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Escalation is the fact that in a game (for instance in an auction), the agents play forever. The 0, 1-game is an extremely simple infinite game with intelligent agents in which escalation arises. At the light of research on cognitive psychology, it shows the difference between intelligence (algorithmic mind) and rationality (algorithmic and reflective mind) in decision processes. It also shows that depending on the point of view (inside or outside) the perception of the rationality of the agent change, which we call the principle of relativity.

To Bernard Maris That "rational agents" should not engage in such [escalation] behavior seems obvious.

Wolfgang Leininger [START_REF] Leininger | Escalation and cooperation in conflict situations[END_REF] I can calculate the movement of the stars, but not the madness of men.

Newton1 in (1720)

Sequential games are the natural framework for decision processes. In this paper we study a decision phenomenon called escalation. Infinite sequential games presented here generalize naturally sequential games with perfect information and have been introduced by Lescanne [START_REF] Lescanne | Deconstruction of infinite extensive games using coinduction[END_REF] and Lescanne and Perrinel [START_REF] Lescanne | Backward" coinduction, Nash equilibrium and the rationality of escalation[END_REF] and formalize what is proposed in the literature [START_REF] Osborne | A Course in Game Theory[END_REF]. Sequential games are games in which each player plays one after the other (or possibly after herself). Here we prove, using coinduction on a simple example, namely the 0,1 game, that escalation is not irrational. More precisely, in escalation, agents exhibit only the low part of the rational mind, namely the algorithmic mind, assimilated to intelligence or fluid intelligence to be more specific (see Stanovich [START_REF] Stanovich | What Intelligence Tests Miss: The Psychology of Rational Thought[END_REF]). Since intelligent behavior contrasts with the somewhat obvious observation that escalation is irrational, we state a principle of relativity which says that "the view of the insider (the agent) is not the same as the view of the outsider (the observer)", a well known fact in computer science when studying distributive system [START_REF] Jacobs | Introduction to Coalgebra. Towards Mathematics of States and Observations[END_REF]. In addition, the 0,1 game has nice properties which make it an excellent paradigm of escalation, a good domain of application of coalgebras and coinduction and a very nice opportunity to present coinduction, a tool designed to prove properties of complex systems.

The problem of escalation

Escalation in sequential games is a classic of game theory and it is admitted that escalation is irrational. Consider agents able to reason formally that is making choices which are optimal and robust, in other words choosing equilibria. In finite sequential games, a right choice is obtained by a specific equilibrium called backward induction (see Appendix). More precisely a consequence of Aumann's theorem [START_REF] Aumann | Backward induction and common knowledge of rationality[END_REF] says that an agent takes a good decision in a finite sequential game if she makes her choice according to backward induction. In this paper we generalize backward induction into subgame perfect equilibria and we explore the kind of reasoning obtained when built on subgame perfect equilibria (SPE in short). Such an appropriate reasoning is said to be based on an algorithmic mind (see Section 7).

What is escalation? In a sequential game, escalation is the possibility that agents take adequate decisions forever without stopping. This phenomenon has been evidenced by Shubik [START_REF] Shubik | The dollar auction game: A paradox in noncooperative behavior and escalation[END_REF] in a game called the dollar auction. Without being very difficult, the analysis of the dollar auction is relatively involved, because it requires infinitely many infinite strategy profiles indexed by n ∈ N [START_REF] Lescanne | Backward" coinduction, Nash equilibrium and the rationality of escalation[END_REF]. At each step there are two and only two equilibria and therefore two potential intelligent decisions for the agents, namely "stop" or "continue". If both agents choose always "continue", an escalation occurs. In this paper, we propose an example which is simpler theoretically and which offers infinitely many infinite equilibria at each step unlike the dollar auction. Due to the form of the equilibria, the agent has no clue on which strategy is taken by her opponent.

What is coinduction? Wikipedia gives the following definition of coinduction: "In computer science, coinduction is a technique for defining and proving properties of systems of concurrent interacting objects." Actually coinduction is more than a technique, since it is a formal approach to correct reasoning on infinite structures and to complex systems which applies far beyond computer science, especially to economics. First traces of coinduction can be found at the beginning of the XX th century when researchers tried to set a mathematical foundation to not well-founded sets [START_REF] Mirimanoff | Les antimonies de Russell et de Burali-Forti et le problème fondamental de la théorie des ensembles[END_REF]. It was revisited by Peter Aczel [START_REF] Aczel | Non-well-founded Sets[END_REF] creating the foundation of coinduction. Davide Sangiorgi [START_REF] Sangiorgi | On the origins of bisimulation and coinduction[END_REF] gives a historical account of the field. Notice that Lawrence Moss and Ignacio Viglizzo have already apply coalgebras to the theory of normal form game [START_REF] Moss | Harsanyi type spaces and final coalgebras constructed from satisfied theories[END_REF].

Escalation and infinite games. Books and articles [START_REF] Colman | Game theory and its applications in the social and biological sciences[END_REF][START_REF] Gintis | Game Theory Evolving: A Problem-Centered Introduction to Modeling Strategic Interaction[END_REF][START_REF] Osborne | An Introduction to Game Theory[END_REF][START_REF] Leininger | Escalation and cooperation in conflict situations[END_REF][START_REF] Barry | International escalation and the dollar auction[END_REF] cover escalation. Following Shubik, all agree that escalation takes place and can only take place in an infinite game, but their argument uses reasoning on finite games. Indeed, if we cut at a finite position the infinite game of the dollar auction in which escalation is supposed to take place, we get a finite game, in which the only right decision is to never start the game, because the only backward induction equilibrium corresponds to not start playing. Then the result is extrapolated by the authors to infinite games by making the size of the game to grow indefinitely. However, it has been known for a long time at least since Weierstraß [START_REF] Weierstrass | Über continuirliche Funktionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differentialquotienten besitzen[END_REF], that the "cut and extrapolate" method is wrong (see Appendix), or said otherwise, there is no continuity at infinite. For Weierstraß this would lead to the conclusion that the infinite sum of differentiable functions would be differentiable whereas he has exhibited a famous counterexample. In the case of infinite structures like infinite games, the right reasoning is coinduction. With coinduction we were able to show that in the dollar auction escalation can be the result of a formal reasoning [START_REF] Lescanne | Backward" coinduction, Nash equilibrium and the rationality of escalation[END_REF][START_REF] Lescanne | Rationality and escalation in infinite extensive games[END_REF]. Currently, since the tools used generally in economics are pre-coinduction based, they conclude that bubbles and crises are impossible and everybody's experience has witnessed the opposite. Careful analysis done by quantitative economists, like for instance Bouchaud [START_REF] Bouchaud | Economics needs a scientific revolution[END_REF][START_REF] Bouchaud | Theory of Financial Risk and Derivate Pricing[END_REF], have shown that bursts (aka volatility), which share much similarities with escalation, actually take place at any time scale. Escalation is therefore an intrinsic feature of economics. Consequently, coinduction is probably the tool that economists who call for a rethinking economics [START_REF] Colander | The future of economics: the appropriately educated in pursuit of the knowable[END_REF][START_REF] Bouchaud | Economics needs a scientific revolution[END_REF][START_REF] Turner | Economics after the Crisis: Objectives and Means[END_REF] are waiting for [41].

Structure of the paper This paper is structured as follows. In Section 2 we present infinite games, infinite strategy profiles and infinite strategies, then we describe the 0,1-game in Section 3. Last, we introduce the concept of equilibrium (Sections 4 and 5) and we discuss escalation (Section 6). In Section 7 we discuss the actual rationality of the agents from a cognitive science point of view. In an appendix, we talk about finite 0, 1-games and finite strategy profiles. Bart Jacobs [START_REF] Jacobs | Introduction to Coalgebra. Towards Mathematics of States and Observations[END_REF], Jan Rutten [START_REF] Jan | Universal coalgebra: a theory of systems[END_REF] and Davide Sangiorgi [START_REF] Sangiorgi | An introduction to bisimulation and coinduction[END_REF] propose didactic introductions to coalgebras and coinduction. This paper is a deeply modified version of [START_REF] Lescanne | A simple case of rationality of escalation[END_REF].

Two choice sequential games

Our aim is not to present a general theory of coalgebras or a theoretical foundation of infinite extensive games. For this the reader is invited to look at [START_REF] Abramsky | Coalgebraic analysis of subgameperfect equilibria in infinite games without discounting[END_REF][START_REF] Lescanne | Rationality and escalation in infinite extensive games[END_REF][START_REF] Lescanne | Backward" coinduction, Nash equilibrium and the rationality of escalation[END_REF]. But we want to give a taste of infinite sequential games2 through a very simple one. This game has two agents and two choices. To support our claim about the intelligence of escalation, we do not need more features.

Assume that the set P of agents is made of two agents called A and B. In this framework, an 'infinite sequential two choice game' has two shapes. First, it can be an ending position in which case it boils down to the distribution of the payoffs to the agents. In other words, an ending game is reduced to a function f : A → f A , B → f B and we write it f . Second , it can be a generic game with a set Choice made of two potential choices: d or r (d for down and r for right). Since the game is potentially infinite, it may continue forever. Thus formally in this most general configuration a game can be seen as a triple:

g = p, g d , g r .
where p is an agent and g d and g r are themselves games. The subgame g d is for the down choice, i.e., the choice corresponding to go down and the subgame g r is for the right choice, i.e., the choice corresponding to go to the right. Therefore, we define a functor (see [START_REF] Jan | Universal coalgebra: a theory of systems[END_REF] page 4 and following):

: X → R P + P × X × X.
introducing a category of coalgebras of which Game is the final coalgebra and where P = {A, B}. In other words, Game satisfies the isomorphism Game ≃ R P + P × Game × Game. 

B r C C d Ù Ù 3, 6 1, 1
If we write the full decomposition of gg 1 we get: is the dollar auction game [START_REF] Shubik | The dollar auction game: A paradox in noncooperative behavior and escalation[END_REF] with bids of 5¢.

gg 1 = A, B, A → 1, B → 8 , A → 4, B → 7 , A → 2, B →

Strategy profiles

From a game, we can deduce strategy profiles (later we will also say sometimes simply profiles) obtained by adding a label, at each node, which is a choice made by the agent. In a two choice sequential game, choices belong to the set {d, r}. Therefore a strategy profile which does not correspond to an ending game is a quadruple:

s = p, c, s d , s r ,
where p is an agent (A or B), c is a choice (d or r), and, s d and s r are two strategy profiles. The strategy profile which corresponds to an ending position has no choice, namely it is reduced to a function

f = A → f A , B → f B . The functor : X → R P + P × Choice × X × X.
where P = {A, B} Choice = {r, d} introduces a category of coalgebras in which the coalgebra StratProf of infinite strategy profiles is the final coalgebra. Hence StratProf satisfies the isomorphism:

StratProf ≃ R P + P × Choice × StratProf × StratProf.
Example 5 Here are the pictures of three strategy profiles associated with the game of Figure 1. 

s
B r 9 G d Ù Ù 3, 1, 8 1, 1
The start of those strategy profiles is taken by player A and she chooses right in the two first strategy profiles and down in the third strategy profile.

s 1 is built with the strategy profiles: 

s 11 = ?>=< 89:; A r 9 G d 2, 0 ?>=< 89:; B r C C d Õ 4, 7
A r C C d Õ 1, 2 ?>=< 89:; A r C C d Ö 2, 1 2, 2 ?>=< 89:; B r 9 G d Ù Ù 3, 6 1, 1 with s 1 = A, r, s 11 , s 12 .
The full decomposition of s 11 is 

s 11 = A, r, B, d, A → 1, B → 8 , A → 4, B → 7 , A → 2, B → 0 . Example 6
s = A, d, B, r, s, s , B, r, s, s
From a strategy profile, we can build a game by removing the choices:

game :: StratProf → Game game( f ) = f game( p, c, s d , s r ) = p, game(s d ), game(s r )
game(s) is the game of the strategy profile s. Notice that the function game is not recursive like say the function fib

fib(0) = 0 fib(1) = 1 fib(n + 2) = fib(n + 1) + fib(n)
which defines the Fibonacci sequence. In fact, game is corecursive since it works on potentially infinite structures (see the end of this section) whereas fib which works on natural numbers works on finite structure and is recursive. Notice however that if we consider only finite games and finite strategy profiles, then a recursive game function could be defined. In this paper we consider the final coalgebras Game which contains finite and infinite sequential games and the final coalgebra Stratprof which contains finite and infinite strategy profiles.

Given a strategy profile s, we can associate, by induction, a (partial) payoff function s, as follows:

when s = f s = f when s = p, d, s d , s r s = s d when s = p, r, s d , s r s = s r
In the literature on extensive games ( [START_REF] Aumann | Backward induction and common knowledge of rationality[END_REF][START_REF] Joseph | Substantive rationality and backward induction[END_REF] for instance), authors have a graph vision and they write h v p (s) the payoff obtained by p starting at vertex v. Here we consider only the start vertex (let us call it start ). For us, the vertices are not primitive objects. The other vertices are start vertices of subgames and of subprofiles and are only considered when dealing with those subgames and those subprofiles. What we write s(p) would be written h start p (s) in [START_REF] Aumann | Backward induction and common knowledge of rationality[END_REF][START_REF] Joseph | Substantive rationality and backward induction[END_REF].

Example 9 In Example 5, we have:

s 1 (A) = 3 s 1 (B) = 2 s 2 (A) = 3 s 2 (B) = 6 s 3 (A) = 2 s 3 (B) = 0
s is not defined if its definition runs in an infinite process. For instance, in Example 16, s r is not defined and in Section 6, s A,∞ is not defined. To ensure that we consider only strategy profiles where the payoff function is defined we can impose strategy profiles to be convergent 3 , written s ↓ (or prefixed ↓ (s)) and defined as the least predicate satisfying The case c = r is similar.

s ↓ k s i C Q s = f ∨ (s = p, d, s d , s r ∧ s d ↓) ∨ (s = p, r, s d , s r ∧ s r ↓).
As we will consider the payoff function also for subprofiles, we want the payoff function to be defined on subprofiles as well. Therefore we define a property stronger than convergence which we call strong convergence 4 . We say that a strategy profile s is strongly convergent and we write it s ⇓ if it is the largest predicate fulfilling the following conditions.

• p, c, s d , s r ⇓ if -p, c, s d , s r is convergent, -s d is strongly convergent,
s r is strongly convergent.

3 Called leads to a leaf in [START_REF] Lescanne | Backward" coinduction, Nash equilibrium and the rationality of escalation[END_REF]. 4 Called always lead to a leaf in [START_REF] Lescanne | Backward" coinduction, Nash equilibrium and the rationality of escalation[END_REF].

• f ⇓ that is that for whatever f , f is strongly convergent More formally:

s ⇓ k s c C Q s = f ∨ (s = p, c, s d , s r ∧ s ↓ ∧s d ⇓ ∧s r ⇓).
There is however a difference between the definitions of ↓ and ⇓. Wherever s ↓ is defined by induction 5 , from ending games to the game s, s ⇓ is defined by coinduction 6 . This difference between recursive and corecursive definition is the core of coalgebra theory [START_REF] Jacobs | Introduction to Coalgebra. Towards Mathematics of States and Observations[END_REF][START_REF] Jan | Universal coalgebra: a theory of systems[END_REF][START_REF] Sangiorgi | An introduction to bisimulation and coinduction[END_REF]. However, this is not the aim of the present paper to present coinduction in detail. Both induction and coinduction are based on the fixed-point theorem. The definition of ⇓ is typical of infinite profiles and means that ⇓ is invariant along the infinite profile. To make the difference clear and explicit between the definitions, we use the symbol k s i C Q for inductive definitions and the symbol k s c C Q for coinductive definitions. Recall that the definition of the function game :: StratProf → Game was presented as a coinductive function. We get easily the following proposition.

Proposition 11 s ⇓ ⇒ s ↓ .

Clearly we do not have the opposite implication, as shown by Example 17. Indeed s ↓ is a local property whereas s ⇓ is a somewhat global property.

We can define the notion of subprofile, written :

s ′ s k s i C Q s ′ ∼ s s ∨ s = p, c, s d , s r ∧ (s ′ s d ∨ s ′ s r ),
where ∼ s is the bisimilarity7 among profiles defined as the largest binary predicate s ′ ∼ s s such that

s ′ ∼ s s k s c C Q s ′ = f = s ∨ (s ′ = p, c, s ′ d , s ′ r ∧ s = p, c, s d , s r ∧ s ′ d ∼ s s d ∧ s ′ r ∼ s s r ).
Notice that since we work with infinite objects, we may have s ∼ s s ′ and s s ′ s.

In other words, an infinite profile can be a strict subprofile of itself. This is the case for s 1,0,a and s 1,0,b in Section 4. If a profile is strongly convergent, then its subprofiles are strongly convergent as well and the payoffs associated with all its subprofiles are defined.

Proposition 12

1. If s 1 ⇓ and s 2 s 1 then s 2 ⇓.

2.

If s 1 ⇓ and if s 2 s 1 , then s 2 is defined.

The always modality

We notice that ↓ characterizes a profile by a property of the start vertex, we would say that this property is local. ⇓ is obtained by distributing the property along the game. In other words we transform the predicate ↓ and such a predicate transformer is called a modality. Here we are interested by the modality always, also written . Given a predicate Φ on strategy profiles, the predicate Φ is defined coinductively as follows:

Φ(s) k s c C Q Φ(s) ∧ s = p, c, s d , s r ⇒ ( Φ(s d ) ∧ Φ(s r )).
The predicate "is strongly convergent" is the same as the predicate "is always convergent".

Proposition 13 s ⇓ ⇔ ↓ (s).

Strategies

The coalgebra Strat of strategies8 is defined by the functor

: X → R P + (P + Choice) × X × X
where P = {A, B} and Choice = {d, r}. In other words, the coalgebra Strat of strategies is solution of the equation:

Strat ≃ R P + (P + Choice) × Strat × Strat.
A strategy of agent p is a game in which some occurrences of p are replaced by choices. A strategy is written f or x, s 1 , s 2 .

Example 14 Consider the strategy for A in the game gg in which A decides to always take the choice r. By replacing the choice made by agent p by the agent p herself, the function st2g associates a game with a pair consisting of a strategy and an agent:

st2g( f , p) = f st2g( x, st 1 , st 2 , p) = if x ∈ P then x, st2g(st 1 , p), st2g(st 2 , p) else p, st2g(st 1 , p), st2g(st 2 , p) .
If a strategy st is really the strategy of agent p it should contain nowhere p and should contain a choice c instead. In this case we say that st is full for p and we write it st p .

f p x, st 1 , st 2 p k s c C Q (x / ∈ Choice ⇒ x = p) ∧ st 1 p ∧ st 2 p .
We can sum strategies to make a profile. But for that we have to assume that all strategies are full and have the same game. We say that the strategies are consistent.

In other words, (st p ) p∈P is a family of strategies such that:

• ∀p ∈ P, st p p ,
• there exists a game g such that for all p in P, st2g returns g, more formally ∃g ∈ Game, ∀p ∈ P, st2g(st p ) = g.

We define the sum p∈P st p of consistent strategies as follows:

p∈P f = f c, st p ′ ,1 , st p ′ ,2 ⊕ p∈P\p ′ p ′ , st p,1 , st p,2 = p ′ , c, p∈P st p,1 , p∈P st p,2 .
We can show that the game of all the strategies is the game of the strategy profile which is the sum of the strategies.

Proposition 15 st2g(st p ′ , p ′ ) = game( p∈P st p ).

3 Infinipede games and the 0,1-game

We will restrict to simple games which have the shape of combs,
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At each step the agents have only two choices, namely to stop or to continue. Let us call such a game, an infinipede. We introduce infinite games by means of equations. Let us see how this applies to define the 0, 1-game. First consider two payoff functions:

f 0,1 = A → 0, B → 1 f 1,0 = A → 1, B → 0 we define two games g 0,1 = A, f 0,1 , g 1,0 g 1,0 = B, f 1,0 , g 0,1
This means that we define an infinite sequential game g 0,1 in which agent A is the first player and which has two subgames: the trivial game f 1,0 and the game g 1,0 defined in the other equation. The game g 0,1 can be pictured as follows:

?>=< 89:; A From now on, we assume that we consider only strategy profiles s whose game is the 0,1-game, that is game(s) = g 0,1 . They are characterized by the following predicates Example 16 Here is a strategy profile (Figure 2)

S 0 (s) k s c C Q s = A, c, f 0,1 , s ′ ∧ S 1 (s ′ ) S 1 (s) k s c C Q s = B, c, f 1,0 , s ′ ∧ S 0 (s ′ ).
s r = A, r, f 0,1 , B, r, f 1,0 , s r
where both agents continue forever. Notice that S 0 (s r ), ¬(s r ↓) and a fortiori ¬(s r ⇓). Said in words, 1. s r has game g 0,1 , 2. s r is not convergent, 3. s r is not strongly convergent.

Example 17 Consider now the strategy profile (Figure 2)

s d r = A, d, f 0,1 , B, r, f 1,0 , s r .
This time S 0 (s d r ), s d r ↓ and ¬(s dd r ⇓). Said in words, 1. s d r has game g 0,1 , 2. s d r is convergent, 3. s d r is not strongly convergent.

We have s d r (A) = 0 and s dd r (B) = 1. But s d r is not strongly convergent since B, r, f 1,0 , s r is not convergent.

Notice that the 0, 1-game we consider is somewhat a zero-sum game, but we are not interested in this aspect. Moreover, a very specific instance of a 0, 1 game has been considered (by Ummels [START_REF] Ummels | The complexity of Nash equilibria in infinite multiplayer games[END_REF] for instance), but these authors are not interested in the general structure of the game, but in a specific model on a finite graph, which is not general enough for our taste. Therefore for Ummels the 0, 1-game is not a direct generalization of finite sequential games (replacing induction by coinduction) and not a framework to study escalation.

Subgame perfect equilibria

Among the strategy profiles, we can select specific ones that are called subgame perfect equilibria [START_REF] Selten | Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit[END_REF]. Subgame perfect equilibria are specific strategy profiles that fulfill a predicate SPE. This predicate relies on another predicate PE which checks a local property.

PE(s) ⇔ s ⇓ ∧ s = p, d, s d , s r ⇒ s d (p) ≥ s r (p) ∧ s = p, r, s d , s r ⇒ s r (p) ≥ s d (p)
A strategy profile is a subgame perfect equilibrium if the property PE holds always:

SPE = PE.
Example 18 In Example 5 we have SPE(s 1 ), SPE(s 2 ) and ¬SPE(s 3 ). In Example 16, ¬SPE(s r ) since ¬(s r ) ⇓.

We may now wonder what the subgame perfect equilibria of the 0,1-game are. We present four of them in Figure 1.b, Figure 1.c and Figure 3. But there are others.

To present them, let us define a predicate "A continues and B eventually stops"

AcBes(s) k s i C Q s = p, c, f , s ′ ⇒ (p = A ∧ f = f 0,1 ∧ c = r ∧ AcBes(s ′ )) ∨ (p = B ∧ f = f 1,0 ∧ (c = d ∨ AcBes(s ′ )) Proposition 19 (S 1 (s) ∨ S 0 (s)) ⇒ AcBes(s) ⇒ s = f 1,0 Proof: Assume S 1 (s) ∨ S 0 (s). If s = p, c, f , s ′ , then S 0 (s ′ ) ∨ S 1 (s ′ ).
Therefore if AcBes(s ′ ), by induction, s ′ = f 1,0 . By cases:

• If p = A ∧ c = r, then AcBes(s ′ ) and by definition of s, we have s = s ′ = f 0,1

• if p = B ∧ c = d, the s = f 1,0 = f 1,0 .
• if p = B∧c = r, then AcBes(s ′ ) and by definition of s, s = s ′ = f 1,0 .

Like we generalize PE to SPE by applying the modality , we generalize AcBes into SAcBes by stating: SAcBes = AcBes.

There are at least two profiles which satisfies SAcBes namely s 1,0,a and s 1,0,b which have been studied in [START_REF] Lescanne | Rationality and escalation in infinite extensive games[END_REF] and pictured in Figure 1:

s 1,0,a k s c C Q A, r, f 0,1 , s 1,0,b s 0,1,a k s c C Q A, d, f 0,1 , s 0,1,b s 1,0,b k s c C Q B, d, f 1,0 , s 1,0,a s 0,1,b k s c C Q B, r, f 1,0 , s 0,1,a
In Figure 3, we give other strategy profiles which fulfill the predicate SAcBes. For the first one we draw only the beginning of the strategy profile, but the reader can imagine that he continues a strategy profile in which A always continues whereas B does not always continue, in other words, B stops infinitely often.

Proposition 20 SAcBes(s) ⇒ s ⇓ .

We may state the following proposition. Proof: Since SPE is a coinductively defined predicate, the proof is by coinduction.

Given an s, we have to prove ∀s, AcBes(s) ∧ (S 0 (s) ∨ S 1 (s)) ⇒ PE(s).

For that we assume AcBes(s) ∧ (S 0 (s) ∨ S 1 (s)) and in addition (coinduction principle) PE(s ′ ) for all strict subprofiles s ′ of s and we prove PE(s). Let us proceed by case:

• s = A, r, f 0,1 , s ′ . Then S 0 (s) and S 1 (s ′ ). Since AcBes(s), we have AcBes(s ′ ), therefore s ′ = f 1,0 hence s ′ (A) = 1 and f 0,1 (A) = 0, henceforth s ′ (A) ≥ f 0,1 (A).

• s = B, r, f 1,0 , s ′ . Then S 1 (s) and S 0 (s ′ ). Since AcBes(s), we have AcBes(s ′ ), therefore

s ′ = f 1,0 hence s ′ (B) = 0 and f 1,0 (B) = 0, henceforth s ′ (B) ≥ f 1,0 (B).
Symmetrically we can define a predicate BcAes for "B continues and A eventually stops" and a predicate SBcAes which is SBcAes = BcAes which means that B always continues and A stops infinitely often. With the same argument as for SAcBes we can conclude :

Proposition 22 ∀s, (S 0 (s) ∨ S 1 (s)) ⇒ SBcAes(s) ⇒ SPE(s).
Lemma 23 Assume S 0 (s) or S 1 (s), then SPE(s) ⇒ (SAcBes(s) ∨ SBcAes(s)) Proof: By contradiction. Assume (¬SAcBes(s)) ∧ (¬SBcAes(s)). This means that one of the following statements are fulfilled.

• There exist s B and s A such that s

A = A, d, f 0,1 , s ′ A s B = B, d, f 1,0 , s ′ B
s and there are only "r's" between B and

A. Notice that s ′ B (B) = 1 while f 1,0 (B) = 0. Since SPE(s) then SPE(s B ) therefore s B = B, d, f 1,0 , s ′ B implies s ′ B (B) ≤ f 1,0 (B) which is a contradiction. • There exist s A and s B such that s B = B, d, f 1,0 , s ′ A s A = A, d, f 0,1 , s ′ B
s and there are only "r's" between A and B. The contradiction is obtained like above.

• s r

s, which means that eventually A and B continue forever and which is in contradiction with SPE(s) since ¬SPE(s r ) (see Example 18).

SAcBes ∨ SBcAes fully characterizes SPE of 0,1-games, in other words.

Theorem 24 ∀s, (S 0 (s) ∨ S 1 (s)) ⇒ (SAcBes(s) ∨ SBcAes(s) ⇔ SPE(s)).

Nash equilibria

Before talking about escalation, let us see the connection between subgame perfect equilibrium and Nash equilibrium in a sequential game. In [START_REF] Osborne | An Introduction to Game Theory[END_REF], the definition of a Nash equilibrium is as follows: A Nash equilibrium is a"pattern[s] of behavior with the property that if every player knows every other player's behavior she has not reason to change her own behavior" in other words, "a Nash equilibrium [is] a strategy profile from which no player wishes to deviate, given the other player's strategies." . The concept of deviation of agent p is expressed by a binary relation we call convertibility9 and we write ⊢ p ⊣. It is defined inductively as follows:

s ∼ s s ′ s ⊢ p ⊣ s ′ s 1 ⊢ p ⊣ s ′ 1 s 2 ⊢ p ⊣ s ′ 2 p, c, s 1 , s 2 ⊢ p ⊣ p, c ′ , s ′ 1 , s ′ 2 s 1 ⊢ p ⊣ s ′ 1 s 2 ⊢ p ⊣ s ′ 2 p ′ , c, s 1 , s 2 ⊢ p ⊣ p ′ , c, s ′ 1 , s ′ 2
We define the predicate Nash as follows:

Nash(s) ⇔ ∀p, ∀s ′ , s ⊢ p ⊣ s ′ ⇒ s(p) ≥ s ′ (p ′ ).
The concept of Nash equilibrium is more general than that of subgame perfect equilibrium and we have the following result:

Proposition 25 SPE(s) ⇒ Nash(s).
The result has been proven in COQ and we refer to the script (see [START_REF] Lescanne | Backward" coinduction, Nash equilibrium and the rationality of escalation[END_REF]):

http://perso.ens-lyon.fr/pierre.lescanne/COQ/EscRatAI/ http://perso.ens-lyon.fr/pierre.lescanne/COQ/EscRatAI/SCRIPTS/ Notice that we defined the convertibility inductively, but a coinductive definition is possible. But this would give a more restrictive definition of Nash equilibrium.

Escalation

Escalation in a game with a set P of agents occurs when there is a tuple of consistent strategies (st p ) p∈P such that its sum is not convergent, in other words, ¬ (

p∈P st p ) ↓.
Said differently, it is possible that the agents have all a private strategy which combined with those of the others makes a strategy profile which is not convergent, which means that the strategy profile goes to infinity when following the choices. Notice the two uses of a strategy profile: first, as a subgame perfect equilibrium, second as a combination of the strategies of the agents.

Consider the strategy:

st A,∞ = r, f 0,1 , st ′ A,∞ st ′ A,∞ = B, f 1,0 , st A,∞
and its twin

st B,∞ = A, f 0,1 , st ′ B,∞ st ′ B,∞ = r, f 1,0 , st B,∞ .
Moreover, consider the strategy profile:

s A,∞ = A, r, f 0,1 , s B,∞ s B,∞ = B, r, f 1,0 , s A,∞ .
Proposition 26

1. st A,∞ A , 2. st B,∞ B , 3. st2g(st A,∞ , A) = st2g(st B,∞ , B) = g 0,1 , 4. game(s A,∞ ) = g 0,1 , 5. st A,∞ ⊕ st B,∞ = s A,∞ , 6. ¬ s A,∞ ↓.
Proof: The first statements are proved by coinduction on the definition of A , st2g, game and st A,∞ . The last statement is by induction on the definition of ↓.

Proposition 26 can be said in words as follows:

1. st A,∞ is full for A, 2. st B,∞ is full for B, 3. st A,∞ and st B,∞ have game g 0,1 , 4. s A,∞ has game g 0,1 , 5. strategy st B,∞ plus strategy st B,∞ yields profile s A,∞ , 6. profile s A,∞ is not convergent.
st A,∞ and st B,∞ are both correct since they are built using choices, namely r, dictated by subgame perfect equilibria10 which start with r. Another feature of 0, 1-game is that no agent has a clue for what strategy the other agent is using. Indeed after k steps, A does not know if B has used a strategy derived of equilibria in SAcBes or in SBcAes. In other words, A does not know if B will stop eventually or not and vice versa. The agents can draw no conclusion of what they observe. If each agent does not believe in the threat of the other she is naturally led to escalation.

7 Relativity: are agents really rational?

Observers are less cognitively busy and more open to information than actors.

Daniel Kahneman [START_REF] Kahneman | Thinking, Fast and Slow[END_REF] Rationality as observed by an outsider is not the same as rationality seen by an insider [START_REF] Kahneman | Thinking, Fast and Slow[END_REF][START_REF] Klapisch | My piece of the pie[END_REF][START_REF] Chandor | Margin call. Movie[END_REF]. Since coalgebras are the mathematical tool for observation [START_REF] Jacobs | Introduction to Coalgebra. Towards Mathematics of States and Observations[END_REF] a coalgebra approach does not come as a surprise.

In this paper we would like to use the following definition: "An agent is rational11 if she is motivated by maximizing her own payoff", but since this leads to debate, we prefer to say that an agent is intelligent in this case. In infinite extensive games, this translates in saying that an agent is intelligent if she adopts a strategy consistent with a subgame perfect equilibrium as an extension of backward induction. This explains the behavior of traders especially when they enter escalation. But is this compatible with common sense? More precisely whereas Howie Hubler (who lost 8.67 × 10 9 $ for Morgan Stanley), Jérôme Kerviel (who lost 6.95 × 10 9 $ for Société Générale) or Brian Hunter (who lost 6.69 × 10 9 $ for Amaranth Advisors) were intelligent agents when they acted, they are seen clearly as stupid by an external observer. In other words, agents reason intelligently in an irrational escalation, which means that an agent can be rational in her closed world and seen irrational from outside. Is this consistent? Yes and this allows us drawing three conclusions:

• Insider view differs from outsider observation.

• According to K. E. Stanovich [START_REF] Stanovich | What Intelligence Tests Miss: The Psychology of Rational Thought[END_REF][START_REF] Stanovich | Rationality and the reflective mind[END_REF], there are two levels in Kahneman System II (the effortful and slow part of the mind) [START_REF] Kahneman | Thinking, Fast and Slow[END_REF]: algorithmic mind which is the ability of agents to reason perfectly and logically in a deductive system 12 (called mindware by Keith Stanovich) and reflective mind (or epistemic mind ) which is the ability of an agent to reconsider her believes. For instance, reflective mind is visible when the agent realizes that the world (the game) is finite or when the agent realizes that maximizing her own profit is no more the main aim and that the survival of her company should be taken into account.

In both cases, she changes her belief in an infinite world or in maximizing her own profit and adds or modifies one or more axiom(s) founding her deductive system, as part of her belief.

• Consistently with the previous statement, an agent who is involved in an escalation can be considered as having a short term vision, whereas the observer has a long term vision. The agent can also be considered as having a local vision, whereas the observer has a global vision.

Mindware revisited

We propose to extend the concept of mindware proposed by Stanovich which itself refines system II (slow thinking) of Kahneman [START_REF] Kahneman | Thinking, Fast and Slow[END_REF]. For Stanovich, the deductive system of the mindware is always the same, namely classical first order logic, only its implementation in the mind of the agent may vary and can be incomplete. The reasoning of the mindware relies on believes that can be changed by the reflective mind. For us, the mindware may implement several kinds of deductive systems and may change from one agent to the other. For instance, it can implement classical first order logic, intuitionistic first order logic, classical or intuitionistic first order logic extended with inductive reasoning or extended with coinductive reasoning, higher order logic (intuitionistic or classical) etc. All those logics are equally acceptable, because they are consistent and from Gödel theorem we know that no universal system of deduction exists. Like for Stanovich, believes may also be changed by the reflective mind. In his book What Intelligence Tests Miss: The Psychology of Rational Thought [START_REF] Stanovich | What Intelligence Tests Miss: The Psychology of Rational Thought[END_REF] Stanovich presents a few examples to set his point. The fact that the mindware may implement several deductive systems leads to reconsider the scope of his examples. This is the case for the example that illustrates the beginning of chapter six:

Jack is looking at Anne but Anne is looking at George. Jack is married but George is not. Is a married person looking at a unmarried person?

A) Yes B) No C) Cannot be determined Answer A, B, or C.

[...] The vast majority of people answer C.

In others words, the vast majority of people, me included, show on this example that they have a correct mindware based on a constructive logic, for instance, on intuitionistic logic, because such a logic is easier to use. Therefore they answer C.

Stanovich claims that such an answer is incorrect and calls us cognitive misers.

Actually when reading further [START_REF] Stanovich | What Intelligence Tests Miss: The Psychology of Rational Thought[END_REF] I understood that I was supposed to use a more sophisticated logic, especially that I should use the excluded middle, in other words, that I should use classical logic, because "most people can carry fully disjunctive reasoning when they are explicitly told that it is necessary" ([35] p. 71). Therefore I changed my belief by adding p or not p and I answered A. But this requires more calculation. Indeed p or not p can be specialized into Anne is married or Anne is not married from which we draw Anne is married and George is not married and Anne is looking at George or Jack is married and Anne is not married and Jack is looking a Anne. We can abstract this into there exists x and there exists y such that x is married and y is not married and x is looking at y or there exists x and there exists y such that x is married and y is not married and x is looking at y which simplifies into there exists x and there exists y such that x is married and y is not married and x is looking at y and leads to answer A. However if the above question is completed by

Choose one of the followings A) Anne is married B) Anne is not married C) I don't know.

A rational person including a person who answered A at the first question will answer C at this question. More precisely, answering A at the first question does not allow the agent to justify her answer by exhibiting a pair of persons such that one is married and looking at the other who is not married. Unable to justify their answer, the majority of people choose C at the first question as well.

To introduce disrationality, chapter two of [START_REF] Stanovich | What Intelligence Tests Miss: The Psychology of Rational Thought[END_REF] starts with the case of John Allen Paulos who was involved in a classical escalation [START_REF] Paulos | A Mathematician Plays the Stock Market[END_REF]. Actually John Allen Paulos, professor of mathematics at Temple University, is a typical person with a sound algorithmic mind using coinduction knowingly or not 13 . Actually he was disrational because he used improperly his reflective mind and did not change his belief in an "everlasting" Worldcom company (which eventually bankrupted in 2002) and in its eventual restart. Paulos is obviously "foolish", if we say that someone is foolish, if he has a perfect algorithmic mind, but a faulty reflective mind, in other words if he is intelligent, but not rational.

The above comments strengthen Stanovich's distinction between algorithmic mind and reflective mind, but make the delineation of rationality harder and its evaluation difficult, because attributing a "rationality quotient" requires first to determine the deduction system implemented in the mindware and its strength, then to appreciate the ability of the agent of changing her believes. 9 Which deductive system? I say that it is not illogical to think that the world is infinite.

Jose Luis Borges, The library of Babel in [START_REF] Borges | Ficciones[END_REF] .

We noticed that several deductive systems can be used. We may wonder what features a deductive system should have. Let us tell some of them. First the language should contain a modality to enable agents to express belief (B a ) or knowledge (K a ). Moreover, the excluded middle (p ∨ ¬p) is clearly not mandatory. However an agent a should be able to state that she believes in the excluded middle by a statement like B a ((∀p : Proposition) p ∨ ¬p).

This requires a quantification over propositions, which allows also expressing sentences like: We know there are known unknowns (see [START_REF] Lescanne | Mechanizing common knowledge logic using COQ[END_REF] Section 4): a∈Agent K a ((∃p : Proposition) K a (¬K a (p))).

Besides quantifications over propositions, quantifications over functions and sets are required to express belief in finiteness ([20] Section 6):

B a ((∀A : Set) (∀f :

A → A) (Surjective(f ) ⇒ Injectve(f )))
where Surjective is a predicate which asserts surjectivity and Injective is a predicate which asserts injectivity.

Conclusion

In this paper, we have shown how to use coinduction in economics, more precisely in economic game theory where it has not been used yet, or perhaps in a hidden form, which has to be unearthed. We have shown also that rational agents can be seen as irrational by observers since observation changes the point of view, in particular on rationality. When Wolfgang Leininger writes (see citation in front of Section 1) that the fact that rational agents should not engage in an escalation seems obvious, he means, "obvious" for an observer, not for the agents, or perhaps he should have said that rational agents should not engage in an escalation, but that intelligent agents could. If agents are only intelligent, the efficiency of the markets should then be revisited at the light of escalation. Therefore coinduction is a possible way for rethinking economics.

In SF 0,1 , B continues and A does whatever she likes and in SK 0,1 , A continues and B does whatever she likes. The following proposition characterizes the backward induction equilibria for games in F 0,1 and K 0,1 respectively and is easily proved by induction:

Proposition 28

• game(s) ∈ F 0,1 ∧ SF 0,1 (s) ⇔ BI(s),

• game(s) ∈ K 0,1 ∧ SK 0,1 (s) ⇔ BI(s).

This shows that cutting at an even or an odd position does not give the same strategy profile by extrapolation. Consequently the "cut and extrapolate" method does not anticipate all the subgame perfect equilibria. Let us add that when cutting we decide which leaf to insert, namely f 0,1 or f 1,0 , but we could do another way obtaining different results.

0,1 game and limited payroll. To avoid escalation in the dollar auction, people require a limited payroll, i.e., a bound on the amount of money handled by the agents, but this is inconsistent with the fact that the game is infinite. Said otherwise, to avoid escalation, they forbid escalation. We can notice that, in the 0,1-game, a limited payroll would not prevent escalation, since the payoffs are anyway limited by 1. In the same vein, Demange [START_REF] Demange | Rational escalation[END_REF] adds, to justify escalation, a new feature called joker which is not necessary as we have shown.

Proposition 10

 10 If s ↓, then s is defined. Proof: By induction. If s = f , then since s = f and f is defined, s is defined. Assume s ↓. If s = p, c, s d , s r , there are two cases: c = d or c = r. Let us look at c = d. If c = d, then s d ↓ and s d is defined by induction and since s = s d , we conclude that s is defined.

Figure 1 :Figure 2 :

 12 Figure 1: The 0, 1-game and two equilibria seen compactly

Figure 3 :

 3 Figure 3: Other equilibria of the 0, 1 game.

  In other words, s ⇓ ∧ p, d, s d , s r ⇒ s d (p) ≥ s r (p) ∧ p, r, s d , s r ⇒ s r (p) ≥ s d (p). By Proposition 20, we have s ⇓. By Proposition 19, we know that for every subprofile s ′ of a profile s that satisfies S 1 (s)∨S 0 (s) we have s ′ = f 1,0 except when s ′ = f 0,1 . Let us prove p, d, s d , s r ⇒ s d (p) ≥ s r (p) ∧ p, r, s d , s r ⇒ s r (p) ≥ s d (p).

  Let us call it gg. In this picture 3, 2 represents the game A → 3, B → 2 and gg = A, gg 1 , gg 2 where

	?>=< 89:; A	r		D D ?>=< 89:; B	r		D D ?>=< 89:; A	r	C C 3, 2
	d				d				d
	?>=< 89:; A	r	C C 2, 0	?>=< 89:; A	r	C C 1, 2	?>=< 89:; A	r	C C 2, 1
	d				d				d
	?>=< 89:; B	r	C C 4, 7	Ù Ù 2, 2			?>=< 89:; B	r	C C 3, 6
	d								d
	Ù Ù 1, 8							Ù Ù 1, 1
				gg 1 = ?>=< 89:; A	r	C C 2, 0	
						d			
						?>=< 89:; B	r	C C 4, 7	
						d			
						Ù Ù 1, 8			
	and								
	gg 2 = ?>=< 89:; B	r		D D ?>=< 89:; A	r	C C 3, 2
			d				d		
		?>=< 89:; A	r	C C 1, 2	?>=< 89:; A	r	C C 2, 1
			d				d		
		Ù Ù 2, 2			?>=< 89:;		
	Example 1 Here is a picture of a typical finite sequential game:
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	Example 3 The game which is solution of the equation	
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	is a game infinite in both direction, down and right, alternating agents A and B.
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								r		
					G G ?>=< 89:; A h h	z z	r G G ?>=< 89:; B		
					d			d		
				d	?>=< 89:; B		r			
	Example 4								
	?>=< 89:; A	r B B ?>=< 89:; B	r B B ?>=< 89:; A	r B B ?>=< 89:; B	r B B ?>=< 89:; A		r A A ?>=< 89:; B	?>=< 89:; A	r	C C ?>=< 89:; B
	d	d	d	d	d		d	...	d	d	...
	Õ Õ 0,100	Õ Õ 95,0	Ö Ö -5,95	Ö Ö 90,-5	Ö Ö -10,90		Ö Ö 85,-10	Ö Ö -5n,100-5n	Ö Ö 100-5(n+1),-5n
	Example 2								
								r		
					G G ?>=< 89:; A	e e	7 7 ?>=< 89:; B		
							d	r	d	
					Ù Ù 0, 1		Ù Ù 1, 0		
	is a picture of an infinite game which will be studied more formally in Section 3.
	Notice the dotted arrow	G G which shows the start of the game.

Actually probably apocryphal Newton's view on the outcome of the South Sea Bubble.

If the reader feels that this approach is not formal enough, she (he) can look at the "ultra"formal approach found in the COQ scripts mentioned in Section 5.

Roughly speaking a definition by induction works from the basic elements, to the constructed elements. For the natural numbers, for 0 and from n to n + 1. For finite strategy profiles, for f and from s 1 and s 2 to p, c, s 1 , s 2 .

Roughly speaking a definition by coinduction works on infinite objects, like an invariant.

The reader can consider ∼s as the equality on StratProf.

A strategy is not the same as a strategy profile, which is obtained as the sum of strategies.

This should be called perhaps feasibility following[START_REF] Rubinstein | Lecture Notes in Microecomic Theory[END_REF] and[START_REF] Lescanne | Feasibility/desirability games for normal form games, choice models and evolutionary games[END_REF] 

Recall that our concept of intelligent choice is that of a subgame perfect equilibrium, as it generalizes backward induction, which is accepted following Aumann[START_REF] Aumann | Backward induction and common knowledge of rationality[END_REF] as the criterion of rationality for finite game.

seen from inside

In infinite game theory, the deductive system includes coinduction and SPE's.

Actually Paulos uses coinduction unknowingly, rather invoking a kind of invariant

A Finite 0,1 games and the "cut and extrapolate" method

We spoke about the "cut and extrapolate" method, applied in particular to the dollar auction. Let us see how it would work on the 0,1-game. Finite games, finite strategy profiles and payoff functions of finite strategy profiles are the inductive equivalent of infinite games, infinite strategy profiles and infinite payoff functions which we presented. Notice that payoff functions of finite strategy profiles are always defined. Despite we do not speak of the same types 14 of objects, we use the same notations, but this does not lead to confusion. Consider two infinite families of finite games, that could be seen as approximations of the 0,1-game: [START_REF] Abramsky | Coalgebraic analysis of subgameperfect equilibria in infinite games without discounting[END_REF] we cut after B and replace the tail by f 0,1 . In K 0,1 we cut after A and replace the tail by f 1,0 . Recall [START_REF] Vestergaard | A constructive approach to sequential Nash equilibria[END_REF] the predicate backward induction shortened in BI, which is the finite and inductive version of PE.

Example 27 In Example 5 we have BI(s 1 ), BI(s 2 ) and ¬BI(s 3 ).

We consider the two families of strategy profiles:

0,1 (s) k s i C Q (s = B, d, f 1,0 , s ′ ∨ s = B, r, f 1,0 , s ′ ) ∧ SK 0,1 (s ′ ) ∨ s = f 1,0 14 In the sense of type theory