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We investigate the response of a one-dimensional Bose gas to a sloas@afts interaction strength. We
focus on the rich dynamics of equal-time single-particle correlations tgett Lieb-Liniger model within a
bosonization approach and the Bose-Hubbard model using the timadiepalensity-matrix renormalization
group method. For short distances, correlations follow a power-lawdistance with an exponent given by the
adiabatic approximation. In contrast, for long distances, correlatioreyd®gebraically with an exponent un-
derstood within the sudden quench approximation. This long distanceeégBeparated from an intermediate
distance one by a generalized Lieb-Robinson criterion. At long times, irrttéemediate regime, bosoniza-
tion predicts that single-particle correlations decay following a stretchpdrential. This latter regime is
unconventional as, for one-dimensional interacting systems, thg désingle-particle correlations is usually
algebraic within the Luttinger liquid picture. We develop here an intuitive wtdading for the propagation of
correlations, in terms of a generalized light-cone, applicable to a largetywaf systems and quench forms.

PACS numbers: 67.85.-d, 03.75.Kk, 03.75.Lm, 67.25.D-

Introduction: Recent advances in the development of fastinear increase of the interaction strength, at zero temper
probing and control techniques applicable to correlated sy ture, in two paradigmatic one-dimensional interacting eisd
tems have opened up the possibility to dynamically prepar¢he Lieb-Liniger and Bose-Hubbard models. We show that a
complex quantum many-body states. For example, effectivgeneralized Lieb-Robinson bound describes the evolution o
phase transitions have been induced through the applicaticsingle-particle correlations. This bound can be undedstoo
of external driving fields [1-3] and states, such as a Belésta within a simple picture involving quasiparticle pairs desh
of ions or a Tonks-like state in a quantum gas, have been reatluring the quench. At each instant in time, the quasiparti-
ized using tailored environments [4, 5]. In fact, the dyneathi  cles propagate at their instantaneous velocity: as thexcitg!
preparation of states promises to have an important impact iis time-dependent the evolution front possesses a naattriv
fields as diverse as condensed matter physics, quantum infdunctional form. This non-trivial form contrasts with thied
mation, quantum optics and ultracold atomic physics. On thear evolution front of correlations, the horizon, whichsas
theoretical side, despite tremendous progress in recansye after a sudden quench and is due to a constant quasiparticle
many of the basic concepts behind the dynamical generatiovelocity [24]. The structure of the correlation front canebe
of states still remain to be understood. tracted solely from the knowledge of the quasiparticle eelo

In this article, we focus on the preparation of unconven-ity and does not require a detailed understanding of the more
tional states in isolated systems using slow parameteigeisan complicated correlation function. In fact, the approachetie
Considerable experimental efforts have been devoted to ureped here can be applied to various interacting systems.
derstand slow quench dynamics [.6_101' However, in these For the one-dimensional models under study in this arti-
works, as well as in many theoretical ones (see Ref. 11 and

references therein), the emphasis has been put on undbrstar(fle’ we find that outside the bound the single-particle ¢aire

ing how energy is absorbed and defects produced. tions decay algebraically with distance with an exponent de

termined by the initial Luttinger parameter and decreased a

In recent years, the focus has partially shifted towards th%Iitude. In contrast, inside the bound, the correlatioresent

study of longer range correlation dyngmics during f’iSlOW P& uch more interesting dynamics. For short distances, the al
rameter quench [12—-22]. Understanding the evolution dfisuc ebraic decay depends on the ramp time [16, 19] While for
correlations is paramount as the nature of many-body quar?— Lo

tum states are typically characterized by longer rangestar arger distances and quench times, the correlations, e

: : ; : . Lieb-Liniger model, decay following a stretched exponainti
PG decay fom s Lespected s, even for et
. T SP : . . . HBheous guenches, an algebraic decay persists at allaistan
experimentally in an interacting one-dimensional bosgais

after a sudden quench of the optical lattice depth [25]. Fofrjlnd times [26]. A s!m|lar strgtched exponential behavios wa
T . . . found in Ref. 16 (without a time-dependent prefactor). k& th
slow quenches, a similar linear light-cone-like evolution

.rest of the article, we analyze in detail the evolution ofytén

correla_ltlons has been predlcteq for den_sﬂy correlat_|_cms Iparticle correlations, and highlight the different regsrmth
bosonic systems [20] and for single-particle correlations . .
in position and momentum space.

fermionic systems [19].
We analyze here the correlation dynamics during a slow Model: Bosonic atoms in a one-dimensional wave guide



can be described by the Lieb-Liniger (LL) model time-dependent Luttinger parametsi(t) ~ Ko/y/1 + £.

R ) g(t) ) These expressions are still valid for small parameter traria
H = /dl“ [—2m¢ (z)0y 0 (x) + 70(33) (1) in the Bose-Hubbard model given the relatibf; a = gor
wherea is the lattice constant.
with ¢ (x) the boson annihilation operator and = A major distinctive feature of the TLL model is that its low
¥(z)Ty(x) the density. The interaction strengjhis related  energy excitations are collective modes (density fluctursi)
to the s-wave scattering length, of the atoms and to the instead of individual quasiparticles. Hence, only quasigl
transverse trapping frequeney by g ~ 27hw,a,. We as-  range order persists even down to zero temperature. This sit
sume that the gas is initially prepared at a certain int@mact uation is exemplified by the anomalous (non-integer) power-
strengthg(t) = go and that fort > 0 a linear variation of law dependence of its correlation functions [29]. Moregver
the interaction strength of the forpit) = go + (g9 — 90)% the time-dependence does not introduce couplings between
is performed. Experimentally this variation can be achieve the different momentum modes of the TLL Hamiltonian. This
for example, by using a Feshbach resonance or by varying tHeads to momentum decoupled equations of motion for the
intensity of the transverse trapping [27]. Fourier components of the fields of the form [16, 19, 20]
A similar interaction quench can be done by confining

bosonic atoms to an optical lattice potential along the one—i¢(q) = uoKo ¢ 8(q) and ig( ) = _ul(t) 7 6(q). (3)

dimensional direction. The theoretical model describinig t @t dt K(t)

situation is the Bose-Hubbard model given by The solutions for these equations of motion can be written us

U(t) ing bosonic quasiparticles with creation and annihilatipa
_ t s

H = _JZ (bl+1bl + h.c.) T an(”l -1 eratorsa’ anda which diagonalize the Hamiltonian &t= 0:
l l

with b/ the operator creating a boson at si@ndn; = bfb, d(q,t) = 2 /7Ko|q| [%F* + CLT_qF} ) (4)
the local density operator. The first term of the Hamiltonian

corresponds to the kinetic energy of atoms with hopping am-  ¢(¢,t) = 1 Ko |:aqu* + aquF] (5)
plitude .J while the second term is the potential energy with u(t)K(t)g\ 2[q| | "dt dt

onsite interaction of strengtii. Taking the continuum limit of
the Bose-Hubbard model in the superfluid phase, this mod
can be mapped onto the LL Hamiltonian [28]. In this case, the 1 &2 u(t)
linear interaction quenci(t) translates into a linear change of (KdtQF(% t)) = %0 q* F(q,t)
the interaction amplitud® (). tofko ()

For both models, in the superfluid phase, the low energy, ..\, initial conditions F(¢,0) = 1, & F(q,t)]s—0 = iuolg|.
physics is well described by the Tomonaga-Luttinger liquidryig sojution can be exp;ressed in terms of Bessel functions
(TLL) Hamiltonian [29, 30] (see Eq. (9.1.51) of Ref. 34);

dvhereF(q,t) is the solution of the equation

2
q u(t) 5
H = uthHq@—q—i—(bqu—q}(Z) 2 3 3
; o { OKOIDO) + 57990 Fla.)="72 [73 () Ty (r 1) + 13 () Ly (o7h) (©)

where ¢(x) = 233, é(g)e'tre e/ and 0(x) = i (g () Ty (s78) = Ty () Ty (s78) )|
ﬁzq 6(q)e*re—l9/2 are conjugate fields satisfying the
canonical commutation relatiop(z), V8(z')] = ird(x —  Wheres(q,to) = 3lo|q| and7(t,to) = 1 + 7 are the dimen-
2'). We have set heré = 1 and« is a short distance cut- Sionless momentum and time, respectively [35].
off. The sound velocity. and the Luttinger parametex’ Evolution of the single-particle correlation function:

are related to the parameters of the original Hamiltonians!n the following, we survey the rich behavior of the

These parameters can, for example, be extracted from tfRAual-time single-particle correlation functiofi(z,t) =

Bethe Ansatz solution of Eq. (1) [31] or through numerical 3 (¥/(x, )%/ (0, ) + h.c.) during a slow interaction quench.

approaches for the Bose-Hubbard Hamiltonian [28, 32]. In the bosonization representation, the equal-time single
In the LL model, the Galilean invariance ensures that theParticle correlation function takes the form

productu(t) K (t) remains unchanged upon varying the inter- L 42 (et) 00,0

action parameters [33] and thu§t) K (t) = uoKy. For small Gla,t)g=0 = Ajle € )

linear changes of these parameters, this translates, tofirs — Ageféf (& ma) @)
derin the variation, to a time- dependent r Eé-it)) ~ %‘)’(1 N where Ay is a non-universal constant which depends on the
L) with tg = —“% _ and a typical lengthscalg = uot 0> . ) P

;) With to = Ko(95—90) — 0%+ underlying microscopic model. We introduced for conve-

This result is then used to obtain expressions for the timepjence the dimensionless length= STz and, correspond-
. 0 ! .
dependent sound velocity(t) ~ ug/1+ £ and for the ingly, the dimensionless short distance cut<@ft= o The
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functionI (¢, 7, &) of Eq. (7) is then given by is not properly taken into account by the low energy theory.
b oo As expected, the bosonization description works best & sl
1(6,7,&) = T / ds s ¢35 (1 — cos s€) 8) and small parameter changeg. In particular, deviationslare
3Ko Jo served when the Mott-insulating phase of the Bose-Hubbard

model is approached or when too many excitations are cre-
ated.

2

X {(Jg(s)J_g(ST%) —J 2 (s)J2 (sr%)) +
3.\ 2 Initially, before the slow quench begins (at= 1 within

) : our formalism), the correlation function decays algelathjc
with distance a&i(¢) = A2 (1 + (¢/a)?)~1/(4Ko), This be-
From the equation above it immediately follows that Eq. (7)havior is typical of a Luttinger liquid. Then, as the interac
only depends on the dimensionless variablg§, & and not  tion strength is slowly ramped up, the form of the correla-
separately or, ¢y, z anda. This implies that, for a given tion function evolves. For small and sufficiently short-,
final value of the interaction strength, increasing the raey  changes are minimal as the correlation function still decay
locity, -, mainly enters the expressions through an increaseg|gebraically, but the exponent is now determined by thetim
rescaled lengty. dependent Luttinger paramet&f(t) = K,/,/7 showing up
in the exponent [36]. This result implies that for short dime
sionless distances, := 7=/* > ¢, the correlations react
instantaneously to the slow interaction change and adjust t
the ground state decay corresponding to the current interac
l1p-02  tion value (see pan€l) of Fig. 1). The main contribution
to this mechanism comes from quasiparticles with large mo-
mentag > % This adiabatic regime spatially decreases with
time and disappears completely whgrt) ~ &, wherea is
r10-"*  the dimensionless short distance cut-off.

For larger distances, the correlations deviate much more
from their standard initial form and a dip appears. The for-
mation of this dip is a clear signal of the non-equilibrium
_ nature of the physics at play. For distances beyond this dip,
P N 1 I R the initial algebraic decay—'/(2K0) reappears as one can

1 3 101 3 10 see in panela) of Fig. 1. The position of the dip coin-
cides approximately with the correlation evolution frofhe
FIG. 1: De(_:ay of single-particle correl_ations with increasing dis'time-dependent position of this front can be understood by
tance for differentr and t;. Comparison between results ob- considering the propagation of quasiparticles. At any mive

tained using bosonization Eq. (7) with Luttinger liquid parameters,. X L R
Ko — 4.1561 anduo — 1.3323 (solid lines) and using time- M€, the system Hamiltonian is diagonal in its instantaneous

dependent density-matrix renormalization group (t-DMRG) for theduasiparticles asf (') = 3, u(t)lglaf(t)aq(t') + 3. As-
Bose-Hubbard model (circles) for a quench fréfa = J (lattice ~ Suming discrete time steps, this means that the action of the
length: L = 100, filling: n = 1, maximum number of bosons per Hamiltonian at timet — dt, diagonal in its own quasipar-
site: 6). (a) Time evolution for different values af and for a fixed  ticles, has created (and annihilated) entangled quaisileart
value oft; = 40%. The two dashed lines intersecting altiata sets pairs ag (t)aT_q(t). These entangled quasiparticles, forming
are the bounds: (lefg, = 7~*/* and (right)s = 2(r*/* ~1). The 3 pair, propagate with velocity(t) in opposite direction and
colored dashed lines on the left & are curves proportional to the thereby carry correlations over a distarice(t) d¢ within a

i £\2)—1/(4K (™) \whi i i
function (1 + (3)°) o while the df’istlf/%lg]?s onthe fight e interval d. Hence, for points separated by a distance
of £ are curves proportional to the functign o). (b) Com- | th _ 3ty N the sinal ticl
parison between different ramp timesfor a fixed value ofr = 3. £ arger angB_ Tl fo t' u(t'), the sing g—par '(? e cor—.
The vertical dashed line is the bouag = 2(7%/2 — 1). relation decay is unaffected by the change in the intemactio

aside from an overall prefactor. For the system under study,

Asymptotic expansion of the single-particle correlationt(t) = uoy/1+ £ and we find thagp = 2 (73/2 —1). Thus,
function: The time evolution of single-patrticle correlations the evolution front beyond which correlations still follave
described by Egs. (7) and (8) is extremely rich. Typical timeinitial algebraic decay is given b§; as evidenced in Fig. 1.
evolutions of these correlations with distance are shown inn particular, the position of the bound does not depend on
panel(a) of Fig. 1 for both the Bose-Hubbard model and thethe ramp velocity and time separately as can be seen in panel
bosonization approach. For the chosen parameters, we fouridl) of Fig 1. One clearly sees from there that, for a given
very good agreement between the two evolutions at longeihe positioné of the dip (measured in units &f) is the same
distances, as long as an additional time-dependent poefactfor different ramp times. The existence of such a propagatio
is multiplied to the expression obtained using bosonizatio front is reminiscent of the light-cone-like evolution ofroe-

This prefactor corrects for the short distance behaviorcvhi lations recently investigated in the context of instantarse

1 2
3 3

Ll L 10-0-1
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guenches [23-25, 37-39]. curs for relatively large parameter changes> t;. It is

still an open question, whether this stretched exponedéal
cay regime arises within the Bose-Hubbard model. As this
regime only occurs for large parameter changes, the TLL
- model might not describe properly the dynamics of the Bose-
Hubbard model and relaxation mechanisms not present in the
TLL model might dominate the evolution. A careful analysis
of this last point would be extremely valuable but is left to
further studies.

Experimental implementation and detection: One-
dimensional interacting bosonic gases have been realized
experimentally using various setups [41-43]. The time-
dependence of the ratio of potential to kinetic energy can be
- implemented using Fesbach resonances, or by varying the
optical lattice depth or the transverse trapping.

Detection of the single-particle correlation function can
also be carried out experimentally. Using radio-frequency
] i _ ) o ~_ pulses, atoms can be outcoupled from the one-dimensional
FIG. 2: Behavior of single-particle correlations with increasing d's'Bose gas at two spatially separated positions and their in-

tance for large values of/ K¢. Exact evaluation of the bosonization . . .
expression, Eqg. (8) — solid lines, is compared to the full approxima‘[é{erference is then observed after a free fall. This tecteiqu

expression, Eq. (9) — dashed lines. FgdZ — 100, we also com-  WaS sgccessfully employed .to measure the byild—qp of equal-
pare the exact expression to the first exponential term of Eq. (9). Ifime single-particle correlations in a Bose-Einstein camd

the larger limit, if one adjusts the prefactor correctly, the stretched sate after a sudden decrease of its temperature [44, 45]. An-
exponential provides a good description of the correlation decay besther possible detection scheme relies on time-of-fligltY
fore¢g. The blg% dashed line indicates the positio_nr of the evolutionmeasurements which provide, in the far-field limit, access t
frontég =2 (7°/° — 1). Used.parametersinm =107" smax=60  the momentum distributiom(q) = [ dz €% G(z). The

(the lower and upper cut-offs in Eq. (8)) and= 0.1. very long distance behavior of the single-particle cotrefa

is dominated by the Luttinger liquid power-law; howeveraat
ritical wavevectorg,., determined by the ballistic expansion
condition, a crossover occurs andg) is dominated by the
Fourier transform of the stretched exponential. Therefate

g. ~ mp€ply/t (with mp the atom mass) a crossover should

first term
only

1073” T T T T T T T T T

For larger dimensionless times, as illustrated in Fig. 2, a
additional decay regime takes place at intermediate dietan
before the boundz. This interesting behavior shows up in
the bosonization approach and takes the form

G(&,7) gm0 = C(r) x (9)  be visible in the TOF measurements. One of the main chal-
1 1 3 1.1 lenges towards the observation of the evolution of coricaiat
257> 4 m2ril(g) 1 ill be the realization of a relatively h i
exp | =15 &7 | exp = will be the realization of a relatively homogeneous gas as in
Kol'(3) 6Kol'(3)I(5)2 ¢3 homogeneities can cause mass transport and mask the interna

o i i ) evolution [22, 46]. The recent experimental realizatioraof

with C(r) a prefactor independent ¢f For intermediater,  poyaq Bose-Einstein condensate [47] offers a possible path

both exponential terms are required to adequately repeduGqyards the realization of the Lieb-Liniger model.

the behavior of Eq. (8) as shown in Fig. 2. However, for val-

ues ofr whose corresponding bourig; is located at suffi- ) . . . L .

cient largeg, only the first exponential term is important. In the dyna_rmcs Of_ single-particle correla_mons ansing ugri
the slow interaction quench of a one-dimensional Bose gas.

this case single-particle correlations decay with distaas a Wi d lized bict for th i ¢
stretched exponential, a similar decay was found in Ref. 16 € proposed a generalized picture for he propagation o

Such a functional form is unconventional for Luttinger lidg! t'_he correlation evolutiqn frqnt bas_ed on t.he counterprapag
as, typically, correlations decay algebraically in thgstems. t!on of entap g.Ied quasiparticle pairs moving at each paint o
Even for sudden interaction quenches in both bosonic anHme at their mstante_neous velocity. Th_erefore, the evolu
fermionic systems [26, 40] and for slow quenches in ferndgoni tion fr_ont does not simply spread as a light-cone as fOL.md
systems [19], only algebraic decay of correlations have beefOIIOWIng a sudden parameter change (26, 48]! bu_t aquires
uncovered. The presence of such an unusual functional for@ More complex functional form. We expect this picture to
is mainly due to the reinforcement of the amplitude of phas pply to other m.odels and quench forms as the evolut|o_n
fluctuations at low momenta with respect to the equilibrium ronf[ can be predlcted from the sole knowledge of the quasi-
case. The quench generates an unusual (non-thermal} distﬂart'de velocity. For example, we expect that for of a lin-

) i — _t
bution of quasiparticles arou slg <q<136] ear decrease of the interaction strengift) = Uy (1 ,0),

l B _. . . .
Moreover, as the appearance of the stretched exponentiﬁﬁart'ng from a Mott-insulator, the propagation front will

n(n 2
decay is limited to large values of, this regime only oc- be of the form4.J(2n + 1) t(l - —(anl)gUgl()lit/to)) as

Conclusion: We uncovered various interesting regimes in
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