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Abstract

Escalation is the fact that in a game (for instance in an auction), the
agents play forever. The 0, 1-game is an extremely simple infinite game with
intelligent agents in which escalation arises. It shows at the light of research
on cognitive psychology the difference between intelligence (algorithmic mind)
and rationality (algorithmic and reflective mind) in decision processes. It also
shows that depending on the point of view (inside or outside) the rationality of
the agent may change which is proposed to be called the principle of relativity.

Keywords: economic game, infinite game, sequential game, extensive game,
escalation, speculative bubble, coinduction, auction.

To Bernard Maris

23 September 1946 – 7 January 2015

That “rational agents” should not engage in such [es-
calation] behavior seems obvious.

Wolfgang Leininger [15]

I can calculate the movement of the stars,
but not the madness of men.

Newton1 in (1720)

Sequential games are the natural framework for decision processes. In this pa-
per we study a decision phenomenon called escalation. Infinite sequential games
presented here generalize naturally sequential games with perfect information and
have been introduced by Lescanne [17] and Lescanne and Perrinel [21] and formalize
what is proposed in the literature [26]. Sequential games are games in which each
player plays one after the other (or possibly after herself). Here we prove, using
coinduction on a simple example, namely the 0,1 game, that escalation is not irra-
tional. More precisely, in escalation, agents exhibit only the low part of the rational
mind, namely the algorithmic mind, assimilated to intelligence or fluid intelligence
to be more specific (see Stanovich [34]). Since intelligent behavior contrasts with
the somewhat obvious observation that escalation is irrational, we state a principle
of relativity which says that “the view of the insider (the agent) is not the same
as the view of the outsider (the observer)”, a well known fact in computer science
when studying distributive system [12]. In addition, the 0,1 game has nice proper-
ties which make it an excellent paradigm of escalation, a good domain of application
of coalgebras and coinduction and a very nice opportunity to present coinduction,
a tool designed to prove properties of complex systems.

1Actually probably apocryphal Newton’s view on the outcome of the South Sea Bubble.
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1 The problem of escalation

Escalation in sequential games is a classic of game theory and it is admitted that es-
calation is irrational. Consider agents able to reason formally that is making choices
which are optimal and robust, in other words choosing equilibria. In finite sequential
games, a right choice is obtained by a specific equilibrium called backward induction
(see Appendix). More precisely a consequence of Aumann’s theorem [3] says that
an agent takes a good decision in a finite sequential game if she makes her choice
according to backward induction. In this paper we generalize backward induction
into subgame perfect equilibria and we explore the kind of reasoning obtained when
built on subgame perfect equilibria (SPE in short). Such an appropriate reasoning
is said to be based on an algorithmic mind (see Section 7).

What is escalation? In a sequential game, escalation is the possibility that
agents take adequate decisions forever without stopping. This phenomenon has
been evidenced by Shubik [33] in a game called the dollar auction. Without being
very difficult, the analysis of the dollar auction is relatively involved, because it
requires infinitely many infinite strategy profiles indexed by n ∈ N [21]. At each
step there are two and only two equilibria and therefore two potential intelligent
decisions for the agents, namely “stop” or “continue”. If both agents choose always
“continue”, an escalation occurs. In this paper, we propose an example which is
simpler theoretically and which offers infinitely many infinite equilibria at each step
unlike the dollar auction. Due to the form of the equilibria, the agent has no clue
on which strategy is taken by her opponent.

What is coinduction? Wikipedia gives the following definition of coinduction:
“In computer science, coinduction is a technique for defining and proving properties
of systems of concurrent interacting objects.” Actually coinduction is more than a
technique, since it is a formal approach to correct reasoning on infinite structures
and to complex systems which applies far beyond computer science, especially to
economics. First traces of coinduction can be found at the beginning of the XXth

century when researchers tried to set a mathematical foundation to not well-founded
sets [22]. It was revisited by Peter Aczel [2] creating the foundation of coinduction.
Davide Sangiorgi [30] gives a historical account of the field. Notice that Lawrence
Moss and Ignacio Viglizzo have already apply coalgebras to the theory of normal
form game [23].

Escalation and infinite games. Books and articles [8, 10, 25, 15, 24] cover
escalation. Following Shubik, all agree that escalation takes place and can only
take place in an infinite game, but their argument uses reasoning on finite games.
Indeed, if we cut at a finite position the infinite game of the dollar auction in
which escalation is supposed to take place, we get a finite game, in which the only
right decision is to never start the game, because the only backward induction
equilibrium corresponds to not start playing. Then the result is extrapolated by
the authors to infinite games by making the size of the game to grow indefinitely.
However, it has been known for a long time at least since Weierstraß [39], that the
“cut and extrapolate” method is wrong (see Appendix), or said otherwise, there
is no continuity at infinite. For Weierstraß this would lead to the conclusion that
the infinite sum of differentiable functions would be differentiable whereas he has
exhibited a famous counterexample. In the case of infinite structures like infinite
games, the right reasoning is coinduction. With coinduction we were able to show
that in the dollar auction escalation can be the result of a formal reasoning [21, 19].
Currently, since the tools used generally in economics are pre-coinduction based,
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they conclude that bubbles and crises are impossible and everybody’s experience
has witnessed the opposite. Careful analysis done by quantitative economists, like
for instance Bouchaud [4, 5], have shown that bursts (aka volatility), which share
much similarities with escalation, actually take place at any time scale. Escalation
is therefore an intrinsic feature of economics. Consequently, coinduction is probably
the tool that economists who call for a rethinking economics [7, 4, 36] are waiting
for [40].

Structure of the paper This paper is structured as follows. In Section 2 we
present infinite games, infinite strategy profiles and infinite strategies, then we de-
scribe the 0,1-game in Section 3. Last, we introduce the concept of equilibrium
(Sections 4 and 5) and we discuss escalation (Section 6). In Section 7 we discuss
the actual rationality of the agents from a cognitive science point of view. In an
appendix, we talk about finite 0, 1-games and finite strategy profiles. Bart Ja-
cobs [12], Jan Rutten [29] and Davide Sangiorgi [31] propose didactic introductions
to coalgebras and coinduction. This paper is a deeply modified version of [20].

2 Two choice sequential games

Our aim is not to present a general theory of coalgebras or a theoretical foundation
of infinite extensive games. For this the reader is invited to look at [1, 19, 21]. But
we want to give a taste of infinite sequential games2 through a very simple one. This
game has two agents and two choices. To support our claim about the intelligence
of escalation, we do not need more features.

Assume that the set P of agents is made of two agents called A and B. In
this framework, an ‘infinite sequential two choice game’ has two shapes. First, it
can be an ending position in which case it boils down to the distribution of the
payoffs to the agents. In other words, an ending game is reduced to a function
f : A 7→ fA, B 7→ fB and we write it 〈f〉. Second , it can be a generic game with a
set Choice made of two potential choices: d or r (d for down and r for right). Since
the game is potentially infinite, it may continue forever. Thus formally in this most
general configuration a game can be seen as a triple:

g = 〈p, gd, gr〉.

where p is an agent and gd and gr are themselves games. The subgame gd is for
the down choice, i.e., the choice corresponding to go down and the subgame gr is
for the right choice, i.e., the choice corresponding to go to the right. Therefore, we
define a functor (see [29] page 4 and following):

〈 〉 : X → RP + P× X× X.

introducing a category of coalgebras of which Game is the final coalgebra and where
P = {A,B}. In other words, Game satisfies the isomorphism

Game ≃ RP + P× Game× Game.

Example 1 Here is a picture of a typical finite sequential game:

2If the reader feels that this approach is not formal enough, she (he) can look at the “ultra”-
formal approach found in the COQ scripts mentioned in Section 5.
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Let us call it gg. In this picture 3, 2 represents the game 〈A 7→ 3,B 7→ 2〉 and
gg = 〈A, gg1, gg2〉 where
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If we write the full decomposition of gg1 we get:

gg1 = 〈A, 〈B, 〈A 7→ 1,B 7→ 8〉, 〈A 7→ 4,B 7→ 7〉〉, 〈A 7→ 2,B 7→ 0〉〉.

Example 2
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0, 1 1, 0

is a picture of an infinite game which will be studied more formally in Section 3.
Notice the dotted arrow // which shows the start of the game.
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Example 3 The game which is solution of the equation

g = 〈A, 〈B, g, g〉, 〈B, g, g〉〉

is a game infinite in both direction, down and right, alternating agents A and B.
Notice that it has no leaf and that payoffs are not attributed. It can be pictured as:
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0,100 95,0 −5,95 90,−5 −10,90 85,−10 −5n,100−5n 100−5(n+1),−5n

is the dollar auction game [33] with bids of 5¢.

2.1 Strategy profiles

From a game, we can deduce strategy profiles (later we will also say sometimes
simply profiles) obtained by adding a label, at each node, which is a choice made
by the agent. In a two choice sequential game, choices belong to the set {d, r}.
Therefore a strategy profile which does not correspond to an ending game is a
quadruple:

s = 〈〈p, c, sd, sr〉〉,

where p is an agent (A or B), c is a choice (d or r), and, sd and sr are two strategy
profiles. The strategy profile which corresponds to an ending position has no choice,
namely it is reduced to a function 〈〈f〉〉 = 〈〈A 7→ fA, B 7→ fB〉〉. The functor

〈〈 〉〉 : X → RP + P× Choice× X× X.

where

P = {A,B}

Choice = {r, d}

introduces a category of coalgebras in which the coalgebra StratProf of infinite
strategy profiles is the final coalgebra. Hence StratProf satisfies the isomorphism:

StratProf ≃ RP + P× Choice× StratProf× StratProf.

Example 5 Here are the pictures of three strategy profiles associated with the game
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of Figure 1.
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The start of those strategy profiles is taken by player A and she chooses right in
the two first strategy profiles and down in the third strategy profile.

s1 is built with the strategy profiles:
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s12 = ?>=<89:;B

r
(0

d





?>=<89:;A

r
'/

d





3, 2

?>=<89:;A

r
++

d

�

1, 2 ?>=<89:;A

r
++

d

��

2, 1

2, 2 ?>=<89:;B

r
'/

d

		

3, 6

1, 1

with
s1 = 〈〈A, r, s11, s12〉〉.

The full decomposition of s11 is

s11 = 〈〈A, r, 〈〈B, d, 〈〈A 7→ 1,B 7→ 8〉〉, 〈〈A 7→ 4,B 7→ 7〉〉〉〉, 〈〈A 7→ 2,B 7→ 0〉〉〉〉.

Example 6 Figure 1 on page 12, Figure 2 on page 12, and Figure 3 on page 14
give strategy profiles of infinite sequential games.

Example 7
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is a strategy profile which is of interest in the dollar auction game [21] for proving
that agent reasoning formally can enter escalation.

Example 8
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is a strategy profile of the game of Example 3 and is solution of the equation

s = 〈〈A, d, 〈〈B, r, s, s〉〉, 〈〈B, r, s, s〉〉〉〉

From a strategy profile, we can build a game by removing the choices:

game :: StratProf → Game

game(〈〈f〉〉) = 〈f〉

game(〈〈p, c, sd, sr〉〉) = 〈p, game(sd), game(sr)〉

game(s) is the game of the strategy profile s. Notice that the function game is not
recursive like say the function fib

fib(0) = 0

fib(1) = 1

fib(n+ 2) = fib(n+ 1) + fib(n)
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which defines the Fibonacci sequence. In fact, game is corecursive since it works on
potentially infinite structures (see the end of this section) whereas fib which works
on natural numbers works on finite structure and is recursive. Notice however that
if we consider only finite games and finite strategy profiles, then a recursive game

function could be defined. In this paper we consider the final coalgebras Game which
contains finite and infinite sequential games and the final coalgebra Stratprof which
contains finite and infinite strategy profiles.

Given a strategy profile s, we can associate, by induction, a (partial) payoff
function ŝ, as follows:

when s = 〈〈f〉〉 ŝ = f
when s = 〈〈p, d, sd, sr〉〉 ŝ = ŝd
when s = 〈〈p, r, sd, sr〉〉 ŝ = ŝr

In the literature on extensive games ([3, 11] for instance), authors have a graph
vision and they write hv

p(s) the payoff obtained by p starting at vertex v. Here
we consider only the start vertex (let us call it start). For us, the vertices are
not primitive objects. The other vertices are start vertices of subgames and of
subprofiles and are only considered when dealing with those subgames and those
subprofiles. What we write ŝ(p) would be written hstart

p (s) in [3, 11].

Example 9 In Example 5, we have:

ŝ1(A) = 3
ŝ1(B) = 2

ŝ2(A) = 3
ŝ2(B) = 6

ŝ3(A) = 2
ŝ3(B) = 0

ŝ is not defined if its definition runs in an infinite process. For instance, in Exam-
ple 16, ŝ2r is not defined and in Section 6, ŝA,∞ is not defined. To ensure that we
consider only strategy profiles where the payoff function is defined we can impose
strategy profiles to be convergent3, written s ↓ (or prefixed ↓ (s)) and defined as
the least predicate satisfying

s ↓ ks i, +3 s = 〈〈f〉〉 ∨ s = 〈〈p, d, sd, sr〉〉 ⇒ sd ↓ ∧ s = 〈〈p, r, sd, sr〉〉 ⇒ sr ↓ .

Proposition 10 If s ↓, then ŝ is defined.

Proof: By induction. If s = 〈〈f〉〉, then since ŝ = f and f is defined, ŝ is
defined.

Assume s ↓. If s = 〈〈p, c, sd, sr〉〉, there are two cases: c = d or c = r.
Let us look at c = d. If c = d, then sd ↓ and ŝd is defined by induction
and since ŝ = ŝd, we conclude that ŝ is defined.

The case c = r is similar. 2

As we will consider the payoff function also for subprofiles, we want the payoff
function to be defined on subprofiles as well. Therefore we define a property stronger
than convergence which we call strong convergence4. We say that a strategy profile
s is strongly convergent and we write it s ⇓ if it is the largest predicate fulfilling the
following conditions.

• 〈〈p, c, sd, sr〉〉 ⇓ if

– 〈〈p, c, sd, sr〉〉 is convergent,

– sd is strongly convergent,

– sr is strongly convergent.

3Called leads to a leaf in [21].
4Called always lead to a leaf in [21].
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• 〈〈f〉〉 ⇓ that is that for whatever f , 〈〈f〉〉 is strongly convergent

More formally:

s ⇓ ks c, +3 s = 〈〈f〉〉 ∨ (s = 〈〈p, c, sd, sr〉〉 ∧ s ↓ ∧sd ⇓ ∧sr ⇓).

There is however a difference between the definitions of ↓ and ⇓. Wherever
s ↓ is defined by induction5, from ending games to the game s, s ⇓ is defined by
coinduction6. This difference between recursive and corecursive definition is the
core of coalgebra theory [12, 29, 31]. However, this is not the aim of the present
paper to present coinduction in detail. Both induction and coinduction are based on
the fixed-point theorem. The definition of ⇓ is typical of infinite profiles and means
that ⇓ is invariant along the infinite profile. To make the difference clear and explicit
between the definitions, we use the symbol ks i, +3 for inductive definitions and the
symbol ks c, +3 for coinductive definitions. Recall that the definition of the function
game :: StratProf → Game was presented as a coinductive function. We get easily
the following proposition.

Proposition 11 s ⇓ ⇒ s ↓ .

Clearly we do not have the opposite implication, as shown by Example 17. Indeed
s ↓ is a local property whereas s ⇓ is a somewhat global property.

We can define the notion of subprofile, written -:

s′ - s ks i, +3 s′ ∼s s ∨ s = 〈〈p, c, sd, sr〉〉 ∧ (s′ - sd ∨ s′ - sr),

where ∼s is the bisimilarity7 among profiles defined as the largest binary predicate
s′ ∼s s such that

s′ ∼s s ks c, +3 s′ = 〈〈f〉〉 = s ∨ (s′ = 〈〈p, c, s′d, s
′
r〉〉 ∧

s = 〈〈p, c, sd, sr〉〉 ∧

s′d ∼s sd ∧ s′r ∼s sr).

Notice that since we work with infinite objects, we may have s 6∼s s
′ and s - s′ - s.

In other words, an infinite profile can be a strict subprofile of itself. This is the
case for s1,0,a and s1,0,b in Section 4. If a profile is strongly convergent, then its
subprofiles are strongly convergent as well and the payoffs associated with all its
subprofiles are defined.

Proposition 12

1. If s1 ⇓ and s2 - s1 then s2 ⇓.

2. If s1 ⇓ and if s2 - s1, then ŝ2 is defined.

2.2 The always modality

We notice that ↓ characterizes a profile by a property of the start vertex, we would
say that this property is local. ⇓ is obtained by distributing the property along the
game. In other words we transform the predicate ↓ and such a predicate transformer
is called a modality. Here we are interested by the modality always, also written 2.

Given a predicate Φ on strategy profiles, the predicate 2Φ is defined coinduc-
tively as follows:

5Roughly speaking a definition by induction works from the basic elements, to the constructed
elements. For the natural numbers, for 0 and from n to n+1. For finite strategy profiles, for 〈〈f〉〉
and from s1 and s2 to 〈〈p, c, s1, s2〉〉.

6Roughly speaking a definition by coinduction works on infinite objects, like an invariant.
7The reader can consider ∼s as the equality on StratProf.
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2Φ(s) ks c, +3 Φ(s) ∧ s = 〈〈p, c, sd, sr〉〉 ⇒ (2Φ(sd) ∧ 2Φ(sr)).

The predicate “is strongly convergent” is the same as the predicate “is always
convergent”.

Proposition 13 s ⇓ ⇔ 2 ↓ (s).

2.3 Strategies

The coalgebra Strat of strategies8 is defined by the functor

J K : X → RP + (P+ Choice)× X× X

where P = {A,B} and Choice = {d, r}. In other words, the coalgebra Strat of
strategies is solution of the equation:

Strat ≃ RP + (P+ Choice)× Strat× Strat.

A strategy of agent p is a game in which some occurrences of p are replaced by
choices. A strategy is written JfK or Jx, s1, s2K.

Example 14 Consider the strategy for A in the game gg in which A decides to
always take the choice r.
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By replacing the choice made by agent p by the agent p herself, the function
st2g associates a game with a pair consisting of a strategy and an agent:

st2g(JfK, p) = 〈f〉
st2g(Jx, st1, st2K, p) = if x ∈ P then 〈x, st2g(st1, p), st2g(st2, p)〉

else 〈p, st2g(st1, p), st2g(st2, p)〉.

If a strategy st is really the strategy of agent p it should contain nowhere p and
should contain a choice c instead. In this case we say that st is full for p and we
write it st .

p
.

JfK .
p

Jx, st1, st2K .
p ks c, +3 (x /∈ Choice ⇒ x 6= p) ∧ st1 .

p
∧ st2 .

p
.

We can sum strategies to make a profile. But for that we have to assume that all
strategies are full and have the same game. We say that the strategies are consistent.
In other words, (stp)p∈P is a family of strategies such that:

8A strategy is not the same as a strategy profile, which is obtained as the sum of strategies.
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• ∀p ∈ P, stp .
p
,

• there exists a game g such that for all p in P, st2g returns g, more formally
∃g ∈ Game, ∀p ∈ P, st2g(stp) = g.

We define the sum
⊕

p∈P

stp of consistent strategies as follows:

⊕

p∈P

JfK = 〈〈f〉〉

Jc, stp′,1, stp′,2K ⊕
⊕

p∈P\p′

Jp′, stp,1, stp,2K = 〈〈p′, c,
⊕

p∈P

stp,1,
⊕

p∈P

stp,2〉〉.

We can show that the game of all the strategies is the game of the strategy profile
which is the sum of the strategies.

Proposition 15 st2g(stp′ , p′) = game(
⊕

p∈P

stp).

3 Infinipede games and the 0,1-game

We will restrict to simple games which have the shape of combs,
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At each step the agents have only two choices, namely to stop or to continue. Let
us call such a game, an infinipede.

We introduce infinite games by means of equations. Let us see how this applies
to define the 0, 1-game. First consider two payoff functions:

f0,1 = A 7→ 0,B 7→ 1

f1,0 = A 7→ 1,B 7→ 0

we define two games

g0,1 = 〈A, 〈f0,1〉, g1,0〉

g1,0 = 〈B, 〈f1,0〉, g0,1〉

This means that we define an infinite sequential game g0,1 in which agent A is the
first player and which has two subgames: the trivial game 〈f1,0〉 and the game g1,0
defined in the other equation. The game g0,1 can be pictured as follows:
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0, 1 1, 0 0, 1 1, 0 0, 1 1, 0

or more simply in Figure 1.a.
From now on, we assume that we consider only strategy profiles s whose game

is the 0,1-game, that is game(s) = g0,1. They are characterized by the following
predicates

S0(s) ks c, +3 s = 〈〈A, c, 〈〈f0,1〉〉, s
′〉〉 ∧ S1(s

′)

S1(s) ks c, +3 s = 〈〈B, c, 〈〈f1,0〉〉, s
′〉〉 ∧ S0(s

′).
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Figure 1: The 0, 1-game and two equilibria seen compactly
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s2r sdd2r

Figure 2: Two examples of strategy profiles for the game g0,1

Example 16 Here is a strategy profile (Figure 2)

s2r = 〈〈A, r, 〈〈f0,1〉〉, 〈〈B, r, 〈〈f1,0〉〉, s2r〉〉〉〉

where both agents continue forever. Notice that S0(s2r), ¬(s2r ↓) and a fortiori
¬(s2r ⇓). Said in words,

1. s2r has game g0,1,

2. s2r is not convergent,

3. s2r is not strongly convergent.

Example 17 Consider now the strategy profile (Figure 2)

sd2r = 〈〈A, d, 〈〈f0,1〉〉, 〈〈B, r, 〈〈f1,0〉〉, s2r〉〉〉〉.

This time S0(sd2r), sd2r ↓ and ¬(sdd2r ⇓). Said in words,

1. sd2r has game g0,1,

2. sd2r is convergent,

3. sd2r is not strongly convergent.

We have ŝd2r(A) = 0 and ŝdd2r(B) = 1. But sd2r is not strongly convergent
since 〈〈B, r, 〈〈f1,0〉〉, s2r〉〉 is not convergent.

Notice that the 0, 1-game we consider is somewhat a zero-sum game, but we are
not interested in this aspect. Moreover, a very specific instance of a 0, 1 game has
been considered (by Ummels [37] for instance), but these authors are not interested
in the general structure of the game, but in a specific model on a finite graph, which
is not general enough for our taste. Therefore for Ummels the 0, 1-game is not a
direct generalization of finite sequential games (replacing induction by coinduction)
and not a framework to study escalation.
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4 Subgame perfect equilibria

Among the strategy profiles, we can select specific ones that are called subgame
perfect equilibria [32]. Subgame perfect equilibria are specific strategy profiles that
fulfill a predicate SPE. This predicate relies on another predicate PE which checks
a local property.

PE(s) ⇔ s ⇓ ∧ s = 〈〈p, d, sd, sr〉〉 ⇒ ŝd(p) ≥ ŝr(p)
∧ s = 〈〈p, r, sd, sr〉〉 ⇒ ŝr(p) ≥ ŝd(p)

A strategy profile is a subgame perfect equilibrium if the property PE holds always:

SPE = 2PE.

Example 18 In Example 5 we have SPE(s1), SPE(s2) and ¬SPE(s3). In Exam-
ple 16, ¬SPE(s2r) since ¬(s2r) ⇓.

We may now wonder what the subgame perfect equilibria of the 0,1-game are. We
present four of them in Figure 1.b, Figure 1.c and Figure 3. But there are others.
To present them, let us define a predicate “A continues and B eventually stops”

AcBes(s) ks i, +3 s = 〈〈p, c, 〈〈f〉〉, s′〉〉 ⇒ (p = A ∧ f = f0,1 ∧ c = r ∧ AcBes(s′)) ∨

(p = B ∧ f = f1,0 ∧ (c = d ∨ AcBes(s′))

Proposition 19 (S1(s) ∨ S0(s)) ⇒ AcBes(s) ⇒ ŝ = f1,0

Proof: Assume S1(s) ∨ S0(s). If s = 〈〈p, c, 〈〈f〉〉, s′〉〉, then S0(s
′) ∨ S1(s

′).

Therefore if AcBes(s′), by induction, ŝ′ = f1,0. By cases:

• If p = A ∧ c = r, then AcBes(s′) and by definition of ŝ, we have

ŝ = ŝ′ = f0,1

• if p = B ∧ c = d, the ŝ = 〈̂〈f1,0〉〉 = f1,0.

• if p = B∧c = r, then AcBes(s′) and by definition of ŝ, ŝ = ŝ′ = f1,0.

2

Like we generalize PE to SPE by applying the modality 2, we generalize AcBes into
SAcBes by stating:

SAcBes = 2AcBes.

There are at least two profiles which satisfies SAcBes namely s1,0,a and s1,0,b which
have been studied in [19] and pictured in Figure 1:

s1,0,a ks c, +3 〈〈A, r, 〈〈f0,1〉〉, s1,0,b〉〉
s0,1,a ks c, +3 〈〈A, d, 〈〈f0,1〉〉, s0,1,b〉〉

s1,0,b ks c, +3 〈〈B, d, 〈〈f1,0〉〉, s1,0,a〉〉
s0,1,b ks c, +3 〈〈B, r, 〈〈f1,0〉〉, s0,1,a〉〉

In Figure 3, we give other strategy profiles which fulfill the predicate SAcBes. For
the first one we draw only the beginning of the strategy profile, but the reader can
imagine that he continues a strategy profile in which A always continues whereas B
does not always continue, in other words, B stops infinitely often.

Proposition 20 SAcBes(s) ⇒ s ⇓ .

We may state the following proposition.

Proposition 21 ∀s, (S0(s) ∨ S1(s)) ⇒ (SAcBes(s) ⇒ SPE(s)).
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Figure 3: Other equilibria of the 0, 1 game.

Proof: Since SPE is a coinductively defined predicate, the proof is by
coinduction.

Given an s, we have to prove ∀s,2AcBes(s) ∧ (S0(s) ∨ S1(s)) ⇒
2PE(s).

For that we assume 2AcBes(s) ∧ (S0(s) ∨ S1(s)) and in addition
(coinduction principle) 2PE(s′) for all strict subprofiles s′ of s and we
prove PE(s). In other words, s ⇓ ∧〈〈p, d, sd, sr〉〉 ⇒ ŝd(p) ≥ ŝr(p) ∧
〈〈p, r, sd, sr〉〉 ⇒ ŝr(p) ≥ ŝd(p).

By Proposition 20, we have s ⇓.
By Proposition 19, we know that for every subprofile s′ of a profile s

that satisfies S1(s)∨S0(s) we have ŝ′ = f1,0 except when s′ = 〈〈f0,1〉〉. Let
us prove 〈〈p, d, sd, sr〉〉 ⇒ ŝd(p) ≥ ŝr(p) ∧ 〈〈p, r, sd, sr〉〉 ⇒ ŝr(p) ≥ ŝd(p).
Let us proceed by case:

• s = 〈〈A, r, 〈〈f0,1〉〉, s
′〉〉. Then S0(s) and S1(s

′). Since 2AcBes(s), we

have AcBes(s′), therefore ŝ′ = f1,0 hence ŝ′(A) = 1 and f0,1(A) = 0,

henceforth ŝ′(A) ≥ f0,1(A).

• s = 〈〈B, r, 〈〈f1,0〉〉, s
′〉〉. Then S1(s) and S0(s

′). Since 2AcBes(s), we

have AcBes(s′), therefore ŝ′ = f1,0 hence ŝ′(B) = 0 and f1,0(B) = 0,

henceforth ŝ′(B) ≥ f1,0(B).

2

Symmetrically we can define a predicate BcAes for “B continues and A eventually
stops” and a predicate SBcAes which is SBcAes = 2 BcAes which means that B

always continues and A stops infinitely often. With the same argument as for
SAcBes we can conclude :

Proposition 22 ∀s, (S0(s) ∨ S1(s)) ⇒ SBcAes(s) ⇒ SPE(s).

Lemma 23 Assume S0(s) or S1(s), then SPE(s) ⇒ (SAcBes(s) ∨ SBcAes(s))

Proof: By contradiction. Assume (¬SAcBes(s)) ∧ (¬SBcAes(s)). This
means that one of the following statements are fulfilled.

14



• There exist sB and sA such that sA = 〈〈A, d, 〈〈f0,1〉〉, s
′
A
〉〉 - sB =

〈〈B, d, 〈〈f1,0〉〉, s
′
B
〉〉 - s and there are only “r’s” between B and

A. Notice that ŝ′
B
(B) = 1 while 〈̂〈f1,0〉〉(B) = 0. Since SPE(s)

then SPE(sB) therefore sB = 〈〈B, d, 〈〈f1,0〉〉, s
′
B〉〉 implies ŝ′

B
(B) ≤

〈̂〈f1,0〉〉(B) which is a contradiction.

• There exist sA and sB such that sB = 〈〈B, d, 〈〈f1,0〉〉, s
′
A
〉〉 - sA =

〈〈A, d, 〈〈f0,1〉〉, s
′
B
〉〉 - s and there are only “r’s” between A and B.

The contradiction is obtained like above.

• s2r - s, which means that eventually A and B continue forever
and which is in contradiction with SPE(s) since ¬SPE(s2r) (see
Example 18).

2

SAcBes ∨ SBcAes fully characterizes SPE of 0,1-games, in other words.

Theorem 24 ∀s, (S0(s) ∨ S1(s)) ⇒ (SAcBes(s) ∨ SBcAes(s) ⇔ SPE(s)).

5 Nash equilibria

Before talking about escalation, let us see the connection between subgame perfect
equilibrium and Nash equilibrium in a sequential game. In [25], the definition of
a Nash equilibrium is as follows: A Nash equilibrium is a“pattern[s] of behavior
with the property that if every player knows every other player’s behavior she has
not reason to change her own behavior” in other words, “a Nash equilibrium [is]
a strategy profile from which no player wishes to deviate, given the other player’s
strategies.” . The concept of deviation of agent p is expressed by a binary relation
we call convertibility9 and we write ⊢p⊣. It is defined inductively as follows:

s ∼s s
′

s⊢p⊣ s′

s1 ⊢p⊣ s′1 s2 ⊢p⊣ s′2

〈〈p, c, s1, s2〉〉 ⊢p⊣ 〈〈p, c′, s′1, s
′
2〉〉

s1 ⊢p⊣ s′1 s2 ⊢p⊣ s′2

〈〈p′, c, s1, s2〉〉 ⊢p⊣ 〈〈p′, c, s′1, s
′
2〉〉

We define the predicate Nash as follows:

Nash(s) ⇔ ∀p, ∀s′, s⊢p⊣ s′ ⇒ ŝ(p) ≥ ŝ′(p′).

The concept of Nash equilibrium is more general than that of subgame perfect
equilibrium and we have the following result:

Proposition 25 SPE(s) ⇒ Nash(s).

The result has been proven in COQ and we refer to the script (see[21]):
http://perso.ens-lyon.fr/pierre.lescanne/COQ/EscRatAI/

http://perso.ens-lyon.fr/pierre.lescanne/COQ/EscRatAI/SCRIPTS/

Notice that we defined the convertibility inductively, but a coinductive definition
is possible. But this would give a more restrictive definition of Nash equilibrium.

9This should be called perhaps feasibility following [28] and [18]
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6 Escalation

Escalation in a game with a set P of agents occurs when there is a tuple of consistent

strategies (stp)p∈P such that its sum is not convergent, in other words, ¬ (
⊕

p∈P

stp) ↓.

Said differently, it is possible that the agents have all a private strategy which
combined with those of the others makes a strategy profile which is not convergent,
which means that the strategy profile goes to infinity when following the choices.
Notice the two uses of a strategy profile: first, as a subgame perfect equilibrium,
second as a combination of the strategies of the agents.

Consider the strategy:

stA,∞ = Jr, Jf0,1K, st
′
A,∞K

st′A,∞ = JB, Jf1,0K, stA,∞K

and its twin

stB,∞ = JA, Jf0,1K, st
′
B,∞K

st′B,∞ = Jr, Jf1,0K, stB,∞K.

Moreover, consider the strategy profile:

sA,∞ = 〈〈A, r, 〈〈f0,1〉〉, sB,∞〉〉

sB,∞ = 〈〈B, r, 〈〈f1,0〉〉, sA,∞〉〉.

Proposition 26

1. stA,∞ .
A
,

2. stB,∞ .
B
,

3. st2g(stA,∞,A) = st2g(stB,∞,B) = g0,1,

4. game(sA,∞) = g0,1,

5. stA,∞ ⊕ stB,∞ = sA,∞,

6. ¬ sA,∞ ↓.

Proof: The first statements are proved by coinduction on the definition

of .
A
, st2g, game and stA,∞. The last statement is by induction on the

definition of ↓. 2

Proposition 26 can be said in words as follows:

1. stA,∞ is full for A,

2. stB,∞ is full for B,

3. stA,∞ and stB,∞ have game g0,1,

4. sA,∞ has game g0,1,

5. strategy stB,∞ plus strategy stB,∞ yields profile sA,∞,

6. profile sA,∞ is not convergent.
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stA,∞ and stB,∞ are both correct since they are built using choices, namely r,
dictated by subgame perfect equilibria10 which start with r. Another feature of
0, 1-game is that no agent has a clue for what strategy the other agent is using.
Indeed after k steps, A does not know if B has used a strategy derived of equilibria
in SAcBes or in SBcAes. In other words, A does not know if B will stop eventually or
not and vice versa. The agents can draw no conclusion of what they observe. If each
agent does not believe in the threat of the other she is naturally led to escalation.

7 Relativity: are agents really rational?

Observers are less cognitively busy and more open to
information than actors.

Daniel Kahneman [13]

Rationality as observed by an outsider is not the same as rationality seen by an
insider [13, 14, 6]. Since coalgebras are the mathematical tool for observation [12]
a coalgebra approach does not come as a surprise.

In this paper we would like to use the following definition: “An agent is rational11

if she is motivated by maximizing her own payoff”, but since this leads to debate, we
prefer to say that an agent is intelligent in this case. In infinite extensive games, this
translates in saying that an agent is intelligent if she adopts a strategy consistent
with a subgame perfect equilibrium as an extension of backward induction. This
explains the behavior of traders especially when they enter escalation. But is this
compatible with common sense? More precisely whereas Howie Hubler (who lost
8.67× 109$ for Morgan Stanley), Jérôme Kerviel (who lost 6.95× 109$ for Société
Générale) or Brian Hunter (who lost 6.69 × 109$ for Amaranth Advisors) were
intelligent agents when they acted, they are seen clearly as stupid by an external
observer. In other words, agents reason intelligently in an irrational escalation,
which means that an agent can be rational in her closed world and seen irrational
from outside. Is this consistent? Yes and this allows us drawing three conclusions:

• Insider view differs from outsider observation.

• According to K. E. Stanovich [34, 35], there are two levels in Kahneman Sys-
tem II (the effortful and slow part of the mind) [13]: algorithmic mind which
is the ability of agents to reason perfectly and logically in a deductive sys-
tem12 (called mindware by Keith Stanovich) and reflective mind (or epistemic
mind) which is the ability of an agent to reconsider her believes. For instance,
reflective mind is visible when the agent realizes that the world (the game) is
finite or when the agent realizes that maximizing her own profit is no more the
main aim and that the survival of her company should be taken into account.
In both cases, she changes her belief in an infinite world or in maximizing her
own profit and adds or modifies one or more axiom(s) founding her deductive
system, as part of her belief.

• Consistently with the previous statement, an agent who is involved in an es-
calation can be considered as having a short term vision, whereas the observer
has a long term vision. The agent can also be considered as having a local
vision, whereas the observer has a global vision.

10Recall that our concept of intelligent choice is that of a subgame perfect equilibrium, as
it generalizes backward induction, which is accepted following Aumann [3] as the criterion of
rationality for finite game.

11seen from inside
12In infinite game theory, the deductive system includes coinduction and SPE’s.
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8 Mindware revisited

We propose to extend the concept of mindware proposed by Stanovich which itself
refines system II (slow thinking) of Kahneman [13]. For Stanovich, the deductive
system of the mindware is always the same, namely classical first order logic, only
its implementation in the mind of the agent may vary and can be incomplete. The
reasoning of the mindware relies on believes that can be changed by the reflective
mind. For us, the mindware may implement several kinds of deductive systems
and may change from one agent to the other. For instance, it can implement
classical first order logic, intuitionistic first order logic, classical or intuitionistic
first order logic extended with inductive reasoning or extended with coinductive
reasoning, higher order logic (intuitionistic or classical) etc. All those logics are
equally acceptable, because they are consistent and from Gödel theorem we know
that no universal system of deduction exists. Like for Stanovich, believes may also
be changed by the reflective mind. In his book What Intelligence Tests Miss: The
Psychology of Rational Thought [34] Stanovich presents a few examples to set his
point. The fact that the mindware may implement several deductive systems leads
to reconsider the scope of his examples. This is the case for the example that
illustrates the beginning of chapter six:

Jack is looking at Anne but Anne is looking at George. Jack is mar-
ried but George is not. Is a married person looking at a unmarried
person?

A) Yes B) No C) Cannot be determined
Answer A, B, or C.
[...]
The vast majority of people answer C.

In others words, the vast majority of people, me included, show on this example
that they have a correct mindware based on a constructive logic, for instance, on
intuitionistic logic, because such a logic is easier to use. Therefore they answer C.
Stanovich claims that such an answer is incorrect and calls us cognitive misers.
Actually when reading further [34] I understood that I was supposed to use a more
sophisticated logic, especially that I should use the excluded middle, in other words,
that I should use classical logic, because “most people can carry fully disjunctive
reasoning when they are explicitly told that it is necessary” ([34] p. 71). Therefore
I changed my belief by adding p or not p and I answered A. But this requires more
calculation. Indeed p or not p can be specialized into Anne is married or Anne is
not married from which we draw Anne is married and George is not married and
Anne is looking at George or Jack is married and Anne is not married and Jack is
looking a Anne. We can abstract this into there exists x and there exists y such that
x is married and y is not married and x is looking at y or there exists x and there
exists y such that x is married and y is not married and x is looking at y which
simplifies into there exists x and there exists y such that x is married and y is not
married and x is looking at y and leads to answer A. However if the above question
is completed by

Choose one of the followings
A) Anne is married
B) Anne is not married
C) I don’t know.

A rational person including a person who answered A at the first question will
answer C at this question. More precisely, answering A at the first question does
not allow the agent to justify her answer by exhibiting a pair of persons such that
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one is married and looking at the other who is not married. Unable to justify their
answer, the majority of people choose C at the first question as well.

To introduce disrationality, chapter two of [34] starts with the case of John Allen
Paulos who was involved in a classical escalation [27]. Actually John Allen Paulos,
professor of mathematics at Temple University, is a typical person with a sound
algorithmic mind using coinduction knowingly or not13. Actually he was disrational
because he used improperly his reflective mind and did not change his belief in an
“everlasting” Worldcom company (which eventually bankrupted in 2002) and in its
eventual restart. Paulos is obviously “foolish”, if we say that someone is foolish, if
he has a perfect algorithmic mind, but a faulty reflective mind, in other words if he
is intelligent, but not rational.

The above comments strengthen Stanovich’s distinction between algorithmic
mind and reflective mind, but make the delineation of rationality harder and its
evaluation difficult, because attributing a “rationality quotient” requires first to
determine the deduction system implemented in the mindware and its strength,
then to appreciate the ability of the agent of changing her believes.

9 Which deductive system?

We noticed that several deductive systems can be used. We may wonder what fea-
tures a deductive system should have. Let us tell some of them. First the language
should contain a modality to enable agents to express belief (Ba) or knowledge (Ka).
Moreover, the excluded middle (p∨¬p) is clearly not mandatory. However an agent
a should be able to state that she believes in the excluded middle by a statement
like

Ba((∀p : Proposition) p ∨ ¬p).

This requires a quantification over propositions, which allows also expressing sen-
tences like: We know there are known unknowns (see [16] Section 4):

∧

a∈Agent

Ka((∃p : Proposition) Ka(¬Ka(p))).

Besides quantifications over propositions, quantifications over functions and sets are
required to express belief in finiteness ([19] Section 6):

Ba((∀A : Set) (∀f : A → A) (Surjective(f) ⇒ Injectve(f)))

where Surjective is a predicate which asserts surjectivity and Injective is a predicate
which asserts injectivity.

10 Conclusion

In this paper, we have shown how to use coinduction in economics, more precisely in
economic game theory where it has not been used yet, or perhaps in a hidden form,
which has to be unearthed. We have shown also that rational agents can be seen
as irrational by observers since observation changes the point of view, in particular
on rationality. When Wolfgang Leininger writes (see citation in front of Section 1)
that the fact that rational agents should not engage in an escalation seems obvious,
he means, “obvious” for an observer, not for the agents, or perhaps he should have
said that rational agents should not engage in an escalation, but that intelligent
agents could. If agents are only intelligent, the efficiency of the markets should
then be revisited at the light of escalation. Therefore coinduction is a possible way
for rethinking economics.

13Actually Paulos uses coinduction unknowingly, rather invoking a kind of invariant
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A Finite 0,1 games and the “cut and extrapolate”

method

We spoke about the “cut and extrapolate” method, applied in particular to the
dollar auction. Let us see how it would work on the 0,1-game. Finite games, finite
strategy profiles and payoff functions of finite strategy profiles are the inductive
equivalent of infinite games, infinite strategy profiles and infinite payoff functions
which we presented. Notice that payoff functions of finite strategy profiles are
always defined. Despite we do not speak of the same types 14 of objects, we use the
same notations, but this does not lead to confusion. Consider two infinite families
of finite games, that could be seen as approximations of the 0,1-game:

F0,1 = 〈A, 〈f0,1〉, 〈B, 〈f1,0〉, F0,1〉〉 ∪ {〈f0,1〉}

K0,1 = 〈A, 〈f0,1〉,K
′
0,1〉

K ′
0,1 = 〈B, 〈f1,0〉,K0,1〉 ∪ {〈f1,0〉}

In F0,1 we cut after B and replace the tail by 〈f0,1〉. In K0,1 we cut after A and
replace the tail by 〈f1,0〉. Recall [38] the predicate backward induction shortened in
BI, which is the finite and inductive version of PE.

BI(〈f〉)

BI(〈p, c, sd, sr〉) = BI(sl) ∧ BI(sr) ∧

〈〈p, d, sd, sr〉〉 ⇒ ŝd(p) ≥ ŝr(p) ∧

〈〈p, r, sd, sr〉〉 ⇒ ŝr(p) ≥ ŝd(p)

Example 27 In Example 5 we have BI(s1), BI(s2) and ¬BI(s3).

We consider the two families of strategy profiles:

SF0,1(s) ks i, +3 (s = 〈〈A, d, 〈〈f0,1〉〉, 〈〈B, r, 〈〈f1,0〉〉, s
′〉〉〉〉 ∧ SF0,1(s

′)) ∨
(s = 〈〈A, r, 〈〈f0,1〉〉, 〈〈B, r, 〈〈f1,0〉〉, s

′〉〉〉〉 ∧ SF0,1(s
′)) ∨

s = 〈〈f0,1〉〉

SK0,1(s) ks i, +3 s = 〈〈A, r, 〈〈f0,1〉〉, s
′〉〉 ∧ SK′

0,1(s
′)

SK′
0,1(s) ks i, +3 (s = 〈〈B, d, 〈〈f1,0〉〉, s

′〉〉 ∨ s = 〈〈B, r, 〈〈f1,0〉〉, s
′〉〉) ∧ SK0,1(s

′) ∨
s = 〈〈f1,0〉〉

In SF0,1, B continues and A does whatever she likes and in SK0,1, A continues and
B does whatever she likes. The following proposition characterizes the backward
induction equilibria for games in F0,1 and K0,1 respectively and is easily proved by
induction:

Proposition 28

14In the sense of type theory
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• game(s) ∈ F0,1 ∧ SF0,1(s) ⇔ BI(s),

• game(s) ∈ K0,1 ∧ SK0,1(s) ⇔ BI(s).

This shows that cutting at an even or an odd position does not give the same
strategy profile by extrapolation. Consequently the “cut and extrapolate” method
does not anticipate all the subgame perfect equilibria. Let us add that when cutting
we decide which leaf to insert, namely 〈f0,1〉 or 〈f1,0〉, but we could do another way
obtaining different results.

0,1 game and limited payroll. To avoid escalation in the dollar auction, people
require a limited payroll, i.e., a bound on the amount of money handled by the
agents, but this is inconsistent with the fact that the game is infinite. Said otherwise,
to avoid escalation, they forbid escalation. We can notice that, in the 0,1-game, a
limited payroll would not prevent escalation, since the payoffs are anyway limited
by 1. In the same vein, Demange [9] adds, to justify escalation, a new feature called
joker which is not necessary as we have shown.
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