
HAL Id: ensl-01159746
https://ens-lyon.hal.science/ensl-01159746v3

Preprint submitted on 13 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A NATURAL COUNTING OF LAMBDA TERMS
Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, Marek Zaionc

To cite this version:
Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, Marek Zaionc. A NATURAL COUNTING
OF LAMBDA TERMS. 2016. �ensl-01159746v3�

https://ens-lyon.hal.science/ensl-01159746v3
https://hal.archives-ouvertes.fr

A NATURAL COUNTING OF LAMBDA TERMS

MACIEJ BENDKOWSKI†, KATARZYNA GRYGIEL†, PIERRE LESCANNE†,‡

AND

MAREK ZAIONC†

†JAGIELLONIAN UNIVERSITY,

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE,

THEORETICAL COMPUTER SCIENCE DEPARTMENT,

UL. PROF. LOJASIEWICZA 6, 30-348 KRAKÓW, POLAND

‡UNIVERSITY OF LYON,

ÉCOLE NORMALE SUPÉRIEURE DE LYON,

LIP (UMR 5668 CNRS ENS LYON UCBL INRIA)

46 ALLÉE D’ITALIE, 69364 LYON, FRANCE

Abstract. We study the sequences of numbers corresponding to lambda

terms of given sizes, where the size is this of lambda terms with de Bruijn
indices in a very natural model where all the operators have size 1. For plain

lambda terms, the sequence corresponds to two families of binary trees for

which we exhibit bijections. We study also the distribution of normal forms,
head normal forms and strongly normalizing terms. In particular we show that

strongly normalizing terms are of density 0 among plain terms.

Keywords:lambda calculus, combinatorics, functional programming, test, ran-

dom generator, bijection, binary tree, asymptotic

1. Introduction

In this paper we consider a natural way of counting the size of λ-terms, namely
λ-terms presented by de Bruijn indices1 in which all the operators are counted with
size 1. This means that abstractions, applications, successors and zeros have all
size 1. Formally

|λM | = |M |+ 1

|M1M2| = |M1|+ |M2|+ 1

|Sn| = |n|+ 1

|0· | = 1.

For instance the term for K which is written traditionally λx.λy.x in the lambda
calculus is written λλS0· using de Bruijn indices and we have:

|λλS0· | = 4.

The first author was supported by the National Science Center of Poland, grant number

2011/01/B/HS1/00944, when the author hold a post-doc position at the Jagiellonian University

within the SET project co-financed by the European Union.
1Readers not familiar with de Bruijn indices are invited to read Appendix A.

1

2 M. BENDKOWSKI, K. GRYGIEL, P. LESCANNE, M. ZAIONC

since there are two λ abstractions, one successor S and one 0· . The term for S (which
should not be confused with the successor symbol) is written λx.λy.λz.(xz)(yz)
which is written λλλ(((SS0·)0·)((S0·)0·)) using de Bruijn indices and its size is:

|λλλ(((SS0·)0·)((S0·)0·))| = 13.

since there are three λ abstractions, three applications, three successors S’s, and
four 0· ’s. The term λx.xx which corresponds to the term λ(0· 0·) has size 4 and the
term (λx.xx)(λx.xx) which corresponds to the term ω is written (λ(0· 0·))λ(0· 0·) and
has size 9. The term λf.(λx.f(xx))(λx.f(xx)) which corresponds to the fixpoint Y
is written λ((λ((S0·) (0· 0·))) λ((S0·) (0· 0·))) and has size 16.

2. Lambda terms

2.1. Counting plain terms with a natural size: L∞. Since the terms are
either applications, abstractions or de Bruijn indices, the set L∞ of lambda terms
is solution of the combinatorial equation:

L∞ = L∞ L∞ � λL∞ � D
where D is the set of de Bruijn indices which is solution of

D = SD � 0·

Let us call L∞ the generating function for counting the numbers of the plain terms.
It is solution of the functional equation:

L∞ = zL2
∞ + zL∞ +

z

1− z
,

which yields the equation:

zL2
∞ − (1− z)L∞ +

z

1− z
= 0(1)

which has discriminant

∆L∞ = (1− z)2 − 4
z2

1− z
=

(1− z)3 − 4z2

1− z

=
1− 3z − z2 − z3

1− z
This gives the solution

L∞ =
(1− z)−

√
∆L∞

2z

=
(1− z)3/2 −

√
1− 3z − z2 − z3

2z
√

1− z
which has ρL∞

.
= 0.29559774252208393 as pole closest to 0. The 18 first values of

[zn]L∞ are:

0, 1, 2, 4, 9, 22, 57, 154, 429, 1223, 3550, 10455, 31160, 93802, 284789, 871008, 2681019

This sequence is A105633 in the Online Encyclopedia of Integer Sequences.

Theorem 1. Assume C
.
= 0.60676... and ρL∞

.
= 0.29559...

that is 1/ρL∞
.
= 3.38297...

[zn]L∞ ∼
(

1

ρL∞

)n
C

n
3
2

A NATURAL COUNTING OF LAMBDA TERMS 3

Proof. The proof mimics this of Theorem 1 in [3]. Let us write L∞ as

L∞ =
(1− z)−

√
1−3z−z2−z3

1−z

2z

=
(1− z)−

√
ρL∞(1− z

ρL∞
)Q(z)

1−z

2z

where

R(z) = z3 + z2 + 3z − 1

Q(z) =
R(z)

ρL∞ − z
Applying Theorem VI.1 of [2], we get:

[zn]L∞ ∼
(

1

ρL∞

)n
· n
−3/2

Γ(− 1
2)

C̃

with

C̃ =
−
√
ρL∞

Q(ρL∞)
1−ρL∞

2ρL∞

Notice that Q(ρL∞) = R′(ρL∞) = 3ρ2
L∞

+ 2ρL∞ + 3. From this we get

C =
C̃

Γ(− 1
2)

.
= 0.60676...

�

Figure 1 shows approximations of [xn]L∞.

2.2. An holonomic presentation. Using the Maple package gfun [6] we were able
to build a holonomic equation of which L∞ is the solution namely

z3 + z2 − 2z + (z3 + 3z2 − 3z + 1)L∞ + (z5 + 2z3 − 4z2 + z)L′∞ = 0.

From this equation it is possible to derive the following recursive and linear defini-
tion for the coefficients:

L∞,0 = 0 L∞,1 = 1 L∞,2 = 2 L∞,3 = 4

L∞,n =
(4n− 1)L∞,n−1 − (2n− 1)L∞,n−2 − L∞,n−3 − (n− 4)L∞,n−4

n+ 1

2.3. Counting terms with at most m indices: Lm. The set Lm of terms with
free indices 0, ..,m− 1 is described as

Lm = LmLm � λLm+1

m−1⊕
i=0

Si(0·).

The set L0 is the set of closed lambda terms. If we consider the λ-terms with at
most m free indices, we get:

Lm = zL2
m − zLm+1 +

z(1− zm)

1− z

4 M. BENDKOWSKI, K. GRYGIEL, P. LESCANNE, M. ZAIONC

n [xn]L∞
10 3550
20 253106837
30 27328990723991
40 3503758934959966001
50 493839291745701673090756
60 73920774614279746859303111580
70 11535317831253359292868402823579507
80 1855899670106913269845444317474927546423
90 305649725186484753579669948042728038245882292

100 51274965000307280025396615989999357497440689837989

n b(1/ρL∞)nC/n3/2c
10 3767
20 261489930
30 27945182509468
40 3563589864915927683
50 500623883981281516056181
60 74770204056757299054875868847
70 11649230835743409545961872906078995
80 1871967051054756263272240387385909197928
90 308005368563187477433148735955649926279818246

100 51631045600653143846184406311963448514677624135086

Figure 1. Approximation of [xn]L∞.

which yields:

zL2
m − Lm + z

(
Lm+1 +

1− zm

1− z

)
= 0.

Let us state

∆Lm
= 1− 4z2

(
Lm+1 +

1− zm

1− z

)
we have

Lm =
1−

√
∆Lm

2z
=

1−
√

1− 4z2
(
Lm+1 + 1−zm

1−z

)
2z

.

Notice that Lm is defined using Lm+1. If this definition is developed, then Lm is
defined by an infinite sequence of nested radicals. The sequences ([zn]Lm)n∈N do
not occur in the Online Encyclopedia of Integer Sequences.

2.4. Counting λ-terms with another notion of size. Assume we take another
notion of size in which 0· has size 0 and applications have size 2, whereas abstraction
and succession keep their size 1. In other words:

|λM | = |M |+ 1

|M1M2| = |M1|+ |M2|+ 2

|Sn| = |n|+ 1

|0· | = 0.

A NATURAL COUNTING OF LAMBDA TERMS 5

The generating function2 A1 fulfills the identity:

z2A2
1 − (1− z)A1 +

1

1− z
.

The reader may check that

L∞ = z A1 and [zn]A1 = [zn+1]L∞.

Hence both notions of size correspond to sequence A105633. In Appendix B we
consider the case where all the operators (application, abstraction and succession)
have size 1 and 0· has size 0.

3. Typable Terms

A difficult open problem is to count simply typable terms. In this section, we give
empiric results we obtain by an implementation on counting closed typed terms.

size typables all
0 0 0
1 0 0
2 1 1
3 1 1
4 2 3
5 5 6
6 13 17
7 27 41
8 74 116
9 198 313

10 508 895
11 1371 2550
12 3809 7450
13 10477 21881
14 29116 65168
15 82419 195370
16 233748 591007
17 666201 1798718
18 1914668 5510023
19 5528622 16966529
20 16019330 52506837
21 46642245 163200904
22 136326126 509323732
23 399652720 1595311747
24 1175422931 5013746254

Figure 2. Numbers of typable closed terms vs numbers of closed terms

2We write this function A1 as a reference to the function A(x, 1) described in sequence
A105632 of the Online Encyclopedia of Integer Sequences.

6 M. BENDKOWSKI, K. GRYGIEL, P. LESCANNE, M. ZAIONC

λ− terms black-white trees zigzag free trees neutral hnf

S20· •
•

•

×
×
×

S30·

λS0· •
•

◦

×
×

×

0· (S0·)

λλ0· •
◦

◦

×
×

×

0· (λ0·)

0· 0· •
◦
•

×
× ×

(S0·) 0·

Figure 3. Bijection between λ-terms, E1-free black-white binary
trees, zigzag-free trees of size 3 (L3 = 4) and neutral head normal
forms (Section 8) of size 4 (K4 = 4).

4. E-free black-white binary trees

A black-white binary tree is a binary tree with colored nodes using two col-
ors, black • and white ◦. The root of a black-white binary tree is •, by conven-
tion. A E-free black-white binary tree is a black-white binary tree in which edges
from a set E are forbidden. For instance if the set of forbidden edges is E1 =

{
◦

• ,
•
◦ ,
•
• ,
◦
◦ }, this means that only edges inA1 = {

•
◦ ,

•
• ,

◦
◦ ,

◦
• }

are allowed. The E1-free black-white binary trees of size 3 and 4 are as many as
lambda terms of size 3 and 4. They are listed in Fig. 3 and Fig. 4 second column.

For E1 = {
◦

• ,
•
◦ ,
•
• ,
◦
◦ }, like for E2 = {

•
◦ ,

•
• ,

◦
◦ ,

◦
• }, which is

obtained by left-right symmetry, the E-free black-white binary trees are counted
by A105633 [4]. In what follows we will consider E1 and we will rather speak in
terms of an allowed set of pattern namely A1. For simplicity, we will call in this
paper black-white trees, the binary black-white trees with allowed pattern set A1.

Before giving the bijection, let us give the trees corresponding to K = λλS(0·), to
S = λλλ(SS0· 0·) (S0· 0·), to ω = (λ(0· 0·))λ(0· 0·), and to Y = λ(λ(S 0· (0· 0·))λ(S 0· (0· 0·))):

for K •
•

◦
◦

for S •
◦

◦ •
◦ • •

◦ ◦
◦ •

•
•

A NATURAL COUNTING OF LAMBDA TERMS 7

λ− terms black-white trees zigzag free trees neutral hnf

S30· •
•

•
•

×
×
×
×

S40·

λS20· •
•

•
◦

×
×
×

×

0· (S20·)

λλS0· •
•

◦
◦

×
×

×
×

0· (λS0·)

λλλ0· •
◦

◦
◦

×
×

×
×

0· (λλ0·)

0· (S0·) •
•

◦
•

×
×

× ×

(S0·) (S0·)

0· (λ0·) •
◦

◦
•

×
×

× ×

(S0·) (λ0·)

(λ0·) 0· •
◦
•

◦

×
× ×
×

0· 0· 0·

(S0·) 0· •
◦
•

•

×
× ×

×

(S20·) 0·

λ(0· 0·) •
◦

◦ •

×
× ×

×

0· (0· 0·)

Figure 4. Bijection between λ-terms, E1-free black-white binary
trees and zigzag free trees of size 4 (L4 = 9) and neutral head
normal forms (Section 8) of size 5 (K5 = 9).

8 M. BENDKOWSKI, K. GRYGIEL, P. LESCANNE, M. ZAIONC

for ω •
◦

◦ •
◦
•

◦
◦ •

for Y •
◦

◦ •
◦ •

◦ •
◦ •
◦

◦ •
◦ •
•

4.1. Recursive description. Assume � is the empty tree which is usually not
represented in drawing. The E1-free black-white binary trees are described by the
following combinatorial equation:

BW• = •
BW•

� •
BW◦

BW◦ = � � ◦
BW◦

� ◦
BW◦ BW•

which yields the following functional equations:

BW• = zBW• + zBW◦

BW◦ = 1 + zBW◦ + zBW◦BW•

hence

BW◦ =
1− z
z

BW•

and

z(1− z)BW 2
• + (1− z)2BW• + z = 0.

which is the same equation up to a multiplication by 1−z as (1) namely the equation
defining L∞

4.2. The bijection. Let us define the function LtoBw from λ-terms to black-white
trees:

LtoBw(0·) = •

LtoBw(S(n)) =
LtoBw(n)

•

LtoBw(λM) =
LtoBw(M)

◦

LtoBw(M1M2) =

LtoBw(M2)

◦

LtoBw(M1)

A NATURAL COUNTING OF LAMBDA TERMS 9

In other words a new node is added on the leftmost node of the tree. from black-
white trees to λ-terms Let us now define the function BwtoL

BwtoL(•) = 0·

BwtoL

(
T

•

)
= S(BwtoL(T))

BwtoL

(
T

◦

)
= λBwtoL(T)

BwtoL

 T2

◦

T1

 = BwtoL(T1)BwtoL(T2)

In other words, to decompose a binary tree which is not the node •, we look for the
left most node.

• If the leftmost node is •, then the λ-term is a de Bruijn index. Actually

there are only •’s (indeed
◦

• is forbidden) and the tree is linear. If this

linear tree has n •’s it represents Sn−1(0·).
• If the leftmost node is ◦ and has no child, then the λ-term is an abstraction

of the bijection of the rest.
• If the leftmost node is ◦ and has a right child, then the λ-term is an ap-

plication of the bijection of the right subtree on the bijection of the above
tree .

Proposition 1. LtoBw ◦ BwtoL = idΛ and BwtoL ◦ LtoBw = idBW•

4.3. The bijection in Haskell. In this section we describe Haskell programs for
the bijections. First we define black-white trees. We consider three kinds of trees:
leafs (of arity zero and size zero) corresponding to � and not represented in drawing.

Haskell program

-- DeBruijn index datatype.

data DeBruijn = S DeBruijn

| Z

-- Lambda-term datatype.

data LTerm = App LTerm LTerm

| Abs LTerm

| Nat DeBruijn

-- Black-White binary tree datatype.

data BWTree = Black BWTree BWTree

| White BWTree BWTree

| Leaf

-- Substitutes the given Black-White tree bwt

-- for the leftmost node in the second tree.

sub :: BWTree -> BWTree -> BWTree

sub bwt (Black t t’) = Black (bwt ‘sub‘ t) t’

sub bwt (White t t’) = White (bwt ‘sub‘ t) t’

10 M. BENDKOWSKI, K. GRYGIEL, P. LESCANNE, M. ZAIONC

sub bwt Leaf = bwt

-- Translates the given DeBruijn index

-- to a corresponding Black-White tree.

dToBw :: DeBruijn -> BWTree

dToBw Z = Black Leaf Leaf

dToBw (S n) = Black Leaf Leaf ‘sub‘ dToBw n

-- Translates the given Lambda-term to

-- a corresponding Black-White tree.

lToBw :: LTerm -> BWTree

lToBw (Nat n) = dToBw n

lToBw (Abs e) = White Leaf Leaf ‘sub‘ lToBw e

lToBw (App e e’) = White Leaf (lToBw e) ‘sub‘ lToBw e’

-- Cuts the leftmost subtree out from the given tree

-- returning a pair (leftmost subtree, pruned tree).

prune :: BWTree -> (BWTree, BWTree)

prune p @ (White Leaf _) = (p, Leaf)

prune (White l r) = case prune l of

(lm, p) -> (lm, White p r)

prune p @ (Black Leaf _) = (p, Leaf)

prune (Black l r) = case prune l of

(lm, p) -> (lm, Black p r)

-- Translates the given black rooted Black-White

-- tree to a corresponding DeBruijn index.

bToD :: BWTree -> DeBruijn

bToD (Black Leaf Leaf) = Z

bToD (Black t Leaf) = S $ bToD t

-- Translates the given Black-White

-- tree to a corresponding Lambda-term.

bwToL :: BWTree -> LTerm

bwToL bwt = case prune bwt of

(Black Leaf Leaf, pt) -> Nat $ bToD bwt

(White Leaf Leaf, pt) -> Abs $ bwToL pt

(White Leaf t, pt) -> App (bwToL t) (bwToL pt)

End of Haskell program

In order to translate λ-terms to corresponding black-white trees we carry out a
rather unusual induction, where after the recursive step we attach a new subtree
to the leftmost node in one of the previously obtained black-white trees. Similarly,
in the inverse translation from black-white trees to λ-terms, we have to cut out
the leftmost node of the current black-white tree and pattern match against the
result. This unusual recursion is a result of our natural top-down representation of

A NATURAL COUNTING OF LAMBDA TERMS 11

black-white trees, where children are drawn below their parents. Note that if we
change this convention so that children are drawn on the right to their parents, the
previously leftmost node becomes the root of the black-white tree. The data type
for black-white trees does not change, but instead of top-down trees, we are working
with left-right ones. Such a representation simplifies the overall implementation as
the algorithm is no longer required to look for the leftmost node.

5. Binary trees without zigzags

5.1. Non empty zigzag free binary trees. Consider BZ1 the set of binary trees
with no zigzag i.e., with no subtree like

×

×

×

BZ1 is described by the combinatorial equations:

BZ1 =
×
BZ1

� BZ2

BZ2 = × �
×

BZ2
�

×
BZ2 BZ1

Like L∞ and BW•, BZ1 is solution of the functional equation:

z(1− z)BZ2
1 + (1− z)2BZ1 + z = 0.

5.2. A formula. Sapounakis et al. [7] consider a similar sequence defined in term
of avoiding Dyck paths and give the formula:

[zn]BZ1 = [zn]L∞ =

(n−1)÷2∑
k=0

(−1)k

n− k

(
n− k
k

)(
2n− 3k

n− 2k − 1

)

6. The bijections between black white trees and zigzag free trees

6.1. From black white trees to zigzag free trees. Let us call BwToBz the
bijection from black white trees to zigzag free trees. Notice that the fourth equation
removes a • and the last equation adds a ×, keeping a balance between • nodes
and × nodes on the leftmost branch.

12 M. BENDKOWSKI, K. GRYGIEL, P. LESCANNE, M. ZAIONC

BwToBz(�) = �

BwToBz(•) = ×

BwToBz

(
•

t

)
=

×
BwToBz(t)

when t =
•

u

BwToBz

(
•

t

)
= BwToBz(t) when t =

◦
u

BwToBz

(
◦

t t′

)
=

×
BwToBz(t) BwToBz(t′)

when t =
◦

u1 u2

BwToBz

(
◦
t

)
=

×
× BwToBz(t)

6.2. From zigzag free trees to black white trees. We use two functions
BzToBw• and BzToBw◦. Notice also that on the leftmost branch a • is added
and a × is removed;

BzToBw•(�) = �

BzToBw•(×) = •

BzToBw•

(
×

t

)
=

•
BzToBw•(t)

when t =
×

u1 u2

BzToBw•

(
×

t t′

)
=

•
◦

BzToBw◦(t) BzToBw•(t
′)

when t =
×

u1 u2

BzToBw◦(×) = �

BzToBw◦

(
×

t t′

)
=

◦
BzToBw◦(t) BzToBw•(t

′) when t =
×

u1 u2

Proposition 2. BzToBw• ◦ BwToBz = idBW• and BwToBz ◦ BzToBw• = idBZ .

6.3. Haskell code.
Haskell program

-- Black-White binary tree datatype.

data BWTree = Black BWTree BWTree

| White BWTree BWTree

| BWLeaf

-- Zigzag free tree datatype.

data BZTree = Node BZTree BZTree

| BZLeaf

-- Useful shorthand.

blNode :: BZTree

A NATURAL COUNTING OF LAMBDA TERMS 13

blNode = Node BZLeaf BZLeaf

-- Translates the given Black-White tree

-- to a corresponding Zigzag free tree.

bwToBz :: BWTree -> BZTree

bwToBz BWLeaf = BZLeaf

bwToBz (Black BWLeaf BWLeaf) = blNode

bwToBz (Black t @ (Black _ BWLeaf) BWLeaf) = Node BZLeaf $ bwToBz t

bwToBz (Black t @ (White _ BWLeaf) BWLeaf) = bwToBz t

bwToBz (White t @ (White _ _) t’) = Node (bwToBz t) (bwToBz t’)

bwToBz (White BWLeaf t) = Node blNode (bwToBz t)

-- Translates the given Zigzag free tree to a

-- corresponding black rooted Black-White tree.

bzToBwB :: BZTree -> BWTree

bzToBwB BZLeaf = BWLeaf

bzToBwB (Node BZLeaf BZLeaf) = Black BWLeaf BWLeaf

bzToBwB (Node BZLeaf t @ (Node _ _)) = Black (bzToBwB t) BWLeaf

bzToBwB (Node t @ (Node _ _) t’) = Black u BWLeaf

where

u = White (bzToBwW t) (bzToBwB t’)

-- Translates the given Zigzag free tree to a

-- corresponding white rooted Black-White tree.

bzToBwW :: BZTree -> BWTree

bzToBwW (Node BZLeaf BZLeaf) = BWLeaf

bzToBwW (Node t @ (Node _ _) t’) = White (bzToBwW t) (bzToBwB t’)

End of Haskell program

7. The bijections between lambda terms and zigzag free trees

7.1. From lambda terms to zigzag free trees. Lest us call LToBz this bijection.
It is described in Figure 5

7.2. From zigzag free terms to lambda terms. The bijection called BzToL is
defined in Figure 6.

Proposition 3. LToBz ◦ BzToL = idBZ and BzToL ◦ LToBz = idΛ.

7.3. Examples. Let us look at the bijection on classical examples, namely K, S, ω
and Y:

for K ×
×

×
×

for S ×
× ×

× × ×
× × ×

× ×
× ×

14 M. BENDKOWSKI, K. GRYGIEL, P. LESCANNE, M. ZAIONC

LToBz(0·) = ×

LToBz(S(n)) =
LToBz(n)

×

LToBz(λ(M)) =
LToBz(M)

×

LToBz(M 0·) =
×

× LToBz(M)

LToBz(M S(n)) =
LToBz(n)

×
× LToBz(M)

LToBz(M1M2) =
t

×
× LToBz(M1)

when LToBz(M2) =
t

×

Figure 5. The bijection LToBz from lambda terms to zigzag free trees

for ω ×
× ×

×
× ×
× ×

×

for Y ×
× ×

× ×
× × ×
× ×

× ×
×

7.4. Haskell code.
Haskell program

-- DeBruijn index datatype.

data DeBruijn = S DeBruijn

| Z

-- Lambda-term datatype.

data LTerm = App LTerm LTerm

| Abs LTerm

| Nat DeBruijn

-- Zigzag free tree datatype.

data BZTree = Node BZTree BZTree

| BZLeaf

A NATURAL COUNTING OF LAMBDA TERMS 15

BzToL(×) = 0·

BzToL

(
n

×

)
= S(BzToL (n))

BzToL

(
×

×

)
= λ0·

BzToL

(
×

× T

)
= BzToL(T) 0·

BzToL

 n

×
×

 = λBzToL

(
n

×

)

BzToL

 n

×
× T

 = BzToL(T) λBzToL

(
n

×

)

BzToL

 T

×
×

 = λBzToL

(
T

×

)

BzToL

 T2

×
× T1

 = BzToL(T1) BzToL

(
T2

×

)

Figure 6. The bijection BzToL

-- Useful shorthand.

blNode :: BZTree

blNode = Node BZLeaf BZLeaf

-- Substitutes the given Zigzag free tree zg

-- for the leftmost node in the second tree.

subL :: BZTree -> BZTree -> BZTree

subL zg (Node t t’) = Node (zg ‘subL‘ t) t

subL zg BZLeaf = zg

-- Substitutes the given Zigzag free tree zg

-- for the rightmost node in the second tree.

subR :: BZTree -> BZTree -> BZTree

subR zg (Node t t’) = Node t (zg ‘subR‘ t’)

subR zg BZLeaf = zg

-- Cuts the leftmost subtree out from the given tree

16 M. BENDKOWSKI, K. GRYGIEL, P. LESCANNE, M. ZAIONC

-- returning a pair (leftmost subtree, pruned tree).

prune :: BZTree -> (BZTree, BZTree)

prune p @ (Node BZLeaf _) = (p, BZLeaf)

prune (Node l r) = case prune l of

(lm, p) -> (lm, Node p r)

-- Translates the given DeBruijn index

-- to a corresponding Zigzag free tree.

dToBz :: DeBruijn -> BZTree

dToBz Z = Node BZLeaf BZLeaf

dToBz (S n) = blNode ‘subR‘ dToBz n

-- Translates the given Lambda-term

-- to a corresponding Zigzag free tree.

lToBz :: LTerm -> BZTree

lToBz (Nat n) = dToBz n

lToBz (Abs e) = blNode ‘subL‘ lToBz e

lToBz (App e (Nat k)) = case k of

Z -> Node blNode $ lToBz e

S n -> Node blNode (lToBz e) ‘subR‘ dToBz n

lToBz (App e e’) = case prune $ lToBz e’ of

(Node BZLeaf BZLeaf, t) -> Node blNode (lToBz e) ‘subL‘ t

End of Haskell program

We leave the straightforward implementation of BzToL from λ-terms to Zigzag
free trees to the reader.

8. Normal forms

We are now interested in normal forms, that are terms irreducible by β reduction
that are also terms which do not have subterms of the form (λM)N.

There are three associated classes: N (the normal forms),M (the neutral terms,
which are the normal forms without head abstractions) and D (the de Bruijn in-
dices) :

N = M+ λN
M = MN +D
D = SD + 0· .

Let us call N the generating function of N , M the generating function for M and
D the generating function for D. The above equations yield the equations for the
generating functions:

N = M + zN

M = zMN +D

D = zD + z

A NATURAL COUNTING OF LAMBDA TERMS 17

One shows that

M =
1− z −

√
(1 + z)(1− 3z)

2z

N =
M

1− z
M is the generating function of Motzkin trees (see [2] p. 396).

9. The bijections between Motzkin trees and neutral normal forms

In this section we exhibit a bijection between Motzkin trees and neutral normal
forms as suggested by the identity between their genrating functions. Let un denote
the unary Motzkin path of height n. We start with defining two auxiliary operations
UnToL and UnToD, translating unary Motzkin paths into λ-paths and DeBruijn
indices, respectively.

UnToL (•) = λ

UnToL

(
•
��
un

)
=

λ
��

UnToL (un)

Figure 7. Operation UnToL

UnToD (•) = 0·

UnToD

(
•
��
un

)
=

S
��

UnToD (un)

Figure 8. Operation UnToD

Using UnToL and UnToD we can now define (Figure 9) the translation MoToNe
from Motzkin trees into corresponding neutral terms.

MoToNe

un

��
•

~~ !!
t t′

 =

@

xx &&
MoToNe (t) UnToL (un)

��
MoToNe (t′)

MoToNe

 •
�� ��

t t′

 =

@

xx &&
MoToNe (t) MoToNe (t′)

MoToNe (un) = UnToD (un)

Figure 9. Translation MoToNe

18 M. BENDKOWSKI, K. GRYGIEL, P. LESCANNE, M. ZAIONC

Proposition 4. MoToNe is injective.

Proof. The proposition is an easy consequence of the fact that MoToNe preserves
the exact number of unary and binary nodes. �

What remains is to give the inverse translation NeToMo from neutral terms to
Motzkin trees (Figure 10). Let LToUn and DToUn denote the inverse functions of
UnToL and UnToD respectively. Let ln denote the unary λ-path of height n and dn
denote the n-th DeBruijn index. The translation NeToMo is given by:

NeToMo

@

�� ��
t ln

��
t′

 =

LToUn (ln)

��
•

uu))
NeToMo (t) NeToMo (t′)

where t′ does not start with a λ

NeToMo

 @

�� ��
t t′

 =
•

xx ''
NeToMo (t) NeToMo (t′)

NeToMo (dn) = DToUn (dn)

Figure 10. Translation NeToMo

Proposition 5. MoToNe ◦ NeToMo = idM and NeToMo ◦MoToNe = idT .

9.1. Haskell code.
Haskell program

-- DeBruijn index datatype.

data DeBruijn = S DeBruijn

| Z

-- Motzkin tree datatype.

data MotzkinTree = BNode MotzkinTree MotzkinTree

| UNode MotzkinTree

| Leaf

-- Normal form datatype.

data NormalF = Lambda NormalF

| NF NeutralT

-- Neutral term datatype.

data NeutralT = App NeutralT NormalF

| Nat DeBruijn

-- Transforms the given unary Motzkin path

-- into a corresponding DeBruijn index.

unToD :: MotzkinTree -> DeBruijn

A NATURAL COUNTING OF LAMBDA TERMS 19

unToD (UNode mt) = S $ unToD mt

unToD Leaf = Z

-- Transforms the given unary Motzkin path into

-- a chain of lambda abstractions attached

-- to the root of the given normal form.

pushL :: MotzkinTree -> NormalF -> NormalF

pushL (UNode mt) lt = pushL mt $ Lambda lt

pushL (BNode _ _) lt = lt

-- Finds the splitting node of the given Motzkin tree.

splittingNode :: MotzkinTree -> Maybe MotzkinTree

splittingNode (UNode mt) = splittingNode’ mt

where

splittingNode’ Leaf = Nothing

splittingNode’ sn @ (BNode _ _) = Just sn

splittingNode’ (UNode mt) = splittingNode’ mt

-- Syntactic type sugar.

moToNf :: MotzkinTree -> NormalF

moToNf = NF . moToNe

-- Translates the given Motzkin tree

-- to a corresponding neutral term.

moToNe :: MotzkinTree -> NeutralT

moToNe Leaf = Nat Z

moToNe (BNode l r) = App (moToNe l) (moToNf r)

moToNe root = case splittingNode root of

Nothing -> Nat $ unToD root

Just sn -> case moToNe sn of

App lt rt -> App lt $ pushL root rt

End of Haskell program

In order to translate Motzkin trees to corresponding neutral terms we have to
consider two cases. Either we are given a Motzkin tree starting with a unary node
or a binary one. The later case is straightforward due to the fact that binary
nodes correspond to neutral term application. Assume we are given a Motzkin
tree starting with a unary path un of size n. We have to decide whether the path
corresponds to a DeBruijn index or a chain of λ-abstractions. This distinction is
uniquely determined by the existence of the path’s splitting node – the binary node
directly below un. If un has a splitting node then it corresponds to a chain of n
λ-abstractions which will be placed on top of the corresponding right neutral term
constructed recursively from un’s splitting node. Otherwise, un corresponds to the
n-th DeBruijn index.

We leave the straightforward implementation of NeToMo from neutral terms to
Motzkin trees to the reader.

20 M. BENDKOWSKI, K. GRYGIEL, P. LESCANNE, M. ZAIONC

10. Head normal forms

We are now interested in the set of head normal forms

H = K + λH
K = KL∞ +D

which yields the equations

H = K + zH

K = zKL∞ +D

and

K =
D

1− zL∞

H =
K

1− z
From which we draw

K = z + zL∞.

This can be explained by the following bijection (see Figure 3 and Figure 4):

Proposition 6. If P is a neutral head normal form, it is of the form:

• P = 0· N1N2 . . . Np with p ≥ 1 (of size k + 1) then it is in bijection with
(λN1)N2 . . . Np (of size k),
• P = (Sn)N1 . . . Np (of size k + 1) then it is in bijection with nN1 . . . Np
(of size k),
• P = 0· (of size 1), treated by the case z.

From Theorem 1 we get:

Proposition 7.

[zn+1]K ∼
(

1

ρL∞

)n
C

n
3
2

with C
.
= 0.60676... and ρL∞

.
= 0.29559....

The density of a set A in a set B is

lim
n→∞

An
Bn

where An (respectively Bn) are the numbers of elements of A (respectively of B)
of size n. For instance the density of K in L∞ is

lim
n→∞

[zn]K

[zn]L∞
;

Hence the proposition.

Proposition 8. The density of K in L∞ (i.e., the density of neutral head normal
forms among plain terms) is ρL∞ .

Proposition 9.

[zn]H ∼
(

1

ρL∞

)n
CH

n
3
2

with CH
.
= 0.254625911836762946...

A NATURAL COUNTING OF LAMBDA TERMS 21

Proof. The proof is like this of Theorem 1 with

CH =
−
√
ρL∞

Q(ρL∞)
1−ρL∞

2(1− ρL∞)Γ(− 1
2)

.
= 0.254625911836762946...

�

Figure 11 compares the coefficients of H with its approximation.

n [xn]H
10 1902
20 118768916
30 12338289374047
40 1552505356757052270
50 216408050593408223194666
60 32156818736630052190010494575
70 4992016749940033843389032870415375
80 800041142163881275363093897487465240590
90 131362728872240507612558556757894820073668254

100 21984069003048322712483528437236630547685953755064

n b(1/ρL∞)nCH/n
3/2c

10 1581
20 109732518
30 11727010776119
40 1495436887319673848
50 210083497584679365571791
60 31376820974748144171493861802
70 4888522574435898663355075650509052
80 785558576073780985739070920824898277393
90 129252413184969184232722751628403772087829182

100 21666626365243195881127917362969390314273901016408

Figure 11. Approximation of [xn]H.

Proposition 10. The density of H in L∞ (i.e., the density of head normal forms
among plain terms) is ρL∞/(1− ρL∞)

.
= 0.41964337760707887...

Proof. Actually CH

C =
ρL∞

(1−ρL∞) . �

11. Terms containing specific subterms

Consider a term M of size p and the set T of terms that contain M as subterm.

T = t+ λT + T L∞ + L∞T − T T
which yields

T = zp + zT + 2zTL∞ − zT 2

and

zT 2 + (1− 2zL∞ − z)T − zp = 0.

22 M. BENDKOWSKI, K. GRYGIEL, P. LESCANNE, M. ZAIONC

Notice that

1− 2zL∞ − z =
√

∆L∞

Then the discriminant is

∆T = ∆L∞ + 4zp+1

(1− z)∆T = (1− z)∆L∞ + 4zp+1(1− z).

In the interval (0, 1), ∆∞ is decreasing (its derivative is negative) and (1− z)∆T >
(1 − z)∆L∞ . Hence the root ρT of ∆T is larger than the root ρL∞ of ∆∞, that is
ρT > ρL∞ . Beside:

T =

√
∆T −

√
∆L∞

2z
.

Hence the number of terms that do not have M as subterm is given by

L∞ − T =
(1− z)−

√
∆T

2z
.

Theorem 2. The density in L∞ of terms that do not have M as subterm is 0.

Proof. Indeed the smallest pole of L∞−T is ρT and the smallest pole of L∞ is ρL∞ .
Therefore,

[zn](L∞ − T) BC

(
1

ρT

)n
[zn]L∞ BC

(
1

ρL∞

)n
Hence, since ρT > ρL∞

lim
n→∞

[zn](L∞ − T)

[zn]L∞
=

(
ρL∞
ρT

)n
= 0.

�

For instance if |t| = 9, that is for instance if t = ω = (λ(0· 0·))λ(0· 0·), then

ρT
.
= 0.2956014673597697

and
ρL∞
ρT

.
= 0.9999873991231537.

Corollary 1. The density in L∞ of terms that contain M as subterm is 1.

Corollary 2. Asymptotically almost no λ-term is strongly normalizing.

Proof. In other words, the density of strongly normalizing terms is 0. Indeed, the
density in L∞ of terms that contain (λ(0· 0·))λ(0· 0·) is 1. Hence the density of non
strongly normalizing terms is 1. Hence the density of strongly normalizing terms
is 0. �

12. Conclusion

Figure 12 summarizes what we obtained on densities of terms.
Moreover, this research opens many issues, among others about generating ran-

dom terms and random normal forms using Boltzmann samplers [5].

A NATURAL COUNTING OF LAMBDA TERMS 23

nf nhdnf terms with M
sn hdnf sn

0 0.295... 0.419... 1

nf = normal forms
nhdnf = neutral head normal forms hdnf = head normal forms

terms with M = terms containing subterm M
sn = strongly normalizing terms sn = non strongly normalizing terms

Figure 12. Summary of densities

References

[1] Nicolas Bourbaki. Theory of Sets. Elements of Mathematics. Springer-Verlag, 2004.

[2] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,

2008.
[3] Katarzyna Grygiel and Pierre Lescanne. Counting terms in the binary lambda calculus.

CoRR, abs/1401.0379, 2014. Published in the Proceedings of 25th International Conference
on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms 2014,

https://hal.inria.fr/hal-01077251.

[4] Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour. 2-binary trees: Bijections and related
issues. Discrete Mathematics, 308(7):1209–1221, 2008.

[5] Pierre Lescanne. Boltzmann samplers for random generation of lambda terms. Technical report,

ENS de Lyon, 2014. http://hal-ens-lyon.archives-ouvertes.fr/docs/00/97/90/74/PDF/

boltzmann.pdf.

[6] Bruno Salvy and Paul Zimmermann. Gfun: a Maple package for the manipulation of gener-

ating and holonomic functions in one variable. ACM Transactions on Mathematical Software,
20(2):163–177, 1994.

[7] Aristidis Sapounakis, Ioannis Tasoulas, and Panagiotis Tsikouras. Ordered trees and the in-

order traversal. Discrete Mathematics, 306(15):1732–1741, 2006.

Appendix A. De Bruijn notations

De Bruijn indices are a system of notations for bound variables due to Nikolaas
de Bruijn and somewhat connected to those proposed by Bourbaki [1]. The goal
is to replace bound variables by placeholders and to link each bound variable to
its binder. For instance (see Figure 13) Bourbaki ([1] p. 20) proposes to represent
placeholders by boxes � and to represent binds by drawn lines. This requires a two
dimensional notation. For example, he considers the formula:

(τx)¬(x ∈ A′) ∨ x ∈ A′′

Notice that we use an infix notation whereas he uses a prefix notation which gives
τ ∨ ¬ ∈ xA′ ∈ xA. The formula contains the binder τ (a binder that Bourbaki
introduces) and two occurrences of the bound variable x, this involves two �’s and
two drawn lines from τ , namely to the first � and to the second �. De Bruijn
proposes to represent the placeholders (in other words the variables) by natural
numbers which represent the length of the link, that is the number of binders
crossed when reaching the actual binder of the variables. In our proposal, we write
natural numbers using the functions zero 0· and successor S. For instance, 3 is
written SSS0· . With de Bruijn notations, Bourbaki’s formula is written:

τ (¬0· ∈ A′) ∨ 0· ∈ A′′

24 M. BENDKOWSKI, K. GRYGIEL, P. LESCANNE, M. ZAIONC

Figure 13. Bourbaki’s notations for formula τ ∨ ¬ ∈ xA′ ∈ xA.

λ λ λ (� �) (� �)

Figure 14. S in Bourbaki style

and the lambda terms λx.λy.λz.(xz)(yz) is written λλλ(((SS0·)0·)((S0·)0·)) which
would correspond to the drawing of Figure 14 in Bourbaki style.

Appendix B. Another natural counting of lambda terms

Another natural counting is a counting where:

|λM | = |M |+ 1

|M1M2| = |M1|+ |M2|+ 1

|Sn| = |n|+ 1

|0· | = 0.

The generating function is solution of

zM2
∞ − (1− z)M∞ +

1

1− z
= 0

with discriminant

∆M∞ = (1− z)2 − 4
z

1− z

=
(1− z)3 − 4z

1− z

=
1− 7z + 3z2 − z3

1− z
and with root closest to 0: ρM∞

.
= 0.152292401860433 and 1/ρM∞ = 6.5663157700831193.

The first values are:

1, 3, 10, 40, 181, 884, 4539, 24142, 131821, 734577, 4160626

This sequence is A258973 in the Online Encyclopedia of Integer Sequences and
grows significantly faster than A105633.

E-mail address: GRYGIEL@TCS.UJ.EDU.PL,PIERRE.LESCANNE@ENS-LYON.FR

