D Wang

M D Ercegovac

N Brisebarre

J.-M Muller

Abstract-Linear (order-one) function evaluation schemes, such as bipartite and multipartite tables, are usually effective for low precision approximations. For high output precision, the lookup table size is often too large for practical use. This study investigates the so-called (M, p, k) scheme that reduces the range of input argument to a very small interval so that trigonometric functions can be approximated with very small lookup tables and a few additions/subtractions. An optimized hardware architecture is presented and implemented in both FPGA device and standard cell based technology. Experimental results show that the proposed scheme achieves more than 50% reduction in total chip area compared with the best linear approach for 24-bit evaluation.

Index Terms-Bipartite table, trigonometric function evaluation, field-programable gate array (FPGA).

I. INTRODUCTION

T Rigonometric functions are extensively used in com- puter graphics, digital signal processing, communication systems, and robotics, to name a few fields of application. Hardware function generators are usually desirable because of their major advantages in speed over software solutions and their potential to save power by avoidance of the use of hundreds of general-purpose instructions.

In 1984, Sunderland et al. [START_REF] Sunderland | CMOS/SOS frequency synthesizer LSI circuit for spread spectrum communications[END_REF] considered approximating a 12-bit sine function in hardware with a input argument x less than π/2 with the use of tables. They proposed to evenly split x (in binary form) into three 4-bit sub-words, i.e., x = x 0 + x 1 + x 2 , where x 0 <π/ 2, x 1 < 2 -4 π/2 and x 2 < 2 -8 π/2, and use the following equation sin(x 0 + x 1 + x 2) ⇡ sin(x 0 + x 1) + cos(x 0)sin(x 2) (1) By doing so, instead of using one large table with 12 address bits, two small tables, that each has 8 address bits are needed: one for sin(x 0 +x 1) and one for cos(x 0)sin(x 2). In 1995, Das Sarma and Matula [START_REF] Sarma | Faithful bipartite ROM reciprocal tables[END_REF] introduced a new scheme to evaluate reciprocal functions. Two tables are addressed in parallel by the partitioned input argument. The outputs are then summed and rounded to the desired accuracy. This scheme is called the bipartite method. Later, Schulte and Stine [START_REF] Schulte | Approximating elementary functions with symmetric bipartite tables[END_REF] generalized such a scheme to other elementary functions and termed it the symmetric bipartite table method (SBTM), which also generalizes the scheme of Sunderland et al. Compared with straightforward tabulation, the bipartite approach uses only two tables with 2q address bits instead of one table with 3q address bits (assuming that the input argument is split into three q-bit sub-words).

An enhanced scheme was then proposed by Dinechin and Tisserand [START_REF] Dinechin | Multipartite Table Method[END_REF], who divided the input argument into more than three sub-words, so that multiple small tables can be built. The scheme is thereby named as multipartite table-lookup method (MTM). Both SBTM and MTM are linear (orderone) approximations that possess an inherent limitation: to evaluate functions with high precision, the input argument needs to be reduced to very small values [START_REF] Low | A memory-efficient tables-and-additions method for accurate computation of elementary functions[END_REF]. Very recently, Brisebarre, Ercegovac and Muller [START_REF] Brisebarre | M, p, k)-friendly points: a table-based method for trigonometric function evaluation[END_REF] proposed a new scheme called (M, p, k)-friendly points to approximate trigonometric functions by using two small bipartite tables and only a few additions. However, no analysis of the error bound or practical hardware implementations were conducted to evaluate the effectiveness of this scheme. Low and Jong [START_REF] Low | A memory-efficient tables-and-additions method for accurate computation of elementary functions[END_REF] revisited the tables-and-additions strategy and successfully proposed an integrated add-table lookup-add (iATA) approach, which could save 20% to 60% of memory compared with MTM. Other approaches, such as LUT cascades [START_REF] Sasao | Numerical function generators using LUT cascades[END_REF] and order-two piecewise polynomial approximation and interpolation approaches [START_REF] Lee | Hardware implementation trade-offs of polynomial approximations and interpolations[END_REF] are also studied in the literature.

In this study, we investigate and develop implementations of the (M, p, k) scheme. Section II introduces the proposed algorithm, rectify prior incorrect definitions and performs an analysis of the error bound. Section III describes an optimized hardware architecture that efficiently implements the proposed algorithm. Section IV provides the FPGA and ASIC based implementation results. Section IV concludes the paper.

II. THE (M, p, k) SCHEME A. (M, p, k)-Friendly Points and Angles

Given an n-bit input angle x in the range of [0,π/2), we aim to evaluate the trigonometric functions sin(x) and cos(x) with p-bit output precision. Assuming that x approximates x (we will see later how x is obtained), we define θ = x -x. When θ is much smaller than π/2, sin(θ) and cos(θ) can be efficiently approximated with high accuracy with the use of the aforementioned table-and-addition-based schemes. We can then obtain sin(x) and cos(x) in the form of

sin(x)=sin(x) • cos(θ) + cos(x) • sin(θ) cos(x) = cos(x) • cos(θ) -sin(x) • sin(θ) (2)
Instead of directly implementing (2) in hardware with the use of four multipliers, the (M, p, k) scheme uses a different way to perform these computations. The scheme seeks special pairs of numbers a, b, and z, which satisfy cos(x)=a • z and sin(x)=b • z. If a and b are bounded by a integer M and z =1 / p a 2 + b 2 has no more than k nonzero bits when recoded into the canonical form, which contains no adjacent nonzero digits [START_REF] Koc | Multiplication of signed-digit numbers[END_REF], one can implement (2) at the cost of a small number of additions/subtractions when M and k are small. We refer to such numbers (a, b) as (M, p, k)-friendly points and the corresponding x as an (M, p, k)-friendly angle. More precisely, Definition-I: A pair of integers (a, b) is an (M, p, k)friendly point if the two following conditions are met:

n = p =24, m =8, k =7AND r =7. Index x 0 .x 1 •••x 7 a b xT |x T -x 0 .x 1
••• ••• ••• ••• ••• ••• ••• 200 11001000
1) 0  a<M =2 m and 0  b<M =2 m ;
2) The number

z = rnd ⇣ 1/ p a 2 + b 2 ,p+ m +2 ⌘ (3)
can be written in its canonical form

2 -e • 1.z 1 z 2 •••z p z p+1 •••z p+m+1 z p+m+2 = X z i 2 -e-i
where function rnd(x, n) rounds variable x to its n-th fractional bit; m and e are integers, z i 2 {-1, 0, 1}, and the number of nonzero z i 's is less than or equal to k for i =1, 2, ••• ,p+ m +2. Note that the definition of z is more accurate than that of [START_REF] Brisebarre | M, p, k)-friendly points: a table-based method for trigonometric function evaluation[END_REF]. Definition-II: The angle x in the range of 0  x<π/2 is an (M, p, k)-friendly angle if either x =0or x = arctan(b/a) where (a, b) is an (M, p, k)-friendly point.

B. Tabulating the Desired Points and Angles

To implement (2), one needs to tabulate the appropriate a, b, z and x in a lookup table. The search for the desired points is a trial-and-error process: First, the input

x = x 0 .x 1 x 2 •••x n-1
is split into two sub-words, i.e., the higher (r + 1)-bit part (as the table address):

x T = x 0 .x 1 x 2 x 3 •••x r-1 x r and the lower part 2 -r • x r+1 x r+2 •••x n-1
, where r is an integer. The angle x T divides the input range [0,π/2) into smaller regions. Second, we select one (M, p, k)-friendly point (for given M and k) whose angle is closest to

x 0 .x 1 x 2 x 3 •••x r-1 x r 1 in each region and denote it as xT . The largest distance between xT and x 0 .x 1 x 2 x 3 •••x r-1 x r 1 is denoted as D r . If D r is smaller than 2 -r-1
, then all the x within that region will be at a distance

D r +2 -r-1  2 -r (4)
from xT . Consequently, the value of θ = x -xT has an absolute value less than 2 -r . If there are no such xT found, M and k will be enlarged and another round of search is performed. As long as r is sufficiently large, we can build small bipartite tables to generate sin(θ) and cos(θ) with high output precision. Table I provides a numerical example of the selected (M, p, k)-friendly points and angles for n = p = 24, m =8 , k =7and r =7 . The search process, performed off-line, has a time complexity of O(M 2) for given r.

C. Computation Steps of the Algorithm

Assuming that the correct (M, p, k)-friendly points (a, b) and angles xT are stored in a lookup table T0, the following computation steps are used to implement (2):

1) Subtraction of θ = x -xT is performed, and the values of sin(θ) and cos(θ) are looked up in two bipartite tables; 2) The following is computed:

S = b • cos(θ)+a • sin(θ) C = a • cos(θ) -b • sin(θ) (5)
Assuming that a and b are stored in radix-4 with a digit set {-2,-1,0,1,2}, each multiplication can be implemented in dm/2e additions/subtractions; 3) S • z and C • z are performed to implement (2). Because z is in the canonical representation and the number of nonzero bits is bounded by k, the two multiplications can also be simplified to 2(k + 1) additions/subtractions. We note that the efficiency of the proposed scheme relies on how small θ can be for not-too-large values of parameters M and k. Generally, for a given n and p, multiple pairs of parameters can be selected. For instance, we list several possible values of the parameters for n = 24 in Table II. The optimal choice of the parameters is determined by the hardware cost and performance. A scheme is proposed in Section III-B to address this design issue. and e c = [cos(θ)-f cos(θ)]. Then, the total approximation error entailed by the proposed algorithm is bounded by

D. Error Bound

| f cos(x) -cos(x)| = (z -z)[a f cos(θ) -b f sin(θ)] +[az(f cos(θ) -cos(θ)) -bz(f sin(θ) -sin(θ))] = p a 2 + b 2 • f cos(θ +x)e z + az • e c -az • e s < 2 m p 2 •|e z | + |e c | + |e s | (6)
where f cos(x) is the exact value of the final result obtained by infinite precision computations. From (3), we already know that |e z | < 2 -(p+m+3) . If both outputs of the sine and cosine bipartite tables have a maximum absolute error of 2 -(p+2) , the absolute value of the total error is bounded by 2 -p . Therefore, the precision of the results is only determined by the parameters n and p.

III. HARDWARE ARCHITECTURE

A. Proposed Architecture

Fig. 1 shows the top-level hardware architecture that implements the proposed algorithm. Table T0 stores the precomputed (M, p, k)-friendly points (a, b), angles xT , and associated z. SBT0 and SBT1 are two small bipartite lookup tables that generate sin(θ) and cos(θ).

In Table T0, the m-bit integers a and b are recoded in radix-4 with digit set {-2, -1, 0, 1, 2}. To reduce the area of shifters used, we introduce another constraint on z, and only those xT 's whose associated z satisfies this extra condition are tabulated. Fig. 2 shows that z is divided into the lower b(p + m + 2)/2c-bit and higher d(p + m + 2)/2e-bit subwords, and the new constraint requires that the number of nonzero z i 's in the two sub-words is not larger than bk/2c and dk/2e, respectively. Usually, a new round of search for xT should be performed. The value of m might need to be enlarged to find a sufficient number of xT 's.

After recoding, z has (k + 1) fields. The first field (Field-0) has log 2 (e) bits and is reserved for the leading "1". The other fields either have dlog 2 (p+m+2) 2

e+1 bits or blog 2 (p+m+2) 2 c+ 1 bits, in which one sign bit is added at the most significant bit. Those fields that have no corresponding nonzero z i are filled with all "1", which represents multiplication by zero.

The multiple generation module (MGEN) generates dm/2e "multiples" by implementing a simple logic as described in [START_REF] Ercegovac | Digital Arithmetic[END_REF]. The multi-operand adder (MOPADD) has a compressor tree structure based on [3:2] study to efficiently utilize the carry-propagate adders (CPAs) and ternary adder structures on FPGAs with dedicated carrychains that can provide carry propagation by more than one order of magnitude faster compared with the use of general logic resources [START_REF] Hormigo | Multioperand redundant adders on FPGAs[END_REF]. Fig. 3 shows an example of a [9:3] compressor for the proposed redundant adder structure. The compressor consists of two diagonally deployed linear arrays (only one is shown in Fig. 3) of CPAs. The structure can be efficiently mapped into two arrays of CPAs, in which the fast carry-chain (blue lines) is efficiently utilized. The proposed redundant adder significantly reduces the critical path delay of the proposed architecture. The right-shift barrel shifter (BSFT) has an internal structure that merges two consecutive levels of 2-to-1 shift operations into a single stage [START_REF] Das | A timing-driven approach to synthesize fast barrel shifters[END_REF]. Efficiently mapping each stage into 4-to-1 multiplexors can reduce critical path delay without increasing the shifter area. Sign extension is performed after shifting.

B. Selecting the Optimal Parameters

From Section III-A, we know that the total size of table T0 and two bipartite tables can be estimated by

S T 0 =2 r+1 • h dm/2e•6+p + dlog 2 (p + m + 2)e•k i S SBT =2 b2(n-1-r)/3c+1 • [(p + 4) + p/4]
where S T 0 and S SBT denote the memory cost in bits. Applying the precomputed parameter values in Table II, we draw the diagram of Fig. 4 to illustrate the variation trend of the lookup table size with parameter r. An optimal value for r to minimize the memory usage can be observed. Similarly, one can estimate the area of the multi-operand adders and shifters by

(OP6) (OP5) (OP2) (OP4) (OP3) (S0) (S1) (CO1) (OP8) (OP7) (S2)
S ADD = ⇥ (2dm/2e-2) + 2(k -2) ⇤ • (p + m + 2) • NR S SFT = dm/2e•(p + 2) • 2+dlog 2 (e)e•(p + m + 2) + dlog 2 (p + m + 2)e•(p + m + 2) • k
where S ADD is calculated in numbers of FA used, whereas S SFT is counted in numbers of 2-to-1 multiplexors. NR denotes the ratio of the area of one 2-to-1 multiplexor to that of one FA. In this study, we assume that NR =1.6 for ASIC and NR =1for FPGA implementation. After the optimal r is selected, another diagram can be drawn to find the optimal m. Usually, multiple local optimal values can be considered.

For the case of n = 24, they are m =7 , 9, 11. This diagram is not presented because of limited space.

The critical path delay of the second pipeline stage is substantially affected by the value of m, whereas that of the third stage is determined by k. Table II shows that the value of k gradually increases as m decreases. Therefore, in this study, we select the pair of m and k that minimize the value of m + k (i.e., m =9, k =7for the presented instance).

IV. IMPLEMENTATION RESULTS

The proposed hardware architecture was written in RTLlevel System Verilog. Functional simulations were performed with Cadence NC-sim 5.4. The verified designs were implemented in two technologies: 1) Virtex-II XC2V1000-FG456-5 FPGA device synthesized and fitted with the ISE 8.1i tool 1 and 2) TSMC 65nm CLN65G standard cell library synthesized by Synopsys Design Compiler C-2010.03-SP1, placed-and-routed by SoC Encounter 10.1.

Table III first compares the estimated hardware costs of the proposed design with three different schemes, namely, the multipartite table (MTM [START_REF] Dinechin | Multipartite Table Method[END_REF]), piecewise table lookup approximation (Sasao [START_REF] Sasao | Numerical function generators using LUT cascades[END_REF]) and order-two interpolation (Lee [START_REF] Lee | Hardware implementation trade-offs of polynomial approximations and interpolations[END_REF]). The memory resource is counted in bit, while other supporting arithmetic/logic units are measured in the numbers of FA. The proposed design is observed to achieve 79% and 73% 1 The old device and compilation tool were selected for a fair comparison with the reference designs [START_REF] Low | A memory-efficient tables-and-additions method for accurate computation of elementary functions[END_REF], [START_REF] Lakshmi | VLSI architecture for parallel radix-4 CORDIC[END_REF]. Optimization goal and effort were set as "Speed" and "High", respectively. reduction in memory resource compared with [START_REF] Dinechin | Multipartite Table Method[END_REF] and [START_REF] Sasao | Numerical function generators using LUT cascades[END_REF] for 24-bit evaluations, respectively. The increase in logic resources are 8.2⇥ and 1.5⇥. Because of the degree-2 interpolation algorithm adopted, the scheme of [START_REF] Lee | Hardware implementation trade-offs of polynomial approximations and interpolations[END_REF] can further compress the lookup tables used. However, due to the large multipliers used, the growth in logic resources is significant. More accurate comparison of the total circuit area are made after the designs are mapped on a specific technology.

Two design instances with precisions n = 16 and n = 24 were finally implemented. Tables IV and V report the implementation results. To enable direct comparison architectures that do not utilize lookup tables, all ROMs were synthesized into pure combinational logic cells (ASIC) or distributed ROM structures (FPGA) as suggested by [START_REF] Lee | Hardware implementation trade-offs of polynomial approximations and interpolations[END_REF]. The MTM designs were generated in VHDL by using the program provided by [START_REF] Dinechin | The multipartite method for function evaluation[END_REF] and implemented in the same technologies. A balanced two-stage pipeline structure is implemented such that each stage has a similar delay to the proposed design.

Both tables show that the total area of the proposed design is almost two times larger than that of MTM for 16-bit evaluation. It is revealed that, when using the proposed algorithm to perform low precision evaluations, reducing the lookup table size does not satisfactorily compensate for the hardware cost introduced by the extra arithmetic operations. For 24bit evaluation, the advantage of the proposed architecture is obvious: it achieves more than 63% reduction in the total circuit area over MTM for both pipelined and non-pipelined FPGA based implementations. It is also observed that the CPAs in the proposed architecture introduces a 42% longer critical latency. However, a simple pipelining scheme enables both scheme working at a similar frequency at the cost of a few registers. For ASIC designs, the area reduction is 51%, and the latency gap also decreases to 17%. Our approach consumes a 42% lesser chip area than the newly reported iATA [START_REF] Low | A memory-efficient tables-and-additions method for accurate computation of elementary functions[END_REF] scheme, but their critical path delays are close. CORDIC-based designs are compared with the proposed scheme in Table IV. Standard parallel CORDIC structures are implemented with the Xilinx IPcore generator [START_REF] Corp | [END_REF]. For both 16-and 24-bit evaluations, the proposed design achieves more than 70% reduction in the critical path delay. The main contribution comes from the optimized multi-operand redundant adder structure presented in this paper. Compared with the radix-4 CORDIC design [START_REF] Lakshmi | VLSI architecture for parallel radix-4 CORDIC[END_REF], our proposed architecture is both superior in critical path delay and total circuit area. Because of the limited information, however, we can not directly compare with the schemes presented in [START_REF] Sasao | Numerical function generators using LUT cascades[END_REF] and [START_REF] Lee | Hardware implementation trade-offs of polynomial approximations and interpolations[END_REF].

V. C ONCLUSION

This brief has presented a new scheme to compute sine and cosine functions. The main contribution of our work includes rectifying prior incorrect definitions, conducting an analysis on the error bound and developing an optimal hardware architecture that efficiently implements the proposed algorithm. The 16-and 24-bit design instances are coded in Verilog HDL and mapped on Xilinx FPGA and 65nm standard cell based technology. Comparison of our proposed work with multipartite and CORDIC-based designs shows that a considerable reduction in chip area and critical path delay is achieved for 24-bit evaluations.

 By denoting z, f sin(θ) and f cos(θ) as the exact values of 1/ p a 2 + b 2 , sin(θ) and cos(θ), respectively, three truncation errors can be expressed in e z =(z -z), e s =[sin(θ) -f sin(θ)]

Fig. 3 .

 3 Fig. 3. The proposed parallel linear array structure for a [9:3] compressor. The output signals SO, CO1 and CO2 are fed to a ternary adder, which can support 3-input addition (A+B+C=D) with the same amount of resource overhead and similar speed as a simple 2-input adder. FA: full-adder.

 (M, p, k)-Friendly Points: A Table-based Method to Evaluate Trigonometric Function Dong Wang, Jean-Michel Muller, Nicolas Brisebarre, and Miloš D. Ercegovac

TABLE I THE

 I FIRST AND LAST ENTRIES OF

TABLE T0 FOR

 T0

TABLE II VALUES

 II OF PARAMETERS k, M AND r FOR n =24, p =24.

	P P P P P P M r	5 6 7	8	9	10	11
	128	7 8 9	na	na	na	na
	256	7 7 8	9	na	na	na
	512	6 6 7	8	9	na	na
	1024	5 6 7	7	8	9	na
	2048	4 5 6	7	7	8	9

Table Size (

 Size Kbit) Fig.[START_REF] Sarma | Faithful bipartite ROM reciprocal tables[END_REF]. The estimated lookup table sizes for different values of r when n =2 4 , p =2 4 . For r =1 1 , the total lookup size is 384 Kbits, which is 4.5 times larger than the lookup size for r =7(85.7 Kbits).

	Table T0
	SBT0 & 1
	Total

 The range of x is [0,π/4).

			TABLE III		
	ESTIMATED RESOURCE REQUIREMENTS OF DIFFERENT SCHEMES FOR
	THE EVA L UAT I O N O F sin(x) 24-BIT PRECISIONS.	
	Resource	MTM [6] (table-add.) (approxim.) (interp.) Sasao [7] Lee [8] Proposed
	Logic (FA)	260	672	20,796	2,392
	Memory (bit)	419,840	327,680	3,773 a	87,885
	a				

TABLE IV COMPARISON

 IV OF FPGA BASED IMPLEMENTATION RESULTS.

	Scheme		Precision (bit)	Lookup Table (Slice)	Total Area (Slice)	Critical Path Delay Latency (ns) (ns)
	Proposed		16	159 (15%)	1,078 (100%)	11.5	34.5
	(3-stage pipelined)		24	1,144 (39%) 2,861 (100%)	16.7	50.1
	MTM [6]		16	426 (80%)	532 (100%)	10.8	21.7
	(2-stage pipelined)		24	7,735 (98%) 7,910 (100%)	18.3	36.7
	Proposed		16		159		988	29.1	29.1
	(Non-pipelined)		24		1,130		2,642	38.2	38.2
	MTM [6]		16		425		511	18.6	18.6
	(Non-pipelined)		24		7,697		7,881	26.8	26.8
	Xilinx CORDIC IPcore [13]	16		na		595	91.6	91.6
	(Non-pipelined)		24		na		1,248	146.5	146.5
	Radix-4 CORDIC [9] (Non-pipelined)	16		na		1,184	37.0	37.0
	iATA [2] (Non-pipelined)	24		na		4,963	30.9	30.9
				TABLE V	
	COMPARISON OF STANDARD CELL-BASED IMPLEMENTATION RESULTS.
	Scheme	Precision (bit)	Lookup Table (Kgate)	Total Area (Kgate)	Critical Path Delay Latency (ns) (ns)
	Proposed	16	993 (12%)	8,093 (100%)	4.6	13.8
	(3-stage pipelined)	24	4,223 (29%)	14,256 (100%)	6.9	20.7
	MTM [6]	16	2,205 (72%)	3,061 (100%)	2.9	5.8
	(2-stage pipelined)	24	28,526 (97%)	29,292 (100%)	8.5	17.1

This work was partially supported by NNSF of China Grant No. 61106022.