces low-frequency oscillations. As a consequence, breathers exist
for parameters (wy, K) lying outside certain resonance tongues accumulating near (0,0) [29]. When
a multiple of the breather frequency lies in the phonon band, numerical results of Ref. [29] indicate
that breathers are replaced by “almost localized” solutions having a small oscillatory tail at infinity.



Such solutions are known as phonobreathers or nanopterons (see [26, 27, 32] and references therein).

Figure 16(a) taken from reference [29] provides the frequency-amplitude relation for a family of
discrete breathers at fixed value of K obtained using a Newton’s method using continuation from
infinity. The local maximum of the breather frequency at w, ~ 0.02 corresponds to oscillations
near the localized equilibrium. As discussed in Sec. 2.4.1 these breathers can also be generated in
numerical simulations by exciting a single particle and letting the dynamic solution relax to a steady
oscillatory solution after the radiation of small amplitude waves which are absorbed by damping near
the boundaries. Figure 16(b) shows that the numerical result is in very good quantitative agreement
with the frequencies of exact discrete breathers, shown in Fig. 16(a). This indicates that the breathers
are stable solutions which behave as attractors for an approximate initial condition.

In addition to the discrete breathers oscillating beyond the barrier and the classical ones oscillating
below [28, 31], numerical computations of Ref. [29] yield another family of breather solutions oscillating
on both sides of the barrier. These solutions also appear from infinity as K — 0 and the proof of
their existence is still an open theoretical problem. However, similar solutions have been proved to
exist in particular classes of Klein-Gordon lattices where the local anharmonic potential is constant
above some amplitude threshold [30]. Moreover numerical simulations for the model indicate that, as
shown in Sec. 2.4 for the DNA model, those breathers oscillating in both wells can be easily generated
by a large amplitude localized initial excitation, and they are stable.

3.2 Model 2: Morse on-site potential. Anharmonic coupling

In the improved DNA model with the intra-pair potential V}, as well as for its simplified version
discussed in the previous section, the double-well shape of the effective potential Veg (Eq. (8)) comes
from the barrier in the intra-pair potential. It is interesting to notice that, if the nonlinearity in
stacking is large enough, a similar double-well shape can also appear even if the intra-pair potential
does not have a barrier, as shown in Fig.17 for the case of the Morse intra-pair potential V},. In this
case the barrier for reclosing is entirely due to the interaction between sites, i.e. the stacking potential
W (Yn, yn—1) defined in Eq. (5). It persists as long as p is large enough (p > 40.6 for the parameters
used to draw Fig. 17) but becomes shallower when p decreases. It is therefore interesting to study the
properties of the ILMs in this model, which is the PBD model in the particular case of a very strong
nonlinearity in the stacking interaction.

0.4

0.3

V) V)
0.2

0.1

10 15 20
y (Angstrom)

N
[¢)]

Fig. 17. Effective potential of the PBD model with a Morse intra-pair poten-
tial Vs and a nonlinear stacking interaction W for two values of p. The dotted
line shows the Morse potential Vy; for D = 0.13 eV, o = 4.2 A=, The full
line shows the effective potential Veg(y) (Eq. (8)) for K = 0.00045 eV A~2,

6 =04 A~' and p = 200. The parameters of the model have been chosen
to give a denaturation transition temperature T, ~ 340 K, which is a realistic
value for DNA. The dash line shows Vg (y) for a smaller value p = 70, all other
parameters being unchanged.



3.2.1 Main results

As a first step let us analyze spatially symmetric localized equilibria of the Morse chain with nonlinear
stacking interactions, when K is small and p is large, with p = O(K ~1!). Such equilibria are found as
critical points in ¢3(Z) of the potential

U= Z VM(yn) + W(ynv ynfl) . (17)
neZ

Setting p = /K, the stacking potential (5) becomes

1 _
W(ynvynfl) - 5 (K + K e 5(yn+yn71)) (yn - yn71)2-

The equilibria are then determined by

Vi) + O (1) + oo (st 1) =0, € Z. (18)
Yn OYn
The above scaling of p allows us to obtain localized solutions by continuation from infinity, using the
approach introduced in reference [33] and reviewed in section 3.1. The main difference with the case
of reference [33] is that the barrier of the effective potential originates from the nonlinear stacking
and the above scaling of p.

We shall prove the following existence theorem giving localized solutions of Eq. (18) at small
coupling K (in what follows we denote by d,,., the usual Kronecker symbol).

Theorem 2 Assume o > § > 0 and set p = k/K in the nonlinear stacking potential (5), where
k > 0 is a fixed constant. For all K > 0 small enough, the potential (17) admits a critical point

{Yntnez € €2(Z) satisfying

Yn = 00,0 Yo + Vn; (19)
vi =3[~ ) (- (2R (20)
e e = O = =) as K =0 1)

Moreover, y,, decays to 0 exponentially as n — £oo and has the symmetry y_,, = yn.

As shown by equations (19)-(21), when K — 0 the amplitude at site n = 0 diverges logarithmically,
whereas the amplitudes at the other sites decay to 0 (at least extremely slowly).

Before turning to the proof of this theorem, let us check its validity by numerical analysis. Figure 18
shows that the predicted localized solution, decaying exponentially away from the center, is found by
a numerical minimization of the potential energy of the system and that its amplitude evolves with K
as indicated by theorem 2. The linear spectrum of the excitations around this static solution is shown
in Fig. 19. As for the model studied in Sec. 3.1, it includes a low frequency mode corresponding to
the low amplitude discrete breather around the equilibrium solution, and two other localized modes
below the phonon band. Figure 20 shows the variation of the frequency of the lowest mode when K
varies in a large range. This suggests that the DW-breathers can exist in a broad parameter range,
and this can be checked by MD simulations by exciting a single site. For p = 200, starting for instance
from an initial amplitude y. = 15.5 A we get a small amplitude breather in the vicinity of the shallow
minimum of the effective potential (Fig 17). Its frequency, determined by the Fourier transform of
yn/2(t) is found to be w = 0.368 10~2 inverse time units, which corresponds, up to numerical accuracy,
to the frequency of the localized excited state of the localized equilibrium, w; = 0.366 10~2.

The proof of theorem 2 is performed in two steps. In section 3.3, we derive a single-site approxi-
mation of the localized equilibria, whose principal part is given by Eq. (20). In section 3.4 this initial
guess is used to obtain the exact solutions of theorem 2, using the implicit function theorem.
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Fig. 18. (a) Numerical solution for the localized static equilibrium that ex-
ists in the PBD model with a large nonlinearity in the stacking interaction.
The Morse potential parameters are those used for Fig. 17: D = 0.13 eV,
o = 4.2 A='. The stacking potential W uses § = 0.4 A=!. The coupling
K takes 8 values K = 0.00045/2P (p = 0,1,...7) and p is determined by
the condition p = k/K with x = 0.09, i.e. p = 200 for the largest value of
K, K = 0.00045 ¢V A~2, as in Fig. 17. (b) comparison between the numeri-
cally determined amplitude yo at the center of the equilibrium solution (filled
squares) and the theoretical expression Eq. (20) (dash line). The results show
an excellent agreement between the numerical data and the theoretical predic-
tion as soon as K is small enough to have In(2K/k) < —6 .
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Fig. 19. (a) Linear spectrum of the equilibrium solution shown in Fig. 18

for the case K = 0.00045 eV A=2. The circles attract the attention on three
particular frequencies which are outside of the phonon band. One of them is
far below the band. It is the frequency wy of the discrete breather. The two
others also correspond to localized modes. The inset shows a magnification
of the lower k part of the phonon band. The two frequencies right below the
band are clearly visible. (b) Plot of the eigenvectors associated with the three
modes which are outside of the phonon spectrum. The full line corresponds to
the lowest mode, and, as expected it has the shape on the discrete breather.
The dotted line corresponds to mode 2 and the dash line to mode 3.

3.3 Single-site approximate equilibrium solution

In this s