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The parametric subharmonic instability in stratified fluids depends on the frequency
and the amplitude of the primary plane wave. In this paper, we present experimental
and numerical results emphasizing that the finite width of the beam also plays an im-
portant role on this triadic instability. A new theoretical approach based on a simple
energy balance is developed and compared to numerical and experimental results. Be-
cause of the finite width of the primary wave beam, the secondary pair of waves can
leave the interaction zone which affects the transfer of energy. Experimental and nu-
merical results are in good agreement with the prediction of this theory, which brings
new insights on energy transfers in the ocean where internal waves with finite-width
beams are dominant.

1. Introduction

Nonlinear resonant interaction of internal waves is one of the key processes leading
to small-scale mixing in the ocean. In particular the parametric subharmonic instabil-
ity (PSI) allows the transport of energy from large to smaller scales by giving birth to
two secondary subharmonic waves (with wave vector modulus κ1 and κ2) from an ini-
tial primary wave (with wave vector modulus κ0) (Benielli & Sommeria 1998; Koudella
& Staquet 2006; Bourget et al. 2013; Gayen & Sarkar 2013; Clark & Sutherland 2010).
Thanks to a new experimental and analysis tool, Bourget et al. (2013) have recently
shown how the PSI theory developed for plane waves is in good agreement with the
experimental observations of the instability of a quasi-monochromatic wave beam. As
stressed by Sutherland (2013), one challenge is now to determine the range of validity
of the theory and in particular the role of the width of the wave beam on the occurrence
of the instability. In other words, is the instability affected by the width of the beam?
This question is particularly important in the oceanic context where internal waves are
known to develop preferentially in the form of finite size beams, for instance waves
emitted by the interaction of tide with topography (Lien & Gregg 2001; Dewan et al.
1998; Gostiaux et al. 2007). Moreover, energy transfer between scales, as well as wave
turbulence in oceans, are open questions and a study of the role of the beam width on
secondary waves selection in PSI might bring new understanding to these issues.

This is the aim of the present work, combining experimental, numerical and theoret-
ical approaches. Starting with the observation that finite-width beams can inhibit the
instability, we continue by studying the effect of the beam width on the selection rules.
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Figure 1: Sketch of the set-up. Experimentally, the wave generator is lying horizontally
at the top of the wave tank. The vertical density gradient field of a typical wave beam
generated at the top of the domain and undergoing PSI is presented as background of
the figure. The dashed arrows indicate the group velocity of the three wave beams. The
tilted rectangle of length L and width W corresponds to the control area used in the
model.

2. Experimental and numerical approach

2.1. Experimental set-up.

A tank 160 cm large, 17 cm wide is filled with 36 cm of linearly stratified salt water with
constant buoyancy frequency N. An internal wave of wavelength λ0 is generated using
a wave generator (Gostiaux et al. 2007; Mercier et al. 2010) placed horizontally with a
plane wave configuration identical to the one used by Bourget et al. (2013). Note that
to avoid spurious emission of internal waves on the extremities of the moving region,
the amplitude of the plates is constant over n wavelengths in the central region, while
one half-wavelength with a smooth decrease of the amplitude is added on each side.
The beam width W = (n + 1)λ0 is varied from λ0 to 5 λ0 by changing the horizontal
extent of the moving part of the wavemaker. A schematic view of the experimental set-
up is shown in figure 1. Synthetic Schlieren technique (Dalziel et al. 2000; Sutherland
et al. 1999) is used to obtain the two-dimensional instantaneous density gradient field
(ρ̃x(x, z, t) = ∂x(ρ(x, z, t) − ρ0(z)), ρ̃z(x, z, t) = ∂z(ρ(x, z, t) − ρ0(z))) where ρ(x, z, t)
and ρ0(z) are the instantaneous and initial fluid densities. Series of experiments are
performed varying the horizontal wave number ℓ0, the plate motion amplitude a and
the frequency ω0. It results in variations of the vertical wave number m0 according to
the dispersion relation ω0/N = ℓ0/κ0, as well as variations of Ψ0, the amplitude of the
stream function ψ, which is defined such that ∂zψ = −u and ∂xψ = v with u and v the
horizontal and vertical components of the velocity. The parameters used in this article
are summarized in Table 1. A typical experimental result is presented as background of
figure 1.

2.2. Numerical method

In addition to the experiments, we performed 2D direct numerical simulations with the
finite elements commercial software Comsol Multiphysics. The simulations solve the
incompressible continuity equation, the Navier-Stokes equation for a Newtonian fluid
in the Boussinesq approximation and the equation of salinity conservation. All elements
are triangular standard Lagrange mesh of type P2 − P3 (i.e. quadratic for the pressure
field but cubic for the velocity and density fields). The total number of degree of free-
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Configuration N (rad s−1) ω0/N ℓ0 (m−1) Ψ0/ν W Approach

I 0.89 0.85 110 16.9 1 - 5 λ0 Experimental
II 0.89 0.85 110 16.9 2 - 3 λ0 Numerical
III 0.91 0.74 75 33 3 λ0 Experimental
IV 0.91 0.74 75 33 3 λ0 Numerical
V 0.91 0.74 75 33 20 λ0 Numerical

Table 1: Experimental and numerical parameters, with N the buoyancy frequency, ω0
the frequency of the primary wave, ℓ0 the horizontal wave number, Ψ0 = v0/ℓ0 the
experimentally measured amplitude of the stream function in which v0 is the vertical
velocity, ν the viscosity and W the width of the primary beam.

dom is larger than 2 millions. At each time step, the system is solved with the Backward
Difference Formulae (BDF) temporal solver and the sparse direct linear solver PAR-
DISO. The Comsol BDF solver automatically adapts its scheme order between 1 and 5
(see details in Hindmarsh et al. (2005): it varies between 1 and 3 during our calcula-
tions. Note that no stabilization technique has been used. The Schmidt number, which
compares diffusivity of salt and momentum is set to Sc = 10 as a proxy for the value
Sc = 700 existing in the laboratory configuration. To prevent the creation of a reflected
beam at the bottom of the domain, an attenuation layer is added wherein viscosity and
diffusivity of salt increase exponentially with depth. To mimic the wavemaker of the
experimental set-up, the horizontal velocity, the vertical velocity and the density are si-
multaneously imposed at each time-step at the top horizontal boundary and correspond
to linear gravity waves. The amplitude of the imposed velocities and density is constant
over n wavelengths in the central region, while one half-wavelength with a smooth de-
crease of the amplitude is added on each side similar to the experimental configuration.
On the left and the bottom of the domain, we impose no stress and no flux and on the
right, the pressure anomaly is fixed to zero, with no viscous stress and flux. Note that
at time t = 0, the linear viscous beam is imposed in the bulk. The advantage of the
numerical approach is that the beam width can be varied to much larger value than five
wavelengths.

2.3. Results.

Let us first focus on the experimental and numerical results of configurations I and II.
Figures 2(a) and 2(c) present the time evolution of the vertical density gradients mea-
sured at a given point in the experiment (configuration I), while figures 2(b) and 2(d)
show the same information for the numerical simulation (configuration II). Experimen-
tal and numerical results display a good agreement, evidencing the following obser-
vation : while for a beam width W = 2λ0 (figures 2(a,b)), the regular signal does not
show any triadic resonance, in the case where W = 3λ0 (figures 2(c,d)), the instabil-
ity develops, as emphasized by the modulation of the signal, typical of the apparition
of new frequencies in the system. Moreover, frequencies and wavelengths of the sec-
ondary waves present a good agreement, as can be seen in Table 2. For experiments
with W = 4λ0 and 5λ0 (not shown), the instability is observed as well. Experimental
and numerical results thus reveal for the first time the critical role of the beam width in
the occurrence of the triadic instability.
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Figure 2: Time evolution of the amplitude of ∂zρ̃ [kg.m−4] 4.5 cm below the wave maker
and in the middle of the beam as the width of the beam is increased from W = 2λ0
(upper panels) to 3λ0 (lower panels) for configurations I-II (ω0/N = 0.85, ℓ0 = 110 m−1,
ψ0/ν = 16.9). Experimental results are shown in left panels and numerical ones in right
panels.

Configuration W (rad s−1) ω1/N κ1 (m−1) ω2/N κ2 (m−1) Approach

I 3 − 5 λ0 0.64 220 0.25 120 Experimental
II 3 λ0 0.60 201 0.26 101 Numerical
III 3 λ0 0.49 208 0.26 121 Experimental
IV 3 λ0 0.49 232 0.25 148 Numerical
V 20 λ0 0.50 147 0.27 61 Numerical

Table 2: Experimental and numerical values of ω1 and ω2, the frequencies of the sec-
ondary waves and κ1 and κ2, the wave vector modulus of the secondary waves.

3. Theory

To understand this observation, it is crucial to realize that the theory of PSI is de-
rived for infinitely extended plane waves, as described in Koudella & Staquet (2006)
and Bourget et al. (2013). We thus propose to take into account the width of the primary
wave beam, the guiding idea being that the two secondary plane waves can exit the
spatial extent of the primary wave beam (McEwan & Plumb 1977; Gerkema et al. 2006).
Once they have left this region, they cannot interact any more with the primary plane
wave and the energy transfer is broken.

To perform an energy balance, let us define a control area within the primary wave
beam as presented by the tilted rectangle in figure 1. For simplicity , we neglect the
spatial attenuation of the waves in this area, i.e. the surface energy densities E0, E1 and
E2 of the different waves are considered uniform. Consequently, the temporal variation
of the primary plane wave energy in the domain is due to:
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i) nonlinear interactions that transfer energy from the primary wave to both secondary
ones (denoted Γint(i, j) where i and j represent the two other waves of the triad) ;
ii) viscosity;
iii) incoming and outgoing flux of the primary wave.

For the domain W × L, this can be summarized as

dE0

dt
LW = Γint(1, 2)− νκ2

0E0LW + EinWcg,0 − E0Wcg,0 , (3.1)

with Ein the surface energy injected by the generator and cg,0 = (N2 − ω2
0)

1/2/κ0.
Assuming that PSI occurs everywhere in the beam, the outgoing energy flux of the

secondary waves through the cross beam faces with width W is compensated by the
incoming one. In contrast, since they do not propagate parallel to the primary beam,
they exit the control area also from the lateral boundaries without compensation. For
the temporal variation of the secondary waves energy in the domain, this leads to

dEi

dt
LW = Γint(0, j)− νκ2

i EiLW − EiL|cg,i · ek0
| , (3.2)

with i = 1, 2, j = 2, 1 and the modulus of the group velocity cg,i = (N2 − ω2
i )

1/2/κi.
The first term represents the interaction with the other plane waves of the triadic res-

onance while the third one accounts for the energy exiting the control area. As Ei ∝

κ2
i ΨiΨ

∗
i , using the infinite width expression (Bourget et al. 2013) for the interaction

terms, one gets

dΨ0

dt
= −|I0|Ψ1Ψ2 −

ν

2
κ2

0Ψ0 + F, (3.3)

dΨ1

dt
= +|I1|Ψ0Ψ

∗
2 −

(

ν

2
κ2

1 +
|cg,1 · ek0

|
2W

)

Ψ1, (3.4)

dΨ2

dt
= +|I2|Ψ0Ψ

∗
1 −

(

ν

2
κ2

2 +
|cg,2 · ek0

|
2W

)

Ψ2 , (3.5)

with Ii the interaction term defined as follows

Ii =
ℓjmr − mjℓr

2ωiκ
2
i

[

ωi(κ
2
j − κ2

r ) + ℓi N
2

(

ℓj

ωj
− ℓr

ωr

)]

(3.6)

with i, j, r = 0, 1, 2 and F = cg,0 (Ψ
∗
inΨin − Ψ

∗
0Ψ0) /(2LΨ

∗
0) a forcing term, corresponding

to the difference between the incoming energy and the outgoing one for the primary
wave.

The solution for Ψ1 and Ψ2 can be easily obtained with the hypothesis Ψ0 constant.
One finds exponentially growing solutions with growth rate

σ± = −1
4
(Σ1 + Σ2)±

√

1
16

(Σ1 − Σ2)
2 + |I1||I2||Ψ0|2, (3.7)

where Σi = νκ2
i + σadv(κi) and σadv(κi) = |cg,i · ek0

|/W, the inverse of an advection time
since it characterizes the transport of the secondary waves energy out of the interaction
region. The viscous part of the expression of Σi is similar to the expression obtained
in McEwan & Plumb (1977) in the limit of large Prandtl number.

Cases with large σadv values will present a very strong finite-width effect. Three pa-
rameters impact the value of the growth rate:
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(a) The width W of the beam. The term σadv varies like the inverse of W, thus the
growth rate is decreased when the beam is narrow. On the contrary, when W goes to
infinity, σadv vanishes and the growth rate of the original theory (Bourget et al. 2013) is
recovered.

(b) The amplitude of the group velocities of the secondary waves. When the modulus
of the secondary wave vector κi is small, the group velocity increases and the secondary
waves exit the primary wave beam more rapidly. So there is less time for them to grow
in amplitude. Besides, σadv is weaker for low stratification N (small group velocity)
at κ and ω fixed, which implies a stronger instability in the oceans where N is weak
compared with laboratory conditions.

(c) The direction of the group velocity of each waves of the triad. When the secondary
waves are almost perpendicular to the primary plane wave, they leave the interaction
area quickly, which does not favor the instability. To summarize, this finite-width effect
is stronger when the group velocity of the secondary wave is aligned with k0.

For configurations I and II presented in figure 2, the above model predicts that the
growth rate is an increasing function of W. For an infinitely wide wave beam, the insta-
bility occurs for any value of the amplitude (see appendix). In contrast, for finite width
beams, a non vanishing threshold appears. For example, for W = 2λ0, the maximum
growth rate becomes negative for Ψ0/ν < 4.4. Moreover, during the finite duration of
the experiment, even if the instability occurs, the amplitude of the two secondary waves
might be too small to be detected. For example, we can define a detection criterion by
requiring that for the secondary waves to be detected, the duration of the experiment
must exceed 3 times the inverse of the growth rate. With this criterion, in the case of an
infinitely wide wave beam, the instability can only be observed during the experiment
if Ψ0/ν > 1.6 whereas for W = 2λ0, the threshold is five times higher, Ψ0/ν > 8.5.
Interestingly, this value of amplitude threshold has the same order of magnitude as
the imposed amplitude in configurations I and II, notwithstanding the simplifying hy-
pothesis made by neglecting spatial attenuation in the longitudinal (viscous decay) and
transversal (imposed wave beam shape) direction of the primary wave. Therefore, the
above model gives an explanation why the instability occurs in these two configurations
only for W larger than 3λ0.

This new analysis reveals a dramatic effect on the development of the triad instability
which has been totally overlooked before. When the beam gets narrower, the PSI cut-off,
initially due only to viscosity, is displaced towards a larger forcing amplitude so that at
a given amplitude, the instability can be completely suppressed by decreasing the beam
width.

4. Selection of the triad.

We will now show that the finite-width effect can also result in a specific triad selec-
tion. To do that, we focus on the results for another set of parameters (Configurations
III-V, see Table 1), this case is therefore different from the previous one. Experimen-
tal and numerical wave fields (respectively configurations III and IV) presented in fig-
ures 3(a) and 3(b) are in good agreement. As underlined by Bourget et al. (2013), the
theoretical prediction for an infinite primary plane wave is that for this set of param-
eters (configurations III-IV), the wavelength of one of the secondary waves generated
by the instability is larger than the primary wavelength, while the other one is smaller
(see Table 2). In this case, the energetic transfer will occur towards larger and smaller
scales simultaneously. However, this prediction was not verified and a different type
of triad was observed experimentally in Bourget et al. (2013), with transfer to smaller
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Figure 3: Vertical density gradient fields for configurations III-V (ω0/N = 0.74, ℓ0 =
75 m−1, ψ0/ν = 33). a) Experiments with W = 3λ0; b) simulations with W = 3λ0;
c) simulations with W = 20λ0. The two vectors represent the direction of the group
velocity for one of the two secondary plane waves.

scales only. This difference between the prediction and the observations can again be
traced back to the finite width of the wave beam. To demonstrate that, we rely on nu-
merical results since the experimental set-up cannot generate plane waves with a beam
size larger than 6 λ0. Note that we have performed numerical simulations for 6λ0 (yield-
ing similar results as for 3λ0), and 10λ0 (yielding similar results as for 20λ0). Therefore,
we do not show these results here and focus only on the extreme cases 3λ0 and 20λ0.
Figure 3(c) shows the results of configuration V, i.e. for the same parameters but for a
significantly wider beam (20λ0). The primary wave beam is still unstable, but the sec-
ondary waves look quite different compared to the results for W = 3λ0. To quantify
the differences, a temporal Hilbert transform (Mercier et al. 2008) and a spatial Fourier
transform are used to measure the different wave vectors present in the numerical den-
sity gradient fields. These vectors are shown in figures 4(a) and 4(b). In addition, the
curves in these figures represent the location of the tip of all possible wave vectors k1
satisfying the theoretical resonance conditions with a growth rate possessing a positive
real part. A clear difference between the two cases is visible. For W = 3λ0, a single
triad is observed and its secondary wave vectors k1 belongs to an external branch of
the theoretical resonance loci (ℓ1 > ℓ0). The wavelengths of both secondary waves are
smaller than the primary wavelength. For W = 20λ0, two different triads are measured.
The first one (dashed vectors), with secondary vector k1,e lying on an external branch
(hence the subscript “e”), is similar to the one found for smaller W. For the second one
(solid vectors), its secondary vector k1,c is located in the central region of the theoretical
loci curve (0 < ℓ1 < ℓ0). In this case, one secondary wave has a larger wavelength than
the primary wave and the other a smaller one.

These observations can be explained by the finite-width theoretical approach pre-
sented previously: the predicted evolution of the maximum value of the growth rate
as a function of W is shown in figure 4(c). The growth rates were computed separately
for the external (◦ symbols) and central (+ symbols) cases. A transition between the
two possible triads is predicted around Wc = 7λ0. For W < Wc, the most unstable
triad is on the external branch. The corresponding predicted location of the tip of wave
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Figure 4: (color online) a) The three arrows are the measurements of the three wave
vectors for the numerical case W = 3λ0. b) The five arrows are the measurements of
the wave vectors for the numerical case W = 20λ0. In a) and b), the dark solid line
represents the theoretical resonance loci for the secondary wave vector k1 for a given k0
and the rectangles represent the most unstable mode for the present finite-width model.
c) Evolution of the growth rate computed from (3.7) as a function of the width of the
beam, computed using the finite-size model. The transition between the external and
central triad configurations is obtained around W = 7λ0 (vertical line).

vector k1 is displayed as a rectangle in figure 4(a), showing a very good agreement
with the numerical observation. For this narrow beam, this agreement extends as well
to the experimental data. On the contrary, for wide enough beams, i.e. above the thresh-
old Wc, in spite of the fact that k1,c is almost perpendicular to k0 (a condition enhancing
the value of σadv), the secondary waves have time to grow before leaving the interac-
tion area. Consequently, the central triad becomes dominant when increasing the beam
width. In the time evolution of the numerical experiment, this triad appears first, the re-
sult derived for infinitely wide beams is thus recovered. At a later time, it is followed by
the second triad. Our numerical results confirm that the width of the beam changes the
selection of the triad. This new effect explains why energy transfer is mainly towards
smaller scales for narrow beams.

5. Oceanic case

This new finite-width theory is therefore of importance when consideringinternal
wave beams from in-situ observations of the ocean (Lien & Gregg 2001; Dewan et al.
1998; Gostiaux et al. 2007). In the ocean, since the wavelengths are larger by several or-
ders of magnitude, the Reynolds number is much larger than in the experiments and
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consequently viscous effects can be safely neglected. Consequently, the beam width is
the dominating control parameter for the growth rate. We will focus on equatorial re-
gions, for which the background rotation has no effect.

For example, we consider a primary beam with the following typical parameters:
(a) ω0 = 1.4 · 10−4 rad·s−1, which corresponds to the diurnal M2 tide period.
(b) λ0 = 100 m, which corresponds to field measurements in Kaena Ridge, Hawaii

(Sun et al. 2013).
(c) N = 1.12 · 10−3 rad·s−1. This value of the buoyancy frequency allows a propaga-

tion angle of θ = 7° which is close to oceanic observations.
(d) the Froude number Fr = u0m0/(2πN) = 0.035 (Gayen & Sarkar 2013) which

allows us to estimate Ψ0.
(e) the vertical component of the Coriolis force is ignored and the Coriolis parameter

f is set to zero.
Figure 5(a) shows the evolution of the growth rate as a function of the width of the
beam. With the chosen parameters, the transition between the external and central triad
configurations is obtained around W = 1.5λ0. Figure 5(b) presents the evolution of
the modulus of the secondary wave vectors for the external case (black lines) and the
central case (gray lines) as a function of the width of the primary beam. For example
for a narrow beam W = 1λ0, the maximum of growth rate is obtained on the external
branch (5(a)) and PSI enables a transfer to smaller scales: κ1 = 12κ0, κ2 = 11κ0 (figure
5(b)). This behavior corresponds to simulations (Gerkema et al. 2006; Gayen & Sarkar
2013) and to oceanic observations (McKinnon et al. 2012). Moreover the value of the
growth rate predicted by the model (σ = 1.2 day−1) gives a value which has the right
order of magnitude when compared to numerical values: 0.5 day−1 (Gerkema et al.
2006), or 0.66 day−1 (Gayen & Sarkar 2013) and to oceanic measurements: from 0.2 to 0.5
day−1 (McKinnon et al. 2012). On the contrary for a larger beam, the instability enables
transfer to both larger and smaller scales (κ1 = 1.7κ0, κ2 = 0.7κ0) which corresponds to
the infinitely wide theory prediction.

This transition depends on the amplitude of the stream function Ψ0. For example,
for Ψ0 three times larger, the transition is obtained for W = 0.55λ0. In contrast, for
Ψ0 three times smaller, the transition is obtained for W = 4.5λ0. Thus, the transition
between the two behaviors appears for W close to the typical width of an oceanic beam.
Consequently, the finite width of the beam can have a notable impact on the selection of
the triad in oceanic cases and provides an explanation for the predominance of energy
transfer to smaller scales for oceanic narrow beams.

6. Conclusion.

We have shown theoretically, numerically and experimentally that the width of the
internal wave beam is a key element in parametric subharmonic instability. This fea-
ture had been totally overlooked previously, despite its dramatic consequences on the
triad selection mechanism. The subharmonic plane waves that are theoretically unstable
can only extract energy from the primary wave if they do not leave the primary beam
too quickly. This finite-width mechanism has two opposite consequences on the wave
energy dissipation: it introduces a PSI threshold (reducing transfer and therefore dis-
sipation), but when PSI is present it enhances the transfer towards small wavelengths,
more affected by dissipation. A complete theoretical study of the impact of the envelope
on the PSI will be a timely achievement. We are aware of a recent work about the weakly
nonlinear asymptotic analysis of the problem by Karimi & Akylas (2014).
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Figure 5: (a) Evolution of the growth rate computed from (3.7) as a function of the
width of the beam, computed using the finite-size model in an oceanic case (N =
1.12 10−3 rad/s, ω0/N = 0.125, λ0 = 100 m, f = 0). The transition between the ex-
ternal and central triad configurations is obtained around W = 1.5λ0. (b) Evolution of
the modulus of the secondary wave vectors for the external case in black and the cen-
tral case in gray as a function of the width of the beam. The horizontal thin black line
represents κ/κ0 = 1.

It has not escaped our notice that the Coriolis force will significantly modify the pre-
diction. Indeed, the group velocity for inertia-gravity waves, which is proportional to
√

(ω2 − f 2) · (N2 − ω2)/(ωκ), decreases with the Coriolis parameter f (Gill 1982). The
rotation reducing the ability of subharmonic waves to escape, it seriously reinforces the
instability. At the critical latitude, the group velocity vanishing, one should even recover
the theoretical prediction for plane waves.

Finally, from a more fundamental point of view, such a mechanism modifies signifi-
cantly the transfer of energy between scales and must be taken into account in all analy-
sis (Caillol & Zeitlin 2000; Lvov et al. 2010, 2012) of wave turbulence, in which infinitely
wide plane waves are until now the common theoretical objects, but not appropriate for
careful predictions.
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sources of PSMN from ENS de Lyon. MLB acknowledges financial support from the
European Commission, Research Executive Agency, Marie Curie Actions (project FP7-
PEOPLE-2011-IOF-298238).

Appendix. Is there an amplitude threshold in resonant triadic instability for
an infinitely wide wave beam?

The expression (3.7) shows that, to get a strictly positive growth rate, the amplitude
of the stream function has to be larger than

|Ψs(l1, m1)| =
ν

2

√

κ2
1κ2

2
I1 I2

, (6.1)

with I1 and I2 defined in Eq. (3.6). This expression has already been reported in Koudella
& Staquet (2006) and Bourget et al. (2013) with minor typos in the latter case. What has
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been overlooked is that the PSI threshold is the global minimum of this function (6.1) of
several variables.

In this appendix, we study the behaviour of Ψs when
−→
k1 tends to

−→
k0 , which is the

most unstable case for small values of the amplitude. In this case, we assume

ℓ1 = ℓ0(1 + µ0ǫα) , (6.2)

m1 = m0(1 + ǫ) , (6.3)

with ǫ = o(1), α > 1 and ǫ and µ0 are positive.
Using the temporal and spatial resonance conditions and the dispersion relation of

internal waves, we obtain the relation

m6
0

κ6
0

(

ǫ4 − 2µ0ǫ3+α + o(ǫ2α)
)

= µ2
0ǫ2α . (6.4)

To solve this equation, there are a priori two different solutions for α:
(a) 3 + α = 2α leading to α = 3. However, this value makes it possible to balance

terms at order ǫ6 but not the lower order term ǫ4. This value α = 3 is therefore not
acceptable.

(b) 4 = 2α leading to α = 2. In that case, the lowest order terms can be balanced and
one gets µ0 = (m0/κ0)

3.
Finally, we obtain

ℓ1 = ℓ0(1 + µ0ǫ2) and ℓ2 = −µ0ℓ0ǫ2 (6.5)

m1 = m0(1 + ǫ) and m2 = −m0ǫ . (6.6)

With these relations, it can be shown that

I1 = −ℓ0m0ǫ + o(ǫ) and I2 = −ℓ0m0 + o(1) , (6.7)

which means that

|Ψs| =
ν

2
N

ω0

√
ǫ + o(ǫ1/2) . (6.8)

Therefore, the minimum of the positive expression (6.1) is zero. Consequently, there is
no threshold for an infinitely wide wave beam.
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