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We improve the usual relative error bound for the computation of x n through iterated multiplications by x in binary floating-point arithmetic. The obtained error bound is only slightly better than the usual one, but it is simpler. We also discuss the more general problem of computing the product of n terms.

Introduction

Floating-point arithmetic and rounding errors

When critical applications are at stake, one may need certain yet tight error bounds on the results of numerical computations. The manipulation of these error bounds (either paper-and-pencil manipulation, or dynamical error analysis) will be made easier if these bounds are simple. This paper deals with the calculation of a certain, tight and simple error bound for the evaluation of integer powers by the iterative algorithm in floatingpoint arithmetic.

In the following, we assume a radix-2, precision-p, floating-point (FP) arithmetic. To simplify the presentation, we assume an unbounded exponent range: our results will be applicable to "real life" floating-point systems, such as those that are compliant with the IEEE 754-2008 Standard for Floating-Point Arithmetic [START_REF]IEEE Standard for Floating-Point Arithmetic[END_REF][START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF], provided that no underflow (i.e., no subnormal values are generated) or overflow occurs (the underflow/overflow issues are briefly discussed in Section 5). In such an arithmetic, a floating-point number is either zero or a number of the form x = X • 2 ex-p+1 , where X and e x are integers, with 2 p-1 ≤ |X| ≤ 2 p -1.

The IEEE 754-2008 Standard requires that the arithmetic operations be correctly rounded : a rounding function must be chosen among five possible functions defined by the standard. If • is the rounding function, when the arithmetic operation (a⊤b) is performed, the value that must be returned is the FP number •(a⊤b). Our error bounds will be given assuming that we use a round-to-nearest rounding function RN, with any choice in case of a tie. However, when we build examples (for instance for checking how tight are the obtained bounds), we use round to nearest ties to even, which is the default rounding function.

Recently, classic error bounds for summation and dot product have been improved by Jeannerod and Rump [START_REF] Rump | Error estimation of floating-point summation and dot product[END_REF][START_REF] Jeannerod | Improved error bounds for inner products in floating-point arithmetic[END_REF]. They have considered the problem of calculating the sum of n FP numbers x 1 , x 2 , . . . , x n . If we call float( n i=1 x i ) the computed result and u = 2 -p the rounding unit, they have shown that

float n i=1 x i - n i=1 x i ≤ (n -1) • u n i=1 |x i | (1) 
(notice that there is no restriction on n), which is better than the previous bound [2, p.63]

float n i=1 x i - n i=1 x i ≤ γ n-1 n i=1 |x i | where 1 γ n = n • u 1 -n • u (2) 
We are interested in finding if a similar simplification is possible in the particular case of the computation of an integer power x n . More precisely, we wish to know if for "reasonable" values of n the result computed using the "naive", iterative, algorithm (Algorithm 1 below) is always within relative error (n -1) • u from the exact result. This is "experimentally true" in binary32/single precision arithmetic: we did an exhaustive check for all x ∈ [1; 2[ in the binary32 format (2 23 numbers to be checked) until overflow for x n . For the smallest number larger than 1, namely x = 1 + 2u, n ≈ 7.5 × 10 8 is needed to reach overflow. Our test used a 100-bit interval arithmetic provided by the MPFI [START_REF] Revol | MPFI (Multiple Precision Floating-point Interval library)[END_REF] package.

In this paper, we prove-under mild hypotheses-that this result holds for all "reasonable" floating-point formats (we need the precision p to be larger than or equal to 5, which is always true in practice), provided that n is less than √ 2 1/3 -1/ √ u. This restriction on n, discussed in Section 3.3, is not a problem for wide FP formats (e.g., binary64 or larger). It may be a significant constraint for small formats (binary32 or smaller).

Relative error due to roundings

Let a and b be floating-point numbers whose product z = ab is positive. Let z = RN(z) be their computed product. It is well known that

(1 -u) • z ≤ z ≤ (1 + u) • z. (3) 
Now, assume that we wish to evaluate the non-negative product a 1 • a 2 • • • a n of n floating-point numbers, and that the product is evaluated as

RN(RN(• • • RN(RN(a 1 • a 2 ) • a 3 ) • • • • ) • a n ). (4) 
Define π n as the exact value of a 

π n = a 1 • • • a n ,
and π n the computed value using (4). Then we have

(1 -u) n-1 π n ≤ π n ≤ (1 + u) n-1 π n . (5) 
Therefore, the relative error of the computation, namely | π n -π n |/π n is upper-bounded by (1 + u) n-1 -1, which is less than γ n-1 as long as (n -1) • u < 1 (which always holds in practical cases). See for instance [START_REF] Graillat | Accurate floating point product and exponentiation[END_REF].

In our experiments, we always observed a relative error less than (n -1) • u for n until 2 p/2 . If this was a valid bound, it would be slightly better, and easier to manipulate than γ n-1 . In the general case of an iterated product, we did not succeed in proving that. We could only automatically build cases for which the attained relative error is extremely close to, yet not larger than, (n -1) • u for n 2 p/2 (see Section 6). We also found counterexamples 2 (in the special case of the computation of x n ) for n ≈ 2 p . However, in the particular case n ≤ 4, one can easily prove that the relative error is less than (n -1) • u. This is done as follows.

First, as noticed by Jeannerod and Rump [START_REF] Jeannerod | On relative errors of floating-point operations: optimal bounds and applications[END_REF], the bound u on the relative error due to rounding can be slightly improved: if t is a floating-point number, then |t -RN(t)|/t ≤ u/(1 + u) (incidentally, if RN is round-to-nearest ties to even, that bound is attained when t = 1 + u, which shows that the bound cannot be improved further).

A consequence of this is that u can be replaced by u/(1 + u) in [START_REF] Jeannerod | Improved error bounds for inner products in floating-point arithmetic[END_REF]. In the general case (that is, for any n), this improvement does not suffice to show that the relative error is less than (n -1) • u, and yet, when n ≤ 4, we can use the following result.

Property 1. If k ≤ 3 then 1 + u 1 + u k < 1 + k • u.
Proof. Straightforward by separately considering the cases k = 1, 2, and 3.

By taking k = n -1, we immediately deduce that for n ≤ 4, the relative error of the iterative product of n FP numbers is bounded by (n -1) • u.

The particular case of computing powers

In the following, we are interested in computing x n , where x is a FP number and n is an integer. One shows by induction that the bound provided by Theorem 1 applies not only to the case that was discussed above (computation of RN(

• • • RN(RN(x•x)•x)• • • • )•x) but
to the larger class of recursive algorithms where the approximation to x k+ℓ is deduced from approximations to x k and x ℓ by a FP multiplication. However, we will prove a (slightly) better bound only in the case where the algorithm used for computing x n is Algorithm 1 below (i.e., we compute powers using iterated multiplications). Incidentally, when n is not known at compile-time (i.e., it is not a constant), computing x n using a "smart" algorithm such as exponentiation by squaring is not so efficiently implementable in modern pipeline architectures, and it also requires tests that may be slow (because of non-predictable branches) in front of a floating-point multiplication. Hence, although the logarithmic-time smart algorithms necessarily beat the linear-time iterated product algorithm ultimately, our tests show that this is not the case until n is around 10. Also, there are a few applications where one needs to know all the powers x i , i ≤ n of a given number x. For these applications, obviously, the iterated product algorithm is of interest.

Algorithm 1 (naive-power(x, n)). x 1 ← x for k = 2 to n do x k ← RN(x • x k-1 ) end for return x n
We wish to prove

Theorem 2. Assume p ≥ 5. If n ≤ 2 1/3 -1 • 2 p/2 , then | x n -x n | ≤ (n -1) • u • |x n | .
To prove Theorem 2, it suffices to prove it in the case 1 ≤ x < 2: in the following we will therefore assume that x lies in that range.

We prove Theorem 2 in Section 3. Before that, in Section 2, we give some preliminary results. In Section 4, we discuss the tightness of our new bound, and in Section 5, we raise brief remarks about possible underflow/overflow issues. Section 6 is devoted to a discussion on the possible generalization of this bound to the product of n floating-point numbers.

Preliminary results

Let us start with an easy remark.

Remark 1. Since (1 -u) n-1 ≥ 1 -(n -1) • u for all n ≥ 2 and u ∈ [0, 1], (5) suffices to show that (1 -(n -1) • u) • x n ≤ x n .
In other words, to establish Theorem 2, we only need to show that

x n ≤ (1 + (n -1) • u) • x n .
We also have, Lemma 1. Let t be a real number. If

2 e ≤ w • 2 e ≤ |t| < 2 e+1 , e ∈ Z (6) then RN(t) -t t ≤ u w .
Lemma 6 is a straightforward consequence of the relations | RN(t) -t| ≤ u • 2 e and w • 2 e ≤ |t|.

For t = 0, we will define t as the significand of t, namely

t = t 2 ⌊log 2 |t|⌋ .
Lemma 1 is at the heart of our study: if at least once in the execution of Algorithm 1, x • x k-1 is such that x • x k-1 is large enough to sufficiently reduce the error bound on the corresponding FP multiplication x k ← RN(x • x k-1 ), then the overall relative error bound becomes smaller than (n -1) • u. More precisely, we will show that, under some conditions, at least once, x • x k-1 is larger than 1 + n 2 u, so that in (5) the term (1 + u) n-1 can be replaced by

(1 + u) n-2 • 1 + u 1 + n 2 u .
Therefore, we need to bound this last quantity. We have,

Lemma 2. If 0 ≤ u ≤ 2/(3n 2 ) then (1 + u) n-2 • 1 + u 1 + n 2 u ≤ 1 + (n -1) • u. (7) 
Proof. Proving Lemma 2 reduces to proving that the polynomial

P n (u) = (1 + (n -1)u)(1 + n 2 u) -(1 + u) n-2 (1 + n 2 u + u) is ≥ 0 for 0 ≤ u ≤ 2/(3n 2 ).
Notice that for u ≥ 0, we have 

ln(1 + u) ≤ u - u 2 2 + u 3 3 . From ln(1 + u) ≤ u we also deduce that (n -2) ln(1 + u) ≤ (n -2)u ≤ 1/(2n). For 0 ≤ t ≤ 1/6, e t ≤ 1 + t + 3 5 t 2 . Therefore, for 0 ≤ u ≤ 2/3n 2 , to prove that P n (u) ≥ 0 it suffices to prove that Q(n, u) = (1 + (n -1) u) (n 2 u + 1) -1 + (n -2) (u -1/2 u 2 + 1/3 u 3 ) + 3/5 (n -2) 2 (u -1/2 u 2 + 1/3 u 3 ) 2 × (n 2 u + u + 1) ≥ 0. (8) By defining a = n 2 u, Q(n, u) = R(n, a), with R(n, a) = -1 5 a 2 (3 a-2) n 2 + 1 10 a 2 (29 a+19) n 3 + 1 5 a 2 (3 a 2 -
Multiplying R(n, a) by 5n 2 /a 2 , we finally obtain

S(n, a) = -3 a + 2 + 29 2 a + 19 2 n -1 + 3 a 2 -17 a-7 n 2 -1 6 a(82 a-5) n 3 -1 12 a(33 a 2 -187 a+20) n 4 + 1 3 a 2 (33 a-8) n 5 + 1 12 a 2 (12 a 2 -153 a+52) n 6 -a 3 (4 a-7) n 7 -1 3 a 3 (a 2 -14 a+21) n 8 + 4 3 a 4 (a-2) n 9 -1 3 a 4 (5 a-8) n 10 + 4 3 a 5 n 11 -4 3 a 5 n 12 (10) 
We wish to show that S(n, a) ≥ 0 for 0 ≤ a ≤ 2/3. Let us examine the terms of S(n, a) separately. For a in the interval [0, 2/3] and n ≥ 3:

• the term -3 a + 2 is always larger than 0;

• the term

29 2 a+ 19 2 n
is always larger than 19/(2n);

• the term 3 a 2 -17 a-7 n 2

is always larger than -6/n;

• the term -1 6 a(82 a-5) n 3

is always larger than -7/(10n);

• the term -1 12 a(33 a 2 -187 a+20) n 4

is always larger than -17/(10000n);

• the term 1 3

a 2 (33 a-8) n 5
is always larger than -3/(10000n);

• the term

1 12 a 2 (12 a 2 -153 a+52) n 6
is always larger than -69/(10000n);

• the terma 3 (4 a-7) n 7

is always larger than 0;

• the term -

1 3 a 3 (a 2 -14 a+21) n 8
is always larger than -6/(10000n);

• the term 4 3

a 4 (a-2) n 9
is always larger than -6/(100000n);

• the term -

1 3 a 4 (5 a-8) n 10
is always larger than 0;

• the term 4 3

a 5
n 11 is always larger than 0;

• the term -4 3 a 5

n 12 is always larger than -1/(1000000n). By summing all these lower bounds, we find that for 0 ≤ a ≤ 2/3 and n ≥ 3, S(n, a) is always larger than 2790439/(1000000n).

Let us deduce two consequences of Lemma 2. The most important is Lemma 3 below, which is the basis of almost all subsequent results. It says that if in Algorithm 1 at least one rounding is done towards zero, the desired result is obtained.

Lemma 3. Assume n ≤ 2/3 • 2 p/2 . If for some k ≤ n, we have RN(x • x k-1 ) ≤ x • x k-1 , then x n ≤ (1 + (n -1) • u)x n .
Proof. We have

x n ≤ (1 + u) n-2 x n .
Lemma 2 implies that (1 + u) n-2 is less than 1 + (n -1) • u. Therefore,

x n ≤ (1 + (n -1) • u)x n .
Now, by combining Lemma 1 and Lemma 2, if there exists k,

1 ≤ k ≤ n -1, such that x • x k ≥ 1 + n 2 • u, then x n ≤ (1 + u) n-2 • 1 + u 1 + n 2 u • x n ≤ (1 + (n -1) • u) • x n ,
so that:

Remark 2. Assume n ≤ 2/3 • 2 p/2 . If there exists k, 1 ≤ k ≤ n -1, such that x • x k ≥ 1 + n 2 • u, then x n ≤ (1 + (n -1) • u)x n .

Proof of Theorem 2

The proof is articulated as follows.

• First, we show that if x is close enough to 1, then when computing RN(x 2 ), the rounding is done downwards (i.e., RN(x 2 ) ≤ x 2 ), which implies, from Lemma 3, that

x n ≤ (1 + (n -1) • u)
x n . This is the purpose of Lemma 4.

• Then, we show that in the other cases, there is at least one k ≤ n -

1 such that x • x k ≥ 1 + n 2 • u, which implies, from Remark 2, that x n ≤ (1 + (n -1) • u)x n . Lemma 4. Let x = 1 + k • 2 -p+1 = 1 + 2ku,
where k ∈ N (all FP numbers between 1 and 2 are of that form). We have

x 2 = 1 + 2k • 2 -p+1 + k 2 • 2 -2p+2 , so that if k < 2 p/2-1 , i.e., if 1 ≤ x < 1 + 2 p/2 u, then x 2 = 1 + 2k • 2 -p+1 < x 2
, which, by Lemma 3, implies

x n ≤ (1 + (n -1)u) • x n .
Assume u ≤ 2/(3n 2 ), i.e., n < 2/3 • 2 p/2 (later on, we will see that a stronger assumption is necessary). Remark 2 and Lemma 4 imply that to prove Theorem 2, we are reduced to examine the case where 1 + 2 p/2 u ≤ x < 2. For that, we distinguish between the cases where x 2 ≤ 1 + n 2 u and x 2 > 1 + n 2 u.

First case: if

x 2 ≤ 1 + n 2 u From x ≥ 1 + 2 p/2 u ≥ 1 + nu, we deduce x n ≥ (1 + nu) n > 1 + n 2 u,
so that, from Lemma 3, we can assume that

x n-1 • x > (1 + n 2 u)
(otherwise, at least one rounding was done downwards, which implies Theorem 2). Therefore

• if x n-1 x < 2, then x n-1 x ≥ (1+n 2 u), so that, from Remark 2, x n ≤ (1+(n-1)•u)•x n ; • if x n-1 x ≥ 2,
then let k be the smallest integer such that x k-1 x ≥ 2. Notice that since we have assumed that x 2 ≤ 1 + n 2 u, we necessarily have k ≥ 3. We have

x k-1 ≥ 2 x ≥ 2 √ 1 + n 2 u , hence x k-2 • x ≥ 2 √ 1 + n 2 u • (1 + u) . (11) 
Now, define

α p = 2 p+1 2 p + 1 2/3 -1.
For all p ≥ 5, α p ≥ α 5 = 0.74509 • • • , and

α p ≤ √ 2 2/3 -1 = 0.7664209 • • • . If n ≤ α p • 2 p/2 , (12) 
then

1 + n 2 u ≤ 2 p+1 2 p + 1 2/3 , so that (1 + n 2 u) 3/2 • (1 + u) ≤ 2, so that 2 √ 1 + n 2 u • (1 + u) ≥ 1 + n 2 u.
Therefore, from (11), we have

x k-2 • x ≥ 1 + n 2 u.
Also, x k-2 • x is less than 2, since k was assumed to be the smallest integer such that

x k-1 x ≥ 2. Therefore x k-2 • x ≥ 1 + n 2 u,
which implies, by Remark 2, that

x n ≤ (1 + (n -1) • u) • x n . So, to summarize this first case, if x 2 ≤ 1 + n 2 u and n ≤ α p • 2 p/2
, then the conclusion of Theorem 2 holds.

Second case: if

x 2 > 1 + n 2 u
First, if x 2 < 2 then we deduce from Remark 2 that x n ≤ (1 + (n -1) • u) • x n . The case x 2 = 2 is impossible (x is a floating-point number, thus it cannot be irrational). Therefore let us now assume that x 2 > 2. We also assume that x 2 < 2 + 2n 2 u (otherwise, we would have (x 2 ) ≥ 1 + n 2 u, so that we could apply Remark 2). Hence, we have

√ 2 < x < √ 2 + 2n 2 u.
From this we deduce

x n-1 < (2 + 2n 2 u) n-1
2 , therefore, using Theorem 1,

x n-1 < (2 + 2n 2 u) n-1 2 • (1 + u) n-2 , which implies x • x n-1 < (2 + 2n 2 u) n/2 • (1 + u) n-2 . ( 13 
) Define β = 2 1/3 -1 = 0.5098245285339 • • • If n ≤ β • 2 p/2 then 2 + 2n 2 u ≤ 2 4/3
, so that we find

(2 + 2n 2 u) n/2 • (1 + u) n-2 ≤ 2 2n/3 • (1 + u) n-2 . ( 14 
)
• if n = 3, the bound on x • x n-1 derived from ( 13) and ( 14) is 4 • (1 + u). Therefore either x • x n-1 < 4, or x • x n-1 will be rounded downwards when computing x n (in which case we know from Lemma 3 that the conclusion of Theorem 2 holds);

• if n ≥ 4, consider function g(t) = 2 t-1 -2 2t/3 1 + 2 -p t-2 = 2 2t/3 2 t/3-1 -1 + 2 -p t-2 .
It is a continuous function, and it goes to +∞ as t → +∞. We have:

g(t) = 0 ⇔ t = log(2) + 2 log (1 + 2 -p ) 1 3 log(2) -log (1 + 2 -p )
.

Hence, g has a single root, and as soon as p ≥ 5, that root is strictly less than 4.

From this, we deduce that if p ≥ 5, then g(t) > 0 for all t ≥ 4. Hence, using ( 13) and ( 14), we deduce that if p ≥ 5 then x

• x n-1 < 2 n-1 .
Now that we have shown that

3 if n ≤ β • 2 p/2 then x • x n-1 < 2 n-1 ,
let us define k as the smallest integer for which x • x k-1 < 2 k-1 . We now know that k ≤ n, and (since we are assuming x 2 > 2), we have k ≥ 3. The minimality of k implies that

x • x k-2 ≥ 2 k-2 , which implies that x k-1 = RN(x • x k-2 ) ≥ 2 k-2
. Therefore, x k-1 and x • x k-1 belong to the same binade 4 , therefore,

x • x k-1 ≥ x > √ 2. (15) 
The constraint n ≤ β • 2 p/2 implies

1 + n 2 u ≤ 1 + β 2 = 2 1/3 < √ 2. (16) 
By combining (15) and ( 16) we obtain

x • x k-1 ≥ 1 + n 2 u.
Therefore, using Remark 2, we deduce that

x n ≤ (1 + (n -1) • u) • x n .

Combining both cases

One easily sees that for all p ≥ 5, α p is larger than β. Therefore, combining the conditions found in the cases x 2 ≤ 1+n 2 u and x 2 > 1+n 2 u, we deduce that if p ≥ 5 and n ≤ β •2 p/2 , then for all x, (1 For instance, in the binary32/single precision format, with the smallest n larger than that maximum value (i.e., 2089), x n will underflow as soon as x ≤ 0.95905406 and overflow as soon as x ≥ 1.0433863. In the binary64/double precision format, with n = 4385543, x n will underflow as soon as x ≤ 0.999985359 and overflow as soon as x ≥ 1.000014669422. With the binary113/quad precision format, the interval in which function x n does not under-or overflow is even narrower and, anyway, computing x 51953580258461959 by Algorithm 1 would at best require years of computation on current machines.

-(n -1) • u) • x n ≤ x n ≤ (1 + (n -1) • u) • x n . Q.E.D. Notice that the condition n ≤ β • 2 p/2 is

Is the bound of Theorem 2 tight?

For very small values of p, it is possible to check all possible values of x (we can assume 1 ≤ x < 2, so that we need to check 2 p-1 different values), using a Maple program that simulates a precision-p floating-point arithmetic. Hence, for small values of p and reasonable values of n it is possible to compute the actual maximum relative error of Algorithm 1. For instance, Tables 1 and2 present the actual maximum relative errors for p = 8 and 9, respectively, and various values of n. For larger values, we have some results (notice that beyond single precision-p = 24exhaustive testing is either very costly or out of reach):

• for single precision arithmetic (p = 24) and n = 6, the actual largest relative error is 4.328005619u. It is attained for x = 8473808/2 23 ≈ 1.010156631;

• for double precision arithmetic (p = 53) and n = 6, although finding the actual largest relative error would require months of calculation, we could find an interesting case: for x = 4507062722867963/2 52 ≈ 1.0007689616715527147761, the relative error is 4.7805779 • for double precision arithmetic (p = 53) and n = 10, although finding the actual largest relative error is out of reach, we could find an interesting case: for x = 4503796447992526/2 52 ≈ 1.00004370295725975026, the relative error is 7.9534189 • • • u.

Notice that we can use the maximum relative error of single precision and "inject it" in the inductive reasoning that led to Theorem 1 to show that in single-precision arithmetic, and if n ≥ 10 then

(1 -7.06u)(1 -u) n-10 x n ≤ x n ≤ (1 + 7.06u)(1 + u) n-10 x n .
Then, by replacing u by 2 -24 and through an elementary study of the function

ϕ(t) = (1 + 7.06 • 2 -24 )(1 + 2 -24 ) t-10 -1 • 2 24 -t
one easily deduces that for 10 ≤ n ≤ 2088, we always have

x n -x n
x n ≤ (n -2.8104) • u.

A brief remark on underflow and overflow

As stated in the introduction, the results presented in this paper (assuming an unbounded exponent range) apply to "real" floating-point arithmetic provided that no underflow or overflow occur. When considering "general" iterated products, intermediate underflows are a real concern: they may make a final result very inaccurate, and this may be rather difficult to notice when the IEEE 754 exceptions are not supported, since the returned final result may lie well in the normal floating-point range. Overflows are less deceiving, but they may be difficult to manage: one may have an overflow appearing in an intermediate result (leading to an infinite or NaN final result being returned) even when the exact product is of magnitude much smaller than the overflow threshold. However, when we are concerned with powers only, these pitfalls disappear. One easily shows that when evaluating a power using Algorithm 1:

• if an intermediate result underflows then the final result will be less than or equal to the minimum positive normal number in absolute value, so that this will not go unnoticed;

• if an intermediate result overflows then the exact final result is larger than Ω/(1 + u) n-1 in absolute value, where Ω is the largest finite floating-point number.

6 What about iterated products ?

Assume now that, still in precision-p binary FP arithmetic, we wish to evaluate the product

a 1 • a 2 • • • • • • • a n , of n 
floating-point numbers. We assume that the product is evaluated as

RN(• • • RN(RN(a 1 • a 2 ) • a 3 ) • • • • ) • a n ).
Define π k as the exact value of a 1 • • • a k , and π k as the computed value. As already discussed in Section 1.2, we have

(1 -u) n-1 π n ≤ π n ≤ (1 + u) n-1 π n , (17) 
which implies that the relative error |π n -π n |/π n is upper-bounded by γ n-1 , defined for (n -1) • u < 1.

Here we seek to build a sequence a 1 , a 2 , a 3 , . . . , trying to maximize the relative error at each step. For this purpose, we will choose each a n so that all the roundings occur in the same direction, and this direction must be the upward one to have a chance to get a relative error larger than (n -1) • u at step n.

With the construction below, a n will depend only on π n-1 , and all the a n 's will be close to 1, so that this sequence will be ultimately periodical. Over one period, the ratio π n /π n will be multiplied by some constant ρ, and since all roundings will be performed upward, ρ > 1. Over m periods, the ratio π n /π n will be multiplied by ρ m , so that the relative error will grow exponentially, thus will become larger than (n -1) • u when n is large enough.

We assume p ≥ 6, so that it can be shown that the following construction behaves as wanted. At step n ≥ 2, one can write:

a n = 1 + k n • 2 -p+1 , π n = 1 + g n • 2 -p+1 = RN( π n-1 • a n ),
where k n will be an integer5 and g n will be a positive integer. We will deal with the initial step after giving the general rule. We have

π n-1 • a n = 1 + (g n-1 + k n ) • 2 -p+1 + g n-1 k n • 2 -2p+2 .
We wish to maximize the relative error and have an upward rounding. If g n-1 + k n is less than 2 p-1 , the number 1 + (g n-1 + k n ) • 2 -p+1 is a FP number. To maximize the relative error, we wish g n-1 + k n to be non-negative and as small as possible, while g n-1 k n • 2 -2p+2 should be as close as possible to, but larger than (for upward rounding), ±2 -p , i.e. g n-1 k n ≃ > 2 p-2 ; and we will get:

g n = g n-1 + k n if k n < 0, g n-1 + k n + 1 if k n > 0.
However under these constraints, if g n is very small, then one obtains large values for g n+1 , g n+2 , etc., which is not interesting as we want each g i to remain small. For this reason, we will try to keep k n and g n balanced. Hence a good choice is

• k n = 1 + 2 p-2
g n-1 if g n-1 < ⌊2 (p-1)/2 ⌋;

• k n = 1 -2 p-2 g n-1 otherwise.

  [START_REF] Graillat | Accurate floating point product and exponentiation[END_REF] 

  • • • a n , and π n as the computed value. A simple induction, based on (3), allows one to show Theorem 1. Let a 1 , . . . , a n be floating-point numbers whose product is nonnegative,

  not a huge constraint. The table below gives the maximum value of n that satisfies that condition, for the various binary formats of the IEEE 754-2008 Standard for Floating-Point Arithmetic.

	p n max
	24 2088
	53 48385542
	113 51953580258461959

Table 1 :

 1 Actual maximum relative error of Algorithm 1 assuming precision p = 8, compared with the usual bound γ n-1 and our bound (n -1)u. The term n max designs the largest value of n for which Theorem 2 holds, namely√ 2 1/2 -1 • 2 p/2

	n	actual maximum	γ n-1	our bound
	3	1.35988u	2.0157u	2u
	4	1.73903u	3.0355u	3u
	5	2.21152u	4.06349u	4u
	6	2.53023u	5.099601u	5u
	7	2.69634u	6.1440u	6u
	8 = n max	3.42929u	7.1967u	7u

Table 2 :

 2 Actual maximum relative error of Algorithm 1 assuming precision p = 9, compared with the usual bound γ n-1 and our bound (n -1)u. The term n max designs the largest value of n for which Theorem 2 holds, namely√ 2 1/2 -1 • 2 p/2

	n	actual maximum	γ n-1	our bound
	6	2.677u	5.049u	5u
	7	2.975u	6.071u	6u
	8	3.435u	7.097u	7u
	9	4.060u	8.1269u	8u
	10	3.421u	9.1610u	9u
	11 = n max	3.577u	10.199u	10u

  It is attained for x = 8429278/2 23 ≈ 1.004848242;

	• • • u
	• for quad precision arithmetic (p = 113) and n = 6, although finding the actual largest relative error is out of reach, we could find an interesting case: for
	x = 5192324351407105984705482084151108/2 112
	≈ 1.0000052949345978099886352037496365983,
	the relative error is 4.8827888 • • • u
	• for single precision arithmetic (p = 24) and n = 10, the actual largest relative error is 7.059603149u.

We assume that n • u < 1 when using γ n .

Good candidates are machine numbers less than but very close to 2 m/q , where m and q are small integers, such that π k+q and π k have the same significand for some k.

Unless n = 3 and x • x n-1 ≥

but in that case we have seen that the conclusion of Theorem 2 holds.

A binade is the interval between two consecutive integer powers of 2.

If k n is negative, it could be a half-integer, but such a choice would not yield an interesting sequence.

For the initial step, as we want g 2 to be as small as possible, we will choose for k 1 (= g 1 ) the smallest integer such that k 2 < 0, i.e.

Table 3 gives examples of the relative errors achieved with the values a i generated by this method, for various values of p and n. Table 4 shows relative errors for the smallest values of n such that the relative error is larger than (n-1)•u with the values a i generated by our method for various values of p. 

Conclusion

We have shown that, under mild conditions (in particular, a reasonable bound on n), the relative error of the computation of x n in floating-point arithmetic using the "naive" algorithm is upper bounded by (n -1) • u. This bound is simpler and slightly better than the previous bound. We conjecture that the same bound holds in the more general case of the computation of the product of n floating-point numbers when n is not too large. We have provided examples that show that the actual error can be very close to, but smaller than, (n -1) • u for small values of n, and becomes larger than (n -1) • u when n is large enough.