Claude-Pierre Jeannerod
email: claude-pierre.jeannerod@inria.fr

Nicolas Louvet
email: nicolas.louvet@ens-lyon.fr

Jean-Michel Muller
email: jean-michel.muller@ens-lyon.fr

Antoine Plet
email: antoine.plet@ens-lyon.fr

Nicolas Louvet Ucbl

Sharp error bounds for complex floating-point inversion

Keywords: floating-point arithmetic, rounding error analysis, complex inversion

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

This paper deals with the accuracy of the inversion of a nonzero complex number given by its real and imaginary parts as floating-point numbers. We assume that the underlying floating-point arithmetic has radix 2 and precision p 2, and we also assume an unbounded exponent range, which means that our results apply to practical floating-point calculations according to the IEEE 754 standard [START_REF][END_REF] as long as underflow and overflow do not occur.

Given a nonzero complex number a + ib, its inverse satisfies

z = R + i I, R = a a 2 + b 2 , I = - b a 2 + b 2 .
(

) 1
Assuming a and b are floating-point numbers and denoting by RN a roundto-nearest function, we focus in this paper on the approximation z = R + i I that can be computed classically in floating-point arithmetic according to

R = RN a RN(RN(a 2) + RN(b 2)) (2)
for the real part, and with a similar expression for the imaginary part I. This scheme corresponds to Algorithm 1 below.

Algorithm 1 Inversion of a nonzero complex floating-point number a + ib.

sa ← RN a 2 s b ← RN b 2 s ← RN(sa + s b) R ← RN(a/s) I ← RN(-b/s) return R + i I
We provide an accuracy analysis of Algorithm 1, for both the componentwise relative error E C = max |R -R|/|R|, |I -I|/|I| and the normwise relative error E N = |z -z|/|z|. In each case, we bound the largest error value by a function B(p) depending only on the precision p, and study the tightness of that bound. In this context, we typically distinguish between three levels of quality:

• If we can show that there exist some inputs a + ib parametrized by p and for which the bound is attained for every p p 0 (for a given p 0 2), then we say that the bound is optimal. • If we can show that there exist some inputs parametrized by p and for which the relative error E(p) satisfies E(p)/B(p) → 1 as p → ∞, then we say that the bound is asymptotically optimal. • In some cases, we did not manage to establish (asymptotic) optimality, but have found input examples-either parametrized by p, or just for some values of p of practical interest (like those corresponding to the basic IEEE 754 formats)-for which E(p) is very close to B(p). In this case, we say that the bound is sharp. (See [START_REF] Ziv | Sharp ULP rounding error bound for the hypotenuse function[END_REF] for a similar use of the word "sharp".)

The componentwise relative error generated by Algorithm 1 can easily be bounded as E C 3u + O(u 2), where u = 2 -p is the unit roundoff. Our first contribution is to show that the term O u 2 can in fact be removed, which leads to the simpler bound E C 3u (assuming p 4). Furthermore, when p is even, we show that this bound is asymptotically optimal by providing floating-point numbers a and b parametrized by p and for which E C 3u -31 2 u 3 2 + O u 2 ; when p is odd, we show that the bound 3u is sharp, especially for the corresponding basic IEEE 754 binary formats (p = 53, 113).

The normwise relative error bound E N 3u + O u 2 can be found in [4, p. 30], and a direct application of our componentwise error analysis leads further to E N 3u. The second main contribution of our paper is to show that if p 10 then the following smaller bound holds: E N < γu + 9u 2 , where γ is an explicit constant in (2.70712, 2.70713). When using for example the IEEE 754 binary32 format (p = 24), this implies E N < 2.707131u. The techniques and the case distinction we use to prove this bound are inspired from [START_REF] Ziv | Sharp ULP rounding error bound for the hypotenuse function[END_REF], but we also extensively use real analysis and differentiation for the treatment of each case. We provide numerical examples to show that the bound we obtain is sharp for the basic IEEE 754 formats (p = 24, 53, 113).

Several authors [START_REF] Smith | Algorithm 116: Complex division[END_REF][START_REF] Stewart | A note on complex division[END_REF][START_REF] Priest | Efficient scaling for complex division[END_REF][START_REF] Baudin | A robust complex division in Scilab[END_REF] have suggested ways of avoiding spurious overflows and underflows in complex division, and some of them may be used in Algorithm 1. Of course, if the computation introduces further rounding errors, which is the case for example in Smith's method [START_REF] Smith | Algorithm 116: Complex division[END_REF], then our error bounds may not hold anymore. However, following the technique developed by Priest in [START_REF] Priest | Efficient scaling for complex division[END_REF], it is possible to scale a and b by a power of two in order to avoid spurious overflows and underflows without introducing new rounding errors: in that case, our analyses are valid if neither overflow nor underflow occurs during the computation. Nonetheless, we do not deal with scaling techniques here, and focus only on the largest error assuming an unbounded exponent range. Outline. Section 2 is devoted to the componentwise relative error analysis of Algorithm 1, and Section 3 to its normwise relative error analysis. We conclude in Section 4 with some remarks on the implications of these error analyses for complex floating-point division. The technical parts of the proofs that can be skipped at first reading are gathered in Appendix A.

Assumptions and notation. For any real number t, we denote by RN(t) the binary floating-point number that is nearest to t, with a tie-breaking strategy preserving the following properties:

• RN(2 k t) = 2 k RN(t) for any integer k; • RN(-t) = -RN(t).
In particular, either the roundTiesToEven or the roundTiesToAway rounding direction attribute defined in the IEEE 754 standard [START_REF][END_REF] can be used.

Throughout the paper, we also rely on the following relative error bound [7, p. 232]: for any real number t,

RN(t) = t(1 +) with | | u 1 + u . (3)
Note that (3) implies the well-known inequality |RN(t)-t| u|t|; see [5, p. 38]. Finally, we use the notation ufp(t) (unit in the first place, introduced in [START_REF] Rump | Accurate floating-point summation, Part I: Faithful rounding[END_REF]) to denote the weight of the most significant bit of t: if t = 0 then ufp(t) is the unique integer power of two such that 1 |t|/ ufp(t) < 2, and ufp(0) = 0. The usual ulp function (unit in the last place) is related to the ufp function through the relation

ulp(t) = 2u • ufp(t), so that |t -RN(t)| 1 2 ulp(t) = ufp(t)u. (4
)
2 Componentwise error bound

In this section, we focus on the componentwise relative error of Algorithm 1. We note first that since a+ib is nonzero, R = a/(a 2 +b 2) and I = -b/(a 2 +b 2) cannot both be zero, and that if one of them is zero then the returned result is very accurate. Assume for example that R = 0 (the case I = 0 is similar).

In that case, a = 0 and I = -1/b. Using the bound in (3), it is then easily checked that the values R and I returned by the algorithm are as follows:

• R = 0, which means that the real part is computed exactly;

• I = -RN(b/RN(b 2)
) and the relative error on the imaginary part is bounded by 2u (and thus smaller than the bound we are going to give in the general case).

Therefore, the rest of this section is devoted to analyzing E C = max |R -R|/|R|, |I -I|/|I| for R and I nonzero. Repeated applications of the bound in [START_REF] Brent | Error bounds on complex floating-point multiplication[END_REF] give immediately E C 3u + O u 2 . We show below that if p 4 then the O u 2 term can in fact be removed, leading to the simpler bound 3u.

To do this, we prove that if p = 3 then the relative error bound u/(1 + u) in (3) can be replaced by u/(1+3u) when evaluating a square RN a 2 instead of a general product. (When p = 3, it is easily checked that the bound u/(1 + u) is attained when squaring the floating-point numbers 3/2 • 2 e , e ∈ Z.) This slight refinement will turn out to be enough to show that Algorithm 1 satisfies E C 3u.

Lemma 1 Let a be a floating-point number.

If p = 3 then |a 2 -(2+2u)| 4u 2 . Proof If |a| < 1 then |a 2 -(2 + 2u)| > 1 + 2u
, and the result follows from the fact that 1 + 2u > 4u 2 when p > 0. Assume now that |a| 1. To handle this case, we show first that

a 2 = 2 + 2u ⇒ p = 3. (5
)
Since |a| is a floating-point number not smaller than 1, there exists a positive integer A such that |a| = A • 2 1-p = A • 2u. The equality a 2 = 2 + 2u is thus equivalent to A 2 = (2 p + 1) • 2 p-1 and, using the (unique) decomposition A = (2B + 1) • 2 C with B, C ∈ N, it can also be rewritten (2B + 1) 2 • 2 2C = (2 p + 1) • 2 p-1 . Now, p > 0 implies that 2 p + 1 is odd and at least 3, so B = 0 and (2B + 1) 2 = 2 p + 1. The latter equality can be rewritten as 4B(B + 1) = 2 p and its unique solution over N 2 >0 is (B, p) = (1, 3), so (5) follows. If p = 3 then, by [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF] we have a 2 = 2 + 2u, that is, A 2 = (2 p + 1)

• If 2 < a 2 2 + 2u -4u 2 then RN a 2 = 2 and, therefore, | | = 1 - 2 a 2 1 - 2 2 + 2u -4u 2 u 1 + 3u .
• If 2 + 2u + 4u 2 a 2 < 2 + 4u then RN a 2 = 2 + 4u and, therefore,

| | = 2 + 4u a 2 -1 2 + 4u 2 + 2u + 4u 2 -1 u 1 + 3u .
• If 2 + 4u a 2 < 2 + 6u then RN a 2 = 2 + 4u and, therefore,

| | = 1 - 2 + 4u a 2 1 - 2 + 4u 2 + 6u = u 1 + 3u . • If 2 + 6u a 2 < 4 then ufp(a 2) = 2 and | | 2u/a 2 2u/(2 + 6u) = u/(1 + 3u).
Theorem 1 If p 4 then the componentwise relative error for Algorithm 1 satisfies E C 3u.

Proof Due to the symmetry of Algorithm 1, it suffices to show that |R -R| 3u|R|. From (3) and Lemma 2 we have

s a = a 2 (1+ a), s b = b 2 (1+ b), s = (s a +s b)(1+ s), R = a s (1+ R) with | a |, | b | u/(1 + 3u) and | s |, | R | u/(1 + u). Hence R = a a 2 (1 + a) + b 2 (1 + b) • 1 + R 1 + s
and, using R = a/(a 2 + b 2), we deduce that ϕR R ϕ R with

ϕ := 1 -u 1+u (1 + u 1+3u)(1 + u 1+u) and ϕ := 1 + u 1+u (1 -u 1+3u)(1 -u 1+u)
.

It is easily checked that ϕ > 1 -3u and ϕ = 1 + 3u, which completes the proof.

We conclude this section by showing that the componentwise bound E C 3u is sharp. More precisely, when the precision p is even, the following example shows that the componentwise error bound 3u is asymptotically optimal as p → ∞. Assuming an even p 12, let us consider the following binary floatingpoint numbers in precision p:

a = 2 p 2 -1 + 5 • 2 -2 + 2 -p 2 +2 , b = 2 p-1 + 2 p 2 -1 + 1.
With these values as inputs of Algorithm 1, we have (the details are provided in Appendix A.1):

s a = 2 p-2 + 5 • 2 p 2 -2 + 11 • 2 -1 , s b = 2 2p-2 + 2 3p 2 -1 + 3 • 2 p-1 , s = 2 2p-2 + 2 3p 2 -1 + 2 p+1 . From this we deduce a s = 2 -3p 2 +1 + 2 -2p -2 -5p 2 +1 -2 -3p+2 + O 2 -7p 2 ,
and ulp a s = 2 -5p 2 +2 . Then, defining the floating-point number τ by

τ = 2 -3p 2 +1 + 2 -2p -2 -5p 2 +2 , it can be checked that a s -τ = 2 -5p 2 +1 + 2 -7p 2 +5 1 + 2 -p 2 +1 + 2 -p+3 < 1 2 ulp a s . Hence R = RN a s = τ , which together with R = a/(a 2 + b 2) leads to R -R R = 3u -31 2 u 3 2 + O u 2 .
As a consequence, in this example the componentwise relative error in the computed z is at least 3u -

31 2 u 3 2 + O u 2
, which shows the asymptotic optimality (as p → ∞) of the bound when p is even.

When p is odd, we have not found an input set parametrized by the precision to prove the asymptotic optimality of the error bound 3u. However, we illustrate the sharpness of the bound by numerical examples in Table 1

Normwise error bound

In this section, we are interested in the normwise relative error of Algorithm 1, that is,

E N = a 2 + b 2 (R -R) 2 + (I -I) 2 .
The analysis is done in radix 2 and precision p, and we assume that overflows and underflows never occur. If we apply directly the componentwise bound obtained in Section 2, we end up with the normwise error bound E N 3u. In this section, we establish the following result, which achieves a smaller bound by keeping track of the correlations between the various rounding errors committed by the algorithm.

Theorem 2 If p 10 then the normwise relative error for Algorithm 1 satisfies E N γu + 9u 2 , where γ is defined by

γ = 8778980525057 + 16793600(8 √ 2 - √ 127) -550842155008 √ 254 8192 (16 - √ 254) , (6)
and is such that γ ∈ (2.70712, 2.70713).

If p 10, E N < 2.70713u + 9u 2 is therefore a rigorous bound for the normwise error of Algorithm 1. It should also be noticed that the second order term in the error bound can be absorbed by the first order term, at the cost of a slight overestimation: for example, for p 24, we have 9u = 9 • 2 -24 < 10 -6 so that E N < 2.707131u. The numerical examples listed in Table 2 show that the error bound of Theorem 2 is sharp for the basic IEEE 754 formats (p = 24, 53, 113).

Preliminaries

The first step in the error analysis of Algorithm 1 is to reduce the input domain. Since the function RN is symmetric with respect to zero, the signs of a and b are not relevant and we can assume that both a and b are nonnegative. Swapping the inputs a and b does not affect the relative error; moreover, if a = 0, then a simple analysis, based on (3), leads to the upper bound 2u for E N , so we can assume that 0 < a b. Finally, multiplying or dividing by two both a and b does not affect either the relative error, and we can restrict the analysis to the case 1 b < 2.

From the definition of the ufp function and this input range reduction, we know that ufp b 2 ∈ {1, 2}. Moreover, b is a floating-point number, so that 1 b 2 -2u and thus 1 b 2 4 -4u. Since 4 -4u is a floating-point number, and using the monotonicity of the rounding function RN, we deduce that 1 s b < 4. Using again the monotonicity of RN, we also deduce that 0 < s a < 4. Hence 1 < s a + s b < 8, which implies ufp(s a + s b) ∈ {1, 2, 4}.

We now define δ a , δ b , δ s , δ R , and δ I as follows:

s a = a 2 + δ a u, |δ a | ufp a 2 , s b = b 2 + δ b u, |δ b | ufp b 2 , s = s a + s b + δ s u, |δ s | ufp(s a + s b), R = a s + δ R u, |δ R | ufp a s , I = -b s + δ I u , |δ I | ufp b s .
Let us also define δ = δ a + δ b + δ s and = |δ| a 2 +b 2 , so that |δ|u and u are the absolute and relative errors, respectively, in the evaluation of a 2 + b 2 . Since 0 < a b, ufp b 2 2 and ufp(s a + s b) 4, we deduce that |δ| 8. Moreover, it can be deduced from (3) that 2. (This bound on already appeared in [3, p. 1471].)

With these notations, we have

R -R = a s (a 2 + b 2) δu -δ R u,
and since a similar expression holds for I -I, we arrive at

E 2 N u 2 = a 2 + b 2 δ 2 R + δ 2 I -2 δ(aδ R + bδ I) a 2 + b 2 + δu + δ a 2 + b 2 + δu 2 .
Then, using the triangular inequality, we obtain

E 2 N u 2 a 2 + b 2 ufp a s 2 + ufp b s 2 + 2 |δ| ufp a s a + ufp b s b a 2 + b 2 -|δ|u + δ a 2 + b 2 -|δ|u 2 .
For p 2, u < 1 and we use the equality

1 a 2 +b 2 -|δ|u = 1 a 2 +b 2 1 + 1-u u and the inequality 1 + 1-u u 2 1 + 2 (1-u) 2 u to get E 2 N f 2 (a, b)u 2 + f 3 (a, b)u 3 , (7)
with

f 2 (a, b) = a 2 + b 2 ufp a s 2 + ufp b s 2 + 2 |δ| ufp a s a + ufp b s b a 2 + b 2 + δ a 2 + b 2 2 (8)
and

f 3 (a, b) = 2 ufp a s a + ufp b s b 2 1 -u + 2 3 (1 -u) 2 .
From (4), we have

ufp a s a + ufp b s b a 2 + b 2 s a 2 + b 2 a 2 + b 2 -|δ|u = 1 1 -u ,
and since 0 2, it follows that f 3 (a, b)

2 2 (1+)
(1-u) 2 < 25 for p 10. Moreover, if f 2 is upper bounded by κ, we can conclude from (7) that

E N √ κu + 25 2 √ κ u 2 . (9
)

Taking care of some corner cases

We can first roughly bound f 2 using the inequality ufp(t) |t|, valid for any real t, which will allow us to conclude in some particular cases and to further reduce the input domain. From (8) we have

f 2 (a, b) a 2 + b 2 a 2 + b 2 -|δ|u 2 + 2 |δ| a 2 + b 2 (a 2 + b 2) (a 2 + b 2 -|δ|u) + δ a 2 + b 2 2 = 1 + + 1 -u u 2 .
This last bound is increasing with respect to and u (i.e., decreasing with respect to the precision p). Therefore, if 1 + √ 2 2 + u, and as soon as p 5, we have

f 2 (a, b) 2 + √ 2
2 + 3u 2 and, from (9),

E N 2 + √ 2 2 u + 8u 2 . (10
)
Below are five cases that lead to the inequality 1 + √ 2 2 + u, so they can be ignored in the following analysis.

• If a = b, then s a = s b and s = s a + s b so that δ s = 0 and one can check that 1. In this case, the previous bound [START_REF] Smith | Algorithm 116: Complex division[END_REF] holds and we can continue the analysis assuming that a < b.

• If b = 1, then s b = b 2 = 1 and δ b = 0. Moreover, from [START_REF] Stewart | A note on complex division[END_REF] we have a < 1, so that s a < 1, which implies ufp(1 + s a) = 1 and 1. Again, the bound (10) holds and we can continue the analysis assuming that 1 < b. In fact, since b is a floating-point number, we can assume that

1 + 2u b. (12)
• If a = 1, then δ a = 0 and we can distinguish three cases.

If ufp b 2 = 1 then ufp(1 + s b) = 2 and
• If a 2 +b 2 < ufp(s a + s b), then we have (s

a +s b)-ufp(s a + s b) < (δ a +δ b)u (a 2 + b 2)u < ufp(s a + s b)u = 1 2 ulp(s a + s b). Since ufp(s a + s b
) is a floatingpoint number, we can deduce that s = RN(s a + s b) = ufp(s a + s b) hence 1 and (10) holds. In the following, we can then assume that

ufp(s a + s b) a 2 + b 2 . (14
)
• One last case is when s a + s b √ 2 ufp(s a + s b). In this case,

1 + √ 2
2 + u and the previous bound [START_REF] Smith | Algorithm 116: Complex division[END_REF] holds. Therefore, we now assume that

s a + s b < √ 2 ufp(s a + s b). (15)

Overview of the case analysis

The analysis goes through the possible values of ufp(s a + s b), which are 1, 2, and 4. In each case, we first deduce upper bounds for ufp b 2 , ufp a s , and ufp b s . This leads to a new function g, which is greater than or equal to f 2 , and which depends on a and b as well as on a third parameter, e, defined as the unique integer such that

ufp a 2 = 2 -e .
The function g does not involve floating-point operations anymore and can be seen as a continuous and differentiable function over real inputs. We then look for an upper bound on this function over a restricted domain D containing all the floating-point numbers we are interested in. For this latter step, we mainly use real analysis, especially partial derivatives. In some cases, we can maximize with respect to a and b at the same time. The last step is always to maximize with respect to e, using the change of variable x = 2 -e and considering x as a continuous variable.

The analysis is split into seven cases depending on the values of some ufp functions involved in the definition (8) of f 2 . Note that, since a 2 < 4, we have e -1. In each case but the last one, we end up with a bound smaller than or equal to 2 + √ 2 2

2 for f 2 , from which we conclude using (9)

that E N 2 + √ 2 2 u + 5u
ufp(s a + s b) ufp b 2 e ufp a s f 2 E N 1 1 2 2 -e 2 6.565 2.6u 4 2 = -1 1 4 2 + √ 2 2 2 2 + √ 2 2 u + 5u 2 0 2 -2-e 2 7 4 + √ 2 2 2 2.5u 2 1 1 2 -1-e 2 7 4 + √ 3 2 2 2.65u = 0 1 4 5 2 2 5 2 u + 5u 2 2 1 2 -3+e 2 2 + √ 2 2 2 2 + √ 2 2 u + 5u 2 2, even = 2 -1-e 2 γ 2 + 20u γu + 9u 2
We give all the details of the analysis of the first case. For the other cases, we only give a sketch of the analysis, while deferring the details to Appendices A.2 to A.7.

Case ufp(s

a + s b) = 1
In this case, we can deduce from (15) that 1 s a +s b < √ 2. As a consequence, we must have b < √ 2 (otherwise we would have s a + s b > 2), hence Therefore, using [START_REF] Priest | Efficient scaling for complex division[END_REF] we deduce in this case that f 2 (a, b) g 1 (a, b, e), with

ufp b 2 = 1. Since s a < √ 2 -1 < 1 2 and s a = RN a 2 , we have a 2 < 1 2 ,
g 1 (a, b, e) := a 2 + b 2 2 -e + 1 4 + 2 (2 + 2 -e) 2 -e 2 a + b 2 a 2 + b 2 + 2 + 2 -e a 2 + b 2 2 .
Let us now characterize explicitly the domain over which we will bound g 1 (a, b, e). First, we know that 2 -e 2 a < 2

1-e 2 . Next, since s a + s b < √ 2 and s a > 0, we have s b < √ 2, so that b 2 < √ 2 + u and 1 < b < √ 2 + u. Finally, we have a 2 + b 2 s a + ufp a 2 u + s b + ufp b 2 u < √ 2 + 5
4 u, which concludes the domain analysis: it suffices to look for an upper bound for g 1 over the domain

D 1 := (a, b, e) | 2 -e 2 a < 2 1-e 2 , 1 b < √ 2 + u, a 2 +b 2 < √ 2+ 5
4 u, e 2 . We now compute the partial derivatives of g 1 with respect to a and b,

∂g 1 ∂a = 2a 2 -e + 1 4 + 2 + 2 -e a 2 + b 2 2 1-e 2 -4a (2 + 2 -e) 2 -e 2 a + b 2 (a 2 + b 2) 2 -4a (2 + 2 -e) 2 (a 2 + b 2) 3 , ∂g 1 ∂b = 2b 2 -e + 1 4 + 2 + 2 -e a 2 + b 2 -4b (2 + 2 -e) 2 -e 2 a + b 2 (a 2 + b 2) 2 -4b (2 + 2 -e) 2 (a 2 + b 2) 3 ,
and the next step is to prove that they are both negative over the domain D 1 .

Since

1 b ∂ ∂b g 1 (a, b, e) -1 a ∂ ∂a g 1 (a, b, e) = 2+2 -e a 2 +b 2 1 b -1 a 2 1-e 2 < 0 over D 1 , it is
sufficient to prove that ∂ ∂a g 1 (a, b, e) < 0. Since 2a 2+2 -e a 2 +b 2 > 0, we can rewrite this inequality as

2 -e + 1 4 a 2 + b 2 2 + 2 -e + 2 -e 2 a < 2 2 -e 2 a + b 2 a 2 + b 2 + 2 2 + 2 -e (a 2 + b 2) 2 .
This inequality follows from the following three relations:

2 -e + 1 4 a 2 + b 2 2 + 2 -e + 2 -e 2 a < √ 2 + 5 4 u 4 + 1 for (a, b, e) ∈ D 1 , √ 2 + 5 4 u 4 + 1 < 1 √ 2 + 5 4 u + 4 √ 2 + 5 4 u 2 for p 3, 1 √ 2 + 5 4 u + 4 √ 2 + 5 4 u 2 < 2 2 -e 2 a + b 2 a 2 + b 2 + 2 2 + 2 -e (a 2 + b 2) 2 for (a, b, e) ∈ D 1 .
Since both ∂g1 ∂a and ∂g1 ∂b are negative over D 1 , since (a, b, e) ∈ D 1 implies a 2 -e 2 and b 1, and since (2 -e 2 , 1, e) ∈ D 1 , we deduce that g 1 (a, b, e) g 1 (2 -e 2 , 1, e) =: h 1 (x), with x = 2 -e and

h 1 (x) = (x + 1) x + 1 4 + (x + 2)(2x + 1) x + 1 + x + 2 x + 1 2 .
Since e 2, we have 0 < x 1 4 and

h 1 (x) = 8x 4 + 37x 3 + 63x 2 + 43x + 1 4(x + 1) 3 > 0.
Overall, we thus have f 2 (a, b) g 1 (a, b, e) h 1 (x) h 1 1 4 = 6.565. In the same way, a s a

4 < 2 -3+e 2 so that ufp a s 2 -2-e 2 .
We now distinguish two subcases, namely e = -1 and e 0.

Subcase e = -1

We have ufp a s 2 -3 2 , hence ufp a s 1 4 , thus we deduce from (8) that

f 2 (a, b) g 2 (a, b) with g 2 (a, b) := a 2 + b 2 8 + 4(a b) a 2 + b 2 + 8 a 2 + b 2 2 .
From (15), we know that s a + s b < 4 √ 2, which implies a 2 + b 2 < 4 √ 2 + 4u. The domain of interest is then given by

D 2 := {(a, b) | √ 2 a b < 2, a 2 + b 2 < 4 √ 2 + 4u}.
Computing the partial derivatives of g 2 with respect to a and b, and proving that they are both negative over the domain D 2 (detailed computations are in §A.2), we end up with

f 2 (a, b) g 2 (√ 2, √ 2) = 2 + √ 2 2
2 . .

Subcase

From (14), a 2 + b 2 is lower bounded by 4, and we restrict the analysis of g 3 to the domain

D 3 := {(a, b, e) | 2 -e 2 a 2
1-e 2 , √ 2 b < 2, 4 a 2 + b 2 < 4 √ 2 + 4u, e 0}.
First, it can be checked that the partial derivative of g 3 with respect to b is negative over D 3 (details are in §A. We then compute ∂ ∂a g 3 (a,

√ 4 -a 2 , e) = 6+2 -e 8 2 -e 2 -a √ 4-a 2 , which is non- negative because a 2 2a 2 1+2 -e 4•2 -e 1+2 -e . Since (2 1-e 2 , √ 4 -2 1-e , e) ∈ D 3 , we have g 3 (a, b, e) g 3 (2 1-e 2 , √ 4 -2 1-e , e) =: h 3 (x), with x = 2 -e and h 3 (x) = x + 1 4 + (6 + x)(√ 2x + √ 4 -2x) 8 + (6 + x) 2 16 .
Since

h 3 (x) = 1 + x 8 1 + √ 2 + √ 4 -2x 8 + x + 6 8 √ 2 - 1 √ 4 -2x is positive for 0 < x 1, we deduce f 2 (a, b) h 3 (1) = 7 4 + √ 2 2
2 = 6.037

Case ufp(s

a + s b) = 2
From (14) we have 2 a 2 + b 2 , and from (15) we have 2

s a + s b < 2 √ 2 hence e 0.
Since 2 is a floating-point number, we know that s 2.

Therefore a s < 2 -1+e 2 , hence ufp a s 2 -1-e 2 , (16
)
and b s < 1 so that ufp b s 1 2 . We handle separately the two possible values, 1 and 2, for ufp b 2 .

Subcase ufp b 2 = 1

We distinguish the cases e 1 and e = 0.

• Subsubcase e 1: From (8 .

From (14), we know that a 2 + b 2 is lower bounded by 2. On the other hand, we have

a 2 + b 2 s a + s b + ufp a 2 + ufp b 2 u < 2 √ 2 + 2u and 1 < b < √ 2,
hence we can restrict the analysis to the domain

D 4 := {(a, b, e) | 2 -e 2 a < 2 1-e 2 , 1 < b < √ 2, 2 a 2 + b 2 < 2 √ 2 + 2u, e 1}.
We can first compute the partial derivative of g 4 with respect to b and prove it is negative over D 4 for p 4 (see the details in §A.4). Since (a, √ 2 -a 2 , e) is in D 4 , we deduce that g 4 (a, b, e) g 4 (a, √ 2 -a 2 , e), and we have

g 4 (a, 2 -a 2 , e) = 2 -e + 1 2 + (3 + 2 -e) 2 -e 2 a + √ 2 -a 2 2 + (3 + 2 -e) 2 4
.

Next, we can compute the derivative of g 4 (a, √ 2 -a 2 , e) with respect to a (see §A.4) and check that the maximum is attained at

a 0 = 2 -e 2 2
1+2 -e , so that g 4 (a, b, e) g 4 (a 0 , 2 -a 2 0 , e) =: h 4 (x) with

h 4 (x) = x + 1 2 + 3 + x 2 x 2 1 + x + 2 - 2x 1 + x + (3 + x) 2 4 .
Since h 4 (x) > 0 for 0 < x • Subsubcase e = 0: According to (13), we assume that 1 < a, so that

ufp b 2 = ufp a 2 = 1. It follows that s s a + s b -2u a 2 + b 2 -4u, hence
= a 2 + b 2 8 + 2 (a + b) a 2 + b 2 + 16 (a 2 + b 2) 2 .
Hence it remains to bound g 5 (a, b) over the domain D 5 defined by

D 5 := {(a, b) | 1 a b < √ 2 and a 2 + b 2 < 2 √ 2 + 2u}.
In this domain, we have ∂ ∂b g 5 (a, b) < 0 (details are in §A.5), so that g 5 (a, b) g 5 (a, a) = a 2 4 + 4 a 4 + 2 a , which is maximal for a = 1. Therefore, we deduce that

f 2 (a, b) g 5 (a, b) g 5 (1, 1) = 5 2 2 . 3.6.2 Subcase ufp b 2 = 2
In this paragraph, a 2 < 1 (otherwise we would have s a + s b 2 + 1 while from (15) we have

s a + s b < 2 √ 2)
, hence e 1 . We split the inequality (16) into two possible cases. Either ufp a s < 2 -1-e 2 which implies ufp a s 2 -3+e 2 , or ufp a s = 2 -1-e 2 in which case e is even.

• Subsubcase ufp a s < 2 -1-e 2 :
We deduce from [START_REF] Priest | Efficient scaling for complex division[END_REF] and

|δ| 4 + 2 -e that f 2 (a, b) g 6 (a, b, e) with g 6 (a, b, e) := a 2 + b 2 2 -1-e + 1 4 + (4 + 2 -e) 2 -1+e 2 a + b a 2 + b 2 + 4 + 2 -e a 2 + b 2 2 .
We can compute the derivatives of g 6 (details are provided in §A.6) with respect to a and b and prove that they are negative over the domain

D 6 := {(a, b, e) | 2 -e 2 a < 2 1-e 2 , √ 2 b < 2, 2 a 2 + b 2 < 2 √ 2 + 2 + 2 -e u, e 1}.
For (a, b, e) ∈ D 6 , we deduce that g 6 (a, b, e) g 6 (2 -e 2 , √ 2, e) =: h 6 (x) with

h 6 (x) = (x + 2) x 2 + 1 4 + √ 2 (4 + x) x 2 + 1 x + 2 + 4 + x x + 2 2 , x = 2 -e .
We can maximize h 6 (x) for 0 < x

1 2 , which leads to f 2 (a, b) h 6 (0) = 2 + √ 2 2
2 .

• Subsubcase ufp a s = 2 -1-e2 : In this case, e is even, hence e 2. We have

f 2 (a, b) g 7 (a, b, e) with g 7 (a, b, e) := a 2 + b 2 (2 -e + 1) 4 + (4 + 2 -e) 2 -e 2 a + b a 2 + b 2 + 4 + 2 -e a 2 + b 2 2 .
The lower bound 2 -e 2 for a does not lead to a sufficiently tight bound for f 2 in this case: to get a better bound, we exploit further the hypothesis ufp a s = 2 -1-e 2 . This gives s2 -1-e 2 a, which implies

a 2 -2 1+ e 2 a + b 2 + δu 0, hence a 2 e 2 -2 e -2 + (4 + 2 -e)u = a 0 + η(u) with a 0 = 2 e 2 - √ 2 e -2, η(u) < 0, |η(u)| ∈ O(u).
Therefore, we analyze g 7 over the domain

D 7 := {(a, b, e) | a 0 + η(u) a < 2 1-e 2 , √ 2 b < 2, 2 a 2 + b 2 < 2 √ 2 + 2 + 2 -e u, e 2
, e even}.

First, we can compute the partial derivative of g 7 with respect to b and prove (see Appendix A.7) that it is negative over the domain D 7 , hence we know that g 7 (a, b, e) g 7 (a, √ 2, e). It can be checked that a 0 +η(u) belongs to 2 -1-e 2 , 2

1-e 2

and that g 7 (a, √ 2, e) is decreasing with respect to a over 2 -1-e

; see Appendix A.7. We then deduce that g 7 (a, √ 2, e) g 7 (a 0 + η(u), √ 2, e), for any (a, b, e) ∈ D 7 . Next, it can be proved that g 7 (a 0 +η(u), √ 2, e) g 7 (a 0 , √ 2, e)+20u (again, the details are provided in §A.7). As a consequence, for any (a, b, e) ∈ D 7 we have g 7 (a, b, e) g 7 (a 0 , √ 2, e) + 20u. The last step is to bound g 7 (a 0 , √ 2, e) for e an even positive integer. With y = √ 1 -2

Implications for complex floating-point division

Let us conclude with some remarks about complex division. The conventional complex division algorithm for computing an approximation z = R + i I of (a + ib)/(c + id) in floating-point arithmetic consists in evaluating the real part as

R = RN RN(RN(ac) + RN(bd)) RN(RN(c 2) + RN(d 2)) (17)
and using a similar scheme for the imaginary part. An approximate quotient z can also be obtained by first computing an inverse of c + id using Algorithm 1, and then multiplying it by a + ib by means of the classic complex multiplication algorithm. Note that both algorithms require 3 additions/subtractions, 6 multiplications, and 2 divisions. Normwise relative accuracy analyses of the method based on (17) can be found in [START_REF] Champagne | On finding roots of polynomials by hook or by crook[END_REF][START_REF] Wilkinson | The Algebraic Eigenvalue Problem[END_REF][START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]. To our knowledge, the best known upper bound for the normwise relative error generated by this method is (3+ √ 5)u+O u 2 ≈ 5.2u: as noted in [START_REF] Baudin | Error bounds of complex arithmetic[END_REF], this bound can be derived from the bound √ 5u from [START_REF] Brent | Error bounds on complex floating-point multiplication[END_REF] on the normwise relative error for the classic complex multiplication algorithm. On the other hand, it can be checked using Theorem 2 and, again, the bound √ 5u from [START_REF] Brent | Error bounds on complex floating-point multiplication[END_REF] that the algorithm combining inversion and multiplication admits the smaller normwise error bound (γ + √ 5)u + O u 2 ≈ 4.9u.

The following examples of complex quotients in precision p = 11 show that in both cases the largest normwise relative error cannot be bounded by γu + O u 2 ≈ 2.7u as for inversion:

• with a + ib = 1575 + i 1419 and c + id = 1457 + i 1480, using (17

A Details omitted in the proofs

A.1 Asymptotic optimality of the componentwise error bound

We briefly detail the computations of sa, s b and s in the example parametrized by p given in Section 2. We assume that p 12 is even, and we recall that

a = 2 p 2 -1 + 5 • 2 -2 + 2 -p 2 +2 , b = 2 p-1 + 2 p 2 -1 + 1.
• Computation of sa = RN a 2 :

a 2 = 2 p-2 + 5 • 2 p 2 -2 + 11 • 2 -1 + 2 -4 + 10 • 2 -p 2 + 2 -p+4 ulp a 2 = 2 -1 sa := 2 p-2 + 5 • 2 p 2 -2 + 11 • 2 -1 |a 2 -sa| = 2 -4 + 10 • 2 -p 2 + 2 4-p 2 -4 + 10 • 2 -6 + 2 -8 < 2 -2 = 1 2 ulp a 2
Hence sa = sa.

• Computation of s b = RN b 2 : b 2 = 2 2p-2 + 2 3p 2 -1 + 2 p + 2 p-2 + 2 p 2 + 1 s b := 2 2p-2 + 2 3p 2 -1 + 3 • 2 p-1 ulp b 2 = 2 p-1 |b 2 -s b | = 2 p-2 -2 p 2 -1 < 2 p-2 = 1 2 ulp b 2
Hence s b = s b .

• Computation of s = RN(sa + s b):

sa + s b = 2 2p-2 + 2 3p 2 -1 + 3 • 2 p-1 + 2 p-2 + 5 • 2 p 2 -2 + 11 • 2 -1 s = 2 2p-2 + 2 3p 2 -1 + 2 p+1 ulp(sa + s b) = 2 p-1 |sa + s b -s| = 2 p-2 -5 • 2 p 2 -2 -11 • 2 -1 < 2 p-2 = 1 2 ulp(sa + s b) Hence s = s.
A.2 Partial derivatives of g 2

Computing the partial derivatives of g 2 with respect to a and b gives

∂g 2 ∂a = a 4 + 4 a 2 + b 2 - 8a(a + b) (a 2 + b 2) 2 - 256a (a 2 + b 2) 3 , ∂g 2 ∂b = b 4 + 4 a 2 + b 2 - 8b(a + b) (a 2 + b 2) 2 - 256b (a 2 + b 2) 3 . First, we know that b > a so 1 b ∂ ∂b g 2 (a, b) < 1 a ∂ ∂a g 2 (a, b). We just have to prove that ∂ ∂a g 2 (a, b) < 0, that is, a 2 + b 2 2 4 + 4 a 2 + b 2 a < 8(a + b) + 256 a 2 + b 2 . Since for (a, b) ∈ D 2 we have √ 2 < a,

A.3 Partial derivative of g 3

We compute the partial derivative of g 3 with respect to b, and check that this derivative is negative over the domain D 3 . We have

∂g 3 ∂b = b 2 -e + 1 8 + 6 + 2 -e 2 (a 2 + b 2) -b 6 + 2 -e 2 -e 2 a + b (a 2 + b 2) 2 -4b 6 + 2 -e 2 (a 2 + b 2) 3 ,
and we check that

b 2 -e + 1 8 + 6 + 2 -e 2 (a 2 + b 2) < b 6 + 2 -e 2 -e 2 a + b (a 2 + b 2) 2 + 4b 6 + 2 -e 2 (a 2 + b 2) 3 .
Multiplying both sides by

(a 2 +b 2) 2
b(6+2 -e) and since 1 b, it is enough to prove that

2 -e + 1 a 2 + b 2 2 8 (6 + 2 -e) + a 2 + b 2 2 < 2 -e 2 a + b + 4 6 + 2 -e a 2 + b 2 .
This follows from the following sequence of three inequalities

2 -e + 1 a 2 + b 2 2 8 (6 + 2 -e) + a 2 + b 2 2 < 2 4 √ 2 + 4u 2 48 + 4 √ 2 + 4u 2 , 2 4 √ 2 + 4u 2 48 + 4 √ 2 + 4u 2 < 4 6 4 √ 2 + 4u + 1 for p 3, 4
4 √ 2 + 4u + 1 < 4 6 + 2 -e a 2 + b 2 + 2 -e 2 a + b. 6
A.4 Partial derivatives of g 4

The partial derivative of g 4 with respect to b is given by

∂g 4 ∂b = b 2 -e + 1 2 + 3 + 2 -e a 2 + b 2 -2b 2 -e 2 a + b 3 + 2 -e (a 2 + b 2) 2 -4b 3 + 2 -e 2 (a 2 + b 2) 3 .
We want to prove that ∂ ∂b g 4 (a, b, e) < 0 or, equivalently, that and

∂g 6 ∂b = b 4 2 -e + 2 + 4 + 2 -e a 2 + b 2 -2b 2 -1+e 2 a + b 4 + 2 -e (a 2 + b 2) 2 -4b 4 + 2 -e 2 (a 2 + b 2) 3 .
For (a, b, e) ∈ D 6 , it can be checked that ∂g 6 ∂a (a, b, e) < 0 and ∂g 6 ∂b (a, b, e) < 0 as follows. Note first that 2 -e √ 2 u,

2 √ 2 + 2 + 1 2 u 2 1 4 + 1 8 + 2 + 2 + 1 2 √ 2 u < 2 √ 2 + 16 2 √ 2 + 2 + 1 2 u for p 2, and
2 √ 2 + 16 2 √ 2 + 2 + 1 2 u < 2 2 -1+e 2 a + b + 4 4 + 2 -e a 2 + b 2 .
A.7 Analysis of g 7

In this section, we provide some details about the analysis of g 7 that were omitted in §3.6.2.

• Let us first maximize g 7 with respect to b. We have

∂g 7 ∂b = b 2 2 -e + 1 + 4 + 2 -e a 2 + b 2 -2b 2 -e 2 a + b 4 + 2 -e (a 2 + b 2) 2 -4b 4 + 2 -e 2 (a 2 + b 2) 3 .
We want to prove that ∂ ∂b g 7 (a, b, e) < 0 over D 7 . Multiplying by

(a 2 +b 2) 2
(4+2 -e)b and using the inequality 1 b < 1, we only need to prove that

a 2 + b 2 2 2 -e + 1 2 (4 + 2 -e) + a 2 + b 2 < 2 2 -e 2 a + b + 4 4 + 2 -e a 2 + b 2 .
Since e 2, we can derive this inequality for p 2 from the three following ones using the definition of D 7 :

a 2 + b 2 2 2 -e + 1 2 (4 + 2 -e) + a 2 + b 2 < 2 √ 2 + 2 + 1 4 u 2 1 4 + 1 8 + 2 √ 2 + 2 + 1 4 u, 2 √ 2 + 2 + 1 4 u 2 1 4 + 1 8 + 2 √ 2 + 2 + 1 4 u < 2 √ 2 + 16 2 √ 2 + 2 + 1 4 u , and
2 √ 2 + 16 2 √ 2 + 2 + 1 4 u < 2 2 -e 2 a + b + 4 4 + 2 -e a 2 + b 2 .
Therefore, g 7 is decreasing with respect to b, and for all (a, b, e) in D 7 , g 7 (a, b, e) g 7 (a, √ 2, e).

• We now maximize g 7 (a, √ 2, e) with respect to a. Let us recall that in D 7 , a a 0 + η(u) = 2 and prove that a 0 + η(u) 2 -1-e 2 .

Using the notation x = 2 -e , the inequality a 0 + η(u) As a consequence, g 7 (a, √ 2, e) is decreasing with respect to a over I, and since a 0 +η(u) ∈ I, the maximum of g 7 (a, √ 2, e) for a ∈ a 0 + η(u), 2

1-e 2 is g 7 (a 0 + η(u), √ 2, e). Thus, for (a, b, e) in D 7 , we have g 7 (a, b, e) g 7 (a, √ 2, e) g 7 (a 0 + η(u), √ 2, e).

• Let us prove that g 7 (a 0 + η(u), √ 2, e) g 7 (a 0 , √ 2, e) + 20u. For this purpose, we first show that |η(u)| < 2u. We have η(u) 2 , and using both -2u < η(u) 0 and a 0 < 1, we also deduce

λ 0 (u) 2 < 1 a 2 0 + 2 2 + a 0 u.
From the definition of g 7 , using 0 < a 0 + η(u) < a 0 and the previous upper bounds on λ 0 (u) and λ 0 (u) with only one sign change, so there is exactly one root of P greater than 1 and at most one root of P in √ 2/2, 1 . Since P (√ 1 -2 -5) > 0 and P (√ 1 -2 -7) < 0, we deduce that P (y)

is positive for y ∈ √ 2/2, √ 1 -2 -5 , and negative for y ∈ √ 1 -2 -7 , 1 , which implies that h 7 is increasing over the former interval, and decreasing over the latter.

3 2 . 4 3

 24 If ufp b 2 = 2 then either ufp(1 + s b) = 2 which implies , or ufp(1 + s b) = 4 and then 3 2 + u. In all these cases, (10) holds, hence we can assume now that a = 1.

e 2 . 1 , which implies ufp b s 1 2 .

 212 Moreover, we know from[START_REF] Wilkinson | The Algebraic Eigenvalue Problem[END_REF] that b 1+2u so we have b 2 b(1+2u) b+2u, which is a floating-point number because ufp(b) = 1. Consequently s b b + 2u and s s a + s b -u s a + b + u > b, hence b s < Finally, s = RN(s a + s b) 1 so a s

3. 5

 5 Case ufp(s a + s b) = 4 From (15) and (11), we know that 4 s a + s b < 4 √ 2 and s a < s b . As a consequence, we have 2 < s b which implies 2 < b 2 , so that ufp b 2 = 2 and √ 2 < b 2 -2u. Since 4 is a floating-point number, we have s = RN(s a + s b) 4 and b

e 0 Since |δ| ufp a 2 +

 02 ufp b 2 + ufp(s a + s b) = 6 + 2 -e and ufp a s 2 -2-e 2 , from (8) we get f 2 (a, b) g 3 (a, b, e) with g 3 (a, b, e) := (a 2 + b 2) (2 -e + 1) 16 + (6 + 2 -e)(2 -e 2 a + b) 2 (a 2 + b 2) + 6 + 2 -e a 2 + b 2 2

2 + b 2 (2 -

 222) we have f 2 (a, b) g 4 (a, b, e) with g 4 (a, b, e) := a

1 2 , 4

 24 we conclude that f 2 (a, b) g 4 (a, b, e) h

2 1 2

 21 +b 2 -4u . Since a and b are both floating-point numbers, and from[START_REF] Stewart | A note on complex division[END_REF], we know that b a + 2u so that b 2 -4u > a 2 . By computing its partial derivative, it can then be checked that a a 2 +b 2 -4u is increasing with respect to a, which implies a s b-2u (b-2u) 2 +b 2 -4u . This last expression is decreasing with respect to b, and since b 1 + 2u we deduce a s gives f 2 (a, b) g 5 (a, b), where g 5 (a, b) :

) gives | z -z|/(u|z|) = 4.67973 . . .; • dividing 1506 + i 1512 by 1491 + i 1504 using the inversion-multiplication approach leads to | z -z|/(u|z|) = 4.34446 . . . However, these examples are not sufficient to conclude about the sharpness of the bounds (3+ √ 5)u+O u 2 and (γ + √ 5)u+O u 2 , and further investigation is needed to understand the accuracy of complex floating-point division.

e 2 -

 2 2 e -2 + (4 + 2 -e)u;

2 2 < 1 . 2 (

 212 |η(u)| = 2 e -2 + (4 + 2 -e)u -√ 2 e -2and a short calculation shows that |η(u)| < 2u. It can also be checked that a 0 < 21-e 2 using again x = 2 -e and a short calculation. Since e 2, this implies a 0 √ Let us now considerλ 0 (u) = 1 (a 0 + η(u)) 2 + 2 . (a 0 + η(u)) 2 + 2) η(u) + (2a 0 + η(u)) 2 -2((a 0 + η(u)) 2 + 2) (a 2 0 + 2) 2 ((a 0 + η(u)) 2 + 2) 2

 • 2 p-1 . Since the latter inequality involves only integers, it is equivalent to |A 2 -(2 p + 1) • 2 p-1 | 1 and thus to |a 2 -(2 + 2u)| 4u 2 .

	Lemma 2 Let a be a floating-point number. If p = 3 then RN a 2 = a 2 (1 +)
	with | | u/(1 + 3u).
	Proof We can assume that 1 a < 2. If a = 1 then RN a 2 = a 2 and the result is clear. If 1 < a < √ 2 then it follows from a being a floating-point number that p 4 and that a belongs to the non-empty interval [1+2u, √ 2). Consequently,
	1 + 4u < a 2 < 2 and thus | | if √ 2 < a < 2 then 2 < a 2 < 4 and, by Lemma 1, it suffices to consider the u ufp(a 2)/a 2 = u/a 2 < u/(1 + 4u). Finally,
	following four subcases:

Table 1

 1 . Examples with p odd and a componentwise relative error close to 3u.

	p	Inputs a and b	E C /u
	15	a = 16732	2.93047 . . .
		b = 23252•2 3	
	17	a = 66078	2.96359 . . .
		b = 93014•2 8	
	19	a = 131435	2.98509 . . .
		b = 370969•2 8	
	53	a = 4508053433127332	2.97894 . . .
		b = 6369149602646415•2 16	
	113 a = 5192393427440123027423416459819356	2.97647 . . .
		b = 7343016638055329519853569740503421•2 16	

Table 2

 2 Examples with a normwise relative error close to γu.

	p	Inputs a and b	E N /u
	24	a = 11863283	2.69090 . . .
		b = 11865457•2 12	
	53	a = 4503599709991314	2.70679 . . .
		b = 6369051770002436•2 26	
	113 a = 2 112	2.70559 . . .
		b = 7343016637207171132572330391109909•2 56	

 2 . The last case is similar although we have a slightly larger bound γ 2 + 20u for f 2 (we have 2 + = 2.70710 . . ., while γ = 2.70712 . . .), which leads to E N γu + 9u 2 . The table below summarizes the bounds in each case, under the assumptions[START_REF] Stewart | A note on complex division[END_REF] to (15).

	√ 2
	2

 b, and a 2 + b 2 < 4

						√	2 + 4u, it is enough to check that
	4 √	2 + 4u 4	2	+	4 4 √ √ 2 + 4u 2	< 16 √	2 +	256 √ 4 2 + 4u	,
	which holds for p 2.								

 2 -1-e 2 is equivalent to (1 4 -u)x -1 + 4u which holds for p 2 since 1 4 -u 0 -1 + 4u. Moreover, we have (a 2 + 2) 2 a(4 + 2 -e)

		∂ ∂a	g 7 (a,	√	2, e) =	(2 -e + 1)(a 2 + 2) 2 2(4 + 2 -e)	+	2 -e 2 a	(a 2 + 2)
										-2 2 -e 2 a +	√	2 -4	4 + 2 -e a 2 + 2	,
	with	(a 2 +2) 2							1-e 2
					∂ ∂a	g 7 (a,	√	2, e) <	125 128	+ 5 -2 √	2 -	32 5	< 0.

a(4+2 -e) > 0 for a ∈ I := 2 -1-e 2 , 2

. For e 2 and a ∈ I, we have

(a 2 + 2) 2 a(4 + 2 -e)

 + 2) 2 + a 0 u , and g 7 (a 0 + η(u), √ 2, e) < g 7 (a 0 , √ 2, e) + (4 + 2 -e) 2 -e 2 a 0 + √ 2 + 4 + 2 -e a 0 u. The inequality g 7 (a 0 + η(u), √ 2, e) < g 7 (a 0 , √ 2, e) + 20u then follows from e 2 and a 0This polynomial has 0 or 2 positive roots according to Descartes' rule of signs (there are two sign changes in the sequence of coefficients). Moreover,

	2 , we obtain					
	g 7 (a 0 + η(u),	√	2, e) <	a 2 0 + 2 2 -e + 1 4	+ 4 + 2 -e 2 -e 2 a 0 +	√	2	1 0 + 2 a 2	+ a 0 u
										+ (4 + 2 -e) 2	1 0 √ (a 2 2 2 .
							H(y) 64(y+1) with
	H(y) = y 7 + 3y 6 -7y 5 -(8 √	2 + 45)y 4 -(16 √	2 + 53)y 3
							+ (64	√	2 + 113)y 2 + (144	√	2 + 315)y + 72 √	2 + 249.
	Hence h 7 (y) =	P (y) 32 (y+1) 2 where P is the polynomial
	P (y) = 3y 7 + 11y 6 -5y 5 -(12 √	2 + 85)y 4 -(32 √	2 + 143)y 3
							-(23 -8 √	2)y 2 + (64	√	2 + 113)y + 36	√ 2 + 33.
	P (y + 1) = 3y 7 + 32y 6 + 124y 5 + (160 -12	√	2)y 4 -(208 + 80	√	2)y 3
							-(784 + 160	√	2)y 2 -(640 + 64	√	2)y -96 + 64	√	2,

• Finally, we check that the function h 7 is increasing over √ 2/2, √ 1 -2 -5 and decreasing over √ 1 -2 -7 , 1 . We have h 7 (y) =

-2 -7 , 1 . Comparing the values of h 7 at the points √ 1 -2 -5 and √ 1 -2 -7 , we conclude that h 7 (√ 1 -2 -7) is an upper bound for h 7 .Finally, it can be checked that h 7 (√ 1 -2 -7) = γ

hence we get f 2 (a, b) γ 2 + 20u. From (9), we derive the final upper bound γu + 9u 2 for E N , which concludes the proof of Theorem 2.

Acknowledgements

We thank the associate editor and the anonymous reviewers for their helpful comments and suggestions.

1+2 -e , positive if a < a 0 , and negative if a > a 0 .

A.5 Partial derivative of g 5

We have

and it can be checked that this partial derivative is negative using the following inequalities:

A.6 Partial derivatives of g 6

The partial derivatives of g 6 with respect to a and b are