
HAL Id: ensl-01310023
https://ens-lyon.hal.science/ensl-01310023v1

Preprint submitted on 1 May 2016 (v1), last revised 22 Feb 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the robustness of the 2Sum and Fast2Sum algorithms
Sylvie Boldo, Stef Graillat, Jean-Michel Muller

To cite this version:
Sylvie Boldo, Stef Graillat, Jean-Michel Muller. On the robustness of the 2Sum and Fast2Sum algo-
rithms. 2016. �ensl-01310023v1�

https://ens-lyon.hal.science/ensl-01310023v1
https://hal.archives-ouvertes.fr

On the robustness of the 2Sum and Fast2Sum
algorithms

Sylvie Boldo
Inria, LRI, CNRS & Univ. Paris-Sud, Université Paris-Saclay, France

Stef Graillat
Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, Paris

Jean-Michel Muller
CNRS, LIP, Université de Lyon, France

May 1, 2016

Abstract

The 2Sum and Fast2Sum algorithms are important building blocks in
numerical computing. They are used (implicitely or explicitely) in many
compensated algorithms (such as compensated summation or compensated
polynomial evaluation). They are also used for manipulating floating-
point expansions. We show that these algorithms are much more robust
than it is usually believed: the returned result makes sense even when the
rounding function is not round-to-nearest, and they are almost immune to
overflow.

Keywords floating-point, error-free transformation, rounding errors, faithful
rounding, 2Sum, Fast2Sum

1 Motivations

One easily shows that, provided that no overflow occurred, the error of a
rounded-to-nearest floating-point addition or subtraction is exactly representable
by a floating-point number. The 2Sum [9] and Fast2Sum [2] algorithms make
it possible to compute that error, under some conditions that will be reminded
below. That error can therefore be used later on in a calculation: this is the un-
derlying idea behind compensated algorithms. This has allowed for the devel-
opment of various techniques, such as very accurate (compensated) summa-
tion [8, 14, 18, 17, 3], accurate polynomial evaluation [5], efficient manipulation
of floating-point expansions [15, 19, 7], etc. However, these techniques suffer
from some limitations:

1

• as noticed, among others, by Boldo and Daumas [1], when the rounding
function differs from round-to-nearest, the error of floating-point addi-
tion/subtraction may not be exactly representable. And yet, rounding
functions such as round towards ±∞ and round towards zero are very
useful. They allow one to get certain lower and/or upper bounds on the
exact result of a computation, and to easily implement interval arithmetic
or stochastic arithmetic. With these rounding functions, if we cannot al-
ways obtain the “exact” error of floating-point addition, it would still be
useful to obtain a value close to that error. This problem was partly dealt
with by Demmel and Nguyen [3], and later on by Graillat, Jézéquel, and
Picot [4] for the Fast2Sum algorithm, and by Martin-Dorel et al. [11] in the
case of “double roundings”. We aim at tackling this issue in a more gen-
eral context, and we wish to study the behaviour of 2Sum and Fast2Sum
just assuming “general” rounding functions (see definition 2.1 below).

• in the literature, these algorithms are usually considered as returning a
correct result provided that no underflow or overflow occurs. The case of
underflow can be handled fairly intuitively, using a property mentioned
by Hauser [6]—see below. The case of overflow is more problematic: the
central question is: can we have a “spurious” overflow?, i.e., can we have
situations where the initial addition does not overflow, and yet one of
the arithmetic operations performed in the 2Sum or Fast2Sum algorithm
overflows? We will see in the following that such a situation almost never
arises.

There exist some kind of error-free transformations for summation with
faithful rounding (see Priest [16]). But these algorithms are costly and are not
necessary to achieve a good accuracy in many compensated algorithms [4].

The rest of the paper is organized as follows. In Section 2, we introduce
some notation, definitions and preliminary remarks used in the sequel. The
accuracy of Fast2Sum with no overflow is analyzed in Section 3 while the ac-
curacy of 2Sum is dealt with in Section 4. Section 5 is devoted to show that
Fast2Sum is immune to overflow and Section 6 to show that 2Sum is almost
immune to overflow.

2 Notation, definitions, preliminary remarks

Throughout this paper, we assume a radix-2, precision-p, floating-point (FP)
arithmetic, of extremal exponents emin and emax. We also assume that subnor-
mal numbers are available. We denote by Ω the largest representable floating-
point number:

Ω = (2− 21−p) · 2emax .

The floating-point predecessor of a FP number x will be noted pred(x). Its
successor will be noted succ(x). When an arithmetic operation τ is performed,
with input FP operands a and b, what is actually computed is ◦(aτb), where ◦

2

is a rounding function. The IEEE-754 Standard for Floating-point arithmetic de-
fines 5 rounding functions (round towards +∞—denoted RU below—, round
towards−∞—denoted RD below—, round towards zero, round to nearest ties
to even, and round to nearest ties to infinity). The two round-to-nearest func-
tions will be denoted RN in the following (the choice of the tie-breaking rule
is not important here). We say that the FP number x̂ is a faithful rounding of
the real number x if x̂ ∈ {RD(x),RU(x)}. If x is a real number, satisfying
2k ≤ |x| < 2k+1, where k is an integer, we define ulp(x) as follows:

ulp(x) = 2max(k,emin)−p+1.

The rounding functions considered in this paper satisfy the following defi-
nition (introduced by Kulisch [10] under the name of optimal rounding).

Definition 2.1 (Rounding function—“optimal rounding” in [10]). Function ◦
from R to Fp is a rounding function if

• ∀x ∈ Fp, ◦(x) = x;

• ∀(x, y) ∈ R2, x ≤ y ⇒ ◦(x) ≤ ◦(y).

Remark 2.2. If ◦ is a rounding function, then for any x, ◦(x) ∈ {RD(x),RU(x)},
where RD and RU are the rounds-towards −∞ and round-towards +∞ rounding
functions.

The Fast2Sum algorithm was first introduced by Dekker [2]. It allows one
to compute the error of a (rounded to nearest) floating-point addition. That
algorithm is

ALGORITHM 1: Conventional Fast2Sum Algorithm.

s← RN(a+ b)
z ← RN(s− a)
t← RN(b− z)

The conventional 2Sum algorithm, due to Knuth [9] and Møller [12], is

ALGORITHM 2: Conventional 2Sum algorithm.

(1) s← RN(a+ b)
(2) a′ ← RN(s− b)
(3) b′ ← RN(s− a′)
(4) δa ← RN(a− a′)
(5) δb ← RN(b− b′)
(6) t← RN(δa + δb)

We know that, in the absence of overflow, if the radix β of the floating-point
system being used is less than or equal to 3, and if the floating-point exponents
ea and eb of a and b satisfy ea ≥ eb, then the values s and t returned by Algo-
rithm 1 satisfy s + t = a + b, i.e., t is the error of the floating-point addition
s← RN(a+ b). Depending on the environment, testing the exponents of a and
b may prove difficult. However if |a| ≥ |b| then ea ≥ eb. Algorithm 2 gives the

3

same results as Algorithm 1, but without any requirement on β or on the expo-
nents of a and b: it works in all cases provided that no overflow occurs. Due
to the large penalty of a wrong branch prediction on modern architectures, if
we do not have preliminary information on the respective orders of magnitude
of a and b, calling the 6-operation 2Sum algorithm (Algorithm 2) is, in general,
more efficient than comparing |a| and |b|, swapping them if needed, and calling
the 3-operation algorithm Fast2Sum (Algorithm 1).

Algorithms 1 and 2 allow one to compute the error of a floating-point ad-
dition, provided that that addition was performed using a round-to-nearest
rounding function. The computed error can be re-injected later on in a calcu-
lation to compensate for it. This makes these “error free transformations” very
useful. However, when a rounding function different from round-to-nearest
is used, the error of a floating-point addition is not always equal to a floating-
point number. For instance [13], in a radix-2 and precision-p arithmetic, assum-
ing rounding toward −∞, if a = 1 and b = −2−3p, then

s = RD(a+ b) = 0. 111111 · · · 11︸ ︷︷ ︸
p

= 1− 2−p,

and
a+ b− s = 1.1111111111 · · · 11︸ ︷︷ ︸

2p

×2−p−1,

which cannot be exactly represented with precision p (it would require preci-
sion 2p).

Therefore, with rounding functions different from RN, it is important to
know what Algorithms 1 and 2 (or, rather, a modified version, with different
rounding functions, of these algorithms) will return, to know if they are still of
any use.

This issue was already dealt with by Martin-Dorel, Melquiond, and Muller
[11] in the restricted case where the rounding function is round to nearest with
a possible “double rounding”.1 Demmel and Nguyen show that if 4ulp(a) ≤
|b| ≤ a then Algorithm 1 returns the error of the floating-point addition of a
and b when directed rounding functions are used.

Graillat, Jézéquel, and Picot [4] give an error bound on the value returned
by Algorithm 1 when directed rounding functions are used. We will improve
on their bound, showing that the algorithm always returns the best possible
result, namely a floating-point number t nearest the error of the floating-point
addition of a and b. We will perform a similar analysis with the 2Sum algo-
rithm.

There is another issue with these two algorithms. One can rather easily
convince oneself that they are immune to underflow. The main reason for that
is that, as shown by Hauser [6], if the sum a+ b of two floating-point numbers

1This happens when the result of an operation is first rounded to a wider floating-point format,
before being rounded to the destination format.

4

is below the underflow threshold, then that sum is a floating-point number,
which implies that it is computed exactly, with any rounding function (it can
be viewed as a consequence of Lemma 2.4 below). It is, however, much more
difficult to know if these algorithms are, at least for some restricted input do-
main, immune to overflow. More precisely, if the first operation (namely the
floating-point addition of a and b) does not overflow, can one of the following
operations overflow ?

The goal of this paper is to deal with these two issues, and to show that
Fast2Sum and 2Sum (Algorithms 1 and 2) are much more robust than it is
in general believed: for any combination of rounding functions (the rounding
functions can vary at each step) they are immune to overflow (except for a very
limited number of “extreme” cases that are easy to detect), and they always
produce a very accurate estimate of the error of the floating-point addition
a+ b. The algorithms that we will analyze are the following:

ALGORITHM 3: Fast2Sum with faithful roundings: ◦1, ◦2, ◦3 are rounding functions
(see Definition 2.1).
s← ◦1(a+ b)
z ← ◦2(s− a)
t← ◦3(b− z)

ALGORITHM 4: 2Sum with faithful roundings: ◦i, for i = 1, . . . , 6, are rounding func-
tions (see Definition 2.1).

(1) s← ◦1(a+ b)
(2) a′ ← ◦2(s− b)
(3) b′ ← ◦3(s− a′)
(4) δa ← ◦4(a− a′)
(5) δb ← ◦5(b− b′)
(6) t← ◦6(δa + δb)

We will make much use of the following result, due to Sterbenz [20] (see for
instance [6] or [13] for a proof).

Lemma 2.3 (Sterbenz). In a radix-β floating-point system with subnormal numbers
available, if x and y are finite floating-point numbers such that

y

2
≤ x ≤ 2y,

then x− y is a floating-point number.

Lemma 2.4 below is common computer arithmetic folklore. We give a proof
of it for the sake of completeness.

Lemma 2.4. Let a and b be two binary FP numbers of respective exponents ea and
eb. Let s ∈ {RD(a + b),RU(a + b)}. If the exponent es of s is less than or equal to
min(ea, eb) then s = a+ b exactly.

Proof. First a and b are multiple of 2ea−p+1 and 2eb−p+1, respectively. Since
es ≤ min(ea, eb), the number a+ b is an integer multiple of 2es−p+1. Hence, by

5

rounding it (through any rounding function) to a multiple of 2es−p+1 we just
get it. Hence s = a+ b.

The following lemma allows one to understand the behavior of the first two
lines of Fast2Sum.

Lemma 2.5. Let a and b be two binary FP numbers, with ea ≥ eb. Let s ∈ {RD(a+
b),RU(a + b)}. The number s − a is a floating-point number (which implies that it
will be computed exactly, with any rounding function).

Notice that Lemma 2.5 only holds in radix 2. With floating-point systems
of higher radices, we can build counter-examples. For instance, in radix 3 with
p = 4 and ◦ = RU, if a = 10023 = 2910 and b = 22223 = 8010, then s =
RU(a + b) = 110103 = 11110, so that s − a = 100013 = 8210 is not exactly
representable with precision 4.

Proof. We have a = Ma ·2ea−p+1 and b = Mb ·2eb−p+1, with |Ma|, |Mb| ≤ 2p−1.
Without loss of generality, we assume Ma ≥ 0. Let Ms and es be the integral
significand and the exponent of s, respectively.

1. if es = ea + 1, then

Ms ∈
{⌊

Ma

2
+

Mb

21+(ea−eb)

⌋
;

⌈
Ma

2
+

Mb

21+(ea−eb)

⌉}
. (1)

Defining µ = 2Ms −Ma, from (1), we obtain

Mb

2ea−eb
− 2 < µ <

Mb

2ea−eb
+ 2,

which implies |µ| ≤ Mb + 1 ≤ 2p. An immediate consequence is that
s− a = µ · 2ea−p+1 is a floating-point number.

2. if es ≤ ea then first notice that if es ≤ eb then s = a + b exactly by
Lemma 2.4 so that s − a = b is a floating-point number. Therefore we
need only to focus on the case es > eb. In that case

s ∈
{⌊

2ea−esMa + 2eb−esMb

⌋
· 2es−p+1;

⌈
2ea−esMa + 2eb−esMb

⌉
· 2es−p+1

}
;

so that(
2eb−esMb − 1

)
· 2es−p+1 < s− a <

(
2eb−esMb + 1

)
· 2es−p+1.

Hence |s− a| is of the form K · 2es−p+1, with

|K| ≤ |Mb|
2

+ 1 ≤ 2p,

which implies that it is a floating-point number.

6

The following remark shows that even when the rounding function is not
round-to-nearest, the error of a floating-point addition will very frequently be
exactly representable by a floating-point number.

Remark 2.6. Let a and b be binary, precision-p, floating-point numbers. Let s ∈
{RD(a + b),RU(a + b)}. If the difference |ea − eb| of the exponents of a and b does
not exceed p− 1, then s− (a+ b) is a binary, precision-p, floating-point number.

Proof. Without loss of generality, we assume |a| ≥ |b|, and ea − eb ≤ p− 1. The
numbers a and b are multiple of 2eb−p+1, therefore a + b and s are multiple of
2eb−p+1 too. Therefore, there exists an integer Z such that

(a+ b)− s = Z · 2eb−p+1. (2)

Let es be the FP exponent of s. Since |s−(a+b)| < ulp(s), we have |(a+b)−s| <
2es−p+1. Since |b| ≤ |a|, we have |s| ≤ 2a, which implies es ≤ ea + 1. Therefore

|(a+ b)− s| < 2ea−p+2 ≤ 2eb+1. (3)

By combining (2) and (3) we deduce that |Z| ≤ 2p − 1, therefore (a+ b)− s is a
FP number.

3 Accuracy of Fast2Sum in the absence of overflow

Let us first deal with Algorithm Fast2Sum with arbitrary rounding functions
(Algorithm 3).

Theorem 3.1. If no overflow occurs, and ea ≥ eb then the values s and t returned by
Algorithm 3 satisfy

t = ◦3((a+ b)− s),
i.e., t is a faithful rounding of the error of the FP addition s← ◦1(a+ b).

Notice that if we combine this theorem with Remark 2.6, we deduce that
if the difference of the exponents of a and b does not exceed p − 1 (which will
occur in many practical cases), then t is exactly (a+ b)− s.

Proof. Lemma 2.5 above implies that s − a is a floating-point number. Hence,
z = s− a, so that

t = ◦3(b− z) = ◦3((a+ b)− s).

4 Accuracy of TwoSum in the absence of overflow

We now consider Algorithm 2Sum with arbitrary rounding functions (Algo-
rithm 4). Contrarily to what happened in the previous section with Algo-
rithm 3, we will not always obtain a final value t equal to a faithful rounding
of (a + b) − s. Consider the following example, in binary32/single-precision
arithmetic (p = 24):

7

• a = 3076485 · 2−21, b = −6130317 · 2−49;

• ◦1 = ◦2 = ◦5 = RU, ◦3 = ◦4 = ◦6 = RD.

We successively obtain:

s = a = 3076485 · 2−21;
a′ = 12305941 · 2−23;
b′ = −2−23;
δa = −2−23;
δb = 15244637 · 2−47;
t = −1532579 · 2−47.

and since (a+b)−s = b is a floating-point number, with any rounding function
◦, ◦((a+b)−s) = bwill be different from t. However, (a+b−s)− t = −2−49, so
that t remains a very good approximation to (a+ b)−s. As we are going to see,
this will always be true. More precisely, we will prove together the following
two results. The first one (Theorem 4.1) is the main result of this section. The
second one (Lemma 4.2) will be used in the proof of Theorem 6.2.

Theorem 4.1. If p ≥ 4 and no overflow occurs, then the values s and t returned by
Algorithm 4 satisfy

t = (a+ b)− s+ α,

with |α| < 2−p+1 · ulp(a + b) ≤ 2−p+1 · ulp(s). Furthermore, if the floating-point
exponents es and eb of s and b satisfy es − eb ≤ p− 1 then t is a faithful rounding of
(a+ b)− s.

Lemma 4.2. If p ≥ 4 and no overflow occurs in lines (1) to (5) of Algorithm 4, then
the variables δa and δb computed at lines (4) and (5) satisfy

|δa + δb| ≤ ulp(a+ b).

Proof. We prove together Theorem 4.1 and Lemma 4.2. This means the case
split and intermediate results are the same, but they do not rely one on another.
Without loss of generality, we assume a ≥ 0. The following figure illustrates
the various cases that are discussed in the proof.

Case 1

Case 2 Case 3

b

−a a0

−a/2

Figure 1: Various cases discussed in the proof.

8

1. If |b| ≥ a then lines (1), (2), and (4) of Algorithm 4 are equivalent to
Fast2Sum(b,a). Therefore, from Theorem 3.1, we have a′ = s − b and
δa = ◦4(a+ b− s), hence |δa| ≤ ulp(a+ b). An immediate consequence of
a′ = s− b is b′ = b and δb = 0. From this, we find

t = ◦4(a+ b− s)

and |δa + δb| ≤ ulp(a+ b), so that the result of Lemma 4.2 holds.

2. If |b| < a and |s| ≤ |b| (which is equivalent to saying that −a < b ≤
−a/2) then by Sterbenz Lemma, s = a + b. An immediate consequence
is a′ = a, b′ = b, δa = δb = 0 (so that, obviously, the result of Lemma 4.2
holds) , t = 0. Hence t = (a+ b)− s.

3. If |b| < a and |s| > |b| (which is equivalent to saying that −a/2 < b < a),
notice that we have s > 0. Let u = 21−p (i.e., u is the rounding unit for
directed roundings). We have

s = (a+ b) · (1 + ε1); with |ε1| ≤ u;
a′ = (s− b) · (1 + ε2); with |ε2| ≤ u.

Thus a′ = (a+ aε1 + bε1) · (1 + ε2). Since |b| < a, aε1 + bε1 can be written
2aε3, with |ε3| ≤ u. Therefore

a′ = a · (1 + η),

with |η| ≤ 3u + 2u2. As soon as p ≥ 4, we have |η| < 1/2, so that a′ ≥ 0
and a/2 ≤ a′ ≤ 2a. Therefore, Sterbenz Lemma applies to line (4) of
Algorithm 4, and

δa = a− a′. (4)

Also, since s > |b|, Lines (2), (3), and (5) of Algorithm 4 are equivalent to
Fast2Sum(s,−b), so that

b′ = s− a′, (5)

and
δb = ◦5(a′ − (s− b)). (6)

Notice that, from Remark 2.6, as soon as the exponents es and eb of s and
b satisfy es− eb ≤ p−1, (6) implies δb = a′− (s− b), from which we easily
deduce t = ◦6(a+ b− s). Also, in that case, δa + δb = (a+ b)− s, so that
Lemma 4.2 holds. Hence, let us now assume that es − eb ≥ p. Notice that
this implies

|b| < 2eb+1 ≤ 2es−p+1 = ulp(s).

Hence,
a′ ∈ {succ(s), s,pred(s),pred(pred(s))}.

Notice that the case a′ = pred(pred(s)) can occur only when s is a power
of 2.

9

spred(s) succ(s)

area where s− b can lie

ulp(s)

possible locations of a′ = ◦2(s− b)

Figure 2: General case: s is not a power of 2

s

pred(pred(s))

succ(s)

area where s− b can lie

ulp(s)

possible locations of a′ = ◦2(s− b)

Figure 3: Special case: s is a power of 2

(a) If a′ = s then b′ = 0. It follows that δb = b and δa = a− s, for which
we deduce t = ◦6(δa+δb) = ◦6(a+b−s), and |δa+δb| = |a+b−s| <
ulp(a+ b), so that Lemma 4.2 holds.

(b) If a′ 6= s then

a′ = s− σ · ulp(s),with σ ∈ {−1, 1/2, 1},

(the case σ = 1/2 can occur only when s is a power of 2), and we
have

b′ = σ · ulp(s)
δa = a− s+ σ · ulp(s)
δb = ◦5(b− σ · ulp(s)).

We know that |b| < ulp(s). Furthermore, b has the same sign as σ.
Therefore

• either |b| ≥ |σ|/2 ·ulp(s), in which case Sterbenz Lemma implies
δb = b−σ·ulp(s), so that δa+δb = a+b−s, so that t = ◦6(a+b−s);

• or |b| < |σ|/2 · ulp(s), in which case

|b− σ · ulp(s)| < |σ| · ulp(s)

10

(unless b = 0 but that case is straightforwardly handled), so that
(since |σ| · ulp(s) is a power of 2)

|δb − (b− σ · ulp(s))| < |σ|
2

ulp(ulp(s)) = |σ| · 2−pulp(s)

(since ulp(s) is a power of 2). An immediate consequence is

|(δa + δb)− (a+ b− s)| < |σ| · 2−pulp(s). (7)

Since we already know that |(a+b)−s| < ulp(a+b), we deduce

|δa + δb| < ulp(a+ b) + |σ| · 2−pulp(s). (8)

Let us try to slightly improve on the bound (8). First, from
|b| ≤ ulp(s) one easily deduces a > s/2 (otherwise, we would
have a + b ≤ s/2 + ulp(s), which would imply s = ◦1(a + b) ≤
◦1(s/2 + ulp(s)) = s/2 + ulp(s)). Hence δa is a multiple of
1
2ulp(s). Also, ulp(a + b) is equal to ulp(s) or 1

2ulp(s). Finally,
|b − b′| > |σ|

2 ulp(s), so that |δb| ≥ |σ|
2 ulp(s), which implies that

δb is a multiple of |σ| · 2−pulp(s). All this implies that δa + δb is
a multiple of |σ| · 2−pulp(s). Hence, from (8), we deduce

|δa + δb| ≤ ulp(a+ b).

First, this proves Lemma 4.2. Furthermore, since ulp(a+ b) is a
power of 2, we obtain

|◦6(δa + δb)− (δa + δb)| ≤
1

2
ulp (ulp(a+ b)) = 2−pulp(a+ b).

Combined with (7), this gives

|t− (a+ b− s)| < 2−p · (ulp(a+ b) + |σ| · ulp(s)) . (9)

This already gives |t−(a+b−s)| < 2−p+1 ·ulp(s). Let us now try
to express a bound on |t− (a+ b− s)| as a function of ulp(a+ b)
only. We have four cases to consider

i. if s is not a power of 2, or if a+b ≥ s, then ulp(a+b) = ulp(s),
which gives |t− (a+ b− s)| < 2−p+1 · ulp(a+ b);

ii. if s is a power of 2 and a+ b < s and σ = 1/2, then ulp(a+
b) = 1/2 · ulp(s), and (9) implies |t − (a + b − s)| < 2−p+1 ·
ulp(a+ b);

iii. the case when s is a power of 2, a + b < s, and σ = 1 is
impossible: we assumed |b| < |σ|/2 · ulp(s) = 1/2 · ulp(s),
which implies s − b ≥ s − 1/2 · ulp(s) = pred(s), which
implies a′ = ◦2(s − b) ≥ pred(s), which is not compatible
with the assumption σ = 1, since a′ = s− σulp(s);

11

iv. if s is a power of 2, a + b < s, and σ = −1, we have the
following relations (see Fig. 4): a′ = succ(s) = s + ulp(s),
b′ = −ulp(s), and −1/2 · ulp(s) < b < 0. We deduce that
a > pred(s) = s − 1

2ulp(s) (otherwise we would have a +
b < pred(s), which would imply s = ◦1(a + b) ≤ pred(s)).
Similarly, we have a < succ(s) = s + ulp(s) (otherwise,
we would have a + b ≥ succ(s) − 1

2ulp(s) > s). Therefore
a = s, from which we immediately deduce δa = −ulp(s)
and δb = ◦5(b+ulp(s)). Now, δa and δb have opposite signs,
and

1

2
ulp(s) < b+ ulp(s) < ulp(s),

from which we deduce

|δa|
2

=
1

2
ulp(s) ≤ ◦5(b+ ulp(s)) = δb ≤ |δa| = ulp(s),

hence we can apply Sterbenz lemma to the addition of δa
and δb, which gives

t = ◦6(δa + δb) = δa + δb
= −ulp(s) + ◦5(b+ ulp(s))
= b+ η,

with |η| < 2−p · ulp(s) = 2−p+1ulp(a+ b).

s = a succ(s) = a′

area where a− b can lie

−b′ = ulp(s)

Figure 4: Last case: s is a power of 2, a+ b < s, and σ = −1

5 Fast2Sum is immune to overflow

Let us now consider Algorithm 3, with ea ≥ eb, where ea and eb are the floating-
point exponents of a and b, and let us assume that no overflow occurred in the
first line (s ← ◦1(a + b)). Without loss of generality, we can assume a > 0. Let
us first deal with the second line of the algorithm (z ← ◦2(s− a)).

12

We have s = a+ b+ ε, with |ε| < ulp(a+ b) ≤ 2ulp(a). Hence s− a = b+ ε.
Therefore, if the computation of z = ◦2(s − a) overflows, it means that either
b < −Ω + 2ulp(a) or b > Ω− 2ulp(a).

The second case is impossible: if b > Ω−2ulp(a) ≥ Ω−2ulp(Ω), then (since
ea ≥ eb, which here implies ea = eb = emax) then a+ b ≥ Ω− 2ulp(Ω) + 2emax =
3 · 2emax − 3 · 2emax−p+1, which implies that a + b overflows. Let us consider
the first case. In that case, we have b < −Ω + 2ulp(a) ≤ −Ω + 2ulp(Ω) and
(since ea ≥ eb which implies here ea = emax), Ω/2 < 2emax ≤ a ≤ Ω), in the first
operation we are in the conditions of Sterbenz Lemma, so that s = a+ b, which
implies z = b: in that case the computation of z does not overflow.

Hence, in all cases, the second line of Algorithm 3 cannot overflow. Let us
now deal with the last line (t ← ◦3(b − z)). We know from Lemma 2.5 that
z = s− a, so that b− z = a + b− s. The computation of t can overflow only if
|b− z| > Ω, but this is impossible since

|b− z| = |(a+ b)− s| < ulp(s) < |s|.

We immediately deduce

Theorem 5.1. Assume that we perform Algorithm 3 with input values a and b whose
exponents satisfy ea ≥ eb. If the computation of s (first line of the algorithm) does not
overflow, then the other lines of the algorithm cannot overflow.

6 2Sum is almost immune to overflow

The overflow analysis of Algorithm 4 will be significantly more difficult. Our
main result is Theorem 6.2 below. To make its proof simpler, we first prove the
following result.

Lemma 6.1. If there are no overflows at lines (1) to (5) of Algorithm 4, there cannot
be an overflow at line (6).

Proof. From Lemma 4.2, we know that |δa + δb| ≤ ulp(a + b). Since no over-
flow occurs at line (1), a + b is in the representable range, so that ulp(a + b) ≤
2−p+1|a + b| is much below the overflow threshold. Hence line (6) of Algo-
rithm 4 (namely, t← ◦6(δa + δb)) cannot overflow.

Theorem 6.2. If the first input value a of Algorithm 4 satisfy |a| < Ω and if there is
no overflow at line (1) of the algorithm, then there will be no overflow at lines (2) to
(6).

Proof. Without loss of generality, we assume a > 0. Assume that no overflow
occurred in the first line (s← ◦1(a+ b)).

1. If b ≥ 0

The monotonicity of the rounding functions implies: i) s ≥ ◦1(b) = b, so
that a′ ≥ ◦2(0) = 0; and ii) a′ ≤ ◦2(s) = s. Therefore

0 ≤ a′ ≤ s, (10)

13

which implies that there is no overflow at line (2) of the algorithm. Now,
(10) implies 0 ≤ s− a′ ≤ s, so that

0 ≤ b′ ≤ s. (11)

As a consequence, there is no overflow at line (3) of the algorithm.

Now, since a ≥ 0 and a′ ≥ 0, we deduce |a− a′| ≤ max{a, a′}, hence line
(4) cannot overflow.

Similarly, since b ≥ 0 and b′ ≥ 0, we obtain |b − b′| ≤ max{b, b′}, hence
line (5) cannot overflow.

Lemma 6.1 implies that line (6) cannot overflow.

2. If b ≤ 0

Notice that there cannot be an overflow at line (1): |a + b| (hence |s|) is
less than or equal to max{|a|, |b|}.

(a) if −b < a, then a+ b− ulp(a+ b) < s < a+ b+ ulp(a+ b), so that

a+ b− ulp(a) < s < a+ b+ ulp(a) (12)

(since |a + b| < a, which implies ulp(a + b) ≤ ulp(a)). We therefore
deduce

a− ulp(a) < s− b < a+ ulp(a).

therefore, unless a = Ω, there will be no overflow at line (2) of the
algorithm, and a′ = ◦2(s− b) will satisfy

a− ulp(a) ≤ a′ ≤ a+ ulp(a). (13)

(this is deduced using the monotonicity of the rounding function ◦2
and the fact that a − ulp(a) and a + ulp(a) are floating-point num-
bers). We now assume a 6= Ω (which, with our assumption −b < a,
implies −b < pred(Ω)), i.e., since b is a floating-point number,

|b| = −b ≤ pred(pred(Ω)). (14)

From (12) and (13), we find

b− 2ulp(a) < s− a′ < b+ 2ulp(a),

This, along with (14) and ulp(a) ≤ ulp(Ω) implies that line (3) of the
algorithm cannot overflow. Furthermore, −b < a implies |b− 2ulp(a)| <
2a so that ulp(b± 2ulp(a)) ≤ 2ulp(a). This gives

b− 4ulp(a) ≤ b′ ≤ b+ 4ulp(a). (15)

Now, from (13) and (15), we deduce |a−a′| ≤ ulp(a) and |b−b′| ≤ 4ulp(a),
to that lines (4) and (5) of the algorithm cannot overflow. Lemma 6.1
implies that line (6) cannot overflow.

14

3. if −b ≥ a. First, notice that the case a ≥ −b/2 is easily handled, since
Sterbenz Lemma applied to line (1) of Algorithm 4implies s = a + b, so
that a = a′, b = b′, and δa = δb = t = 0. Hence we only need to focus on
the case a < −b/2.

From 0 ≤ a < −b/2 we deduce b ≤ a+ b < b/2, which implies2

b ≤ s ≤ b/2. (16)

The consequence of (16) is twofold. First, we immediately deduce 0 ≤
s−b ≤ −b/2, so that Line (2) of Algorithm 4 cannot overflow, and second,
Sterbenz Lemma can be applied to line (2) of Algorithm 4, so that a′ =
s − b. It follows that b′ = b and Line (3) cannot overflow. Therefore
a − a′ = a + b − s, so that |a − a′| < ulp(a + b), hence Line (4) cannot
overflow. We finally have δb = b − b′ = 0 and t = δa: lines (5) and (6)
cannot overflow.

Notice that condition |a| < Ω is necessary. Assume all rounding functions
are RN (with ties-to-even tie-breaking rule). The choice a = Ω and b = −(3/2) ·
ulp(Ω) will give no overflow at line (1), and an overflow at line (2).

Conclusion

We have shown that, in binary floating-point arithmetic, the 2Sum and Fast2Sum
algorithms are more “robust” than it is usually believed: even when the error
of the initial floating-point addition is not exactly representable, they return a
very good approximation to that error. Also, they are almost totally immune to
overflow: the only case where a “spurious” overflow may occur is with 2Sum,
when the absolute value of operand a is equal to the largest floating-point num-
ber.

Acknowledgement

This work was supported by the FastRelax (ANR-14-CE25-0018-01) project of
the French National Agency for Research (ANR).

References

[1] S. Boldo and M. Daumas. Representable correcting terms for possibly
underflowing floating point operations. In J.-C. Bajard and M. Schulte,
editors, Proceedings of the 16th Symposium on Computer Arithmetic, pages
79–86. IEEE Computer Society Press, Los Alamitos, CA, 2003.

2Unless b/2 is not a floating-point number: this can happen only of b is subnormal, and in that
case, with 0 ≤ a < −b/2, overflow is of course impossible.

15

[2] T. J. Dekker. A floating-point technique for extending the available preci-
sion. Numerische Mathematik, 18(3):224–242, 1971.

[3] J. Demmel and H. D. Nguyen. Fast reproducible floating-point summa-
tion. In 21st IEEE Symposium on Computer Arithmetic, Austin, TX, USA,
April 7-10, pages 163–172, 2013.

[4] S. Graillat, F. Jézéquel, and R. Picot. Numerical validation of compen-
sated summation algorithms with stochastic arithmetic. Electronic Notes
in Theoretical Computer Science, 317:55 – 69, 2015. The Seventh and Eighth
International Workshops on Numerical Software Verification (NSV).

[5] S. Graillat, P. Langlois, and N. Louvet. Algorithms for accurate, validated
and fast computations with polynomials. Japan Journal of Industrial and
Applied Mathematics, 26(2):215–231, 2009.

[6] J. R. Hauser. Handling floating-point exceptions in numeric programs.
ACM Trans. Program. Lang. Syst., 18(2):139–174, 1996.

[7] Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-double precision
floating-point arithmetic. In N. Burgess and L. Ciminiera, editors, Proceed-
ings of the 15th IEEE Symposium on Computer Arithmetic (ARITH-16), pages
155–162, Vail, CO, June 2001.

[8] W. Kahan. Pracniques: further remarks on reducing truncation errors.
Commun. ACM, 8(1):40, 1965.

[9] D. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley,
Reading, MA, 3rd edition, 1998.

[10] U. W. Kulisch. An axiomatic approach to rounded computations. Nu-
merische Mathematik, 19:1–17, 1971.

[11] É. Martin-Dorel, G. Melquiond, and J.-M.s Muller. Some issues related to
double rounding. BIT Numerical Mathematics, 53(4):897–924, 2013.

[12] O. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–50,
1965.

[13] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres. Handbook of Floating-
Point Arithmetic. Birkhäuser Boston, 2010.

[14] A. Neumaier. Rundungsfehleranalyse einiger Verfahren zur Summation
endlicher Summen. ZAMM, 54:39–51, 1974. In German.

[15] D. M. Priest. Algorithms for arbitrary precision floating point arithmetic.
In P. Kornerup and D. W. Matula, editors, Proceedings of the 10th IEEE Sym-
posium on Computer Arithmetic (Arith-10), pages 132–144. IEEE Computer
Society Press, Los Alamitos, CA, June 1991.

16

[16] D. M. Priest. On Properties of Floating-Point Arithmetics: Numerical Stability
and the Cost of Accurate Computations. PhD thesis, University of California
at Berkeley, 1992.

[17] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation
part II: Sign, K-fold faithful and rounding to nearest. SIAM Journal on
Scientific Computing, 2005–2008. Submitted for publication.

[18] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation
part I: Faithful rounding. SIAM Journal on Scientific Computing, 31(1):189–
224, 2008.

[19] J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast ro-
bust geometric predicates. Discrete Computational Geometry, 18:305–363,
1997.

[20] P. H. Sterbenz. Floating-Point Computation. Prentice-Hall, Englewood
Cliffs, NJ, 1974.

17

