
LLL reducing with the most significant bits

Saruchi1, Ivan Morel2, Damien Stehlé3, and Gilles Villard3

1 Indian Institute of Technology New Delhi
saruchigoel@gmail.com

2 U. Lyon, CNRS, ENS de Lyon, INRIA, UCBL
U. Sydney, Laboratoire LIP
ivan.morel@ens-lyon.org

3 U. Lyon, CNRS, ENS de Lyon, INRIA, UCBL
Laboratoire LIP

{damien.stehle,gilles.villard}@ens-lyon.fr

Abstract. Let B be a basis of a Euclidean lattice, and B̃ an approximation thereof. We give a sufficient
condition on the closeness between B̃ and B so that an LLL-reducing transformation U for B̃ remains
valid for B. Further, we analyse an efficient reduction algorithm when B is itself a small deformation of
an LLL-reduced basis. Applications include speeding-up reduction by keeping only the most significant
bits of B, reducing a basis that is only approximately known, and efficiently batching LLL reductions
for closely related inputs.

1 Introduction

We consider the problem of computing a reducing transformation for a Euclidean lattice basis B
using an approximation B̃ to B ∈ Rm×n. The necessary background on basis reduction is given in
Section 2.2. Our notion of reduction is a variation, robust to perturbations, of the LLL reduction
introduced by Lenstra, Lenstra and Lovász in [10]. We assume that the basis vectors are given by
the columns of a full column rank matrix B. We establish a bound on the closeness between B̃
and B so that if U is a reducing transformation for B̃, i.e., the matrix B̃U is LLL-reduced, then
BU also is reduced.

A main application is to compute a reducing transformation using only a limited number of bits
of the input basis, hence possibly at a lower cost than using the entire initial basis. An approach
for LLL-reducing a basis B may then be: 1) use the bound and compute an appropriate rounding
precision, and deduce an approximation B̃ sufficiently close to B; 2) compute U by reducing B̃;
3) output BU . We follow this general approach for designing Algorithm 1.

We then develop a column scaling strategy for handling cases where the input basis vectors have
unbalanced magnitudes. Indeed, in addition to mastering the bit-size of the inputs, dealing with
homogeneous magnitudes is often better for lowering the computational cost: as far as we are aware
of, no known LLL-reduction algorithm preserves the small bit-size of a “floating-point” basis during
the execution, if the magnitudes of the columns differ. A scaling is a pre-processing of the basis B
that provides with a “more balanced” matrix B′ that is also appropriate for computing a reducing
transformation. In this purpose we design Algorithm 2 that may be used as Step 2’) in the general
LLL-reducing scheme above. We note that after both the approximation and the scaling processes,
“almost any” LLL-reduction algorithm could be used at Step 2) or 2’) for computing the reducing
transformation.

An important contribution in the study of approximation conditions for preserving reducing
transformations has been made by Buchmann in [2]. In the rest of the paper the matrix norm

induced by the Euclidean norm is denoted by ‖B‖. All our vectors will be column vectors, and will
be denoted in bold. Buchmann considers an approximation B̃ = B + ∆B of absolute precision p
to B such that ‖∆B‖ ≤ 2−p. He provides (see [2, Cor. 4] and its proof) a sufficient condition
bound on p to guarantee that if U is such that (B + ∆B)U is LLL-reduced then BU also has
small norm vectors, i.e., within a factor 2O(n) of the successive minima of the lattice spanned by
B (see Section 2.2 for the definition of the lattice minima). In his analysis, Buchmann relies on
the orthogonality defect od(B) =

∏
i ‖bi‖√

det(BtB)
, and requires a precision p that is logarithmic in the

dimension and the orthogonality defect od(B), and involves the sizes of the successive minima. In
terms of relative precision, i.e., for ∆B such that ‖∆B‖‖B‖ ≤ 2−p, the bound is at least logarithmic in
the orthogonality defect.

We work with a wider class of approximations: we consider columnwise perturbations of matrices
such that B +∆B satisfies maxi≤n

‖∆bi‖
‖bi‖ ≤ ε, where ε ≥ 0 is small. Hence B +∆B is an approx-

imation to B with small columnwise relative precision. In the case of approximate computations,
the error bound ε is of the order of 2−p, where p is a working precision. Our type of approxima-
tions models matrix truncation with small error relatively to each column magnitude. This choice
is appropriate for taking into account the backward rounding errors of standard numerical QR-
factorization algorithms such as Householder’s, that are at the heart of fast reducing algorithms.
It also preserves LLL-reducedness, as shown in [4]. To introduce our results, we need to define the
QR-factorization. Let B ∈ Rm×n be full column rank. There exists a unique pair (Q,R) such that

B = Q ·R, Q ∈ Rm×n, R ∈ Rn×n,

the columns of Q are orthonormal and the matrix R is upper-triangular with positive diagonal
coefficients. The matrices Q and R are respectively called the Q-factor and R-factor of B. For
insights into perturbation analysis we may refer the reader to Higham [6], and to [3, 4] in the
context of QR-factorization.

Our first result is an improved bound that characterizes which columnwise approximations B+
∆B to B are allowed such that a reducing transformation U for B + ∆B remains valid for B.
Instead of using the defect and the lattice minima, we relate the sufficient precision 1/ε to the
quantity cond(R) = ‖|R| · |R−1|‖. This quantity is defined for any square invertible matrix, and
may be viewed as a condition number for the problem of computing R. (See, e.g., Zha [19] and
Higham [6, Ch. 19].)

In Theorem 1, we show that as soon as

max
i≤n

‖∆bi‖
‖bi‖

≤ 1

cm8 βn cond2(R)

for a constant c that may be made explicit and a constant β that can be chosen arbitrarily close
to 2, if U reduces B+∆B, then U also reduces B. Because of the approximation, the matrix BU is
LLL-reduced for parameters slightly weaker than those for which (B +∆B)U is reduced. However,
one may ensure that the parameters are degraded by an arbitrarily small amount (by increasing c),
and the main relevant properties of LLL-reduced bases are preserved, such as those reminded in
Lemma 4.

The bound above indicates that taking p = 2 log cond(R)+n(1+ ε)+O(logm) bits of precision
on the input basis B suffices for an arbitrarily small ε. We will see, with Lemma 11, that cond(R) is
a more accurate measure than the orthogonality defect od(B). Indeed, the condition we propose is

2

never more restrictive (up to a O(log n) additive term) and may be much less so than Buchmann’s.
In particular, we exhibit a family of bases for which we divide the number of required bits by Ω(n).

A direct application is an interesting situation considered in [1]. It concerns matrices B whose R-
factor satisfies |rij | ≤ ηrii for η ≥ 0 (see Definition 1, with θ = 0), and for which the ratio h = max rii

min rii

is bounded. In Lemma 12, we show that in this case log cond(B) <∼ n log(1 + η) + log h. It follows
that ≈ n(1 + 2 log(1 + η)) + 2 log h + O(logm) bits of columnwise precision suffice for computing
a reducing matrix. The bound is especially interesting when h � log ‖B‖, such as in [1, Se. 3.2].
The authors of [1] use a constant factor fewer bits than we do (they indeed work with about log h
bits). However, their study is restricted to the first vector of the output basis, which is shown to
be no more than a factor 2O(n) longer than that of an LLL-reduced basis, compared to the nth
root of the lattice determinant (see Section 2.2 for the definition of the lattice determinant). This
interesting result is an example of transfer between the precision and the quality of the reduction.
It also demonstrates the accuracy of our all-purpose bound.

It is essential to note that the ratio h given by the diagonal of R may not be relevant in general
for indicating allowed truncations. Indeed, a large h may not imply a large cond(·), as shown by
LLL-reduced bases, which can have arbitrarily large ratios h but always satisfy cond(R) = 2O(n)

(see Lemma 9).
Our second contribution is an LLL-reduction specifically designed for (floating-point) matrices

of the form B =MB ·EB, where MB ∈ Zm×n is full column rank and EB = diagi(2
ei), with ei ∈ Z

for all i. Such matrices include the ones obtained by columnwise rounding. If the norms of the
columns are unbalanced (i.e., the ei’s have different orders of magnitude), the compactness of the
representation may be lost when applying an LLL-reduction algorithm to B, as the columns get
mixed. To circumvent this issue, we propose an algorithm (Algorithm 2) that applies a column
scaling D−1 toMBEB before calling an LLL-reduction algorithm on B′ =MBEBD

−1. The obtained
transformation U for B′ is then mapped to a transformation D−1UD for B.

Concerning the correctness of the approach, the main difficulty is to find a scaling D such
that D−1UD is unimodular and indeed reduces B. This is solved by numerically estimating the
diagonal of the R-factor R of B and identifying blocks of consecutive vectors such that rii � rjj if j
belongs to a block subsequent to the one of i. These blocks are the main source of unbalancedness
between the norms of the columns of B, and the computed scaling annihilates it. Our algorithm
then relies on a “well-behaved” LLL-reduction algorithm that does not destroy the block structure
(most known LLL-reduction algorithms are well-behaved, as explained in Section 5.1).

To measure the efficiency of the approach, the relevant quantity is the bit-size of the entries
of B′ once converted to an integer matrix. To estimate it, we view B = MBEB as a distor-
tion B = ΣC of an LLL-reduced matrix C, where Σ ∈ Rm×m is non-singular. We then prove,
in Theorem 3, that if σ1 ≥ . . . ≥ σm are the singular values of Σ, then the bit-size of B′ is as
O
(
n+ log ‖MB‖+ log

∏
i≤bn/2c

σi
σm−i+1

)
. Several Σ’s may exist so that Σ−1B is LLL-reduced, and

one may optimize the choice of Σ to lower
∏
i≤bn/2c

σi
σm−i+1

.
A direct application is to LLL-reduce for strong LLL parameters, a basis that is already reduced

for some weak LLL parameters. This is a tempting approach in practice, as LLL-reducing for
weak parameters is typically much faster. This strategy is mentioned, e.g., in [5, Se. 2.6.1] and [9,
pp. 70–72].4 Here Σ is the identity and

∏
i≤bn/2c

σi
σm−i+1

= 1. Another particular case is Σ =

4 In [9], the idea is attributed to He, but we could not find the corresponding work. Preliminary results, for strength-
ening the reducedness, were presented as a poster [11].

3

diag(2`, 1, . . . , 1), for which we have
∏
i≤bn/2c

σi
σm−i+1

= 2`. This is used in the polynomial factoring

algorithm of [7] as well as at the bottom of the recursion in the L̃
1
algorithm [15].

Finally, our algorithm may be used to batch reductions of closely related lattices (Lk)k desribed
by bases (Bk)k such that Lk+1 = ΣkLk for all k, where the Σk’s have balanced singular values.
One may then LLL-reduce B1, and, for k ≥ 1, use the transformation matrix Uk computed for Bk,
before calling our algorithm on Bk+1Uk = Σk(BkUk). This strategy is used, e.g., in communications
theory and cryptanalysis applications of LLL [13, 1]. Our algorithm could prove useful to accelerate
and analyse these applications.
Remark. The present work generalizes several results previously investigated for the design of the
L̃
1
algorithm [15]. Perturbation analyses and approximations indeed play a key role since L̃

1
heavily

rely on well-chosen truncations. The results in [15] are essentially focused on LLL-reduced bases,
and on specific deformations of such bases. The generalization here is a study with no restrictive
assumptions on the initial basis B.
Notations. If B is a real-valued matrix, then |B| (resp. bBc) is the matrix obtained by replacing
each entry of B by its absolute value (resp. the largest integer no greater than it). If B and B′

are two matrices of identical dimensions, the relation B ≤ B′ must be understood as a compo-
nentwise bound. The notations ‖B‖F and ‖B‖1 respectively refer to the Frobenius and induced
Manhattan norms of B. If B is square and non-singular we define κ(B) = ‖B‖ · ‖B−1‖. Clearly, we
have cond(B) ≤ n · κ(B). If (xi)i is a sequence of cardinality n, we let diagi(xi) denote the n × n
diagonal matrix whose diagonal entries are the xi’s. The computational costs are given in terms of
bit operations. We let M(t) the cost of multiplying two t-bit long integers. Finally, all logarithms
are in base 2.

2 QR and basis reduction

We extensively rely on roundings and perturbations. We say that B̃ is an approximation to B of
columnwise relative precision p ≥ 0 if B − B̃ = ∆B satisfies maxi

‖∆bi‖
‖bi‖ ≤ 2−p.

Approximating real matrices by floating-point ones fits into this context. A precision-p floating-
point number is of the shape m2e with m, e integers with |m| ≤ 2p − 1. For any x ∈ R, there
exists mx, ex integers with |mx| ≤ 2p−1 such that |mx2

ex−x| ≤ 2−p|x|. We call mx2
ex a precision p

approximation to x. If x is a non-zero integer with known bit-length, such an approximation may
be computed in time O(p+ log(1 + log |x|)), and ex has bit-length O(log log |x|).

An interesting matrix perturbation is columnwise rounding. LetB = (bi)i ∈ Rm×n be full column
rank, and p be a non-negative integer. For each i ≤ n, let ei be an integer such that |2

ei−‖bi‖|
‖bi‖ < 3/4.

Let EB = 2−pdiagi(2
ei) andMB = bB ·E−1B c. Then∆B = B−MBEB satisfiesmaxi≤n

‖∆bi‖
‖bi‖ ≤

√
m

2p−2 .
We may therefore view MBEB = MB diagi(2

ei−p) as a columnwise floating-point approximation
to B. Each entry of the mantissa matrix MB is an integer of magnitude smaller than 2p+1, and the
matrix EB that may be represented on O(n log log ‖B‖+ log p) bits, gives column exponents.

2.1 Numerical aspects of QR-factorization

The numerical aspects of QR-factorization have been extensively studied, and we refer the reader
to [6, Ch. 19] for a comprehensive entry point to the topic. The following is an explicit variant of
classical results.

4

Lemma 1 ([4, Se. 6]). Let p ≥ 0 and B ∈ Rm×n be non-singular with R-factor R. Let R̂ be the
R-factor computed by Householder’s algorithm with floating-point precision p. If 80mn2−p < 1, then
there exists an orthogonal Q̂ such that Q̂R̂ = B +∆B with maxi

‖∆bi‖
‖bi‖ ≤ 80mn2−p.

Given a matrix B, the number of bit operations consumed by Householder’s algorithm for
computing an approximation to the R-factor of B is O(mn2(M(p) + log log ‖B‖)).

The backward stability lemma above is often combined with a sensitivity result, such as the one
below, in order to obtain forward error bounds on the computed quantities.

Lemma 2 (Adapted from [4, Th. 2.3]). Let B be full column rank in Rm×n, and let R denote
its R-factor. Let ∆B ∈ Rm×n. If maxi≤n

‖∆bi‖
‖bi‖ < 1/(12m

√
ncond(R)), then B +∆B is full column

rank and its R-factor R+∆R satisfies ‖∆R ·R−1‖F ≤ 6m
√
ncond(R)maxi≤n

‖∆bi‖
‖bi‖ .

Proof. The assertion on the rank follows from [4, Le. 2.2]. From the end of the proof of [4, Th. 2.3]
with D = I, we have ‖∆R ·R−1‖F ≤ (

√
6 +
√
3)
√
2m
√
ncond(R)maxi

‖∆bi‖
‖bi‖ . ut

We will also use the following result on the effect on the R-factor of a matrix B of applying a
distortion to B.

Lemma 3. Let B ∈ Rm×n be full column rank and let R denote its R-factor. Let Σ ∈ Rm×m be
non-singular, and let R′ denote the R-factor of ΣB. Then, for all i, we have ‖Σ−1‖−1 ≤ r′ii

rii
≤ ‖Σ‖.

Proof. The proof is adapted from the proof of [7, Le. 4]. Let Vi(B) = {bi−
∑

j<i yjbj : y1, . . . , yi−1 ∈
R}. Then rii is the norm of the shortest vector b in Vi(B). Now, the vector Σb belongs to Vi(ΣB).
As a result, we have r′ii ≤ ‖Σb‖ ≤ ‖Σ‖rii. The proof that r′ii ≥

rii
‖Σ−1‖ is analogous. ut

2.2 Lattices and LLL basis reduction

A lattice L is the set of integer combinations of linearly independent vectors in a euclidean space Rn:
any lattice may be written as L = L(B) = BZn, for some full column rank matrix B ∈ Rm×n. The
columns of B are said to form a basis of L. If the lattice dimension satisfies n ≥ 2, the lattice
admits infinitely many lattice bases, related by unimodular matrices (i.e., square integer matrices
of determinant ±1): for two full column rank matrices B,C ∈ Rm×n, we have BZn = CZn if and
only if there exists a unimodular matrix U such that C = B · U .

The sparsity of a lattice L may be quantified by its successive minima, defined as λi(L) =
inf(r : dim(spanL ∩ B(0, r)) ≥ i), for all i ≤ n. It may also be quantified with the lattice determi-
nant detL =

∏
i rii, where R is the R-factor of any basis of L.

In 1982, Lenstra et al. [10] introduced the notion of LLL-reduction of a lattice basis and the
LLL-algorithm. If a basis is LLL-reduced, then it is short with respect to the minima of the spanned
lattice, and, further, such a basis can be efficiently found using the LLL algorithm. Here we use a
variation of LLL-reduction that is more suited to numerical computations.

Definition 1 ([4, Def. 5.3]). Let Ξ = (δ, η, θ) with η ∈ (1/2, 1), θ ∈ (0, 1] and δ ∈ (η2, 1).
Let B ∈ Rm×n be non-singular with QR factorization B = Q · R. The matrix B is Ξ-LLL-reduced
if:

• for all i < j, we have |ri,j | ≤ ηri,i + θrj,j
(B is said size-reduced);

5

• for all i, we have δ · r2i,i ≤ r2i,i+1 + r2i+1,i+1

(B is said to satisfy Lovász’ conditions).

Let Ξ = (δ, η, θ) and Ξw = (δw, ηw, θw) be valid LLL-parameters. We say that Ξw is weaker
than Ξ and write Ξ > Ξw if δ > δw, η < ηw and θ < θw. If a basis is Ξ-LLL-reduced and if Ξ > Ξw,
then it is also Ξw-LLL-reduced. This LLL-reduction variant is as powerful as the classical definition.

Lemma 4 ([4, Th. 5.4]). Let B ∈ Rm×n be (δ, η, θ)-LLL-reduced with R-factor R, for valid pa-
rameters (δ, η, θ). Let α = (ηθ +

√
(1 + θ2)δ − η2)/(δ − η2). Then, for all i, ri,i ≤ α · ri+1,i+1 and

ri,i ≤ ‖bi‖ ≤ αi · ri,i. This implies that ‖b1‖ ≤ α
n−1
2 |detB|1/n and αi−nri,i ≤ λi(L(B)) ≤ αiri,i.

The use of Ξ-LLL-reduction rather than the classical definition of LLL-reduction (corresponding
to taking θ = 0) is motivated by the following result. It says that a sufficiently precise approxima-
tion to a Ξ-LLL-reduced is Ξw-LLL-reduced for some Ξw < Ξ. This result is incorrect if one
imposes θw = 0.

Lemma 5 (Adapted from [4, Cor. 5.7]). For any valid sets of parameters Ξ = (δ, η, θ) and Ξw =
(δw, ηw, θw) with Ξw < Ξ, there exists a constant c > 0 (that may be made explicit) such that the
following holds. For any Ξ-LLL-reduced B ∈ Rm×n and any ∆B satisfying maxi

‖∆bi‖
‖bi‖ ≤ 1/(cm2(1+

η + θ)nαn) where α is as in Lemma 4, the basis B +∆B is Ξw-LLL-reduced.

The L3 algorithm from [10] allows one to compute an LLL-reduced basis of the lattice spanned
by a given B ∈ Zm×n in time O

(
mn4 log2 ‖B‖M(n+log ‖B‖)

n+log ‖B‖

)
(see [8]). The L2 and H-LLL algo-

rithms from [14, 12] achieve it within O(mM(n)n3(n + log ‖B‖) log ‖B‖) bit operations, while the
L̃
1
from [15] runs in time Õ(mn4(n+ log ‖B‖)).
Finally, we will use the following generalization of [15, Le. 5] to arbitrary bases, which provides

a bound on the size of the unimodular matrix between any basis of a lattice and an LLL-reduced
basis of the same lattice.

Lemma 6. Let B ∈ Rm×n be full column rank. Let Ξ be a valid LLL-parameter, α as in Lemma 4,
and U such that C = BU is Ξ-reduced. We have:

∀i, j : |uij | ≤ m3αncond(R) ·
r′jj
rii
,

where R and R′ respectively denote the R-factors of B and C.

Proof. Let B = QR,C = Q′R′ be the QR-factorizations of B and C, respectively. Then

U = R−1QtQ′R′ = diagi(r
−1
ii)R

−1
QtQ′R′diagi(r

′
ii),

with R = R · diag(1/rii) and R′ = R′ · diag(1/r′ii). We have |R−1| ≤ |R||R−1| ≤ cond(R) · T , where
tij = 1 if i ≤ j and tij = 0 otherwise. By Lemma 4, we have |R′| ≤ αnT . We also have |Q|, |Q′| ≤M ,
where mij = 1 for all i, j. Using the triangular inequality, we obtain:

|U | ≤ cond(R)αn · diag(r−1ii)TM tMTdiag(r′ii)
≤mn2αncond(R) · diag(r−1ii)Ndiag(r′ii),

where N is the all-1 matrix with appropriate dimensions. ut

6

3 Well-conditioned matrices

As we have seen, the quantity cond(·) plays a role both for the sensitivity of the R-factor under
columnwise perturbations (Lemma 2) and for the size of the unimodular transformation between a
lattice basis and an LLL-reduced basis of the same lattice (Lemma 6). It is therefore interesting to
investigate sufficient conditions to ensure a small value of cond(·).

Lemma 7. Let B ∈ Rm×n full column rank and Σ ∈ Rm×m non-singular. Let R and R′ respectively
denote the R-factors of B and ΣB. Then cond(R′) ≤ mκ(Σ)cond(R).

Proof. Write B = QR (resp. ΣB = Q′R′), where the columns of Q (resp. Q′) are orthogonal. We
consider the square case first. We have:

cond(R′) = ‖|R′||(R′)−1|‖
= ‖|((Q′)TΣQ)R| · |R−1((Q′)TΣQ)−1|‖
≤ ‖|(Q′)TΣQ|‖ · cond(R) · ‖|((Q′)TΣQ)−1|‖
≤ n · ‖(Q′)TΣQ‖ · cond(R) · ‖((Q′)TΣQ)−1‖
= nκ(Σ)cond(R).

We now consider the non-square case. We add columns to Q (on its right) to get an orthogonal Q ∈
Rm×m. We append an identity block to R to obtain a square matrix R. Finally, we set B = QR. The
top-left corner of the R-factor R′ of ΣB starts with R′. As a result, we have cond(R′) ≤ cond(R′).
The latter is square, and hence we can apply the result to it. We obtain cond(R′) ≤ mcond(R)κ(Σ).
To complete the proof, note that cond(R) = cond(R). ut

As a corollary, we obtain the fact that a small columnwise perturbation cannot increase cond(·)
by much.

Lemma 8. Let B ∈ Rm×n be full column rank with R-factor R, and ∆B ∈ Rm×n. If we have
maxi

‖∆bi‖
‖bi‖ < 1/(12m

√
ncond(R)), then B + ∆B is full column rank and its R-factor R + ∆R

satisfies cond(R+∆R) ≤ 4ncond(R).

Proof. We write R+∆R = ΣR, with Σ = I+∆R ·R−1. By Lemma 2, we know that ‖∆R ·R−1‖ ≤
‖∆R ·R−1‖F ≤ 6m

√
ncond(R)maxi ‖∆bi‖/‖bi‖. Thanks to the assumption on maxi ‖∆bi‖/‖bi‖,

we obtain that Σ is non-singular. Further ‖Σ‖ ≤ 2 and ‖Σ−1‖ ≤ ‖I +
∑

k≥1(∆R ·R−1)k‖ ≤ 2. As
a result, we obtain κ(Σ) ≤ 4. Lemma 7 provides the result. ut

The following result shows that any LLL-reduced basis has a small cond(·).

Lemma 9 ([4, Le. 5.5]). Let Ξ = (δ, η, θ) be any valid set of LLL-parameters. If B ∈ Rm×n is
Ξ-LLL-reduced and R is its R-factor, then cond(R) ≤ |1−η−θ|α+1

(1+η+θ)α−1((1 + η + θ)α)n, with α as in
Lemma 4.

In fact, LLL-reducedness is a much stronger assumption than needed, for cond(R) to be bounded
as 2O(n). A weaker assumption is used in the following result. Note that the assumption is satisfied
for LLL-reduced bases, by Lemma 4 applied to square diagonal sub-blocks or the R-factor.

Lemma 10. Let B ∈ Rm×n be full column rank with R-factor R. Assume that there exists α > 1
such that for all i ≤ j, we have |rij | ≤ αj−i+1rjj. Then cond(R) ≤ α2

(α2−1)
√
4α4−1(2α

3)n.

7

Proof. Let R = R · diag(r−1ii). We have cond(R) = cond(R) ≤ κ(R). A direct computation shows
that ‖R‖ ≤ (

∑n
i=1

∑i
j=1 α

2j)1/2 ≤ (
∑n

i=1 α
2i · α2

α2−1)
1/2 ≤ αn+2

α2−1 . It now suffices to bound ‖R−1‖
from above.

Write R = I +M , where M is the matrix having same elements as R but with zeroed diagonal
coefficients. We have R−1 = (I +M)−1 =

∑
0≤k<n(−M)k. Using the triangle inequality, we obtain

that |R−1| ≤
∑

0≤k<n |M |k. Let J denote the n×n matrix such that Jij = 1 if i−j = 1, and Jij = 0

otherwise. By assumption, we have |M | ≤ α
∑

1≤k<n(αJ)
k = α2J(I − αJ)−1. As a consequence:

|R−1| ≤
∑

0≤k<n
(α2J(I − αJ)−1)k

= (I − α2J(I − αJ)−1)−1

= (I − αJ)(I − (α+ α2)J)−1

≤
∑

0≤k<n
(α+ α2)kJk ≤

∑
0≤k<n

(2α2)kJk.

We derive that ‖R−1‖ ≤ (
∑n−1

k=0(2α
2)2k)1/2 ≤ (2α2)n√

4α4−1 , which leads to the result. ut

As discussed in the introduction, Buchmann provides in [2] a sufficient bound on the input
precision to guarantee the correctness of the algorithm of the next section. The bound is at least
logarithmic in the orthogonality defect od(B) =

∏
i
‖bi‖
rii

. of the full column rank matrix B ∈ Rm×n
with R-factor R. Our sufficient condition involves a precision logarithmic in cond(B). The following
lemma reveals the relationship between cond(B) and od(B).

Lemma 11. Let B ∈ Rm×n be full column rank and R be its R-factor. Then for all i, we have ‖bi‖ ≤
rii cond(R), implying that od(B) ≤ cond(R)n. Oppositely, we have cond(R) · n−3/2 ≤ od(B). Fi-
nally there exists a sequence of full column rank matrices B ∈ Rn×n of growing dimension n such
that od(B) = cond(R)Θ(n).

Proof. For each j ≥ i, the coefficient (j, i) of |R| · |R−1| is bounded from below by |rji|/rii (when
doing the inner product of the jth row of |R| with the ith column of |R−1|, the coefficient |rji| is
multiplied with 1/rii). This implies that ‖ri‖rii ≤ cond(R) holds for all i. Multiplying over varying i
gives the first statement.

We now prove the second statement. The coefficient (i, j) of |R−1| is bounded from above
by 1

rii
·
∏
i<k≤j

‖bk‖
rkk

(this can be obtained by using the cofactors of R to compute |R−1| and then
applying Hadamard’s bound). As a result we obtain that the coefficient (i, j) of |R|·|R−1| is bounded
from above by

∑
i≤k≤j

∏
k≤`≤j

‖b`‖
r``

, which is itself ≤ n · od(B).
Finally, consider the n-dimensional upper triangular matrix R defined by rij = αj−i+1, for α > 1

arbitrary. By considering only the first row of R, we obtain that od(R) ≥ αn(n−1)/2. Lemma 10 allows
us to complete the proof. ut

Another class of bases with relatively small cond(·) is given by upper triangular matrices B whose
diagonal entries have balanced magnitudes, and which are size-reduced with θ = 0 in Definition 1. If
the largest ratio h between two diagonal entries is small, then as shown by next lemma, the quantity
cond(B) ≤ h2O(n) may be thought as small. (A geometric interpretation is given in [4, Se. 3.3].)

8

Lemma 12. Let B ∈ Rn×n be an upper triangular, invertible matrix with the property that for all
i < j we have, |bij | ≤ η|bii|, for some η ≥ 0. Then we have cond(B) ≤ 2n(1 + η)n−1maxi,j

|bii|
|bjj | .

Proof. Let B = diag(b−1ii)·B. For all i < j we have |bij | ≤ ηbii = η. Therefore, we have |B−1| ≤ T−1,
where T ∈ Rn×n is upper triangular with tii = 1 and tij = −η for i < j (see, e.g., [6, Th. 8.12]).
Since S = T−1 satisfies sii = 1 and sij = η(1 + η)j−i−1 for i < j (see, e.g., [6, Eq. (8.4)]), we
obtain vij = 2η(1 + η)j−i−1, for i < j, where V = |T |T−1. It follows that |V | ≤ 2(1 + η)n−1M

where mij = 1 for all i ≤ j, and mij = 0 otherwise. Since |B||B−1| ≤ V , we may now write
cond(B) = ‖diag(bii) · V · diag(b−1jj)‖ ≤ 2(1 + η)n−1‖(biibjj)1≤i,j≤n‖, which shows the assertion. ut

Given an invertible B ∈ Rn×n with R-factor R, one may estimate cond(R) in the following way.
By [17], we have:

cond(R) ≤ ncond(B) ≤ n3/2‖|B| · |B−1|‖1
≤ n3/2‖BD−1‖1‖DB−1‖1
≤ n5/2‖BD−1‖‖DB−1‖,

where D = diagi(‖bi‖1). Therefore, it suffices to find estimates of ‖BD−1‖ and ‖DB−1‖. We refer
the reader to [6, Ch. 15] for a presentation of classical approaches for estimating a matrix norm ‖A‖,
such as through a random sampling of vectors xi for measuring maxi

‖Axi‖
‖xi‖ . If B is an integer matrix,

this results in an algorithm of bit-complexity Õ(n3 log ‖B‖) using [18].

4 Reducing by rounding

Our first main result is Theorem 1. We analyse the effect of applying to a lattice basis B a transfor-
mation matrix U reducing a perturbation B +∆B of B. We rely on Lemma 13, which shows that
a reducing transformation U for a given basis B remains a reducing transformation for any basis
sufficiently close to B. This result, with a backward stability flavor, is then applied to B +∆B for
establishing the reducedness of B.

Lemma 13. For any valid sets of LLL-parameters Ξ = (δ, η, θ) and Ξw = (δw, ηw, θw) with Ξw <
Ξ, there exists a constant c > 0 (that may be made explicit) such that the following holds. Let
B ∈ Rm×n full column rank, R its R-factor, and U such that BU is Ξ-LLL-reduced. Assume that
∆B ∈ Rm×n satisfies maxi

‖∆bi‖
‖bi‖ ≤ 1/(cm6βncond2(R)) with β = (1 + η + θ)α2 and α as in

Lemma 4. Then (B +∆B)U is Ξw-reduced.

Proof. By Lemma 6, we have |uji| ≤ m3αncond(R) · r
′
ii
rjj

for all i, j, where R (resp. R′) is the R-factor
of B (resp. C = BU). Let C +∆C = (B +∆B)U . We obtain that ∆ci =

∑
j uji∆bj satisfies (for

all i):

‖∆ci‖ ≤
(
m3αncond(R)max

j

‖∆bj‖
‖bj‖

)
·
∑
j

r′ii
rjj
‖bj‖.

Now, by Lemma 11, we have that ‖bj‖/rjj ≤ cond(R) holds for all j. By using the fact that r′ii ≤
‖ci‖, we derive that:

max
i

‖∆ci‖
‖ci‖

≤ m4αncond2(R)max
i

‖∆bi‖
‖bi‖

.

Applying Lemma 5 to C and C +∆C provides the result. ut

9

The following result extends [15, Le 7], to any full column rank matrix B.

Theorem 1. For any valid sets of parameters Ξw < Ξ, there exists c > 0 (that may be made
explicit) such that the following holds. Let B ∈ Rm×n full column rank, R its R-factor, and ∆B
satisfying maxi

‖∆bi‖
‖bi‖ ≤ 1/(cm8βncond2(R)) with β as in Lemma 13. Then if U is such that (B +

∆B)U is Ξ-LLL-reduced, then BU is Ξw-LLL-reduced.

Proof. By Lemma 8, we have cond(R+∆R) ≤ 4ncond(R), where R+∆R is the R-factor of B+∆B.
We conclude by using Lemma 13 on B+∆B with perturbation −∆B, to establish the reducedness
of B = (B +∆B)−∆B. ut

As a corollary of the theorem just above, Algorithm 1 is correct. Note that an upper bound
of cond(R) is required as part of the input, where R denotes the R-factor of B. Such a bound may
be derived from a priori information on B (e.g., using Lemmata 7, 8 and 9), or may be estimated, as
explained at the end of Section 3. At Step 7, any LLL-reducing algorithm may be used. In the next
section, we describe and analyze an LLL-reducing algorithm specifically designed for floating-point
lattice bases MBEB, when they are themselves small distortions of LLL-reduced bases.

Input: B ∈ Rm×n full column rank;
valid LLL-parameters Ξw;
χ ≥ cond(R), where R is the R-factor of B.

Output: A Ξw-reduced basis of the lattice spanned by B.

1 Choose valid LLL-parameters Ξ > Ξw.
2 Compute the constants c and β of Theorem 1.
3 Set p := dlog(4cm9βnχ2)e.
4 For each i ≤ n, find ei ∈ Z such that |2

ei−‖bi‖|
‖bi‖ ≤ 3/4.

5 Set EB := 2−pdiagi(2
ei).

6 Set MB := bB · E−1B c.
7 Compute U such that (MBEB) · U is Ξ-LLL-reduced.
8 Return B · U .

Algorithm 1: LLL-reduction of B using a columwise floating-point approximation of B.

5 Reducing by scaling

We now describe and analyze an algorithm for efficiently LLL-reducing floating-point lattice bases
MBEB, such as the one involved at Step 7 of Algorithm 1. To LLL-reduce the floating-point ma-
trixMBEB, we may interpret it as an integer matrix, and LLL-reduce that integer matrix. However,
if the exponents are very unbalanced, the bit-size ofMBEB as an integer matrix (and hence the cost
of the LLL-reduction) may be much higher than the bit-size of MBEB as a floating-point matrix.
Our algorithm scales the columns of MBEB, to obtain a matrix MBEBD

−1, so that the conversion
to an integer matrix essentially preserves the small bit-size of the floating-point representation. The
main difficulty to establish the correctness of the algorithm is to ensure that the transformation ma-
trix U when LLL-reducing MBEBD

−1 is relevant for LLL-reducing MBEB (note that the spanned
lattices are different).

10

Input: MB ∈ Zm×n full column rank;
EB = 2−pdiagi(ei) with ei ∈ Z for all i;
valid LLL-parameters Ξ = (δ, η, θ);
χ ≥ cond(R), where R is the R-factor of MBEB.

Output: A matrix pair (U,D) such that D−1UD is unimodular, (MBEB)(D
−1UD) is

Ξ-LLL-reduced and D = diag(2di) with di ∈ Z for all i.

1 Set p := 10 + dlog(m3.5χ)e.
2 Call Householder’s algorithm on MBEB with

precision p; let R̂ be its output.
3 Set i0 := 1 and k := 1.
4 For i ≤ n, do: If (minj≥i r̂jj > (8/θ) ·maxj<i r̂jj),

then increment k and set ik := i.
5 For all 1 ≤ ` < k,

set g` := (mini`≤i<i`+1
r̂ii) / (maxi`−1≤i<i` r̂ii).

6 For all 1 ≤ ` < k and all i` ≤ i < i`+1,
set di := e1 +

∑
`′<`blog(g`′/4)c.

7 Set D := diag(2di). /∗ Column scaling ∗/
8 Set Ξ ′ = (δ, η, θ/2).
9 Compute U s.t. (MBEBD

−1) · U is Ξ ′-LLL-reduced.
10 Return (U,D).

Algorithm 2: LLL-reduction of a floating-point matrix MBEB using column scaling.

Algorithm 2 can be divided into four main parts:

• Finding approximations of the diagonal coefficients of the R-factor of the input basis MBEB
(Steps 1-2) for determining the scaling.

• Finding blocks, delimited by the i`’s, of consecutive vectors in MBEB, such that typical LLL-
reduction algorithms do not swap vectors between these blocks, because the rii’s increase (Steps
3-4). Appropriate gaps between blocks allow to preserve the block structure after the scaling,
which is a key ingredient for ensuring that U is block upper-triangular, and D−1UD is unimod-
ular.
• Scaling the columns of MBEB, to shrink the eventual magnitude gaps between the rii’s of

different blocks (Steps 5-7).
• LLL-reducing the scaled matrix (Steps 8-10).

5.1 Correctness

The following lemma ensures that the r̂ii’s are good approximations of the rii’s.

Lemma 14. The matrix R̂ computed at Step 2 of Algorithm 2 satisfies maxi |r̂ii − rii|/rii ≤ 1/2.

Proof. Thanks to the choice of p, Lemmata 1 and 2 ensure that ‖∆R ·R−1‖F ≤ 29m3.5χ2−p ≤ 1/2,
where ∆R = R̂−R. Looking at the diagonal coefficients of ∆R ·R−1 leads to the result. ut

The next part of the algorithm aims at determining the column scalings to be applied toMBEB.
The scalings are computed by grouping the columns of MBEB according to the magnitudes of

11

the r̂ii’s. Columns with indices in I` = [i`, i`+1) belong to the same block. By construction, the
index i`+1 is the smallest i > i` such that minj≥i r̂jj > (8/θ) · maxj<i r̂jj . Let the amplitude gap
between two consecutive blocks I`−1 and I` be g` = (mini∈I` r̂ii)/(maxi∈I`−1

r̂ii). By construction of
the blocks, and θ ≤ 1 (see Definition 1), we have g` ≥ (8/θ) ≥ 8 for all `.

At Step 7, the column scaling is set to D = diagi(2
di), for each ` and each i ∈ I`. By choice of

the di’s, the block structure of MBEB is preserved for MBEBD
−1, but the gap between two blocks

gets shrunk to at most a constant. The following result is a direct consequence of Lemma 14 and of
the choice of the di’s.

Lemma 15. Let R′ denote the R-factor of MBEBD
−1. Then, for all `, we have 4/3 ≤ mini≥i`

r′ii
maxi<i`

r′ii
≤

32.

At Step 9 of Algorithm 2, an LLL-reduction algorithm is called. It is required that this algorithm
does not interfere with the block structure. In most LLL-reduction algorithms, the only operations
performed on the current lattice basis A are of two types: size-reductions of vectors (an integer
linear combination of basis vectors aj with j < i is subtracted from the basis vector ai), and
swaps (two consecutive basis vectors ai−1 and ai are exchanged). We require that swaps occur only
when ri,i < ri−1,i−1. This is the case for most known LLL-reduction algorithms, including [10, 16,
14, 12, 15]. We say that these LLL-reduction algorithms are well-behaved. Further, if the used LLL-
reduction algorithm handles only integer matrices, we may multiply matrix MBEBD

−1 by a power
of 2 to make it integral, and reduce the scaled matrix: the computed transformation U will also be
a valid LLL-reducing matrix for MBEBD

−1 as LLL-reducedness is invariant under basis scaling.

Theorem 2. Assuming the LLL-reducing algorithm used at Step 9 is well-behaved (as defined
just above), Algorithm 2 is correct. In particular, the matrix D−1UD is unimodular and the ma-
trix (MBEB)(D

−1UD) is Ξ-LLL-reduced.

Proof. Using Lemma 15 and the assumption on the LLL-reducing algorithm used at Step 9, we
obtain that the computed matrix U is block-upper triangular, in the following sense. For any `, `′,
we define U``′ = (uij)i∈I`,j∈I`′ . Then for any ` > `′, we have U``′ = 0. Now, the diagonal coef-
ficients of D are non-decreasing powers of 2, and di = dj when i, j belong to the same I`. As a
result, the matrix D−1UD is integral: for ` ≤ `′, submatrix U``′ becomes 2d`′−d` · U``′ . Further,
since 1 = |detU | =

∏
` | detU``|, we obtain that all U``’s are unimodular. This implies that D−1UD

is unimodular. It remains to show that (MBEB)(D
−1UD) is Ξ-LLL-reduced. Let R′ and R′′ re-

spectively denote the R-factors of (MBEBD
−1)U and (MBEB)(D

−1UD). We have r′′ij = r′ij2
dj , for

all i, j. By (δ, η, θ/2)-reducedness of (MBEBD
−1)U , we have, for any i ≤ j:

|r′′ij | = |r′ij |2dj≤ (η2dj) · r′ii +
(
θ
22
dj
)
· r′jj

= (η2dj−di) · r′′ii + θ
2 · r

′′
jj .

(1)

If i and j belong to the same I`, then dj = di and the size-reduction condition of Definition 1 is
satisfied. Otherwise, we have i ∈ I`i and j ∈ I`j for some `i < `j . Thanks to the assumption on the
LLL-reducing algorithm (and noting that the R-factor of MBEBD

−1 is RD−1), we have:

r′jj≥ mint∈I`j r
′
tt ≥ mint∈I`j (rtt2

−dj)

≥ 2
θ maxt∈I`i (rtt2

−di) ≥ 2
θ maxt∈I`i r

′
tt ≥ 2

θr
′
ii.

12

For the second inequality, we used the fact that for a well-behaved LLL-reduction algorithm, the
minimum of the R-factor diagonal factors in a block cannot decrease. Similarly, in the fourth in-
equality, we used the fact that, the maximum of the R-factor diagonal factors in a block cannot
increase. For the third inequality, we used the definition of the blocks and the lower bound on the
gap between two blocks, and Lemma 14. As a result, we have r′′jj ≥ 2dj−di 2θr

′′
ii, and, by (1), we

obtain that |r′′ij | ≤ θr′′jj . The output basis satisfies the size-reduction condition of Definition 1.
Similarly, by reducedness of (MBEBD

−1)U , we have:

∀i : δ(r′′i,i)2= δ22di(r′i,i)
2 ≤ 22di

(
(r′i,i+1)

2 + (r′i+1,i+1)
2
)

≤ 22(di−di+1)
(
(r′′i,i+1)

2 + (r′′i+1,i+1)
2
)

≤ (r′′i,i+1)
2 + (r′′i+1,i+1)

2,

where we used the fact that di+1 ≥ di. The output basis satisfies the Lovász’ conditions of Defini-
tion 1. This completes the proof of the theorem. ut

5.2 Complexity analysis

So far, we have shown that Algorithm 2 is correct. We now turn to estimating its run-time. Unless the
exponents in EB are uncommonly huge, the dominating component of the cost is the LLL-reduction
of Step 9. Our aim here is to bound the bit-size of the coefficients of the matrixMBEBD

−1, when this
matrix is viewed as an integer matrix. The algorithm takes any floating-point lattice basis as input,
but the run-time bound will depend on how close is MBEB is to be LLL-reduced. More precisely,
we consider a non-singular matrix Σ and a set Ξ ′ of valid LLL-parameters such that Σ−1MBEB
is Ξ ′-LLL-reduced. Such a Σ always exists (take Σ such that Σ−1MBEB is orthonormal), but the
bit-size bound to be proven will depend on the singular values of Σ. More precisely, for all `, we
define E` as the |I`|-dimensional subvector space of Rm that is spanned by the columns of MBEB
with indices in I`. We define F` as the projection of E` orthogonally to F1 + . . .+F`−1, so that the
column span of MBEB is the orthogonal sum of the F`’s. Now, by orthogonality, the distortion Σ
acts independently on any of the F`’s. We let Σ` denote the corresponding |I`|-dimensional non-
singular linear map. The bit-size bound of the integer matrix MBEBD

−1 to be given as input to
an LLL-reduction algorithm at Step 9 will involve the quantity log

∏
κ(Σ`). By orthogonality of

the F`’s, the latter is bounded from above by log
∏

1≤i≤bn/2c
σi

σm−i+1
, where σ1 ≥ . . . ≥ σm are the

singular values of Σ. The following lemma provides a bound on the amplitude of the r̂ii’s within a
block.

Lemma 16. With α′ as in Lemma 4 (for Ξ ′), for any `, we have maxi∈I` r̂ii
mini∈I` r̂ii

≤ 3(8α′/θ)|I`|κ(Σ`).

Proof. We prove that for any i, j ∈ I`, we have r̂jj/r̂ii ≤ 3(8α′/θ)|I`|κ(Σ`). Suppose first that j ≤ i.
Then, by Lemma 4, we have r′jj/r

′
ii ≤ (α′)i−j , where R′ denote the R-factor of C. By Lemma 3, we

obtain that rjj/rii ≤ (α′)i−jκ(Σ`). Finally, by Lemma 14, we obtain that r̂jj/r̂ii ≤ 3(α′)i−jκ(Σ`).
Suppose now that j > i. If r̂ii = maxt≥i r̂tt, then the bound holds since the right hand side
is ≥ 1. Otherwise, from the definition of blocks, there exists some i′ ∈ I` with i′ > i, such that
r̂i′i′ ≤ (8/θ) · r̂ii. Applying the same idea to i′ we get r̂i′′i′′ ≤ (8/θ)t · r̂ii, with i′′ = i`+1 − 1,
where t ≤ |I`| is the number of times this recursion is applied. Since j ≤ i′′, we conclude that
r̂jj ≤ 3(α′)i

′′−jκ(Σ`)r̂i′′i′′ ≤ 3(8α′/θ)|I`|κ(Σ`)r̂ii (using the first part of the proof). ut

13

From here, we can derive a bound on the amplitude of the diagonal coefficients of the R-factor
of MBEBD

−1.

Lemma 17. Let R′ denote the R-factor of MBEBD
−1. Then maxi r

′
ii

mini r′ii
≤ cn ·

∏
κ(Σ`), for some c

depending only on Ξ ′.

Proof. Thanks to Lemma 15, we have that for all `, mini∈I` r
′
ii ≤ 32 ·maxi∈I`−1

r′ii.
Using Lemma 14 we then translate the bound of Lemma 16 for I`−1 in terms of the r′ii’s rather

than the r̂ii’s, hence get: mini∈I` r
′
ii ≤ 100(8α′/θ)|I`|κ(Σ`) · mini∈I`−1

r′ii. Taking the product over
all values of ` leads to the result. ut

We can now prove the following bit-size bound for the input to the LLL-reduction algorithm.

Theorem 3. Assume that the input matrix MB is integral with ‖MB‖ ≤ 2p. Let Σ ∈ Rm×m be
non-singular, such that Σ−1MBEB is Ξ ′-LLL-reduced, for some valid set Ξ ′ of LLL-parameters.
Let C = MBEBD

−1 be the matrix given as input to an LLL-reduction algorithm at Step 9 of
Algorithm 2. Then there exists a constant c such that C ∈ 2−kZm×n for some k satisfying:

log ‖C‖ − k ≤ c · n+ 2p+ 2 log
∏

1≤i≤bn/2c

σi
σm−i+1

,

where σ1 ≥ . . . ≥ σm denote the singular values of Σ.

Proof. Lemma 11 gives: max ‖ci‖ ≤ cond(C)max r′ii, where R
′ denotes the R-factor of C. Further,

by Lemmata 7 and 9, there exists a constant c1 such that cond(C) ≤ κ(Σ) · cn1 . Using Lemma 17
and the fact that min ‖ci‖ ≥ min r′ii, we obtain that

max ‖ci‖
min ‖ci‖

≤ cn2κ(Σ)
∏
`

κ(Σ`) ≤ cn2
∏

1≤i≤bn/2c

σ2i
σ2m−i+1

,

for some constant c2. Now, using the assumption that MB is integral of norm ≤ 2p, we have

max 2ei−di

min 2ei−di
≤ 2p · max ‖ci‖

mini ‖ci‖
≤ 2pcn2

∏
1≤i≤bn/2c

σ2i
σ2m−i+1

.

To complete the proof, we note that the entries of C are sums of powers of 2, and we use that
2pmax 2ei−di

min 2ei−di
bounds from above the ratio between the smallest and the largest entries. ut

As our bound applies to any Σ such that Σ−1MBEB is LLL-reduced, we are interested in the
existence of such a Σ with a small log

∏
i≤bn/2c

σi
σm−i

.

6 Practical considerations

Several important points deserve further investigations, especially from a practical point of view.
The sharpness of the sufficient bound 2 log cond(R) + n(1 + ε) + O(logm) on the input precision
is unclear. Studying heuristic values for the different quantities to choose, e.g. for the constant c of
Lemma 13, remains to be done. In the same vein, understanding the impact of the chosen precision
and the input basis structure on the output parameters Ξ = (δ, η, θ) is an interesting problem. For

14

an idea of practical accelerations that can be obtained thanks to the scaling, we may refer to [1,
Se. 5]. A extensive experimental study should be made.
Acknowledgements.We thank MarkWatkins for pointing out the reference [5, Se. 2.6.1], and Cong
Ling for valuable discussions. We also thank Yong Feng, for pointing out an error in a previous
version of Lemma 7. Part of this work was undergone while the second and third authors were
visiting the University of Sydney, whose hospitality is gratefully acknowledged. This work has been
supported in part by ERC Starting Grant ERC-2013-StG-335086-LATTAC, and by the French
National Research Agency Grant ANR-11-BS02-013-HPAC.

References

1. J. Bi, J.-S. Coron, J.-C. Faugère, P. Nguyen, G. Renault, and R. Zeitoun. Rounding and chaining LLL: Finding
faster small roots of univariate polynomial congruences. In Proc. PKC’14, Buenos Aires, Argentina, LNCS 8383,
160–168. Springer, 2014.

2. J. Buchmann. Reducing Lattice Bases by Means of Approximations. In Proc. ANTS, LNCS 877, 160–168.
Springer, 1994.

3. X.-W. Chang and C.C. Paige. Componentwise perturbation analyses for the QR factorization. Numer. Math.,
88:319–345, 2001.

4. X.-W. Chang, D. Stehlé, and G. Villard. Perturbation analysis of the QR factor R in the context of LLL lattice
basis reduction. Math. Comp., 81(279):1487–1511, 2012.

5. H. Cohen. A Course in Computational Algebraic Number Theory, volume 138 of Graduate Texts in Mathematics.
Springer, Berlin, 1996.

6. N. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2nd edition, 2002.
7. M. van Hoeij and A. Novocin. Gradual sub-lattice reduction and a new complexity for factoring polynomials.

Algorithmica, 63(3):616–633, 2012. Preliminary version: Proc. LATIN, 539–553, 2010.
8. E. Kaltofen. On the complexity of finding short vectors in integer lattices computer algebra. In Proc. EUROCAL,

LNCS 162, 236–244. Springer, 1983.
9. B. A. Lamacchia. Basis reduction algorithms and subset sum problems. Technical report, SM thesis, Mas-

sachusetts Inst. Technol, 1991.
10. A. Lenstra, H. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261(4):515–

534, 1982.
11. I. Morel, D. Stehlé, and G. Villard. From an LLL-reduced basis to another. ACM Commun. Comput. Algebra,

42(3):142–143, February 2009. ISSAC’08 poster.
12. I. Morel, D. Stehlé, and G. Villard. H-LLL: Using Householder inside LLL. In Proc. ISSAC, Seoul, Republic of

Korea, 271–278. ACM, 2009.
13. H. Najafi, M. Jafari, and M.-O. Damen. On adaptive lattice reduction of correlated fading channels. IEEE Trans.

Commun., 59(5):1224–1227, 2011.
14. P. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity. SIAM J. Comput., 39(3):874–903, 2009.

Preliminary version: Proc. EUROCRYPT, LNCS 3494, 215–233, 2005.
15. A. Novocin, D. Stehlé, and G. Villard. An LLL-reduction algorithm with quasi-linear time complexity: extended

abstract. In Proc. STOC, San Jose, USA, 403–412. ACM, 2011.
16. A. Schönhage. Factorization of univariate integer polynomials by Diophantine approximation and an improved

basis reduction algorithm. In Proceedings of ICALP, LNCS 172, 436–447. Springer, 1984.
17. A. van der Sluis. Condition numbers and equilibration of matrices. Numer. Math., 14:14–23, 1969.
18. A. Storjohann. The shifted number system for fast linear algebra on integer matrices. J. Compl., 21(4):609–650,

2005.
19. H. Zha. A componentwise perturbation analysis of the QR decomposition. SIAM J. Matrix Anal. Appl.,

14(4):1124–1131, 1993.

15

