
HAL Id: ensl-01252342
https://ens-lyon.hal.science/ensl-01252342v1

Submitted on 7 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient checkpoint/verification patterns
Anne Benoit, Saurabh K. Raina, Yves Robert

To cite this version:
Anne Benoit, Saurabh K. Raina, Yves Robert. Efficient checkpoint/verification patterns. In-
ternational Journal of High Performance Computing Applications, 2017, 31 (1), pp.52-65.
�10.1177/1094342015594531�. �ensl-01252342�

https://ens-lyon.hal.science/ensl-01252342v1
https://hal.archives-ouvertes.fr

Efficient checkpoint/verification patterns

Anne Benoita, Saurabh K. Rainab, Yves Roberta,c

aLaboratoire LIP, École Normale Supérieure de Lyon, France
bDepartment of CSE/IT, Jaypee Institute of Information Technology, Noida, India

cUniversity of Tennessee Knoxville, USA

Abstract

Errors have become a critical problem for high performance computing. Checkpointing protocols are often
used for error recovery after fail-stop failures. However, silent errors cannot be ignored, and their peculiarity
is that such errors are identified only when the corrupted data is activated. To cope with silent errors,
we need a verification mechanism to check whether the application state is correct. Checkpoints should
be supplemented with verifications to detect silent errors. When a verification is successful, only the last
checkpoint needs to be kept in memory because it is known to be correct.

In this paper, we analytically determine the best balance of verifications and checkpoints so as to optimize
platform throughput. We introduce a balanced algorithm using a pattern with p checkpoints and q verifica-
tions, which regularly interleaves both checkpoints and verifications across same-size computational chunks.
We show how to compute the waste of an arbitrary pattern, and we prove that the balanced algorithm is
optimal when the platform MTBF (Mean Time Between Failures) is large in front of the other parameters
(checkpointing, verification and recovery costs). We conduct several simulations to show the gain achieved
by this balanced algorithm for well-chosen values of p and q, compared to the base algorithm that always
perform a verification just before taking a checkpoint (p = q = 1), and we exhibit gains of up to 19%.

Keywords: High performance computing; fault tolerance; checkpointing; verification; silent error; silent
data corruption.

Email addresses: Anne.Benoit@ens-lyon.fr (Anne Benoit), sk.raina@jiit.ac.in (Saurabh K. Raina),
Yves.Robert@ens-lyon.fr (Yves Robert)

Preprint submitted to IJHPCA June 5, 2015

1. Introduction

With the advent of large-scale, massively parallel platforms, errors have become a critical problem for the
HPC (High Performance Computing) community. Consider a large multicore node, say with one thousand
cores, and assume, somewhat optimistically, that its MTBF (Mean Time Between Failures) is as large as 100
years. The path to Exascale computing [1] is to assemble a platform composed of one million such nodes.
But with such a large number of nodes, the MTBF of the whole platform will only be 52 minutes, which
means that most applications running on the platform for a few hours or more will experience a failure.

The de-facto general-purpose error recovery technique in HPC is checkpoint/restart [2, 3]. This technique
employs checkpoints to periodically save the state of a parallel application, so that when an error strikes
some process, the application can be restored into one of its former states. There are several families of
checkpointing protocols, but they share a common feature: each checkpoint forms a consistent recovery
line, i.e., when an error is detected, one can rollback to the last checkpoint and resume execution, after a
downtime and a recovery time.

However, checkpoint and rollback recovery assumes instantaneous error detection, and therefore apply to
fail-stop failures, such as the crash of a resource. In this work, we revisit checkpoint protocols in the context
of silent errors, also called silent data corruptions. In HPC, it has been shown that such errors are not
unusual, and must also be accounted for [4, 5, 6, 7, 8]. The cause may be for instance soft errors in L1 cache,
or bit flips due to cosmic radiation. The problem is that the detection of a silent error is not immediate,
because the error is identified only when the corrupted data is activated. If the error strikes a system before
the last checkpoint, and is detected after that checkpoint, then the checkpoint is corrupted, and cannot be
used to restore the application.

To alleviate this issue, one may envision to keep several checkpoints in memory, and to restore the
application from the last valid checkpoint, thereby rolling back to the last correct state of the application [9].
This multiple-checkpoint approach has three major drawbacks. First, it is very demanding in terms of stable
storage: each checkpoint typically represents a copy of the entire memory footprint of the application, which
may well correspond to several terabytes. The second drawback is the possibility of fatal failures. Indeed,
if we keep k checkpoints in memory, the approach assumes that the error that is currently detected did
not strike before all the checkpoints still kept in memory, which would be fatal: in that latter case, all
live checkpoints are corrupted, and one would have to re-execute the entire application from scratch. The
probability of a fatal failure is evaluated in [10] for various error distribution laws and values of k. The third
drawback of the approach is the most serious, and applies even without memory constraints, i.e., if we could
store an infinite number of checkpoints in storage. The critical question is to determine which checkpoint is
the last valid one. We need this information to safely recover from that point on. However, because of the
detection latency, we do not know when the silent error has indeed occurred, hence we cannot identify the
last valid checkpoint, unless some verification system is enforced.

The major objective of this paper is to introduce algorithms coupling verification and checkpointing, and
to analytically determine the best balance of verifications between checkpoints so as to optimize platform
throughput. In our (realistic) model, silent errors are detected only when some verification mechanism is
executed. This approach is agnostic of the nature of this verification mechanism (checksum, error correct-
ing code, coherence tests, etc.). This approach is also fully general-purpose, although application-specific
information, if available, can always be used to decrease the cost of verification.

The simplest protocol (see Figure 1) would be to perform a verification just before taking each checkpoint.
If the verification succeeds, then one can safely store the checkpoint and mark it as valid. If the verification
fails, then an error has struck since the last checkpoint, which was duly verified, and one can safely recover
from that checkpoint to resume the execution of the application. This protocol with verifications eliminates
fatal errors that would corrupt all live checkpoints and cause to restart execution from scratch. However,
we still need to assume that both checkpoints and verifications are executed in a reliable mode.

There is room for optimization. Consider the second pattern illustrated in Figure 2 with three verifications
per checkpoint. There are three chunks of size w, each followed by a verification. Every third verification is
followed by a checkpoint. We assume that w = W/3 to ensure that both patterns correspond to the same
amount of work, W . Just as for the first pattern, a single checkpoint needs to be kept in memory, owing to

2

TimeW W

Error Detection

V C V C V C

Figure 1: The first pattern with one verification before each checkpoint.

Timew w w w w w

Error Detection

V C V V V C V V V C

Figure 2: The second pattern with three verifications per checkpoint.

the verifications. Also, as before, each error leads to re-executing the work since the last checkpoint. But
detection occurs much more rapidly in the second pattern, owing to the intermediate verifications. If the
error strikes in the first of the three chunks, it is detected by the first verification, and only the first chunk
is re-executed. Similarly, if the error strikes in the second chunk (as illustrated in the figure), it is detected
by the second verification, and the first two chunks are re-executed. The entire pattern of work needs to be
re-executed only if the error strikes during the third chunk. On average, the amount of work to re-execute
is (1 + 2 + 3)w/3 = 2w = 2W/3. On the contrary, in the first pattern of Figure 1, the amount of work to
re-execute always is W , because the error is never detected before the end of the pattern. Hence the second
pattern leads to a 33% gain in re-execution time. However, this comes at the price of three times as many
verifications. This overhead is paid in every failure-free execution, and may be an overkill if the verification
mechanism is too costly.

This little example shows that the optimization problem looks difficult. It can be stated as follows:
given the cost of checkpointing C, recovery R, and verification V , what is the optimal strategy to minimize
the (expectation of the) execution time? A strategy is a periodic pattern of checkpoints and verifications,
interleaved with work segments, that repeats over time. The length of the work segments also depends upon
the platform MTBF µ. For example, with a single checkpoint and no verification (which corresponds to
the classical approach for fail-stop failures), the optimal length of the work segment is known to be

√
2µC

(as given by Young [11]) or
√

2C(µ+R) (as given by Daly [12]). These well-known formulas are first-order
approximations and are valid only if C,R� µ (in which case they collapse). Given a periodic pattern with
checkpoints and verifications, can we extend these formulas and compute similar approximations?

This paper is an important extension of [10], where the idea of coupling checkpoints and verifications
was originally introduced. In [10], only two simple patterns were proposed and analyzed: one pattern with
k verifications, 1 checkpoint, and k same-size chunks (as in the example of Figure 2), and another pattern
with k checkpoints, 1 verification, and k same-size chunks. These two imbalanced patterns were chosen for
simplicity. The first pattern has much greater applicability, since a single checkpoint needs to be kept in
memory. The second pattern requires k checkpoints to be kept in memory simultaneously, which is reasonable
only for very small values of k. One major contribution of this paper is to analyze arbitrary patterns where
p checkpoints and q verifications are interleaved, and where different-size chunks are allowed.

Given values of C and V , the cost of re-executing the work will dominate the waste due to failures as soon
as the platform MTBF µ is large in front of these parameters. Here, the waste is defined as the fraction of time
during which the processors do not perform useful work. As already mentioned, the waste due to failures must
be traded-off with the waste incurred in a failure-free execution. In this context, we succeed in characterizing
the optimal pattern with p checkpoints and q verifications, and we show that this pattern regularly interleaves
both checkpoints and verifications across same-size chunks (algorithm BalancedAlgorithm, see Figure 3
for an example with p = 2 and q = 5). This important result fully characterizes the optimal strategy when
µ is large in front of the resilience parameters C, R, and V . This result also shows (a posteriori) that using

3

Time2w 2w w w 2w 2w

V C V V C V V V C

Figure 3: The BalancedAlgorithm with five verifications for two checkpoints.

same-size chunks in the case p = 1 and q = k, as proposed in [10], is indeed asymptotically optimal.
Finally, another important contribution of this paper is an exact computation of the waste for an arbitrary

pattern with p checkpoints and q verifications, including the overhead of re-executing some verifications and
recovering from invalid checkpoints when p, q ≥ 2. These exact values of the waste are also compared through
extensive simulations that involve realistic scenarios for petascale and exascale platforms.

We conclude this introduction by providing a practical example of the checkpoint and verification mecha-
nisms that we study in this paper. A nice instantiation of this approach is given by Chen [13], who deals with
sparse iterative solvers. Chen considers a simple method such as the PCG, the Preconditioned Conjugate
Gradient method, and aims at protecting the execution from arithmetic errors in the ALU. Chen’s approach
performs a periodic verification every d iterations, and a periodic checkpoint every d× c iterations, which is
a particular case of the pattern with p = 1 and q = c. For PCG, the verification amounts to checking the
orthogonality of two vectors and to recomputing and checking the residual, while the cost of checkpointing
is that of storing three vectors. The cost of a checkpoint is smaller than the cost of the verification, which
itself is smaller than the cost of an iteration, especially when the preconditioner requires much more flops
than a sparse matrix-vector product. In this context, Chen [13] shows how to numerically estimate the best
values of the parameters d and c. Our results show using equidistant verifications, as suggested in [13], is
asymptotically optimal when using a pattern with a single checkpoint (p =1), and enable to determine the
best pattern with p checkpoints and q verifications as a function of C, R, and V , and the MTBF µ.

The rest of the paper is organized as follows. We survey related work in Section 2. We describe the
performance model in Section 3. We show how to compute the waste of an arbitrary pattern in Section 4.
In Section 5, we analyze the performance of a generic balanced algorithm, BalancedAlgorithm, which
equipartitions p checkpoints and q verifications inside a pattern, for arbitrary values of p and q such that
p ≤ q. In Section 6, we show that this algorithm is optimal when the platform MTBF µ is large in front
of the resilience parameters C, R and V , and we explain how to choose the optimal pattern given a set
of parameters. In Section 7, we conduct several simulations that show the gain achieved by the balanced
algorithm over the base algorithm with p = q = 1. We provide final remarks and hints for future work in
Section 8.

2. Related work

Most traditional approaches maintain a single checkpoint. If the checkpoint file includes errors, the
application faces an irrecoverable failure and must restart from scratch. This is because error detection
latency is ignored in traditional rollback and recovery schemes. These schemes assume instantaneous error
detection (therefore mainly targeting fail-stop failures) and are unable to accommodate silent errors. We
focus in this section on related work about silent errors. A comprehensive list of techniques and references
is provided by Lu, Zheng and Chien in [9].

Considerable efforts have been directed at error-checking to reveal silent errors. Error detection is usually
very costly. Hardware mechanisms, such as ECC memory, can detect and even correct a fraction of errors,
but in practice they are complemented with software techniques. The simplest technique is triple modular
redundancy and voting [14]. For high-performance scientific applications, process replication (each process is
equipped with a replica, and messages are quadruplicated) is proposed in the RedMPI library [15]. Another
approach based on checkpointing and replication is proposed in [16], in order to detect and enable fast
recovery of applications from both silent errors and hard errors.

Application-specific information can be very useful to enable ad-hoc solutions, that dramatically decrease
the cost of detection. Many techniques have been advocated. They include memory scrubbing [17], but also

4

ABFT techniques [18, 19, 20], such as coding for the sparse-matrix vector multiplication kernel [20], and
coupling a higher-order with a lower-order scheme for Ordinary Differential Equations [21]. These methods
can only detect an error but do not correct it. Self-stabilizing corrections after error detection in the conjugate
gradient method are investigated by Sao and Vuduc [22]. Also, Heroux and Hoemmen [23] design a fault-
tolerant GMRES capable of converging despite silent errors, and Bronevetsky and de Supinski [24] provide
a comparative study of detection costs for iterative methods. Elliot et al. [25] combine partial redundancy
and checkpointing, and confirm the benefit of dual and triple redundancy. The drawback is that twice the
number of processing resources is required (for dual redundancy).

As already mentioned, our work is agnostic of the underlying error-detection technique and takes the
cost of verification as an input parameter to the model. To the best of our knowledge, the closest work is
the preliminary study in [10], which we considerably extend by considering arbitrary patterns and different
size chunks, as explained in Section 1.

3. Performance model

In this section, we introduce a performance model to assess the efficiency of any checkpoint/verification
pattern. We enforce resilience through the use of a periodic pattern with p checkpoints and q verifications,
and whose total length is S = pC + qV + W . Here, W is the work that is executed during the whole
pattern, and it is divided into several chunks that are each followed by a verification, or a checkpoint, or
both. Checkpoints and verifications are at arbitrary location within the pattern. The only constraint is that
the pattern always ends by a verification immediately followed by a checkpoint: this is to enforce that the
last checkpoint is always valid, thereby ruling out the risk of a fatal failure. In the example of Figure 2, we
have three chunks of same size w, hence W = 3w and S = C + 3V + 3w. The example of Figure 3 uses six
chunks of size either w or 2w, for a total work W = 10w, and S = 2C + 5V + 10w. The rationale for using
such chunk sizes in Figure 3 is given in Section 5.

Consider a parallel application, and let Tbase be the base time of its execution without any overhead
due to resilience techniques (without loss of generality, assume unit-speed execution). We enforce resilience
through the use of the periodic pattern described above, with p checkpoints, q verifications, work W , and
total length S = pC + qV + W . We assume a a selective reliability model where checkpoint, recovery and
verification are error-free operations. The problem is to compute the execution time of the application when
silent errors can strike during execution. The input parameters are the following:

• the cost V of the verification mechanism;

• the cost C of a checkpoint;

• the cost R of a recovery;

• the platform MTBF µ.

First, assume a fault-free execution of the application: every pattern of length S, only W units of work
are executed, hence the time Tff for a fault-free execution is Tff = S

W Tbase. Now, let Tfinal denote the
expectation of the execution time with silent errors taken into account. On average, errors occur every µ
time-units. For each error, we lose F time-units on average (where F will be computed later), and there are
Tfinal

µ errors during the execution. The value of F depends upon the pattern, see the examples below and
the full derivation in Section 5. Altogether, we derive that

Tfinal = Tff +
Tfinal

µ
F , (1)

which we rewrite as (
1−Waste

)
Tfinal = Tbase,

with Waste = 1−
(
1− F

µ

)(
1− pC + qV

S

)
. (2)

5

The waste is the fraction of time where nodes do not perform useful computations. Minimizing execution
time is equivalent to minimizing the waste. In Equation (2), we identify two sources of overhead: (i) the
term Wasteff = pC+qV

S , which is the waste due to checkpointing in a fault-free execution, by construction of

the algorithm; and (ii) the term Wastefail = F
µ , which is the waste due to errors striking during execution.

With these notations, we have

Waste = Wastefail +Wasteff −WastefailWasteff. (3)

To fully characterize the efficiency of a given pattern, there remains to determine F , the (expected) time
lost due to each failure. The value of F depends upon which pattern is used, and we compute it for arbitrary
values of p and q in Section 5. We now give two examples.

The first example is for the simple protocol of Figure 1. We have p = q = 1, a single chunk of size w = W ,
and a pattern of size S = C + V + W . Computing F for this pattern goes as follows: whenever an error
strikes, it is detected at the end of the work, during the verification. We first recover from the last checkpoint,
then re-execute the entire work, and finally redo the verification. This leads to F = R+W +V = R+S−C.
From Equation (2), we obtain that

Waste = 1−
(
1− R+ S − C

µ

)(
1− C + V

S

)
= aS +

b

S
+ c, (4)

where a = 1
µ , b = (C +V)(1 + C−R

µ) and c = R−V−2C
µ . The value that minimizes the waste is S = Sopt, and

the optimal waste is Wasteopt, where

Sopt =

√
b

a
=
√

(C + V)(µ+ C −R) and Wasteopt = 2
√
ab+ c. (5)

We point out that this approach leads to a first-order approximation of the optimal pattern, not to an
optimal value. This is because we have neglected the possibility of having more than one error within a
pattern. In fact, this approach is valid when µ is large in front of S (and of all parameters R, C and V).

When this is the case, we derive that Sopt ≈
√

(C + V)µ and Wasteopt ≈ 2
√

C+V
µ . It is very interesting to

make a comparison with Young’s or Daly’s formula for the optimal checkpointing period Topt when dealing
with fatal failures: their formula writes Topt ≈

√
2Cµ. In essence, the factor 2 comes from the fact that we

re-execute only half the period on average with a fatal failure, because the detection is instantaneous. In
our case, we always have to re-execute the entire pattern. And of course, we have to replace C by C + V , to
account for the cost of the verification mechanism.

The second example is for the BalancedAlgorithm illustrated in Figure 3. We have p = 2, q = 5, six
chunks of size w or 2w, W = 10w, and a pattern of size S = 2C + 5V + W . Note that it may now be the
case that we store an invalid checkpoint, if the error strikes during the third chunk (of size w, just before the
non-verified checkpoint), and therefore we must keep two checkpoints in memory to avoid the risk of fatal
failures. When the verification is done at the end of the fourth chunk, if it is correct, then we can mark the
preceding checkpoint as valid and keep only this checkpoint in memory. Because q > p, there are never two
consecutive checkpoints without a verification between them, and at most two checkpoints need to be kept
in memory.

The time lost due to an error depends upon where it strikes:

• With probability 2w/W , the error strikes in the first chunk. It is detected by the first verification, and
the time lost is R+ 2w + V , since we recover, and re-execute the work and the verification.

• With probability 2w/W , the error strikes in the second chunk. It is detected by the second verification,
and the time lost is R+ 4w + 2V , since we recover, re-execute the work and both verifications.

• With probability w/W , the error strikes in the third chunk. It is detected by the third verification, and
we roll back to the last checkpoint, recover and verify it. We find it invalid, because the error struck

6

before taking it. We roll back to the beginning of the pattern and recover from that checkpoint. The
time lost is 2R+ 6w+C + 4V , since we recover twice, re-execute the work up to the third verification,
re-do the checkpoint and the three verifications, and add the verification of the invalid checkpoint.

• With probability w/W , the error strikes in the fourth chunk. It is detected by the third verification.
We roll back to the previous checkpoint, recover and verify it. In this case, it is valid, since the error
struck after the checkpoint. The time lost is R+ w + 2V .

• With probability 2w/W , the error strikes in the fifth chunk. Because there was a valid verification
after the checkpoint, we do not need to verify it again, and the time lost is R+ 3w + 2V .

• With probability 2w/W , the error strikes in the sixth and last chunk. A similar reasoning shows that
the time lost is R+ 5w + 3V .

Averaging over all cases, we derive that F = 11R
10 + 35w

10 + C
10 + 22V

10 . We then proceed as with the first

example to derive the optimal size S of the pattern. We optain Sopt =
√

b
a and Wasteopt = 2

√
ab+ c (see

Equation (5)), where a = 7µ
20 , b = (2C + 5V)(1− 1

20µ (22R− 12C + 9V)) and c = 1
20µ (22R− 26C − 17V).

When µ is large, we have Sopt ≈
√

20
7 (2C + 5V)µ and Wasteopt ≈ 2

√
7(2C+5V)

20µ .

These examples are intended to prepare the reader for the computation of the waste in the general case.
This computation is conducted in Section 4. Also, the examples are helpful to introduce the analysis of the
waste when the platform MTBF µ is large in front of all resilience parameters R, C and V (Section 4.2).

4. Computing the waste

In this section, we generalize from the examples and provide a generic expression for the waste (Sec-
tion 4.1). Then we derive the dominant term when the platform MTBF µ is large in front of all resilience
parameters R, C and V (Section 4.2).

4.1. Exact expression

Consider a general pattern of size S = pC+ qV +W , with p ≤ q. Recall from Equation (3) that the total
waste is Waste = Wasteff + Wastefail −WasteffWastefail, where Wasteff is the waste without failures,
that is the fraction of the time spent to do useless work each period, and Wastefail is the waste due to errors
striking during execution. We have Wasteff = off

S , where off = pC + qV is the fault-free overhead due to

inserting p checkpoints and q verifications within the pattern. We also have Wastefail = F
µ , where F is the

time lost each time an error strikes.
The time lost F includes two components: re-executing a fraction of the total work W of the pattern,

and computing additional verifications, checkpoints and recoveries (see both examples in Section 3). The
general form of F is thus F = freW + α where fre stands for fraction of work that is re-executed due to
failures; α is a constant that is a linear combination of C, V and R. For the first example (Figure 1), we
have fre = 1. For the second example (Figure 3), we have fre = 7

20 (recall that w = W/10).
For convenience, we use an equivalent form

F = freS + β, (6)

where β = α − fre(pC + qV) is another constant. Plugging this expression back into the waste, we can
generalize Equation (4) and derive that Waste = aS + b

S + c, where

a =
fre

µ
, b = off

(
1− β

µ

)
, and c =

1

µ
(β − offfre).

We then compute Sopt =
√

b
a and Wasteopt = 2

√
ab + c as before. There remains to compute fre and β,

which is done in Section 5 for the general case of BalancedAlgorithm.

7

A word of caution. This approach is valid only when the length of the pattern S = pC + qV + pqw is
small in front of the MTBF µ: we need to enforce S � µ. Indeed, we made a first-order approximation when
implicitly assuming that we do not have more than one failure during the same period. This hypothesis
is required to allow the expression of the model in a closed form. In fact, the number of failures during a
pattern of length S can be modeled as a Poisson process of parameter S

µ ; the probability of having k ≥ 0

failures is 1
k! (

S
µ)ke−

S
µ . Hence the probability of having two or more failures is π = 1 − (1 + S

µ)e−
S
µ . For

instance, enforcing the constraint S ≤ 0.1µ leads to π ≤ 0.005, hence a valid approximation when capping S
to that value. Indeed, we have overlapping faults every 200 periods on average, so that our model is accurate
for 99.5% of the checkpointing segments, hence it is quite reliable. In addition to the previous constraint, we
must enforce the condition S ≥ pC + qV , because the number of intervals and interval lengths are positive.
The optimal value of S must therefore be chosen in the interval [pC + qV, 0.1µ].

4.2. When µ is large

When the platform MTBF µ is large in front of all resilience parameters R, C and V , we can identify
the dominant term in the optimal waste Wasteopt. Indeed, in that case, the constant β becomes negligible
in front of µ, and we derive that

Sopt =

√
off

fre
×√µ+ o(

√
µ), (7)

and that the optimal waste is

Wasteopt = 2
√
offfre

√
1

µ
+ o(

√
1

µ
). (8)

This equation shows that the optimal pattern when µ is large is obtained when the product offfre is minimal.
This calls for a trade-off, as a smaller value of off with few checkpoints and verifications leads to a larger
re-execution time, hence to a larger value of fre.

We will use this characterization in terms of the product offfre (and extend it to different-size chunks)
to derive the optimal pattern in Section 6. For instance, coming back to the examples of Figures 1 and 3,
we readily see that the second pattern is better than the first one for large values of µ whenever V > 2C/5,
which corresponds to the condition 7

20 × (5V + 2C) > 1× (V + C).

5. The balanced algorithm

In this section, we analyze the generic balanced algorithm BalancedAlgorithm to place p checkpoints
and q verifications for given values of W , p and q. As discussed before, we assume that p ≤ q, so that no
more than two checkpoints need to be kept in memory at each time. Then, we explain how to compute the
optimal total workload W , given the parameters µ, V , C and R.

When p = 1, the algorithm follows the pattern illustrated in Figure 2 for q = 3: the total workload W is
divided into q intervals of equal size w = W/q. The first q − 1 intervals are followed only by a verification,
while the last interval is followed both by a checkpoint and a verification. With this pattern, note that only
one checkpoint is kept in memory at all time, because the checkpoint is always verified by a verification
immediately preceding it.

Other cases are such that p > 1 and p does not divide q; otherwise, we are back to the previous case with
one checkpoint and q/p verifications. The idea is then to equally space each checkpoint and each verification,
as was done in the pattern of Figure 3. Hence, we divide the total workload into p× q same-size intervals of
size w = W/pq. Some intervals may be ended neither by a checkpoint nor by a verification, hence we end
up for instance with chunks of size 2w in the example. Then, we place checkpoints at the end of intervals
i× q, for 1 ≤ i ≤ p, and verifications at the end of intervals j × p, for 1 ≤ j ≤ q. If both a checkpoint and a
verification happen at the end of the same interval (this is always the case for the last interval p× q), then
the checkpoint follows the verification. With this pattern, however, some intervals are ended only with a
checkpoint, and hence this checkpoint is not verified. Therefore, we need to keep two checkpoints in memory
while there has not been a valid verification after the non-verified checkpoint.

8

Next, we compute the waste in both cases (p = 1 and p > 1), as a function of p, q, the interval lengths w.
As explained in Section 4, we have off = pC + qV and we only need to compute F , the expectation of the
amount of time spent to recover from a failure.

5.1. Computing F with p = 1

We first consider that p = 1. Recall that the total workload is divided into q intervals of size w. Consider
that the failure strikes in interval i, with 1 ≤ i ≤ q. Then F(i) = R + i(w + V): we need to recover from
the failure, and we go back to the checkpoint (that was already verified) at the end of the previous period,
hence we need to redo i intervals with their verifications. Therefore, because the probability that the error
strikes during an interval is 1/q, we obtain

F(w, 1, q) =
1

q

q∑
i=1

(R+ i(w + V)) = R+
q + 1

2
(w + V) =

q + 1

2
w + c1(q),

with c1(q) = R+ q+1
2 V .

Finally, note that if p = q = 1, we have w = W and we obtain the same result as in Section 3:

F(w, 1, 1) = w +R+ V .

5.2. Computing F with p > 1

We compute the time lost F(i) if failure strikes during interval i, for 1 ≤ i ≤ pq. We express i as

i = ap+ b, i = a′q + b′,

by making an euclidian division by p and q. For instance, a = bi/pc and b = i mod p.
Recall that checkpoints occur at the end of intervals ` × q, for 1 ≤ ` ≤ p, and verifications occur at

the end of intervals `′ × p, for 1 ≤ `′ ≤ q. Therefore, the first verification following i occurs at the end of
interval NV (i) (next verification), where

NV (i) =

{
ap if b = 0
(a+ 1)p otherwise

Also, the first checkpoint preceding i occurs at the end of interval PC(i) (preceding checkpoint), where

PC(i) =

{
(a′ − 1)q if b′ = 0
a′q otherwise

Intervals PC(i) + 1 to NV (i) will therefore need to be re-executed, because the failure is detected at the
end of interval NV (i), and the first valid checkpoint from which we will recover is at the end of interval PC(i).
We need to compute the number of verifications and checkpoints that occur during these intervals, that will
have to be redone. Let NbV (i) be the number of verifications between PC(i)+1 and NV (i), and NbC(i) be
the number of checkpoints between PC(i) + 1 and NV (i)− 1 (a checkpoint at the end of interval NV (i) will
not be re-executed or loaded, because the verification occurs just before). For the number of verifications,
let PC(i) + 1 = cp + d (euclidian division) and NV (i) = a′′p (where a′′ = a or a′′ = a + 1). If d = 0, then
NbV (i) = a′′ − c′ + 1, otherwise NbV (i) = a′′ − c′. For the number of checkpoints, let NV (i)− 1 = c′q + d′

(euclidian division). Then, NbC(i) = c′ − a′ + 1 if b′ = 0, and NbC(i) = c′ − a′ otherwise. Note that we
count the number of checkpoints between i and NV (i), because there are no additional checkpoints between
PC(i) + 1 and i, by definition of PC(i).

Let Int(x) be a function returning 0 if x is an integer, and 1 otherwise. Indeed, for the first checkpoint
from which we recover (at the end of PC(i)), we need to verify it only if it was not already verified, i.e., if
PC(i)/p is not an integer. Finally we can express F(i):
F(i) = (NV (i)− PC(i))w +NbV (i)× V +NbC(i)× (R+ V + C) +R+ Int(PC(i)/p)V .

9

(NV (i) − PC(i))w corresponds to the re-executed work; NbV (i) × V corresponds to the re-executed
verifications (including the last one at the end of interval NV (i)); NbC(i)× (R+V +C) corresponds to the
checkpoints from which we recover, between i and NV (i) (none of them are already verified by definition of
NV (i), and therefore we pay R+ V +C for each of them); and finally R corresponds to the actual recovery
from PC(i), plus an eventual verification cost if this checkpoint was not already verified (i.e., if PC(i)/p is
not an integer).

By summing over all intervals, since the probabilities that the failure strikes in an interval are evenly
balanced and equal to 1/pq, we obtain the time lost with BalancedAlgorithm:

F(w, p, q) =
1

pq

pq∑
i=1

(NV (i)− PC(i))w +NbV (i)× V +NbC(i)× (R+ V + C) +R+ Int(PC(i)/p)V.

Note that with p = 1, we have NV (i) = NbV (i) = i, PC(i) = NvC(i) = 0, and Int(PC(i)/p) = 0, hence
we obtain the same formula as in Section 5.1.

6. Asymptotic analysis

In this section, we focus on the case where the MTBF µ is large in front of the resilience parameters C,

R and V . Recall from Equation (8) that the optimal waste is Wasteopt = 2
√
offfre

√
1
µ + o(

√
1
µ). Consider

a given pattern with p checkpoints and q verifications, where p ≤ q. We have off(p, q) = pC + qV and we
aim at minimizing fre(p, q), the expected fraction of the work that is re-executed. The major result of this
section is that fre(p, q) is minimized when the pattern has pq same-size intervals and when the checkpoints
and verifications are equally spaced among these intervals as in the BalancedAlgorithm, in which case
fre(p, q) = p+q

2pq . We first prove this important result for p = 1 in Section 6.1 before moving to the general
case in Section 6.2. Finally, we explain how to choose the optimal pattern given values of C and V in
Section 6.3.

6.1. Computing fre when p = 1

Theorem 1. The minimal value of fre(1, q) is obtained for same-size chunks and it is fre(1, q) = q+1
2q .

Proof. For q = 1, we already know from Section 3 that fre(1, 1) = 1. Consider a pattern with q ≥ 2
verifications, executing a total work W . Let αiW be the size of the i-th chunk, where

∑q
i=1 αi = 1 (see

Figure 4). We compute the expected fraction of work that is re-executed when a failure strikes the pattern
as follows. With probability αi, the failure strikes in the i-th chunk. The error is detected by the i-th
verification, we roll back to the beginning of the pattern, so we re-execute the first i chunks. Altogether, the

amount of work that is re-executed is
∑q
i=1

(
αi
∑i
j=1 αjW

)
, hence

fre(1, q) =

q∑
i=1

αi i∑
j=1

αj

 . (9)

What is the minimal value of fre(1, q) in Equation (9) under the constraint
∑q
i=1 αi = 1? We rewrite

fre(1, q) =
1

2

(
q∑
i=1

αi

)2

+
1

2

q∑
i=1

α2
i =

1

2

(
1 +

q∑
i=1

α2
i

)
,

and by convexity, we see that fre is minimal when all the αi’s have the same value 1/q. In that case, we
derive that fre(1, q) = 1

2 (1 +
∑q
i=1

1
q2) = q+1

2q , which concludes the proof.

When p = 1, BalancedAlgorithm uses q same-size chunks. Theorem 1 shows that this is optimal.

10

Timeα1W α2W α3W

V C V V V C

Figure 4: A pattern with different-size chunks, for p = 1 and q = 3.

6.2. Computing fre when p ≥ 1

Theorem 2. For a pattern with p ≥ 1, the minimal value of fre(p, q) is fre(p, q) = p+q
2pq , and it is obtained

with the BalancedAlgorithm.

Proof. Consider an arbitrary pattern with p checkpoints, q ≥ p verifications and total work W . The repar-
tition of the checkpoints and verifications is unknown, and different-size chunks can be used. The only
assumption is that the pattern ends by a verification followed by a checkpoint.

The main idea of the proof is to compare the gain in re-execution time due to the p − 1 intermediate

checkpoints. Let f
(p)
re be the fraction of work that is re-executed for the pattern, and let f

(1)
re be the fraction

of work that is re-executed for the same pattern, but where the p−1 first checkpoints have been suppressed.

Clearly, f
(p)
re is smaller than f

(1)
re , because the additional checkpoints save some roll-backs, and we aim at

maximizing their difference.

Timeα1W α2W α3W

V C C C V C

Figure 5: A pattern with different-size chunks, with 3 checkpoints (we do not show where intermediate verifications are located).

In the original pattern, let αiW be the amount of work before the i-th checkpoint, for 1 ≤ i ≤ p (and with∑p
i=1 αi = 1). Figure 5 presents an example with p = 3. What is the gain due to the presence of the p− 1

intermediate checkpoints? If an error strikes before the first checkpoint, which happens with probability α1,
there is no gain, because we always rollback from the beginning of the pattern. This is true regardless of
the number and repartition of the q verifications in the pattern. If an error strikes after the first checkpoint
and before the second one, which happens with probability α2, we do have a gain: instead of rolling back to
the beginning of the pattern, we rollback only to the first checkpoint, which saves α1W units of re-executed
work. Again, this is true regardless of the number and repartition of the q verifications in the pattern. For
the general case, if an error strikes after the (i − 1)-th checkpoint and before the i-th one, which happens

with probability αi, the gain is
∑i−1
j=1 αjW . We derive that

f (1)
re − f (p)

re =

p∑
i=1

αi i−1∑
j=1

αj

 .

Similarly to the proof of Theorem 1, we have

p∑
i=1

αi i−1∑
j=1

αj

 =
1

2

(p∑
i=1

αi

)2

−
p∑
i=1

α2
i

 =
1

2

(
1−

p∑
i=1

α2
i

)

and by convexity, the difference f
(1)
re −f (p)

re is maximal when αi = 1/p for all i. In that latter case, f
(1)
re −f (p)

re =∑p
i=1(i−1)/p2 = (p−1)/p2. This result shows that the checkpoints should be equipartitioned in the pattern,

regardless of the location of the verifications.

To conclude the proof, we now use Theorem 1: to minimize the value of f
(1)
re , we should equipartition

the verifications too. In that case, we have f
(1)
re = q+1

2q and f
(p)
re = q+1

2q −
p−1
2p = q+p

2pq , which concludes the
proof.

11

Theorem 2 shows that BalancedAlgorithm is the optimal pattern with p checkpoints and q verifica-
tions when µ is large. An important consequence of this result is that we never need to keep more than two
checkpoints in memory when p ≤ q, because it is optimal to regularly interleave checkpoints and verifications.

6.3. Choosing the optimal pattern

In this section, we outline a simple procedure to determine the best pattern. We start with the following
result:

Theorem 3. Assume that µ is large in front of C, R and V , and that
√

V
C is a rational number u

v , where u

and v are relatively prime. Then the optimal patten Sopt is obtained with the BalancedAlgorithm, using

p = u checkpoints, q = v verifications, and pq equal-size chunks of total length
√

2pq(pC+qV)µ
p+q .

We prove this theorem before discussing the case where
√

V
C is not a rational number.

Proof. Assume that V = γC, where γ = u2

v2 , with u and v relatively prime integers. Then, the product offfre

can be expressed as

offfre =
p+ q

2pq
(pC + qV) = C × p+ q

2

(
1

q
+
γ

p

)
.

Therefore, given a value of C and a value of V , i.e., given γ, the goal is to minimize the function p+q
2

(
1
q + γ

p

)
with 1 ≤ p ≤ q, and p, q taking integer values.

Let p = λ× q. Then we aim at minimizing

1 + λ

2

(
1 +

γ

λ

)
=
λ

2
+

γ

2λ
+

1 + γ

2
,

and we obtain λopt =
√
γ =

√
V
C = u

v . Hence the best pattern is that returned by the BalancedAlgorithm

with p = u checkpoints and q = v verifications. This pattern uses pq equal-size chunks whose total length is
given by Equation (7), hence the result.

For instance, for V = 4 and C = 9, we obtain λopt =
√

V
C = 2

3 , and a balanced pattern with p = 2 and

q = 3 is optimal. This pattern will have 6 equal-size chunks whose total length is
√

12(2C+3V)µ
5 = 6

√
2µ.

However, if V = C = 9, then λopt = 1 and the best solution is the base algorithm with p = q = 1 and a

single chunk of size
√

(C + V)µ =
√

13µ.

In some cases, λopt =
√

V
C may not be a rational number, and we need to find good approximations of p

and q in order to minimize the asymptotical waste. A solution is to try all reasonable values of q, say from
1 to 50, and to compute the asymptotic waste achieved with p1 = bλopt × qc and p2 = dλopt × qe, hence
testing at most 100 configurations (p, q). One can even further constrain the value of q if the capping of
S is exceeded (see discussion in Section 4.1). Altogether, we can compute the best pattern with q ≤ 50 in
constant time.

7. Simulation results

The BalancedAlgorithm has been implemented and simulations have been conducted in Maple for a
wide range of scenarios. We discuss these scenarios in Section 7.1, which is devoted to describing the simula-
tion framework. In Section 7.2, we present the results, outlining the gain achieved by BalancedAlgorithm
over the base case (where p = q = 1) , and deriving main conclusions from these simulations.

The Maple sheet is publicly available at [26], and users are invited to instantiate the model with their
preferred parameters.

12

7.1. Simulation framework

This section provides information about the parameters used for instantiating the performance model for
the BalancedAlgorithm. We have chosen realistic parameters that depict large-scale platforms. In the
first instance, we consider three main scenarios for three different values of C = R = {600, 300, 100} seconds.
In each scenario, we use five different platform MTBFs and six values for the ratio γ = V/C (where V ≤ C).
In the second instance, we fix C = 600 and report the values popt and qopt, the number of checkpoints
and verifications which allows us to produce an optimal pattern Sopt. We also report the optimal waste,
the waste due to base algorithm, and the gain (in %) achieved. For a component MTBF of 100 years, we
have considered five different platforms with the total number of nodes = {102, 103, 104, 105, 106}, which
correspond to a platform MTBF µ ranging from µ = 100 × 365 × 24/100 = 8760 hours (365 days) down
to µ = 3153.6 sec (≈ 52 min). For each µ, results are reported for 13 different γ = V/C ratios, where
γ = 0.025, 0.05, 0.075, 0.1, 0.2, . . . , 1. Since λopt (or

√
γ) may not be rational, in order to find integral values

of popt and qopt, we test all possible configurations such that 1 ≤ p ≤ q ≤ 10 to obtain p and q with the
minimal waste. We used Maple to analytically compute the waste and to plot the gain achieved over the
base case.

7.2. Results and analysis

Based on the above framework, in this section we report the results through six plots in Figure 6 and a
table of values in Table 1. Regarding the accuracy of our model and the computation of waste values, we
make the following statements:

1. For the platform with 106 nodes when C = 600, Sopt lies in the interval [pC + qV, 0.6µ]. So in this
case our model is accurate for 88% of the checkpointing segments. For C = 300 and 100, Sopt is less
than 0.4µ (94% accuracy) and 0.2µ (98% accuracy) respectively.

2. For the platform with 105 nodes, Sopt always lies in the interval [pC+qV, 0.2µ]. For all other platforms,
Sopt ≤ 0.1µ.

Figure 6 provides an overall view of the performance of the BalancedAlgorithm and gives an insight
into the behavior of this algorithm for different values of the resilience parameters C, R and V . Table 1
provides, for C = 600, gain values for γ ranging from 0.025 to 1 with the best pattern and the corresponding
waste when µ is fixed. Each plot, representative of a certain V/C ratio, reports gain of the optimal pattern
over the base case for C = 600, 300 and 100 as a function of the platform MTBF µ (plotted on a log scale).
Plots show that the maximum gain achieved is 19.05% for γ = 0.025 when C = 100 for a platform having
100 nodes. In every plot, it can be observed that gain drops as the number of nodes increases. This is to
be expected, since an increase in failure-prone processing elements would reduce the mean time to failure.
This shortens Sopt roughly by one-third with every ten-fold increase in nodes as Sopt ∝ 1/p

√
N , where N is

the number of nodes and p is the number of checkpoints on the optimal pattern. Thus, the optimal pattern
reduces to the base case pattern in such large configurations.

In Table 1, it can also be observed that an increase in the cost of verification leads the gain to drop
drastically, as quickly as γ ≥ 0.3 for a platform with 106 nodes and as slowly as γ ≥ 0.8 for a platform
with 102 nodes. This corroborates with Equation (8). An increase in the cost of verification, as well as in
the number of verifications and checkpoints, leads to a larger value of off. The BalancedAlgorithm, by
construction, distributes q/p verifications every checkpoint. We see that this results into 6 verifications in
the best case giving fre = 0.58, and 1 verification in the worst case (base case) giving fre = 0.1. Since off as
well as fre increases, waste increases and optimal pattern approaches the base case.

8. Conclusion

In this paper, we revisit traditional checkpointing strategies in the context of silent data corruption
errors. These are latent errors that cannot be detected immediately because they are identified only when
the corrupted data is activated. Strategies by Young and Daly [11, 12] cannot be relied upon because they
assume instantaneous error detection. Due to occurrence of silent errors, the checkpoint taken during the

13

(a) γ = 0.025 (b) γ = 0.05 (c) γ = 0.075

(d) γ = 0.1 (e) γ = 0.2 (f) γ = 0.3

Figure 6: Gain (in % on y-axis) achieved, for optimal values of p and q over the base case p = q = 1 when C = 600 (10
minutes), C = 300 (5 minutes) and C = 100 (≈ 1.6 minutes) as a function of the platform MTBF µ (on log scale on x-axis) for
six different V/C ratios.

computation may not be used to recover as it might itself be a corrupted checkpoint. In order to safely
recover from a checkpoint, we must ensure that the error occurred after this checkpoint. This can be done
with an error detection mechanism that periodically performs a verification. To incorporate this, we devised
an algorithm, called BalancedAlgorithm, coupling verification and checkpointing so that verification
checks whether there is an error or not. If there is no error, then the previous checkpoint can be marked
as valid. Otherwise, we recover from the previous checkpoint; if this was not a validated checkpoint, then
we add a verification just after recovery to check whether this checkpoint is valid, and go back to the
preceding checkpoint if it is not valid. The algorithm produces a repetitive periodic pattern of equally-
spaced checkpoints and equally-spaced verifications, interleaved with work segments. Periodicity is governed
by the number of checkpoints and verifications that can be executed within each pattern. When there are
more verifications than checkpoints, this pattern obviates the need to keep more than two checkpoints in
memory.

We have also presented a performance model to assess the efficiency of any checkpoint/verification pattern.
This model provides an expression for the exact computation of the optimal pattern as well as the optimal
waste for any combination of checkpoints and verifications. We establish the fact that when the MTBF µ
is large in front of all resilience parameters R, C and V , the optimal waste is obtained by minimizing the

14

product of two negatively correlated variables off (fault-free overhead) and fre (re-executed fraction of work
due to failures). The performance model has been applied to analyze the generic BalancedAlgorithm.
For fixed values of p and q, and hence with off = pC + qV , we have proved that fre is minimized when the
pattern has pq same-size intervals and when the checkpoints and verifications are equally spaced among these
intervals. Thus, we conclude that BalancedAlgorithm produces an optimal pattern with p checkpoints
and q verifications. Finally, we demonstrate how to choose the optimal pattern for different verification
and checkpointing costs. We found that a pattern with p checkpoints and q verifications is optimal when
p/q =

√
V/C. Therefore, if V = C, it is worth doing a verification immediately followed by checkpoint only

at the end of the pattern, that is, obtaining a base pattern with p = q = 1.
We have instantiated the performance model with realistic parameters, and we have compared the

BalancedAlgorithm with the case p = q = 1. Simulation results show a maximum gain of up to 19%
and findings corroborate the theoretical analysis. Overall, we have analytically determined the best balance
of verifications between checkpoints so as to optimize platform throughput for given costs of R, C and V ,
we proved that the balanced algorithm produces an optimal pattern, and we evaluated this algorithm for
multiple scenarios.

We focused in this work on cases where V ≤ C, hence with more verifications than checkpoints, but all
results hold in the symmetrical case where C ≤ V . However, we did not detail these results because they
would imply to keep more than two checkpoints in memory, which may be difficult.

A future research direction would be to consider different kinds of applications, such as graphs of com-
putational tasks where checkpoints and verifications could be taken at the end of a task. It would then not
be possible to regularly interleave checkpoints and verifications anymore, and new strategies to decide where
to place checkpoints and verifications would have to be designed.

Another possible extension would be to deal with several verifications mechanisms, each with a different
cost and a different recall. The recall is defined as the fraction of errors that the verification mechanism
can detect. In this paper, we have assumed a single verification mechanism with a perfect recall equal to
1. Dealing with imperfect mechanisms is quite an interesting question. A high-recall mechanism is likely to
have a high cost, hence trade-offs would have to be identified in order to select which mechanism to use, and
how frequently. The corresponding optimization problem seems very challenging.

Acknowledgments

This work was supported in part by the ANR RESCUE project. Y. Robert is with the Institut Univer-
sitaire de France. The authors would like to thank Dr. Vivek Kumar Singh at Text Analytics Laboratory
of South Asian University and Ms Hema N. at JIIT for providing their computing facility to conduct simu-
lations.

[1] J. Dongarra, et al., The International Exascale Software Project: a Call To Cooperative Action By the
Global High-Performance Community, Int. J. High Performance Computing Applications 23 (4) (2009)
309–322.

[2] K. M. Chandy, L. Lamport, Distributed snapshots : Determining global states of distributed systems,
in: Transactions on Computer Systems, Vol. 3(1), ACM, 1985, pp. 63–75.

[3] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, D. B. Johnson, A survey of rollback-recovery protocols in
message-passing systems, ACM Computing Survey 34 (2002) 375–408.

[4] T. O’Gorman, The effect of cosmic rays on the soft error rate of a DRAM at ground level, IEEE Trans.
Electron Devices 41 (4) (1994) 553–557.

[5] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin, IBM Experiments in Soft Fails in
Computer Electronics, IBM J. Res. Dev. 40 (1) (1996) 3–18.

15

[6] J. Ziegler, H. Muhlfeld, C. Montrose, H. Curtis, T. O’Gorman, J. Ross, Accelerated testing for cosmic
soft-error rate, IBM J. Res. Dev. 40 (1) (1996) 51–72.

[7] J. Ziegler, M. Nelson, J. Shell, R. Peterson, C. Gelderloos, H. Muhlfeld, C. Montrose, Cosmic ray soft
error rates of 16-Mb DRAM memory chips, IEEE Journal of Solid-State Circuits 33 (2) (1998) 246–252.

[8] A. Moody, G. Bronevetsky, K. Mohror, B. R. d. Supinski, Design, Modeling, and Evaluation of a Scalable
Multi-level Checkpointing System, in: Proc. of the ACM/IEEE SC Conf., 2010, pp. 1–11.

[9] G. Lu, Z. Zheng, A. A. Chien, When is multi-version checkpointing needed, in: 3rd Workshop
for Fault-tolerance at Extreme Scale (FTXS), ACM Press, 2013, https://sites.google.com/site/
uchicagolssg/lssg/research/gvr.

[10] G. Aupy, A. Benoit, T. Hérault, Y. Robert, F. Vivien, D. Zaidouni, On the combination of silent error
detection and checkpointing, in: PRDC 2013, the 19th IEEE Pacific Rim International Symposium on
Dependable Computing, IEEE Computer Society Press, 2013.

[11] J. W. Young, A first order approximation to the optimum checkpoint interval, Comm. of the ACM
17 (9) (1974) 530–531.

[12] J. T. Daly, A higher order estimate of the optimum checkpoint interval for restart dumps, FGCS 22 (3)
(2004) 303–312.

[13] Z. Chen, Online-ABFT: An Online Algorithm Based Fault Tolerance Scheme for Soft Error Detection
in Iterative Methods, in: Proc. 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’13, ACM, 2013, pp. 167–176.

[14] R. E. Lyons, W. Vanderkulk, The use of triple-modular redundancy to improve computer reliability,
IBM J. Res. Dev. 6 (2) (1962) 200–209.

[15] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, R. Brightwell, Detection and correction of
silent data corruption for large-scale high-performance computing, in: Proc. of the ACM/IEEE SC Int.
Conf., SC ’12, IEEE Computer Society Press, 2012.

[16] X. Ni, E. Meneses, N. Jain, L. V. Kalé, ACR: Automatic Checkpoint/Restart for Soft and Hard Error
Protection, in: Proc. Int. Conf. High Performance Computing, Networking, Storage and Analysis, SC
’13, ACM, 2013.

[17] A. A. Hwang, I. A. Stefanovici, B. Schroeder, Cosmic rays don’t strike twice: understanding the nature
of DRAM errors and the implications for system design, SIGARCH Comput. Archit. News 40 (1) (2012)
111–122.

[18] K.-H. Huang, J. A. Abraham, Algorithm-based fault tolerance for matrix operations, IEEE Trans.
Comput. 33 (6) (1984) 518–528.

[19] G. Bosilca, R. Delmas, J. Dongarra, J. Langou, Algorithm-based fault tolerance applied to high perfor-
mance computing, J. Parallel and Distributed Computing 69 (4) (2009) 410 –416.

[20] M. Shantharam, S. Srinivasmurthy, P. Raghavan, Fault tolerant preconditioned conjugate gradient for
sparse linear system solution, in: Proc. ICS ’12, ACM, 2012.

[21] A. R. Benson, S. Schmit, R. Schreiber, Silent error detection in numerical time-stepping schemes., CoRR
abs/1312.2674.

[22] P. Sao, R. Vuduc, Self-stabilizing iterative solvers, in: Proc. ScalA ’13, ACM, 2013.

[23] M. Heroux, M. Hoemmen, Fault-tolerant iterative methods via selective reliability, Research report
SAND2011-3915 C, Sandia National Laboratories (2011).

16

https://sites.google.com/site/uchicagolssg/lssg/research/gvr
https://sites.google.com/site/uchicagolssg/lssg/research/gvr

[24] G. Bronevetsky, B. de Supinski, Soft error vulnerability of iterative linear algebra methods, in: Proc.
22nd Int. Conf. on Supercomputing, ICS ’08, ACM, 2008, pp. 155–164.

[25] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, C. Engelmann, Combining partial redundancy
and checkpointing for HPC, in: Proc. ICDCS ’12, IEEE Computer Society, 2012.

[26] Maple sheets for the experiments, http://graal.ens-lyon.fr/~yrobert/silent-errors/.

17

http://graal.ens-lyon.fr/~yrobert/silent-errors/

C = 600

µ
=

1
00
y
/1

02

γ popt, qopt Wasteopt Wastebase Gain (in %)
0.025 1, 6 0.007140 0.008812 18.97
0.05 2, 9 0.007543 0.008919 15.4
0.075 2, 7 0.007853 0.009024 13
0.1 1, 3 0.008111 0.009129 11.15
0.2 4, 9 0.008922 0.009534 6.42
0.3 1, 2 0.009538 0.009922 3.9
0.4 2, 3 0.010062 0.010295 2.27
0.5 2, 3 0.010522 0.010656 1.25
0.6 3, 4 0.010940 0.011004 0.58
0.7 5, 6 0.011326 0.011342 0.14
0.8 1, 1 0.011670 0.011670 0
0.9 1, 1 0.011989 0.011989 0
1.0 1, 1 0.012299 0.012299 0

µ
=

1
00
y
/1

03
0.025 1, 6 0.022545 0.027734 18.7
0.05 1, 4 0.023818 0.028068 15.1
0.075 1, 4 0.024782 0.028398 12.7
0.1 1, 3 0.025579 0.028724 10.94
0.2 1, 2 0.028115 0.029992 6.3
0.3 1, 2 0.030038 0.031207 3.7
0.4 2, 3 0.031738 0.032375 1.96
0.5 2, 3 0.033185 0.033501 0.94
0.6 3, 4 0.034532 0.034591 0.17
0.7 1, 1 0.035645 0.035645 0
0.8 1, 1 0.036669 0.036669 0
0.9 1, 1 0.037664 0.037664 0
1.0 1, 1 0.038633 0.038633 0

µ
=

1
00
y
/1

04

0.025 1, 6 0.070931 0.086370 17.9
0.05 1, 4 0.074809 0.087393 14.4
0.075 1, 4 0.077774 0.088404 12
0.1 1, 3 0.080173 0.089402 10.3
0.2 1, 2 0.087848 0.093281 5.8
0.3 1, 2 0.093734 0.096992 3.4
0.4 1, 2 0.099244 0.100557 1.3
0.5 1, 1 0.103990 0.103990 0
0.6 1, 1 0.107303 0.107303 0
0.7 1, 1 0.110509 0.110509 0
0.8 1, 1 0.113616 0.113616 0
0.9 1, 1 0.116633 0.116633 0
1.0 1, 1 0.119567 0.119567 0

µ
=

1
00
y
/1

05

0.025 1, 6 0.219985 0.259794 15.3
0.05 1, 4 0.230920 0.262704 12.1
0.075 1, 3 0.239313 0.265573 9.9
0.1 1, 3 0.245857 0.268405 8.4
0.2 1, 2 0.266787 0.279368 4.5
0.3 1, 2 0.283405 0.289805 2.2
0.4 1, 2 0.298839 0.299776 0.31
0.5 1, 1 0.309330 0.309330 0
0.6 1, 1 0.318508 0.318508 0
0.7 1, 1 0.327345 0.327345 0
0.8 1, 1 0.335870 0.335870 0
0.9 1, 1 0.344110 0.344110 0
1.0 1, 1 0.352085 0.352085 0

µ
=

10
0y
/1

06

0.025 1, 6 0.631979 0.688195 8.2
0.05 1, 4 0.6567004 0.694144 5.4
0.075 1, 3 0.670993 0.699967 4.1
0.1 1, 2 0.684016 0.705668 3.1
0.2 1, 2 0.720191 0.727326 0.98
0.3 1, 1 0.747322 0.747322 0
0.4 1, 1 0.765844 0.765844 0
0.5 1, 1 0.783046 0.783046 0
0.6 1, 1 0.799061 0.799061 0
0.7 1, 1 0.813996 0.813996 0
0.8 1, 1 0.827946 0.827946 0
0.9 1, 1 0.840992 0.840992 0
1.0 1, 1 0.853205 0.853205 0

Table 1: Optimal values of p and q and the corresponding waste with gain over the base case when C is fixed at 600 and γ
varies from 0.025 to 1.0 for five different values of µ.

18

	Introduction
	Related work
	Performance model
	Computing the waste
	Exact expression
	When is large

	The balanced algorithm
	Computing F with p=1
	Computing F with p>1

	Asymptotic analysis
	Computing fre when p=1
	Computing fre when p1
	Choosing the optimal pattern

	Simulation results
	Simulation framework
	Results and analysis

	Conclusion

