Maciej Bendkowski

Katarzyna Grygiel

Pierre Lescanne

Marek Zaionc

A NATURAL COUNTING OF LAMBDA TERMS

Keywords: lambda calculus, combinatorics, functional programming, test, random generator, bijection, binary tree, asymptotic

We study the sequences of numbers corresponding to lambda terms of given sizes, where the size is this of lambda terms with de Bruijn indices in a very natural model where all the operators have size 1. For plain lambda terms, the sequence corresponds to two families of binary trees for which we exhibit bijections. We study also the distribution of normal forms, head normal forms and strongly normalizing terms. In particular we show that strongly normalizing terms are of density 0 among plain terms.

Introduction

In this paper we consider a natural way of counting the size of λ-terms, namely λ-terms presented by de Bruijn indices 1 in which all the operators are counted with size 1. This means that abstractions, applications, successors and zeros have all size 1. Formally

|λM | = |M | + 1 |M 1 M 2 | = |M 1 | + |M 2 | + 1 |Sn| = |n| + 1 |0 • | = 1.
For instance the term for K which is written traditionally λx.λy.x in the lambda calculus is written λλS0 • using de Bruijn indices and we have:

|λλS0 • | = 4.
The first author was supported by the National Science Center of Poland, grant number 2011/01/B/HS1/00944, when the author hold a post-doc position at the Jagiellonian University within the SET project co-financed by the European Union. 1 Readers not familiar with de Bruijn indices are invited to read Appendix A. 2. Lambda terms 2.1. Counting plain terms with a natural size: L ∞ . Since the terms are either applications, abstractions or de Bruijn indices, the set L ∞ of lambda terms is solution of the combinatorial equation:

L ∞ = L ∞ L ∞ λL ∞ D
where D is the set of de Bruijn indices which is solution of

D = SD 0 •
Let us call L ∞ the generating function for counting the numbers of the plain terms.

It is solution of the functional equation:

L ∞ = zL 2 ∞ + zL ∞ + z 1 -z ,
which yields the equation:

zL 2 ∞ -(1 -z)L ∞ + z 1 -z = 0 (1)
which has discriminant [START_REF] Nancy | 2-binary trees: Bijections and related issues[END_REF]9,22,57,154,429,1223,3550,10455,31160,93802,284789,871008,2681019 This sequence is A105633 in the Online Encyclopedia of Integer Sequences.

∆ L∞ = (1 -z) 2 -4 z 2 1 -z = (1 -z) 3 -4z 2 1 -z = 1 -3z -z 2 -z 3 1 -z This gives the solution L ∞ = (1 -z) -∆ L∞ 2z = (1 -z) 3/2 - √ 1 -3z -z 2 -z 3 2z √ 1 -z which has ρ L∞ . = 0.29559774252208393 as pole closest to 0. The 18 first values of [z n]L ∞ are: 0, 1, 2,
[z n]L ∞ ∼ 1 ρ L∞ n C n 3 2
Proof. The proof mimics this of Theorem 1 in [START_REF] Grygiel | Counting terms in the binary lambda calculus[END_REF]. Let us write L ∞ as

L ∞ = (1 -z) -1-3z-z 2 -z 3 1-z 2z = (1 -z) -ρ L∞ (1 -z ρ L∞) Q(z) 1-z 2z where R(z) = z 3 + z 2 + 3z -1 Q(z) = R(z) ρ L∞ -z Applying Theorem VI.1 of [2], we get: [z n]L ∞ ∼ 1 ρ L∞ n • n -3/2 Γ(-1 2) C with C = -ρ L∞ Q(ρ L∞) 1-ρ L∞ 2ρ L∞ Notice that Q(ρ L∞) = R (ρ L∞) = 3ρ 2 L∞ + 2ρ L∞ + 3. From this we get C = C Γ(-1 2) . = 0.60676... Figure 1 shows approximations of [x n]L ∞ .
2.2. An holonomic presentation. Using the Maple package gfun [START_REF] Salvy | Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable[END_REF] we were able to build a holonomic equation of which L ∞ is the solution namely

z 3 + z 2 -2z + (z 3 + 3z 2 -3z + 1)L ∞ + (z 5 + 2z 3 -4z 2 + z)L ∞ = 0.
From this equation it is possible to derive the following recursive and linear definition for the coefficients:

L ∞,0 = 0 L ∞,1 = 1 L ∞,2 = 2 L ∞,3 = 4 L ∞,n = (4n -1)L ∞,n-1 -(2n -1)L ∞,n-2 -L ∞,n-3 -(n -4)L ∞,n-4 n + 1 2.3.
Counting terms with at most m indices: L m . The set L m of terms with free indices 0, .., m -1 is described as

L m = L m L m λL m+1 m-1 i=0 S i (0 •).
The set L 0 is the set of closed lambda terms. If we consider the λ-terms with at most m free indices, we get: which yields:

L m = zL 2 m -zL m+1 + z(1 -z m) 1 -z n [x n]L ∞ 10
zL 2 m -L m + z L m+1 + 1 -z m 1 -z = 0.
Let us state

∆ Lm = 1 -4z 2 L m+1 + 1 -z m 1 -z we have L m = 1 -∆ Lm 2z = 1 -1 -4z 2 L m+1 + 1-z m 1-z 2z .
Notice that L m is defined using L m+1 . If this definition is developed, then L m is defined by an infinite sequence of nested radicals. The sequences ([z n]L m) n∈N do not occur in the Online Encyclopedia of Integer Sequences.

2.4.

Counting λ-terms with another notion of size. Assume we take another notion of size in which 0 • has size 0 and applications have size 2, whereas abstraction and succession keep their size 1. In other words:

|λM | = |M | + 1 |M 1 M 2 | = |M 1 | + |M 2 | + 2 |Sn| = |n| + 1 |0 • | = 0.
The generating function 2 A 1 fulfills the identity:

z 2 A 2 1 -(1 -z)A 1 + 1 1 -z .
The reader may check that

L ∞ = z A 1 and [z n]A 1 = [z n+1]L ∞ .
Hence both notions of size correspond to sequence A105633. In Appendix B we consider the case where all the operators (application, abstraction and succession) have size 1 and 0 • has size 0.

Typable Terms

A difficult open problem is to count simply typable terms. In this section, we give empiric results we obtain by an implementation on counting closed typed terms. λ -terms black-white trees zigzag free trees neutral hnf

size typables all 0 0 0 1 0 0 2 1 1 3
S 2 0 • • • • × × × S 3 0 • λS0 • • • • × × × 0 • (S0 •) λλ0 • • • • × × × 0 • (λ0 •) 0 • 0 • • • • × × × (S0 •) 0 • Figure 3.
Bijection between λ-terms, E 1 -free black-white binary trees, zigzag-free trees of size 3 (L 3 = 4) and neutral head normal forms (Section 8) of size 4 (K 4 = 4).

E-free black-white binary trees

A black-white binary tree is a binary tree with colored nodes using two colors, black • and white •. The root of a black-white binary tree is •, by convention. A E-free black-white binary tree is a black-white binary tree in which edges from a set E are forbidden. For instance if the set of forbidden edges is

E 1 = { • • , • • , • • , • • }, this means that only edges in A 1 = { • • , • • , • • , •
• } are allowed. The E 1 -free black-white binary trees of size 3 and 4 are as many as lambda terms of size 3 and 4. They are listed in Fig. 3 and Fig. 4 second column.

For E 1 = { • • , • • , • • , • • }, like for E 2 = { • • , • • , • • , • • },
which is obtained by left-right symmetry, the E-free black-white binary trees are counted by A105633 [START_REF] Nancy | 2-binary trees: Bijections and related issues[END_REF]. In what follows we will consider E 1 and we will rather speak in terms of an allowed set of pattern namely A 1 . For simplicity, we will call in this paper black-white trees, the binary black-white trees with allowed pattern set A 1 .

Before giving the bijection, let us give the trees corresponding to for ω

K = λλS(0 •), to S = λλλ(SS0 • 0 •) (S0 • 0 •), to ω = (λ(0 • 0 •)) λ(0 • 0 •), and to Y = λ(λ(S 0 • (0 • 0 •)) λ(S 0 • (0 • 0 •))): for K • • • • for S • • • • • • • • • • • • • λ -terms black-white trees zigzag free trees neutral hnf S 3 0 • • • • • × × × × S 4 0 • λS 2 0 • • • • • × × × × 0 • (S 2 0 •) λλS0 • • • • • × × × × 0 • (λS0 •) λλλ0 • • • • • × × × × 0 • (λλ0 •) 0 • (S0 •) • • • • × × × × (S0 •) (S0 •) 0 • (λ0 •) • • • • × × × × (S0 •) (λ0 •) (λ0 •) 0 • • • • • × × × × 0 • 0 • 0 • (S0 •) 0 • • • • • × × × × (S 2 0 •) 0 • λ(0 • 0 •) • • • • × × × × 0 • (0 • 0 •)
• • • • • • • • • for Y • • • • • • • • • • • • • • • • 4.1. Recursive description. Assume
is the empty tree which is usually not represented in drawing. The E 1 -free black-white binary trees are described by the following combinatorial equation:

BW • = • BW • • BW • BW • = • BW • • BW • BW •
which yields the following functional equations:

BW • = zBW • + zBW • BW • = 1 + zBW • + zBW • BW • hence BW • = 1 -z z BW • and z(1 -z)BW 2 • + (1 -z) 2 BW • + z = 0.
which is the same equation up to a multiplication by 1-z as (1) namely the equation defining L ∞ 4.2. The bijection. Let us define the function LtoBw from λ-terms to black-white trees:

LtoBw(0 •) = • LtoBw(S(n)) = LtoBw(n) • LtoBw(λM) = LtoBw(M) • LtoBw(M 1 M 2) = LtoBw(M 2) • LtoBw(M 1)
In other words a new node is added on the leftmost node of the tree. from blackwhite trees to λ-terms Let us now define the function BwtoL

BwtoL(•) = 0 • BwtoL T • = S(BwtoL(T)) BwtoL T • = λ BwtoL(T) BwtoL   T 2 • T 1   = BwtoL(T 1) BwtoL(T 2)
In other words, to decompose a binary tree which is not the node •, we look for the left most node.

• If the leftmost node is •, then the λ-term is a de Bruijn index. Actually there are only •'s (indeed

• •
is forbidden) and the tree is linear. If this linear tree has n •'s it represents S n-1 (0 •).

• If the leftmost node is • and has no child, then the λ-term is an abstraction of the bijection of the rest. • If the leftmost node is • and has a right child, then the λ-term is an application of the bijection of the right subtree on the bijection of the above tree .

Proposition 1. LtoBw • BwtoL = id Λ and BwtoL • LtoBw = id BW• 4.3.
The bijection in Haskell. In this section we describe Haskell programs for the bijections. First we define black-white trees. We consider three kinds of trees: leafs (of arity zero and size zero) corresponding to and not represented in drawing. --Cuts the leftmost subtree out from the given tree --returning a pair (leftmost subtree, pruned tree). prune :: BWTree -> (BWTree, BWTree) prune p @ (White Leaf _) = (p, Leaf) prune (White l r) = case prune l of (lm, p) -> (lm, White p r) prune p @ (Black Leaf _) = (p, Leaf) prune (Black l r) = case prune l of (lm, p) -> (lm, Black p r) --Translates the given black rooted Black-White --tree to a corresponding DeBruijn index. bToD :: BWTree -> DeBruijn bToD (Black Leaf Leaf) = Z bToD (Black t Leaf) = S $ bToD t --Translates the given Black-White --tree to a corresponding Lambda-term. bwToL :: BWTree -> LTerm bwToL bwt = case prune bwt of (Black Leaf Leaf, pt) -> Nat $ bToD bwt (White Leaf Leaf, pt) -> Abs $ bwToL pt (White Leaf t, pt) -> App (bwToL t) (bwToL pt)

End of Haskell program

In order to translate λ-terms to corresponding black-white trees we carry out a rather unusual induction, where after the recursive step we attach a new subtree to the leftmost node in one of the previously obtained black-white trees. Similarly, in the inverse translation from black-white trees to λ-terms, we have to cut out the leftmost node of the current black-white tree and pattern match against the result. This unusual recursion is a result of our natural top-down representation of black-white trees, where children are drawn below their parents. Note that if we change this convention so that children are drawn on the right to their parents, the previously leftmost node becomes the root of the black-white tree. The data type for black-white trees does not change, but instead of top-down trees, we are working with left-right ones. Such a representation simplifies the overall implementation as the algorithm is no longer required to look for the leftmost node.

Binary trees without zigzags

5.1. Non empty zigzag free binary trees. Consider BZ 1 the set of binary trees with no zigzag i.e., with no subtree like × × × BZ 1 is described by the combinatorial equations:

BZ 1 = × BZ 1 BZ 2 BZ 2 = × × BZ 2 × BZ 2 BZ 1
Like L ∞ and BW • , BZ 1 is solution of the functional equation:

z(1 -z)BZ 2 1 + (1 -z) 2 BZ 1 + z = 0.
5.2. A formula. Sapounakis et al. [START_REF] Sapounakis | Ordered trees and the inorder traversal[END_REF] consider a similar sequence defined in term of avoiding Dyck paths and give the formula:

[z n]BZ 1 = [z n]L ∞ = (n-1)÷2 k=0 (-1) k n -k n -k k 2n -3k n -2k -1 6.
The bijections between black white trees and zigzag free trees 6.1. From black white trees to zigzag free trees. Let us call BwToBz the bijection from black white trees to zigzag free trees. Notice that the fourth equation removes a • and the last equation adds a ×, keeping a balance between • nodes and × nodes on the leftmost branch.

BwToBz() = BwToBz(•) = × BwToBz • t = × BwToBz(t) when t = • u BwToBz • t = BwToBz(t) when t = • u BwToBz • t t = × BwToBz(t) BwToBz(t) when t = • u 1 u 2 BwToBz • t = × × BwToBz(t)
6.2. From zigzag free trees to black white trees. We use two functions BzToBw • and BzToBw • . Notice also that on the leftmost branch a • is added and a × is removed;

BzToBw • () = BzToBw • (×) = • BzToBw • × t = • BzToBw • (t) when t = × u 1 u 2 BzToBw • × t t = • • BzToBw • (t) BzToBw • (t) when t = × u 1 u 2 BzToBw • (×) = BzToBw • × t t = • BzToBw • (t) BzToBw • (t) when t = × u 1 u 2 Proposition 2. BzToBw • • BwToBz = id BW• and BwToBz • BzToBw • = id BZ . 6
K × × × × for S × × × × × × × × × × × × × LToBz(0 •) = × LToBz(S(n)) = LToBz(n) × LToBz(λ(M)) = LToBz(M) × LToBz(M 0 •) = × × LToBz(M) LToBz(M S(n)) = LToBz(n) × × LToBz(M) LToBz(M 1 M 2) = t × × LToBz(M 1)
when LToBz(M 2) = t ×

BzToL(×) = 0 • BzToL n × = S(BzToL (n)) BzToL × × = λ0 • BzToL × × T = BzToL(T) 0 • BzToL     n × ×     = λ BzToL n × BzToL     n × × T     = BzToL(T) λ BzToL n × BzToL     T × ×     = λ BzToL T × BzToL      T 2 × × T 1      = BzToL(T 1) BzToL T 2 × Figure 6
. The bijection BzToL --Useful shorthand. blNode :: BZTree blNode = Node BZLeaf BZLeaf --Substitutes the given Zigzag free tree zg --for the leftmost node in the second tree. subL :: BZTree -> BZTree -> BZTree subL zg (Node t t') = Node (zg 'subL' t) t subL zg BZLeaf = zg --Substitutes the given Zigzag free tree zg --for the rightmost node in the second tree. subR :: BZTree -> BZTree -> BZTree subR zg (Node t t') = Node t (zg 'subR' t') subR zg BZLeaf = zg --Cuts the leftmost subtree out from the given tree --returning a pair (leftmost subtree, pruned tree). prune :: BZTree -> (BZTree, BZTree) prune p @ (Node BZLeaf _) = (p, BZLeaf) prune (Node l r) = case prune l of (lm,

End of Haskell program

We leave the straightforward implementation of BzToL from λ-terms to Zigzag free trees to the reader.

Normal forms

We are now interested in normal forms, that are terms irreducible by β reduction that are also terms which do not have subterms of the form (λM) N.

There are three associated classes: N (the normal forms), M (the neutral terms, which are the normal forms without head abstractions) and D (the de Bruijn indices) :

N = M + λN M = MN + D D = SD + 0 • .
Let us call N the generating function of N , M the generating function for M and D the generating function for D. The above equations yield the equations for the generating functions:

N = M + zN M = zM N + D D = zD + z One shows that M = 1 -z -(1 + z)(1 -3z) 2z N = M 1 -z M
is the generating function of Motzkin trees (see [START_REF] Flajolet | Analytic Combinatorics[END_REF] p. 396).

The bijections between Motzkin trees and neutral normal forms

In this section we exhibit a bijection between Motzkin trees and neutral normal forms as suggested by the identity between their genrating functions. Let u n denote the unary Motzkin path of height n. We start with defining two auxiliary operations UnToL and UnToD, translating unary Motzkin paths into λ-paths and DeBruijn indices, respectively.

UnToL (•) = λ UnToL • u n = λ UnToL (u n) Figure 7. Operation UnToL UnToD (•) = 0 • UnToD • u n = S UnToD (u n) Figure 8. Operation UnToD
Using UnToL and UnToD we can now define (Figure 9) the translation MoToNe from Motzkin trees into corresponding neutral terms.

MoToNe

     u n • ~3 3 t t      = @ x x 8 8 MoToNe (t) UnToL (u n) MoToNe (t) MoToNe   • Ð Ð 1 1 t t   = @ x x 8 8 MoToNe (t) MoToNe (t) MoToNe (u n) = UnToD (u n) Figure 9. Translation MoToNe Proposition 4. MoToNe is injective.
Proof. The proposition is an easy consequence of the fact that MoToNe preserves the exact number of unary and binary nodes.

What remains is to give the inverse translation NeToMo from neutral terms to Motzkin trees (Figure 10). Let LToUn and DToUn denote the inverse functions of UnToL and UnToD respectively. Let l n denote the unary λ-path of height n and d n denote the n-th DeBruijn index. The translation NeToMo is given by:

NeToMo       @ Ð Ð 1 1 t l n t       = LToUn (l n) • u u A A NeToMo (t) NeToMo (t)
where t does not start with a λ

NeToMo    @ Ð Ð 1 1 t t    = • x x 9 9 NeToMo (t) NeToMo (t) NeToMo (d n) = DToUn (d n)

End of Haskell program

In order to translate Motzkin trees to corresponding neutral terms we have to consider two cases. Either we are given a Motzkin tree starting with a unary node or a binary one. The later case is straightforward due to the fact that binary nodes correspond to neutral term application. Assume we are given a Motzkin tree starting with a unary path u n of size n. We have to decide whether the path corresponds to a DeBruijn index or a chain of λ-abstractions. This distinction is uniquely determined by the existence of the path's splitting node -the binary node directly below u n . If u n has a splitting node then it corresponds to a chain of n λ-abstractions which will be placed on top of the corresponding right neutral term constructed recursively from u n 's splitting node. Otherwise, u n corresponds to the n-th DeBruijn index.

We leave the straightforward implementation of NeToMo from neutral terms to Motzkin trees to the reader.

Head normal forms

We are now interested in the set of head normal forms

H = K + λH K = KL ∞ + D which yields the equations H = K + zH K = zKL ∞ + D and K = D 1 -zL ∞ H = K 1 -z From which we draw K = z + zL ∞ .
This can be explained by the following bijection (see Figure 3 and Figure 4): Proposition 6. If P is a neutral head normal form, it is of the form:

• P = 0 • N 1 N 2 . . . N p with p ≥ 1 (of size k + 1) then it is in bijection with (λ N 1)N 2 . . . N p (of size k), • P = (Sn) N 1 . . . N p (of size k + 1) then it is in bijection with n N 1 . . . N p
(of size k), • P = 0 • (of size 1), treated by the case z.

From Theorem 1 we get:

Proposition 7. [z n+1]K ∼ 1 ρ L∞ n C n 3 2 with C . = 0
C H = -ρ L∞ Q(ρ L∞) 1-ρ L∞ 2(1 -ρ L∞)Γ(- 1 2)
. = 0.254625911836762946... (1 -z)∆ T = (1 -z)∆ L∞ + 4z p+1 (1 -z).

In the interval (0, 1), ∆ ∞ is decreasing (its derivative is negative) and (1 -z)∆ T > (1 -z)∆ L∞ . Hence the root ρ T of ∆ T is larger than the root ρ L∞ of ∆ ∞ , that is ρ T > ρ L∞ . Beside:

T = √ ∆ T -∆ L∞ 2z .
Hence the number of terms that do not have M as subterm is given by

L ∞ -T = (1 -z) - √ ∆ T 2z .
Theorem 2. The density in L ∞ of terms that do not have M as subterm is 0.

Proof. Indeed the smallest pole of L ∞ -T is ρ T and the smallest pole of L ∞ is ρ L∞ . Therefore, Corollary 2. Asymptotically almost no λ-term is strongly normalizing.

[z n](L ∞ -T) 1 ρ T n [z n]L ∞ 1 ρ L∞ n
Proof. In other words, the density of strongly normalizing terms is 0. Indeed, the density in L ∞ of terms that contain (λ(0

• 0 •)) λ(0 • 0 •) is 1.
Hence the density of non strongly normalizing terms is 1. Hence the density of strongly normalizing terms is 0.

Conclusion

Figure 12 summarizes what we obtained on densities of terms.

Moreover, this research opens many issues, among others about generating random terms and random normal forms using Boltzmann samplers [START_REF] Lescanne | Boltzmann samplers for random generation of lambda terms[END_REF].

1

 since there are two λ abstractions, one successor S and one 0 • . The term for S (which should not be confused with the successor symbol) is written λx.λy.λz.(xz)(yz) which is written λλλ(((SS0 •)0 •)((S0 •)0 •)) using de Bruijn indices and its size is:|λλλ(((SS0 •)0 •)((S0 •)0 •))| = 13.since there are three λ abstractions, three applications, three successors S's, and four 0 • 's. The term λx.xx which corresponds to the term λ(0 • 0 •) has size 4 and the term (λx.xx)(λx.xx) which corresponds to the term ω is written (λ(0 • 0 •)) λ(0 • 0 •) and has size 9. The term λf.(λx.f (xx))(λx.f (xx)) which corresponds to the fixpoint Y is written λ((λ((S0 •) (0 • 0 •))) λ((S0 •) (0 • 0 •))) and has size 16.

Figure 1 .

 1 Figure 1. Approximation of [x n]L ∞ .

Figure 2 .

 2 Figure 2. Numbers of typable closed terms vs numbers of closed terms

Figure 4 .

 4 Figure 4. Bijection between λ-terms, E 1 -free black-white binary trees and zigzag free trees of size 4 (L 4 = 9) and neutral head normal forms (Section 8) of size 5 (K 5 = 9).

Figure 5 .

 5 Figure 5. The bijection LToBz from lambda terms to zigzag free trees

 p) -> (lm, Node p r) --Translates the given DeBruijn index --to a corresponding Zigzag free tree. dToBz :: DeBruijn -> BZTree dToBz Z = Node BZLeaf BZLeaf dToBz (S n) = blNode 'subR' dToBz n --Translates the given Lambda-term --to a corresponding Zigzag free tree. lToBz :: LTerm -> BZTree lToBz (Nat n) = dToBz n lToBz (Abs e) = blNode 'subL' lToBz e lToBz (App e (Nat k)) = case k of Z -> Node blNode $ lToBz e S n -> Node blNode (lToBz e) 'subR' dToBz n lToBz (App e e') = case prune $ lToBz e' of (Node BZLeaf BZLeaf, t) -> Node blNode (lToBz e) 'subL' t

Figure 10. Translation NeToMo Proposition 5 .9. 1 .

 51 Figure 10. Translation NeToMo

Figure 11 Figure 11 .

 1111 Figure11compares the coefficients of H with its approximation.

Corollary 1 .

 1 Hence, since ρ T > ρ L∞ lim n→∞ [z n](L ∞ -T) [z n]L ∞ |t| = 9, that is for instance if t = ω = (λ(0 • 0 •)) λ(0 • 0 •), thenThe density in L ∞ of terms that contain M as subterm is 1.

Figure 12 .

 12 Figure 12. Summary of densities

 .3. Haskell code.

	blNode = Node BZLeaf BZLeaf
	--Translates the given Black-White tree
	--to a corresponding Zigzag free tree.
	bwToBz :: BWTree -> BZTree
	bwToBz BWLeaf = BZLeaf
	bwToBz (Black BWLeaf BWLeaf) = blNode
	bwToBz (Black t @ (Black _ BWLeaf) BWLeaf) = Node BZLeaf $ bwToBz t
	bwToBz (Black t @ (White _ BWLeaf) BWLeaf) = bwToBz t
	bwToBz (White t @ (White _ _) t') = Node (bwToBz t) (bwToBz t')
	bwToBz (White BWLeaf t) = Node blNode (bwToBz t)
	--Translates the given Zigzag free tree to a
	--corresponding black rooted Black-White tree.
	bzToBwB :: BZTree -> BWTree
	bzToBwB BZLeaf = BWLeaf
	bzToBwB (Node BZLeaf BZLeaf) = Black BWLeaf BWLeaf
	bzToBwB (Node BZLeaf t @ (Node _ _)) = Black (bzToBwB t) BWLeaf
	bzToBwB (Node t @ (Node _ _) t') = Black u BWLeaf
	where
	u = White (bzToBwW t) (bzToBwB t')
	Haskell program
	--Black-White binary tree datatype.
	data BWTree = Black BWTree BWTree
	| White BWTree BWTree
	| BWLeaf
	--Zigzag free tree datatype.
	data BZTree = Node BZTree BZTree
	| BZLeaf
	--Useful shorthand.
	blNode :: BZTree

--Translates the given Zigzag free tree to a --corresponding white rooted Black-White tree. bzToBwW :: BZTree -> BWTree bzToBwW (Node BZLeaf BZLeaf) = BWLeaf bzToBwW (Node t @ (Node _ _) t') = White (bzToBwW t) (bzToBwB t')

End of Haskell program

7. The bijections between lambda terms and zigzag free trees 7.1. From lambda terms to zigzag free trees. Lest us call LToBz this bijection. It is described in Figure

5

7.2. From zigzag free terms to lambda terms. The bijection called BzToL is defined in Figure

6

. Proposition 3. LToBz • BzToL = id BZ and BzToL • LToBz = id Λ . 7.3. Examples. Let us look at the bijection on classical examples, namely K, S, ω and Y: for

 .60676... and ρ L∞ . = 0.29559.... (respectively B n) are the numbers of elements of A (respectively of B) of size n. For instance the density of K in L ∞ is The density of K in L ∞ (i.e., the density of neutral head normal forms among plain terms) is ρ L∞ .

	Proof. The proof is like this of Theorem 1 with
	The density of a set A in a set B is		
	lim n→∞	A n B n
	where A n lim n→∞	[z n]K [z n]L ∞	;
	Hence the proposition.		
	Proposition 8. Proposition 9. with C H . = 0.254625911836762946... [z n]H ∼	1 ρ L∞	n C H 3 n 2

E-mail address: GRYGIEL@TCS.UJ.EDU.PL,PIERRE.LESCANNE@ENS-LYON.FR

Appendix A. De Bruijn notations

De Bruijn indices are a system of notations for bound variables due to Nikolaas de Bruijn and somewhat connected to those proposed by Bourbaki [START_REF] Bourbaki | Theory of Sets[END_REF]. The goal is to replace bound variables by placeholders and to link each bound variable to its binder. For instance (see Figure 13) Bourbaki ([1] p. 20) proposes to represent placeholders by boxes and to represent binds by drawn lines. This requires a two dimensional notation. For example, he considers the formula:

Notice that we use an infix notation whereas he uses a prefix notation which gives τ ∨ ¬ ∈ xA ∈ xA. The formula contains the binder τ (a binder that Bourbaki introduces) and two occurrences of the bound variable x, this involves two 's and two drawn lines from τ , namely to the first and to the second . De Bruijn proposes to represent the placeholders (in other words the variables) by natural numbers which represent the length of the link, that is the number of binders crossed when reaching the actual binder of the variables. In our proposal, we write natural numbers using the functions zero 0 • and successor S. For instance, 3 is written SSS0 • . With de Bruijn notations, Bourbaki's formula is written:

Appendix B. Another natural counting of lambda terms

Another natural counting is a counting where:

The generating function is solution of