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Sharp error bounds for complex
floating-point inversion

Claude-Pierre Jeannerod Nicolas Louvet
Jean-Michel Muller Antoine Plet

September 8, 2015

Abstract

We study the accuracy of the classic algorithm for inverting a com-
plex number given by its real and imaginary parts as floating-point num-
bers. Our analyses are done in binary floating-point arithmetic with an
unbounded exponent range in precision p, and we assume that the ele-
mentary arithmetic operations (+, −, ×, /) are rounded to nearest, so that
the roundoff unit is u = 2−p. We prove the componentwise relative error
bound 3u for the complex inversion algorithm (assuming p > 4), and we
show that this bound is asymptotically optimal (as p→∞) when p is even,
and reasonably sharp when using one of the basic IEEE 754 binary formats
with an odd precision (p = 53, 113). This componentwise bound obvi-
ously leads to the same bound 3u for the normwise relative error. However
we prove that the significantly smaller bound 2.707131u holds (assuming
p > 24) for the normwise relative error, and we illustrate the sharpness of
this bound using numerical examples for the basic IEEE 754 binary formats
(p = 24, 53, 113).

keywords: floating-point arithmetic, numerical error, complex inversion,
error analysis, roundings.

1 Introduction

This paper deals with the accuracy of the inversion of a complex number given
by its real and imaginary parts as floating-point numbers. We assume that
the underlying floating-point arithmetic has radix 2 and precision p > 2, and
we also assume an unbounded exponent range, which means that our results
apply to practical floating-point calculations according to the IEEE 754 stan-
dard [6], as long as underflow and overflow do not occur.

Given a nonzero complex number a+ ib, its inverse can be expressed as

z = R+ i I =
a

a2 + b2
− i b

a2 + b2
. (1)
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Assuming a and b are floating-point numbers and denoting by RN a round-to-
nearest function, we focus in this paper on the approximation ẑ = R̂ + i Î that
can be computed classically in floating-point arithmetic according to

R̂ = RN
(

a

RN(RN(a2) + RN(b2))

)
(2)

for the real part, and with a similar expression for the imaginary part Î , which
straightforwardly leads to Algorithm 1 below.

Algorithm 1 Inversion of a nonzero complex floating-point number a+ ib.

sa ← RN
(
a2
)

sb ← RN
(
b2
)

s← RN(sa + sb)

R̂← RN(a/s)

Î ← RN(−b/s)
return R̂+ i Î

We provide an accuracy analysis of this algorithm, for both the componen-
twise relative error (assuming a 6= 0 and b 6= 0) defined by EC = max

(
|R −

R̂|/|R|, |I − Î|/|I|
)
, and the normwise relative error EN = |z− ẑ|/|z| (assuming

z 6= 0).
Of course, complex inversion is a particular case of complex division. How-

ever, the quotient computed by the classic division algorithm can be highly in-
accurate in the componentwise sense (see for example [7, §1]), while the com-
ponentwise relative error generated by Algorithm 1 can easily be bounded by
3u + O(u2), where u = 2−p is the unit roundoff. In fact, we prove in Section 2
that the O

(
u2
)

term can be removed, leading to the simpler bound 3u (assum-
ing p > 4). We also show that this bound is asymptotically optimal (as p→∞)
when p is even, by providing floating-point numbers a and b parametrized by
p, and for which EC is at least 3u − 31

2 u
3
2 + O

(
u2
)
. When p is odd, we give

numerical examples to show that the bound 3u is reasonably sharp, especially
for the corresponding basic IEEE 754 binary formats (p = 53, 113).

Normwise relative accuracy analyses of the classic complex division algo-
rithm can be found for example in [4],[13]. To our knowledge, the smallest
bound on the normwise relative error for complex division is (3+

√
5)u+O

(
u2
)
:

as noted in [1, §3.5], this bound can be derived from the bound
√
5u from [3]

on the normwise relative error for the classic complex multiplication algorithm
(note that 3 +

√
5 ≈ 5.24). In the case of complex inversion with Algorithm 1,

the bound 3u + O
(
u2
)

can be found in [4, p. 30], and a direct application of
our componentwise bound 3u obviously leads to EN 6 3u. However, we prove
in Section 3 the significantly smaller bound EN < γu + 9u2 for the normwise
error of Algorithm 1 (assuming p > 10), with γ a constant in (2.70712, 2.70713).
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When using for example the IEEE 754 binary32 format (p = 24), this implies
EN < 2.707131u. The techniques and the case distinction we use to prove this
bound are inspired from [14], but we also extensively use real analysis and dif-
ferentiation for the treatment of each case. We provide numerical examples to
show that the bound we obtain is quite sharp for the basic IEEE 754 formats
(p = 24, 53, 113).

Several authors [11, 12, 9, 2] have suggested ways of avoiding spurious
overflows and underflows in complex division. As already noticed, we do not
deal with this problem here, and we only focus on the largest error assuming
an unbounded exponent range.
Outline. Section 2 is devoted to the componentwise relative error analysis of
Algorithm 1, and Section 3 to its normwise relative error analysis. Section 4
concludes the paper. The technical parts of the proofs that can be skipped at
first reading are gathered in Appendix A.

Assumptions and notation. For any real number t, we denote by RN(t) the
binary floating-point number that is nearest to t, with a tie-breaking strategy
preserving the following properties:

• RN(2kt) = 2kRN(t) for any integer k,

• RN(−t) = −RN(t).

In particular, either the roundTiesToEven or the roundTiesToAway rounding di-
rection attribute defined in the IEEE 754 standard [6] can be used.

Throughout the paper, the relative error due to rounding is bounded as
follows [8, p. 232]: for any real t,

RN(t) = t(1 + ε) with |ε| 6 u

1 + u
. (3)

Note that (3) implies the well-known inequality |RN(t)−t| 6 u|t| (see [5, p. 38]).
We use the notation ufp(t) (unit in the first place, introduced in [10]) to denote

the weight of the most significant digit of t. More precisely, ufp(0) = 0, and if
t 6= 0 then ufp(t) is the unique integer power of 2 such that 1 6 |t|

ufp(t) < 2. The
usual ulp function (unit in the last place) is related to the ufp function through
the relation ulp(t) = 2u · ufp(t), so that

|RN(t)− t| 6 1
2ulp(t) = ufp(t)u. (4)

2 Componentwise error bound

In this section, we analyze EC = max
(
|R− R̂|/|R|, |I − Î|/|I|

)
for Algorithm 1.

Repeated applications of the bound u/(1 + u) in (3) give immediately EC 6
3u+O

(
u2
)
. We show below that theO

(
u2
)

term can in fact be removed, leading
to the simpler bound 3u.

To do this, we show that if p 6= 3 then the relative bound u/(1 + u) in (3)
can be replaced by u/(1 + 3u) when evaluating a square RN

(
a2
)

instead of a
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general product. (When p = 3, it is easily checked that the bound u/(1 + u)
is attained when squaring the floating-point numbers 3/2 · 2e, e ∈ Z.) This
slight refinement will turn out to be enough to show that Algorithm 1 satisfies
EC 6 3u.

Lemma 1. Let a be a floating-point number. If p 6= 3 then |a2 − (2 + 2u)| > 4u2.

Proof. If |a| < 1 then |a2 − (2 + 2u)| > 1 + 2u, and the result follows from the
fact that 1 + 2u > 4u2 when p > 0. Assume now that |a| > 1. To handle this
case, we show first that

a2 = 2 + 2u ⇒ p = 3. (5)

Since |a| is a floating-point number not smaller than 1, there exists a positive
integer A such that |a| = A · 21−p = A · 2u. The equality a2 = 2 + 2u is
thus equivalent to A2 = (2p + 1) · 2p−1 and, using the (unique) decomposition
A = (2B + 1) · 2C with B,C ∈ N, it can also be rewritten (2B + 1)2 · 22C =
(2p + 1) · 2p−1. Now, p > 0 implies that 2p + 1 is odd and at least 3, so B 6= 0
and (2B + 1)2 = 2p + 1. The latter equality can be rewritten as 4B(B + 1) = 2p

and its unique solution over N2
>0 is (B, p) = (1, 3), so (5) follows.

If p 6= 3 then, by (5) we have a2 6= 2+2u, that is,A2 6= (2p+1)·2p−1. Since the
latter inequality involves only integers, it is equivalent to |A2−(2p+1) ·2p−1| >
1 and thus to |a2 − (2 + 2u)| > 4u2.

Lemma 2. Let a be a floating-point number. If p 6= 3 then RN
(
a2
)
= a2(1 + ε) with

|ε| 6 u/(1 + 3u).

Proof. We can assume that 1 6 a < 2. If a = 1 then RN
(
a2
)
= a2 and the result

is clear. If 1 < a <
√
2 then it follows from a being a floating-point number

and p > 4 that a belongs to the non-empty interval [1 + 2u,
√
2). Consequently,

1 + 4u < a2 < 2 and thus |ε| 6 uufp(a2)/a2 = u/a2 < u/(1 + 4u). Finally,
if
√
2 < a < 2 then 2 < a2 < 4 and, by Lemma 1, it suffices to consider the

following four subcases:

• If 2 < a2 6 2 + 2u− 4u2 then RN
(
a2
)
= 2 and, therefore,

|ε| = 1− 2

a2
6 1− 2

2 + 2u− 4u2
6

u

1 + 3u
.

• If 2 + 2u+ 4u2 6 a2 < 2 + 4u then RN
(
a2
)
= 2 + 4u and, therefore,

|ε| = 2 + 4u

a2
− 1 6

2 + 4u

2 + 2u+ 4u2
− 1 6

u

1 + 3u
.

• If 2 + 4u 6 a2 < 2 + 6u then RN
(
a2
)
= 2 + 4u and, therefore,

|ε| = 1− 2 + 4u

a2
6 1− 2 + 4u

2 + 6u
=

u

1 + 3u
.
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• If 2 + 6u 6 a2 < 4 then ufp(a2) = 2 and |ε| 6 2u/a2 6 2u/(2 + 6u) =
u/(1 + 3u).

Theorem 1. If p > 4 then the componentwise relative error for Algorithm 1 satisfies
EC 6 3u.

Proof. Due to the symmetry of Algorithm 1, it suffices to show that |R − R̂| 6
3u|R|. From (3) and Lemma 2 we have

sa = a2(1+ε1), sb = b2(1+ε2), s = (sa+sb)(1+ε3), R̂ =
a

s
(1+ε4)

with |ε1|, |ε2| 6 u/(1 + 3u) and |ε3|, |ε4| 6 u/(1 + u). Hence

R̂ =
a

a2(1 + ε1) + b2(1 + ε2)
· 1 + ε4
1 + ε3

and, using R = a/(a2 + b2), we deduce that ϕR 6 R̂ 6 ϕ′R with

ϕ :=
1− u

1+u

(1 + u
1+3u )(1 +

u
1+u )

and ϕ′ :=
1 + u

1+u

(1− u
1+3u )(1−

u
1+u )

.

It is easily checked that ϕ > 1 − 3u and ϕ′ = 1 + 3u, which completes the
proof.

We conclude this section by showing that the componentwise bound EC 6
3u is essentially sharp. More precisely, when the precision p is even, the follow-
ing example shows that the componentwise error bound 3u is asymptotically
optimal as p → ∞. Assuming an even p > 10, let us consider the following
binary floating-point numbers in precision p:

a = 2
p
2−1 + 5 · 2−2 + 2−

p
2+2,

b = 2p−1 + 2
p
2−1 + 1.

With these values as inputs of Algorithm 1, we have

sa = 2p−2 + 5 · 2
p
2−2 + 11 · 2−1,

sb = 22p−2 + 2
3p
2 −1 + 3 · 2p−1,

s = 22p−2 + 2
3p
2 −1 + 2p+1.

From this we deduce
a

s
= 2−

3p
2 +1 + 2−2p − 2−

5p
2 +1 − 15 · 2−3p+2 +O

(
2−

7p
2

)
,

and ulp
(
a
s

)
= 2−

5p
2 +2. Then, defining the floating-point number τ by

τ = 2−
3p
2 +1 + 2−2p − 2−

5p
2 +2,
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it can be checked that∣∣∣a
s
− τ
∣∣∣ = 2−

5p
2 +1 + 2−

7p
2 +5

1 + 2−
p
2+1 + 2−p+3

< 1
2ulp

(
a
s

)
,

hence R̂ = RN
(
a
s

)
= τ , which leads to

R− R̂
R

= 3u− 31
2 u

3
2 +O

(
u2
)
.

As a consequence, in this example the componentwise relative error in the com-
puted ẑ is at least 3u− 31

2 u
3
2 +O

(
u2
)
, which shows the asymptotic optimality

(as p→∞) of the bound when p is even.
When p is odd, we did not find an input set parametrized by the precision p

to prove the asymptotic optimality of the error bound 3u. However, the sharp-
ness of the bound is illustrated in this case by the numerical examples provided
in Table 1.

p example
15 a = 16732

b = 23252·23

|R̂−R|/(u|R|) = 2.93047 . . .

17 a = 66078

b = 93014·28

|R̂−R|/(u|R|) = 2.96359 . . .

19 a = 131435

b = 370969·28

|R̂−R|/(u|R|) = 2.98509 . . .

53 a = 4508053433127332

b = 6369149602646415·216

|R̂−R|/(u|R|) = 2.97894 . . .

113 a = 5192393427440123027423416459819356

b = 7343016638055329519853569740503421·216

|R̂−R|/(u|R|) = 2.97647 . . .

Table 1: Examples with p odd and a componentwise relative error close to 3u.

3 Normwise error bound

In this section, we are interested in the relative normwise error of Algorithm 1,
that is

EN =
√
a2 + b2

√
(R− R̂)2 + (I − Î)2.
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The analysis is done in radix 2 and precision p, and we assume that overflows
and underflows never occur. If we apply directly the componentwise bound
obtained in Section 2, we end up with the normwise error bound EN 6 3u.
But we can do better and improve significantly this bound keeping track of the
correlation between the errors. In this section, we prove the following result.

Theorem 2. For p > 10, the normwise error in the approximate inverse ẑ computed
by Algorithm 1 satisfies EN 6 γu+ 9u2, where γ is defined by

γ =

√
8778980525057 + 16793600(8

√
2−
√
127)− 550842155008

√
254

8192 (16−
√
254)

, (6)

and is such that γ ∈ (2.70712, 2.70713).

If p > 10, EN < 2.70713u + 9u2 is therefore a rigorous bound for the norm-
wise error of Algorithm 1. It should also be noticed that the second order term
in the error bound can be absorbed by the first order term, at the cost of a
slight enlargement: for example, for p > 24, we have 9u = 9 · 2−24 < 10−6

so that EN < 2.707131u. The numerical examples listed in Table 2 show that
the error bound of Theorem 2 is quite sharp for the basic IEEE 754 formats
(p = 24, 53, 113).

p example
24 a = 11863283

b = 11865457·212

|ẑ − z|/(u|z|) = 2.69090 . . .

53 a = 4503599709991314

b = 6369051770002436·226

|ẑ − z|/(u|z|) = 2.70679 . . .

113 a = 2112

b = 7343016637207171132572330391109909·256

|ẑ − z|/(u|z|) = 2.70559 . . .

Table 2: Examples with a normwise relative error close to γ.

3.1 Preliminaries

The first step in the error analysis of Algorithm 1 is to reduce the input domain.
Since the RN function is symmetric with respect to zero, the signs of a and b are
not relevant and we can assume that both a and b are non negative. Moreover,
if a = 0, then a simple analysis, based on (3), leads to the upper bound 2u for
EN. Then, swapping the inputs a and b does not affect the relative error, so
we can assume that 0 < a 6 b. At last, multiplying or dividing by 2 both a
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and b does not affect either the relative error, and we can reduce the analysis
to the case 1 6 b < 2. From the definition of the ufp function and this input
reduction, we know that ufp

(
b2
)
∈ {1, 2} and ufp(sa + sb) ∈ {1, 2, 4}.

We now define δa, δb, δs, δR and δI as follows:

sa = a2 + δau, |δa| 6 ufp
(
a2
)
,

sb = b2 + δbu, |δb| 6 ufp
(
b2
)
,

s = sa + sb + δsu, |δs| 6 ufp(sa + sb),

R̂ = a
s + δRu, |δR| 6 ufp

(
a
s

)
,

Î = −
(
b
s + δIu

)
, |δI | 6 ufp

(
b
s

)
.

Let us also define δ = δa + δb + δs and ε = |δ|
a2+b2 , so that |δ|u and εu are

respectively the absolute and relative errors in the evaluation of a2 + b2. In the
rest of the section, e denotes the integer such that ufp

(
a2
)
= 2−e.

With these notations, we have:

R− R̂ =
a

s (a2 + b2)
δu− δRu,

and a similar expression holds for the imaginary part, hence

E2
N

u2
=
(
a2 + b2

) (
δ2R + δ2I

)
− 2

δ(aδR + bδI)

a2 + b2 + δu
+

(
δ

a2 + b2 + δu

)2

.

Given a, b and δ, this function is maximal when δδR 6 0 and δδI 6 0 with |δR|
and |δI | maximal, that is |δR| = ufp

(
a
s

)
and |δI | = ufp

(
b
s

)
. As a consequence,

we have

E2
N

u2
6
(
a2 + b2

) (
ufp
(
a
s

)
2 + ufp

(
b
s

)
2
)

+ 2
|δ|
(
ufp
(
a
s

)
a+ ufp

(
b
s

)
b
)

a2 + b2 − |δ|u
+

(
δ

a2 + b2 − |δ|u

)2

.

For p > 2, εu < 1 and we use the equality 1
a2+b2−|δ|u = 1

a2+b2

(
1 + ε

1−εuu
)

and

the inequality
(
1 + ε

1−εuu
)2

6 1 + 2ε
(1−εu)2u to get

E2
N 6 f2(a, b)u

2 + f3(a, b)u
3, (7)

with

f2(a, b) =
(
a2 + b2

) (
ufp
(
a
s

)
2 + ufp

(
b
s

)
2
)

+ 2
|δ|
(
ufp
(
a
s

)
a+ ufp

(
b
s

)
b
)

a2 + b2
+

(
δ

a2 + b2

)2

(8)
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and

f3(a, b) = 2
(
ufp
(
a
s

)
a+ ufp

(
b
s

)
b
) ε2

1− εu
+

2ε3

(1− εu)2
.

From (4), we have

ufp
(
a
s

)
a+ ufp

(
b
s

)
b 6

a2 + b2

s
6

a2 + b2

a2 + b2 − |δ|u
=

1

1− εu
,

and we know from [3] that ε 6 2, so f3(a, b) 6 2ε2(1+ε)

(1−εu)2 < 25 for p > 10.
Moreover, if f2 is upper bounded by κ, we can conclude from (7) that

EN 6
√
κu+

25

2
√
κ
u2. (9)

3.2 Taking care of some corner cases

We can first roughly bound f2 using the inequality ufp(t) 6 |t|, valid for any
real t, which will allow us to conclude in some particular cases and to further
reduce the input domain. From (8) we have

f2(a, b) 6

(
a2 + b2

a2 + b2 − |δ|u

)2

+ 2
|δ|
(
a2 + b2

)
(a2 + b2) (a2 + b2 − |δ|u)

+

(
δ

a2 + b2

)2

=

(
1 + ε+

ε

1− εu
u

)2

.

This last bound is increasing with respect to ε and u (i.e., decreasing with re-
spect to the precision p). Therefore, if ε 6 1 +

√
2
2 + u, and as soon as p > 5, we

have f2(a, b) 6
(
2 +

√
2
2 + 3u

)2 and, from (9),

EN 6
(
2 +

√
2
2

)
u+ 8u2. (10)

Below are five cases that lead to the inequality ε 6 1 +
√
2
2 + u, so they can

be ignored in the following analysis.
• If a = b, then sa = sb and s = sa + sb so that δs = 0 and one can check
that ε 6 1. In this case, the previous bound (10) holds and we can continue the
analysis assuming that

a < b. (11)

• If b = 1, then sb = b2 = 1 and δb = 0. Moreover, from (11) we have a < 1, so
that sa < 1, which implies ufp(1 + sa) = 1 and ε 6 1. Again, the bound (10)
holds and we can continue the analysis assuming that 1 < b. In fact, since b is
a floating-point number, we can assume that

1 + 2u 6 b. (12)
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• If a = 1, then δa = 0 and we can distinguish three cases. If ufp
(
b2
)
= 1 then

ufp(1 + sb) = 2 and ε 6 3
2 . If ufp

(
b2
)
= 2 then either ufp(1 + sb) = 2 which

implies ε 6 4
3 , or ufp(1 + sb) = 4 and then ε 6 3

2 + u. In all these cases, (10)
holds hence we can assume now that

a 6= 1. (13)

• If a2 + b2 < ufp(sa + sb), then we have (sa+ sb)− ufp(sa + sb) < (δa+ δb)u 6
(a2 + b2)u < ufp(sa + sb)u = 1

2ulp(sa + sb). Since ufp(sa + sb) is a floating-
point number, we can deduce that s = RN(sa + sb) = ufp(sa + sb) hence ε 6 1
and (10) holds. In the following, we can then assume that

ufp(sa + sb) 6 a2 + b2. (14)

• One last case is when sa + sb >
√
2 ufp(sa + sb). In this case, ε 6 1 +

√
2
2 + u

and the previous bound (10) holds. Therefore, we now assume that

sa + sb <
√
2 ufp(sa + sb). (15)

3.3 Overview of the case analysis

The analysis goes through the possible values of ufp(sa + sb) which are 1, 2
and 4. In each case, we first deduce upper bounds for ufp

(
b2
)
, ufp

(
a
s

)
and

ufp
(
b
s

)
. This leads to a new function g, greater than or equal to f2, with three

parameters: a, b and e. This function g does not involve floating-point oper-
ations anymore and can be seen as a continuous and derivable function over
real inputs. We then look for an upper bound for this function over a restricted
domain D containing all the floating-point numbers we are interested in. For
this latter step, we mainly use real analysis, especially derivatives. In some
cases, we can maximize with respect to a and b at the same time. The last step
is always to maximize with respect to e, using the change of variable x = 2−e

and considering x as a continuous variable.
The analysis is split into seven cases depending on the values of some ufp

functions involved in the upper bound (8) for f2. In each case but the last
one, we end up with a bound smaller than or equal to

(
2 +

√
2
2

)2 for f2, from
which we conclude using (9) that EN 6

(
2 +

√
2
2

)
u + 5u2. The last case is

similar although we have a slightly larger bound γ2 + 20u for f2 (we have
2+

√
2
2 = 2.70710 . . ., while γ = 2.70712 . . .), which leads to EN 6 γu+9u2. The

table below summarizes the bounds in each case, under the assumptions (11)
to (15).
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ufp(sa + sb) ufp
(
b2
)

e ufp
(
a
s

)
f2 EN

1 1 > 2 6 2−
e
2 6.565 2.6u

4 2
= −1 6 1

4

(
2 +

√
2
2

)2 (
2 +

√
2
2

)
u+ 5u2

> 0 6 2−2−
e
2

(
7
4 +

√
2
2

)2
2.5u

2

1
> 1 6 2−1−

e
2

(
7
4 +

√
3
2

)2
2.65u

= 0 6 1
4

(
5
2

)2 5
2u+ 5u2

2
> 1 6 2−

3+e
2

(
2 +

√
2
2

)2 (
2 +

√
2
2

)
u+ 5u2

> 2, even = 2−2−
e
2 γ2 + 20u γu+ 9u2

We give all the details of the analysis of the first case. For the other cases, we
only give a sketch of the analysis, while deferring the details to Appendix A.

3.4 Case ufp(sa + sb) = 1

In this case, we can deduce from (15) that 1 6 sa + sb <
√
2. As a consequence,

we must have b <
√
2 (otherwise we would have sa + sb > 2), hence

ufp
(
b2
)
= 1.

Since sa <
√
2− 1 < 1

2 and sa = RN
(
a2
)
, we have a2 < 1

2 , and

e > 2.

Moreover, we know from (12) that b > 1+2u so we have b2 > b(1+2u) > b+2u,
which is a floating-point number because ufp(b) = 1. Consequently sb > b+2u
and s > sa + sb − u > sa + b+ u > b, hence b

s < 1, which implies

ufp
(
b
s

)
6 1

2 .

Finally, s = RN(sa + sb) > 1 so a
s 6 a < 2

1−e
2 and

ufp
(
a
s

)
6 2−

e
2 .

Therefore, using (8) we deduce in this case that f2(a, b) 6 g1(a, b, e), with

g1(a, b, e) :=
(
a2 + b2

) (
2−e + 1

4

)
+ 2

(2 + 2−e)
(
a2−

e
2 + b

2

)
a2 + b2

+

(
2 + 2−e

a2 + b2

)2

.

Let us now characterize explicitly the domain over which we will bound
g1(a, b, e). First, we know that 2−

e
2 6 a < 2

1−e
2 . Next, since sa + sb <

√
2 and

sa > 0, we have sb <
√
2, so that b2 <

√
2 + u and 1 < b <

√√
2 + u. Finally,

11



we have a2+b2 6 sa+ufp
(
a2
)
u+sb+ufp

(
b2
)
u <
√
2+ 5

4uwhich concludes the
domain analysis: we are looking for an upper bound for g1 over the domain

D1 :=
{
(a, b, e) | 2− e

2 6 a < 2
1−e
2 , 1 6 b <

√√
2 + u, a2+b2 <

√
2+ 5

4u and e > 2
}
.

We now compute the partial derivatives of g1 with respect to a and b,

∂g1
∂a

= 2a
(
2−e + 1

4

)
− 4a

(2 + 2−e)
2

(a2 + b2)
3 +

2 + 2−e

a2 + b2
21−

e
2 − 4a

2−
e
2 a+ b

2

(a2 + b2)
2

(
2 + 2−e

)
,

∂g1
∂b

= 2b
(
2−e + 1

4

)
− 4b

(2 + 2−e)
2

(a2 + b2)
3 +

2 + 2−e

a2 + b2
− 4b

2−
e
2 a+ b

2

(a2 + b2)
2

(
2 + 2−e

)
,

and the next step is to prove that they are both negative over the domain D1.
Since 1

b
∂
∂bg1(a, b, e) −

1
a
∂
∂ag1(a, b, e) = 2+2−e

a2+b2

(
1
b −

1
a2

1− e
2

)
< 0 over D1, it is

sufficient to prove that ∂
∂ag1(a, b, e) < 0. Since 2a 2+2−e

a2+b2 > 0, we can rewrite this
inequality as(

2−e + 1
4

) (
a2 + b2

)
2 + 2−e

+
2−

e
2

a
< 2

2 + 2−e

(a2 + b2)
2 + 2

2−
e
2 a+ b

2

a2 + b2
,

and a small computation using the definition of D1 shows that it is true for all
(a, b, e) ∈ D1.

Since both ∂g1
∂a and ∂g1

∂b are negative over D1, since (a, b, e) ∈ D1 implies
a > 2−

e
2 and b > 1, and since (2−

e
2 , 1, e) ∈ D1, we deduce g1(a, b, e) 6

g1(2
− e

2 , 1, e) =: h1(x), with x = 2−e and

h1(x) = (x+ 1)
(
x+ 1

4

)
+

(
x+ 2

x+ 1

)2

+
2x+ 1

x+ 1
(x+ 2) .

Since e > 2, we have 0 < x 6 1
4 , and

h′1(x) =
2x4 + 37

4 x
3 + 63

4 x
2 + 43

4 x+ 1
4

(x+ 1)3
,

is clearly positive, hence we deduce f2(a, b) 6 h1
(
1
4

)
= 6.565.

3.5 Case ufp(sa + sb) = 4

From (15) and (11), we know that 4 6 sa + sb < 4
√
2 and sa < sb. As a

consequence, we have 2 < sb which implies 2 < b2, so that

ufp
(
b2
)
= 2 and

√
2 < b 6 2− 2u.

Since 4 is a floating-point number, we have s = RN(sa + sb) > 4 and b
s 6 b

4 <
1
2

hence
ufp
(
b
s

)
6 1

4 .

12



In the same way, as 6 a
4 < 2−

3+e
2 so that

ufp
(
a
s

)
6 2−2−

e
2 .

We now distinguish two subcases, namely e = −1 and e > 0.

3.5.1 Subcase e = −1

We have ufp
(
a
s

)
6 2−

3
2 , hence ufp

(
a
s

)
6 1

4 , thus we deduce from (8) that
f2(a, b) 6 g2(a, b), with

g2(a, b) :=
a2 + b2

8
+

(
8

a2 + b2

)2

+
4(a+ b)

a2 + b2
.

From (15), we know that sa+ sb < 4
√
2 which implies a2 + b2 < 4

√
2+ 4u. The

domain of interest is then given by

D2 := {(a, b) |
√
2 6 a 6 b < 2 and a2 + b2 < 4

√
2 + 4u}.

Computing the partial derivatives of g2 with respect to a and b, and proving
that they are both negative over the domain D2 (detailed computations are in
§A.2), we end up with f2(a, b) 6 g2(

√
2,
√
2) =

(
2 +

√
2
2

)2.

3.5.2 Subcase e > 0

In this case, using the inequality ufp
(
a
s

)
6 2−2−

e
2 in (8), we have f2(a, b) 6

g3(a, b, e) with

g3(a, b, e) :=
a2 + b2

16

(
2−e + 1

)
+

(
6 + 2−e

a2 + b2

)2

+
2−

e
2 a+ b

2 (a2 + b2)

(
6 + 2−e

)
.

The domain over which we bound g3 is

D3 := {(a, b, e) | 2− e
2 6 a 6 2

1−e
2 ,
√
2 6 b < 2, 4 6 a2 + b2 < 4

√
2 + 4u, e > 0}.

First, it can be checked that the partial derivative of g3 with respect to b is neg-
ative over D3 (details are in §A.3). Since b >

√
4− a2, and (a, b, e) ∈ D3 implies

(a,
√
4− a2, e) ∈ D3, we deduce that g3(a, b, e) 6 g3(a,

√
4− a2, e), where

g3(a,
√
4− a2, e) = 2−e + 1

4
+

(6 + 2−e)
2

16
+

2−
e
2 a+

√
4− a2

8

(
6 + 2−e

)
.

We then compute ∂
∂ag3(a,

√
4− a2, e) = 6+2−e

8

(
2−

e
2 − a√

4−a2

)
, which is non-

negative because a2 6 2a2

1+2−e 6 4·2−e

1+2−e . Since (2
1−e
2 ,
√
4− 21−e, e) ∈ D3, we

have g3(a, b, e) 6 g3(2
1−e
2 ,
√
4− 21−e, e) =: h3(x), with

h3(x) =
x+ 1

4
+

(6 + x)
2

16
+

√
2x+

√
4− 2x

8
(6 + x) .

13



Since

h′3(x) = 1 +
x

8

(
1 +
√
2
)
+

√
4− 2x

8
+
x+ 6

8

(√
2− 1√

4− 2x

)
is positive for 0 < x 6 1, we deduce f2(a, b) 6 h3(1) =

(
7
4 +

√
2
2

)2.

3.6 Case ufp(sa + sb) = 2

From (14) we have 2 6 a2+ b2, and from (15) we have 2 6 sa+ sb < 2
√
2 hence

e > 0.

Since 2 is a floating-point number, we know that s > 2. Therefore a
s < 2−

1+e
2 ,

hence
ufp
(
a
s

)
6 2−1−

e
2 , (16)

and b
s < 1 so that

ufp
(
b
s

)
6 1

2 .

We handle separately the two possible values, 1 and 2, for ufp
(
b2
)
.

3.6.1 Subcase ufp
(
b2
)
= 1

We distinguish the cases e > 1 and e = 0.

• Subsubcase e > 1: From (8) we have f2(a, b) 6 g4(a, b, e) with

g4(a, b, e) :=

(
a2 + b2

)
(2−e + 1)

4
+

(
3 + 2−e

a2 + b2

)2

+
(3 + 2−e)

(
2−

e
2 a+ b

)
a2 + b2

.

We have a2 + b2 6 sa + sb +
(
ufp
(
a2
)
+ ufp

(
b2
))
u < 2

√
2 + 2u and 1 < b <

√
2

, hence we can restrict the analysis to the domain

D4 := {(a, b, e) | 2− e
2 6 a < 2

1−e
2 , 1 < b <

√
2, 2 6 a2+b2 < 2

√
2+2u and e > 1}.

We can first compute the partial derivative of g4 with respect to b and prove that
it is negative over D4 for p > 4 (see the details in §A.4). Since (a,

√
2− a2, e) ∈

D4, we deduce that g4(a, b, e) 6 g4(a,
√
2− a2, e), and we have

g4(a,
√

2− a2, e) = 2−e + 1

2
+

(3 + 2−e)
2

4
+

(3 + 2−e)
(
2−

e
2 a+

√
2− a2

)
2

.

We can next compute the derivative of g4(a,
√
2− a2, e) with respect to a (see

§A.4) and check that the maximum is obtained at a0 = 2−
e
2

√
2

1+2−e so that

g4(a, b, e) 6 g4(a0,
√

2− a20, e) =: h4(x) with

h4(x) =
x+ 1

2
+

(3 + x)
2

4
+

3 + x

2

(
x

√
2

1 + x
+

√
2− 2x

1 + x

)
.
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Since h′4(x) > 0 for 0 < x 6 1
2 , we conclude that g4(a, b, e) 6 h4(

1
2 ) =

(
7
4+
√
3
2

)2.

• Subsubcase e = 0: According to (13), we assume that 1 < a, so that ufp
(
b2
)
=

ufp
(
a2
)
= 1. It follows that s > sa+sb−2u > a2+b2−4u, hence a

s 6 a
a2+b2−4u .

Since a and b are both floating-point numbers, and from (11), we know that
b > a + 2u so that b2 − 4u > a2. By computing its partial derivatives, it can
then be checked that a

a2+b2−4u is increasing with respect to a, which implies
a
s 6 b−2u

(b−2u)2+b2−4u . This last expression is decreasing with respect to b, and
since b > 1 + 2u we deduce a

s 6 1
2(1+2u2) <

1
2 . Thus,

ufp
(
a
s

)
6 1

4 .

In the same way, it can be derive from b
s 6 b

a2+b2−4u that

ufp
(
b
s

)
6 1

4 .

Using these bounds on ufp
(
a
s

)
and ufp

(
b
s

)
in (8) we get f2(a, b) 6 g5(a, b) with

g5(a, b) :=

(
a2 + b2

)
8

+
16

(a2 + b2)
2 +

2 (a+ b)

a2 + b2
,

hence it remains to bound g5(a, b) over the domain D5 defined by

D5 := {(a, b) | 1 6 a 6 b <
√
2 and a2 + b2 < 2

√
2 + 2u}.

In this domain, we have ∂
∂bg5(a, b) < 0 (details are in §A.5) so that g5(a, b) 6

g5(a, a) =
a2

4 + 4
a4 + 2

a which is maximal for a = 1. Therefore, we deduce that
g5(a, b) 6 g5(1, 1) =

(
5
2

)2.

3.6.2 Subcase ufp
(
b2
)
= 2

In this paragraph, a2 < 1 (otherwise we would have sa + sb > 2 + 1 while
from (15) we have 2

√
2 < sa + sb), hence e > 1 . We split the inequality (16)

into two possible cases. Either ufp
(
a
s

)
< 2−1−

e
2 which implies ufp

(
a
s

)
6 2−

3+e
2 ,

or ufp
(
a
s

)
= 2−1−

e
2 in which case e is even.

• Subsubcase ufp
(
a
s

)
< 2−1−

e
2 : We deduce that f2(a, b) 6 g6(a, b, e) with

g6(a, b, e) :=

(
a2 + b2

) (
2−1−e + 1

)
4

+

(
4 + 2−e

a2 + b2

)2

+
(4 + 2−e)

(
2−

1+e
2 a+ b

)
a2 + b2

.
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We can compute the derivatives of g6 (details are provided in §A.6) with respect
to a and b and prove that they are negative over the domain

D6 := {(a, b, e) | 2− e
2 6 a < 2

1−e
2 ,
√
2 6 b < 2,

2 6 a2 + b2 < 2
√
2 +

(
2 + 2−e

)
u, and e > 1}.

For (a, b, e) ∈ D6, we deduce that g6(a, b, e) 6 g6(2
− e

2 ,
√
2, e) =: h6(x) with

h6(x) =
(x+ 2)

(
x
2 + 1

)
4

+

(
4 + x

x+ 2

)2

+

√
2 (4 + x)

(
x
2 + 1

)
x+ 2

.

We can maximize h6(x) for 0 < x 6 1
2 , which leads to f2(a, b) 6 h6(0) =(

2 +
√
2
2

)2.

• Subsubcase ufp
(
a
s

)
= 2−1−

e
2 : In this case, e is even, hence e > 2. We have

f2(a, b) 6 g7(a, b, e) with

g7(a, b, e) :=

(
a2 + b2

)
(2−e + 1)

4
+

(
4 + 2−e

a2 + b2

)2

+
(4 + 2−e)

(
2−

e
2 a+ b

)
a2 + b2

.

We can compute the partial derivative of g7 with respect to b and prove that it
is negative over the domain

D7 := {(a, b, e) | 2− e
2 6 a < 2

1−e
2 ,
√
2 6 b < 2,

2 6 a2 + b2 < 2
√
2 +

(
2 + 2−e

)
u, and e > 2, e even}.

Therefore, we know that g7(a, b, e) 6 g7(a,
√
2, e). Moreover, for a > 2−1−

e
2 ,

we have ∂
∂ag7(a,

√
2, e) < 0, so that g7(a,

√
2, e) is decreasing with respect to a

and is maximal at the minimal value of a which we will now determine. The
lower bound 2−

e
2 for a does not lead to a sufficiently tight bound for f2: to get

a better bound, we exploit further the hypothesis ufp
(
a
s

)
= 2−1−

e
2 . From this

assumption, we deduce s2−1−
e
2 6 a, that is a2 − 21+

e
2 a + b2 + δu 6 0, which

implies

a > 2−
e
2

2− (4 + 2−e)u

1 +
√
1− 2−e(2− (4 + 2−e)u)

= a0 + η(u)

with a0 := 2−
e
2

2
1+
√
1−21−e

, η(u) < 0 and η(u) ∈ O(u). Then, it can be proved

that g7(a,
√
2, e) 6 g7(a0,

√
2, e) + 20u (the details are provided in §A.7).

The last step is to bound g7(a0,
√
2, e) for e an even positive integer. With

y =
√
1− 21−e, we have g7(a0,

√
2, e) =: h7(y), with h7(y) a rational fraction

over y. The variable y belongs to
[√

2/2, 1
]
, and h′7(y) =

P (y)
32 (y+1)2 where

P (y) = 3y7 + 11y6 − 5y5 − (12
√
2 + 85)y4 − (32

√
2 + 143)y3

+ (8
√
2− 23)y2 + (64

√
2 + 113)y + 36

√
2 + 33.
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Using Descartes’ rule of signs, one can check that P has exactly one root in the
interval

[√
2/2, 1

]
, and since the evaluation of P is positive at

√
1− 2−5 and

negative at
√
1− 2−7, we deduce that h7 is increasing over

[√
2/2,
√
1− 2−5

]
and decreasing over

[√
1− 2−7, 1

]
. Comparing the values of h7 at the points√

1− 2−5 and
√
1− 2−7, we conclude that h7(

√
1− 2−7) is an upper bound for

h7.
Finally, it can be checked that h7(

√
1− 2−7) = γ2 hence we get f2(a, b) 6

γ2 +20u. From (9), we derive the final upper bound γu+9u2 for EN (details of
the proof can be found in §A.7), which concludes the proof of Theorem 2.

4 Conclusion

We showed the componentwise relative error bound 3u for the complex inver-
sion algorithm, and we proved that this bound is asymptotically optimal (as
p → ∞) when the precision p is even, and reasonably sharp when p is odd.
We also proved the bound γu + 9u2, with γ ∈ (2.70712, 2.70713) for the norm-
wise relative error, and we have illustrated the sharpness of this bound using
numerical examples for the basic IEEE 754 binary formats.

Let us conclude with a remark concerning floating-point division. The clas-
sic complex division algorithm for computing an approximate ẑ = R̂ + i Î of
(a+ ib)/(c+ id) in floating-point arithmetic is given by

R̂ = RN
(

RN(RN(ac) + RN(bd))

RN(RN(c2) + RN(d2))

)
, (17)

with a similar formula for the imaginary part Î . As mentioned in [1, §3.6],
the smallest known upper bound for the normwise relative error generated
using (17) is (3 +

√
5)u + O

(
u2
)

(let us recall 3 +
√
5 ≈ 5.24). With a + ib = 1,

formula (17) reduces to the classic algorithm for the complex inversion of c+id.
However, in precision p = 11, dividing for instance a + ib = 1575 + i 1419 by
c+ id = 1457+ i 1480 leads to |ẑ− z|/(u|z|) = 4.67973 . . . This example suffices
to show that the normwise relative error bound for complex division cannot be
reduced to a bound of the form γu+O

(
u2
)

as in the particular case of complex
inversion, but it is not very informative concerning the sharpness of the bound
(3 +

√
5)u + O

(
u2
)
. Thus, in a future work we plan to investigate further the

normwise accuracy of complex division.
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A Details omitted in the proofs

A.1 Asymptotic optimality of the componentwise error bound

We briefly detail the computations of sa, sb and s in the example parametrized
by p given in Section 2. We assume that p > 10 is even, and we recall that

a = 2
p
2−1 + 5 · 2−2 + 2−

p
2+2,

b = 2p−1 + 2
p
2−1 + 1.

• Computation of sa = RN
(
a2
)
:

a2 = 2p−2 + 5 · 2
p
2−2 + 11 · 2−1 + 2−4 + 5 · 2−

p
2 + 2−p+4

ulp
(
a2
)
= 2−1

s̃a := 2p−2 + 5 · 2
p
2−2 + 11 · 2−1

|a2 − s̃a| = 2−4 + 5 · 2−
p
2 + 24−p

6 2−4 + 5 · 2−5 + 2−6

= 2−2 − 2−6

< 2−2 =
1

2
ulp
(
a2
)

Hence sa = s̃a.

• Computation of sb = RN
(
b2
)
:

b2 = 22p−2 + 2
3p
2 −1 + 2p + 2p−2 + 2

p
2 + 1

s̃b := 22p−2 + 2
3p
2 −1 + 3 · 2p−1

ulp
(
b2
)
= 2p−1

|b2 − s̃b| = 2p−2 − 2
p
2 − 1

< 2p−2 =
1

2
ulp
(
b2
)

Hence sb = s̃b.

• Computation of s = RN(sa + sb):

sa + sb = 22p−2 + 2
3p
2 −1 + 3 · 2p−1 + 2p−2 + 5 · 2

p
2−2 + 11 · 2−1

s̃ = 22p−2 + 2
3p
2 −1 + 2p+1

ulp(sa + sb) = 2p−1

|sa + sb − s̃| = 2p−2 − 5 · 2
p
2−2 − 11 · 2−1

< 2p−2 =
1

2
ulp(sa + sb)
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Hence s = s̃.

A.2 Partial derivatives of g2
Computing the partial derivatives of g2 with respect to a and b gives

∂g2
∂a

=
a

4
− 256a

(a2 + b2)
3 +

4

a2 + b2
− 8a(a+ b)

(a2 + b2)
2 ,

∂g2
∂b

=
b

4
− 256b

(a2 + b2)
3 +

4

a2 + b2
− 8b(a+ b)

(a2 + b2)
2 .

First, we know that b > a so 1
b
∂
∂bg2(a, b) <

1
a
∂
∂ag2(a, b). We just have to prove

that ∂
∂ag2(a, b) < 0 that is(

a2 + b2
)2

4
+

4
(
a2 + b2

)
a

<
256

a2 + b2
+ 8(a+ b).

Since a >
√
2, b >

√
2 and a2 + b2 < 4

√
2 + 4u, it is enough to check that(

4
√
2 + 4u

)2
4

+
4
(
4
√
2 + 4u

)
√
2

<
256

4
√
2 + 4u

+ 16
√
2

which holds as soon as p > 2.

A.3 Partial derivatives of g3
We compute the partial derivative of g3 with respect to b, and check that this
derivative is negative over the domain D3. We have

∂g3
∂b

=
b

8

(
2−e + 1

)
− 4b

(6 + 2−e)
2

(a2 + b2)
3 +

6 + 2−e

2 (a2 + b2)
− b 2

− e
2 a+ b

(a2 + b2)
2

(
6 + 2−e

)
,

and we check that

b

8

(
2−e + 1

)
+

1

2 (a2 + b2)

(
6 + 2−e

)
< 4b

(6 + 2−e)
2

(a2 + b2)
3 + b

2−
e
2 a+ b

(a2 + b2)
2

(
6 + 2−e

)
.

Since 1 6 b, it is enough to prove:

(2−e + 1)
(
a2 + b2

)2
8 (6 + 2−e)

+

(
a2 + b2

)
2

< 4
6 + 2−e

a2 + b2
+
(
2−

e
2 a+ b

)
.

This follows from the inequalities

(2−e + 1)
(
a2 + b2

)2
8 (6 + 2−e)

+

(
a2 + b2

)
2

<
2
(
4
√
2 + 4u

)2
48

+

(
4
√
2 + 4u

)
2

,

2
(
4
√
2 + 4u

)2
48

+

(
4
√
2 + 4u

)
2

< 4
6

4
√
2 + 4u

+ 1 which holds when p > 2,

4
6

4
√
2 + 4u

+ 1 < 4
6 + 2−e

a2 + b2
+
(
2−

e
2 a+ b

)
.
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A.4 Partial derivatives of g4
The partial derivative of g4 with respect to b is given by

∂g4
∂b

=
b

2

(
2−e + 1

)
− 4b

(3 + 2−e)
2

(a2 + b2)
3 +

3 + 2−e

a2 + b2
− 2b

(
2−

e
2 a+ b

)
(3 + 2−e)

(a2 + b2)
2 .

We want to prove that ∂
∂bg4(a, b, e) < 0 that is(

a2 + b2
)2

(2−e + 1)

2 (3 + 2−e)
+
a2 + b2

b
< 4

3 + 2−e

a2 + b2
+ 2

(
2−

e
2 a+ b

)
.

This inequality can be derived from the following ones:(
a2 + b2

)2
(2−e + 1)

2 (3 + 2−e)
+
a2 + b2

b
<

2
(
2
√
2 + 2u

)2
6

+ 2
√
2 + 2u(

2
√
2 + 2u

)2
3

+ 2
√
2 + 2u <

6√
2 + u

+ 2 which holds when p > 4

12

2
√
2 + 2u

+ 2 < 4
3 + 2−e

a2 + b2
+ 2

(
2−

e
2 a+ b

)
.

The partial derivative of g4(a,
√
2− a2, e) with respect to a is:

∂

∂a
g4(a,

√
2− a2, e) = 3 + 2−e

2

(
2−

e
2 − a√

2− a2

)
Note that e > 1 implies a < 1, and

√
2− a2 > 1 > a.

A.5 Partial derivatives of g5
We have

∂g5
∂b

=
1

4
b− 64

(a2 + b2)
3 b+

2

a2 + b2
− 4 (a+ b)

(a2 + b2)
2 b,

and it can be checked that this partial derivative is negative using the following
inequalities:(

a2 + b2
)2

4
+

2

b

(
a2 + b2

)
<

(
2
√
2 + 2u

)2
4

+ 2
(
2
√
2 + 2u

)
,(

2
√
2 + 2u

)2
4

+ 2
(
2
√
2 + 2u

)
<

64

2
√
2 + 2u

+ 8 when p > 2,

64

2
√
2 + 2u

+ 8 <
64

a2 + b2
+ 4 (a+ b) .
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A.6 Partial derivatives of g6
The partial derivatives of g6 with respect to a and b are given by

∂g6
∂a

=
a

4

(
2−e + 2

)
− 4a

(4 + 2−e)
2

(a2 + b2)
3 +

4 + 2−e

a2 + b2
2−

1+e
2 − 2a

(
2−

1+e
2 a+ b

)
(4 + 2−e)

(a2 + b2)
2 ,

∂g6
∂b

=
b

4

(
2−e + 2

)
− 4b

(4 + 2−e)
2

(a2 + b2)
3 +

4 + 2−e

a2 + b2
− 2b

(
2−

1+e
2 a+ b

)
(4 + 2−e)

(a2 + b2)
2 .

It can be checked that ∂
∂ag6(a, b, e) < 0 and ∂

∂bg6(a, b, e) < 0 using

4 + 2−e

a2 + b2
2−

1+e
2 6

4 + 2−e√
2 (a2 + b2)

a

and
4 + 2−e

a2 + b2
6

4 + 2−e√
2 (a2 + b2)

b.

Thus, we only need to prove that(
a2 + b2

)2 (
2−1−e + 1

)
2 (4 + 2−e)

+
a2 + b2√

2
< 4

4 + 2−e

a2 + b2
+ 2

(
2−

1+e
2 a+ b

)
.

This last inequality can be derived from the three following ones:(
a2 + b2

)2 (
2−1−e + 1

)
2 (4 + 2−e)

+
a2 + b2√

2
<

(
1 + 1

4

) (
2
√
2 +

(
2 + 1

2

)
u
)2

8
+ 2 +

2 + 1
2√
2
u,

(
1 + 1

4

) (
2
√
2 +

(
2 + 1

2

)
u
)2

8
+ 2 +

2 + 1
2√
2
u <

16

2
√
2 +

(
2 + 1

2

)
u
+ 2
√
2 for p > 2,

and
16

2
√
2 +

(
2 + 1

2

)
u
+ 2
√
2 < 4

4 + 2−e

a2 + b2
+ 2

(
2−

1+e
2 a+ b

)
.

A.7 Analysis of g7
In this section, we provide some details about the analysis of g7 that were omit-
ted in §3.6.2.

•We first maximize g7 with respect to b. We have

∂g7
∂b

=
b

2

(
2−e + 1

)
− 4b

(4 + 2−e)
2

(a2 + b2)
3 +

4 + 2−e

a2 + b2
− 2b

(
2−

e
2 a+ b

)
(4 + 2−e)

(a2 + b2)
2 .
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We want to prove that ∂
∂bg7(a, b, e) < 0 over D7. Since 1

b < 1, we only need to
prove that(

a2 + b2
)2

(2−e + 1)

2 (4 + 2−e)
+ a2 + b2 < 4

4 + 2−e

a2 + b2
+ 2

(
2−

e
2 a+ b

)
.

We can derive this inequality for p > 2 from the three following ones:(
a2 + b2

)2
(2−e + 1)

2 (4 + 2−e)
+a2+b2 <

(
1 + 1

4

) (
2
√
2 +

(
2 + 1

4

)
u
)2

8
+2
√
2+
(
2 + 2−e

)
u,

(
1 + 1

4

) (
2
√
2 +

(
2 + 1

4

)
u
)2

8
+ 2
√
2 +

(
2 + 2−e

)
u <

16

2
√
2 +

(
2 + 1

4

)
u
+ 2
√
2,

and
16

2
√
2 +

(
2 + 1

4

)
u
+ 2
√
2 < 4

4 + 2−e

a2 + b2
+ 2

(
2−

e
2 a+ b

)
.

Therefore, g7 is decreasing with respect to b and g7(a, b, e) 6 g7(a,
√
2, e).

•We now maximize g7(a,
√
2, e) with respect to a. We compute

(a2 + 2)2

a(4 + 2−e)

∂

∂a
g7(a,

√
2, e) =

(1 + 2−e)(a2 + 2)2

2(4 + 2−e)
− 4

4 + 2−e

a2 + 2

+
a2 + 2

a
2−

e
2 − 2

(
2−

e
2 a+

√
2
)
,

with (a2+2)2

a(4+2−e) > 0. On the domain e > 2, 0 < 2−1−
e
2 6 a 6 2

1−e
2 , we have

(a2 + 2)2

a(4 + 2−e)

∂

∂a
g7(a,

√
2, e) <

125

128
− 32

5
+

5

2

2−
e
2

a
− 2
√
2

< 0 since a > 2−1−
e
2 .

We deduce that g7(a,
√
2, e) is decreasing with respect to a over

[
2−1−

e
2 , 2

1−e
2

]
.

Let us recall that a > a0 + η(u) = 2−
e
2

2−(4+2−e)u

1+
√

1−2−e(2−(4+2−e)u)
. It can be checked

that 2−1−
e
2 6 a0 + η(u) using the following equivalent inequalities (x = 2−e

and we know that 0 < x 6 1
4 ) :

√
x

2
6

1√
x

(
1−

√
1− x (2− (4 + x)u)

)
√
1− x (2− (4 + x)u) 6 1− x

2

1− x (2− (4 + x)u) 6 1− x+
x2

4

0 6 1 +
x

4
− (4 + x)u

0 6 (1− 4u)
(
1 +

x

4

)
which holds for p > 2 .
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We deduce that g7(a,
√
2, e) 6 g7(a0 + η(u),

√
2, e).

• Let us prove that g7(a0 + η(u),
√
2, e) 6 g7(a0,

√
2, e) + 20u. For this purpose,

we first show that |η(u)| < 2u:

|η(u)| = 2
e
2

(√
1− 2−e(2− (4 + 2−e)u)−

√
1− 21−e

)
=

2
e
2√

1− 2−e(2− (4 + 2−e)u) +
√
1− 21−e

(
21−e − 2−e(2− (4 + 2−e)u

)
=

2−
e
2√

1− 2−e(2− (4 + 2−e)u) +
√
1− 21−e

(4 + 2−e)u

6
2−1(4 + 2−2)√

2
u since e > 2

< 2u.

It can also be checked that a0 < 2
1−e
2 using the following equivalent inequali-

ties:

1√
x

(
1−
√
1− 2x

)
<
√
2
√
x

1−
√
2x <

√
1− 2x

1− 2
√
2x+ 2x2 < 1− 2x

0 <
√
2− 1− x, which holds since x 6 1

4 .

Since e > 2, this implies a0 6
√
2
2 < 1. Let us now consider

λ0(u) =
1

2 + (a0 + η(u))2
.

We have

λ0(u) =
1

2 + a20
− 2a0 + η(u)

(2 + a20)(2 + (a0 + η(u))2)
η(u),

and using |η(u)| < 2u, we deduce

λ0(u) <
1

2 + a20
+ a0u.

Moreover, we have

λ0(u)
2 =

(
1

2 + a20

)2

− 4a0
(2 + a20)

2(2 + (a0 + η(u))2)
η(u)

+
(2a0 + η(u))2 − 2(2 + a0 + η(u))

(2 + a20)
2(2 + (a0 + η(u))2)2

η(u)2,
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and using both |η(u)| < 2u and a0 < 1, we also deduce

λ0(u)
2 <

(
1

2 + a20

)2

+ a0u.

As a consequence, from the definition of g7, and the previous upper bounds on
λ0(u) and λ0(u)2, we obtain

g7(a0 + η(u),
√
2, e) <

(
a20 + 2

)
(2−e + 1)

4
+ (4 + 2−e)2

(
1

(a20 + 2)2
+ a0u

)
+
(
4 + 2−e

) (
2−

e
2 a0 +

√
2
)( 1

a20 + 2
+ a0u

)
,

and g7(a0+η(u),
√
2, e) < g7(a0,

√
2, e)+(4+2−e)

(
4 + 2−e + 2−

e
2 a0 +

√
2
)
a0u.

The inequality g7(a0+η(u),
√
2, e) < g7(a0,

√
2, e)+20u then follows from e > 2

and a0 6
√
2
2 .

• Now, we check that h7(y) is increasing over
[√

2/2,
√
1− 2−5

]
, and decreas-

ing over
[√

1− 2−7, 1
]
. The function h7 is such that h7(y) =

H(y)
64(y+1) with

H(y) = y7 + 3y6 − 7y5 − (8
√
2 + 45)y4 − (16

√
2 + 53)y3

+ (62
√
2 + 113)y2 + (144

√
2 + 315)y + 72

√
2 + 249.

We have h′7(y) =
P (y)

32 (y+1)2 where P is the polynomial

P (y) = 3y7 + 11y6 − 5y5 − (12
√
2 + 85)y4 − (32

√
2 + 143)y3

+ (8
√
2− 23)y2 + (64

√
2 + 113)y + 36

√
2 + 33.

This polynomial has 0 or 2 positive roots according to Descartes’ rule of signs
(there are two sign changes in the sequence of coefficients). Moreover,

P (y + 1) = 3y7 + 32y6 + 124y5 + (160− 12
√
2)y4 − (208 + 80

√
2)y3

− (784 + 160
√
2)y2 − (640 + 64

√
2)y − 96 + 64

√
2,

with only one sign change so there is exactly one root of P greater than 1 and at
most one root of P in

[√
2/2, 1

]
. Since P (

√
1− 2−5) > 0 and P (

√
1− 2−7) < 0,

we deduce that P (y) is positive for y ∈
[√

2/2,
√
1− 2−5

]
, and negative for

y ∈
[√

1− 2−7, 1
]
, which implies that h7 is increasing over the former interval,

and decreasing over the latter.
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