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On the robustness of the 2Sum and Fast2Sum algorithms

Sylvie Boldo, Inria, Université Paris-Saclay, France
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The 2Sum and Fast2Sum algorithms are important building blocks in numerical computing. They are used (im-
plicitely or explicitely) in many compensated algorithms (such as compensated summation or compensated poly-
nomial evaluation). They are also used for manipulating floating-point expansions. We show that these algorithms
are much more robust than it is usually believed: the returned result makes sense even when the rounding func-
tion is not round-to-nearest, and they are almost immune to overflow.

CCS Concepts: rMathematics of computing→ Numerical analysis; rSoftware and its engineering→ Correct-
ness; Software verification and validation;

Additional Key Words and Phrases: floating-point, error-free transformation, rounding errors, faithful rounding,
2Sum, Fast2Sum

ACM Reference Format:
Sylvie Boldo, Stef Graillat, and Jean-Michel Muller, 2016. On the robustness of the 2Sum and Fast2Sum algo-
rithms. ACM Trans. Math. Softw. V, N, Article A (January YYYY), 14 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. MOTIVATIONS
One easily shows that, provided that no overflow occurred, the error of a rounded-to-
nearest floating-point addition or subtraction is exactly representable by a floating-point
number. The 2Sum [Knuth 1998] and Fast2Sum [Dekker 1971] algorithms make it possi-
ble to compute that error, under some conditions that will be reminded below. That error
can therefore be used later on in a calculation: this is the underlying idea behind com-
pensated algorithms. This has allowed for the development of various techniques, such as
very accurate (compensated) summation [Kahan 1965; Neumaier 1974; Rump et al. 2008a;
Rump et al. 2008b; Demmel and Nguyen 2013] or dot products, accurate polynomial evalu-
ation [Graillat et al. 2009], efficient manipulation of floating-point expansions [Priest 1991;
Shewchuk 1997; Hida et al. 2001] (floating-point expansions represent real numbers as un-
evaluated sums of floating-point numbers. Algorithms for adding and multiplying these
expansions make much use of 2Sum and Fast2Sum), etc. However, these techniques suffer
from some limitations:

— as noticed, among others, by Boldo and Daumas [Boldo and Daumas 2003], when
the rounding function differs from round-to-nearest, the error of floating-point addi-
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tion/subtraction may not be exactly representable—although this is often the case, see
Lemma 2.4 below. And yet, rounding functions such as round towards ±∞ and round
towards zero (called “directed roundings”) are very useful. They allow one to get certain
lower and/or upper bounds on the exact result of a computation, and to easily imple-
ment interval arithmetic or stochastic arithmetic. Also, on many processors, changing the
rounding mode is rather costly (it may require flushing the arithmetic pipe-line): hence
someone who required directed roundings in previous parts of one’s program may be
reluctant to switch to round-to-nearest before using Algorithms 2Sum and Fast2Sum.
Hence, with directed roundings, even if we cannot always obtain the “exact” error of
floating-point addition, it would still be useful to obtain a value close to that error. This
problem was partly dealt with by Demmel and Nguyen [Demmel and Nguyen 2013], and
later on by Graillat, Jézéquel, and Picot [Graillat et al. 2015] for the Fast2Sum algorithm,
and by Martin-Dorel et al. [Martin-Dorel et al. 2013] in the case of “double roundings”.
We aim at tackling this issue in a more general context, and we wish to study the be-
haviour of 2Sum and Fast2Sum just assuming “general” rounding functions (see defini-
tion 2.1 below). There already exist some kind of error-free transformations for summa-
tion with faithful rounding (see Priest [Priest 1992]). But these algorithms are costly and
our work shows that they are not necessary to achieve a good accuracy in many com-
pensated algorithms: the simple and well-known Fast2Sum and 2Sum algorithms will
frequently suffice.

— in the literature, these algorithms are usually considered as returning a correct result pro-
vided that no underflow or overflow occurs. The case of underflow can be handled fairly
intuitively, using a property mentioned by Hauser [Hauser 1996]—see below. The case of
overflow is more problematic: the central question is: can we have a “spurious” overflow?,
i.e., can we have situations where the initial addition does not overflow, and yet one
of the arithmetic operations performed in the 2Sum or Fast2Sum algorithm overflows?
We will see in the following that such a situation almost never arises: this gives more
confidence on many compensated algorithms, and on algorithms that use floating-point
expansions for “middle-precision” (e.g., around 100 digits) computations.

The rest of the paper is organized as follows. In Section 2, we introduce some notation,
definitions and preliminary remarks used in the sequel. The accuracy of Fast2Sum with
no overflow is analyzed in Section 3 while the accuracy of 2Sum is dealt with in Section 4.
Section 5 is devoted to show that Fast2Sum is immune to overflow and Section 6 to show
that 2Sum is almost immune to overflow.

2. NOTATION, DEFINITIONS, PRELIMINARY REMARKS
Throughout this paper, we assume a radix-2, precision-p, floating-point (FP) arithmetic, of
extremal exponents emin and emax. We also assume that subnormal numbers are available.
We denote by Ω the largest representable floating-point number:

Ω = (2− 21−p) · 2emax .

The floating-point predecessor of a FP number x will be noted pred(x). Its successor will
be noted succ(x). If x is a real number, satisfying 2k ≤ |x| < 2k+1, where k is an integer, we
define ulp(x) as follows:

ulp(x) = 2max(k,emin)−p+1.

When an arithmetic operation τ is performed, with input FP operands a and b, what is actu-
ally computed is ◦(aτb), where ◦ is a rounding function. The IEEE-754 Standard for Floating-
point arithmetic defines 5 rounding functions (round towards +∞—denoted RU below—,
round towards −∞—denoted RD below—, round towards zero, round to nearest ties to
even, and round to nearest ties to infinity). The two round-to-nearest functions will be de-
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noted RN in the following (the choice of the tie-breaking rule is not important here). We
say that the FP number y is a faithful rounding of the real number x if y ∈ {RD(x),RU(x)}.

The rounding functions considered in this paper satisfy the following definition (intro-
duced by Kulisch [Kulisch 1971] under the name of optimal rounding).

Definition 2.1 (Rounding function—“optimal rounding” in [Kulisch 1971]). Let Fp be the
set of the precision-p binary floating-point numbers. Function ◦ from R to Fp is a rounding
function if

— ∀x ∈ Fp, ◦(x) = x;
— ∀(x, y) ∈ R2, x ≤ y ⇒ ◦(x) ≤ ◦(y).

Remark 2.2. If ◦ is a rounding function, then for any x, ◦(x) ∈ {RD(x),RU(x)}, where
RD and RU are the rounds-towards −∞ and round-towards +∞ rounding functions.

The Fast2Sum algorithm was first introduced by Dekker [Dekker 1971]. It allows one to
compute the error of a (rounded to nearest) floating-point addition. That algorithm is

ALGORITHM 1: Conventional Fast2Sum Algorithm.

s← RN(a+ b)
z ← RN(s− a)
t← RN(b− z)

The conventional 2Sum algorithm, due to Knuth [Knuth 1998] and Møller [Møller 1965],
is
ALGORITHM 2: Conventional 2Sum algorithm.

(1) s← RN(a+ b)
(2) a′ ← RN(s− b)
(3) b′ ← RN(s− a′)
(4) δa ← RN(a− a′)
(5) δb ← RN(b− b′)
(6) t← RN(δa + δb)

We know that, in the absence of overflow, if the radix β of the floating-point system
being used is less than or equal to 3, and if the floating-point exponents ea and eb of a and
b satisfy ea ≥ eb, then the values s and t returned by Algorithm 1 satisfy s+ t = a+ b, i.e., t
is the error of the floating-point addition s ← RN(a + b). Depending on the environment,
testing the exponents of a and b may prove difficult. However if |a| ≥ |b| then ea ≥ eb.
Algorithm 2 gives the same results as Algorithm 1, but without any requirement on β
or on the exponents of a and b: it works in all cases provided that no overflow occurs.
Due to the large penalty of a wrong branch prediction on modern architectures, if we
do not have preliminary information on the respective orders of magnitude of a and b,
calling the 6-operation 2Sum algorithm (Algorithm 2) is, in general, more efficient than
comparing |a| and |b|, swapping them if needed, and calling the 3-operation algorithm
Fast2Sum (Algorithm 1).

Algorithms 1 and 2 allow one to compute the error of a floating-point addition, pro-
vided that this addition was performed using a round-to-nearest rounding function. The
computed error can be re-injected later on in a calculation to compensate for it. This makes
these “error-free transformations” very useful. However, when a rounding function differ-
ent from round-to-nearest is used, the error of a floating-point addition is not always equal
to a floating-point number. For instance [Muller et al. 2010], in a radix-2 and precision-p
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arithmetic, assuming rounding toward −∞, if a = 1 and b = −2−3p, then

s = RD(a+ b) = 0. 111111 · · · 11︸ ︷︷ ︸
p

= 1− 2−p,

and

a+ b− s = 1.1111111111 · · · 11︸ ︷︷ ︸
2p

×2−p−1,

which cannot be exactly represented with precision p (it would require precision 2p).
Therefore, with rounding functions different from RN, it is important to know what

Algorithms 1 and 2 (or, rather, a modified version, with different rounding functions, of
these algorithms) will return, to know if they are still of any use.

This issue was already dealt with by Martin-Dorel, Melquiond, and Muller [Martin-
Dorel et al. 2013] in the restricted case where the rounding function is round to nearest
with a possible “double rounding”.1 Demmel and Nguyen show that if 4ulp(a) ≤ |b| ≤ a
then Algorithm 1 returns the error of the floating-point addition of a and b when directed
rounding functions are used.

Graillat, Jézéquel, and Picot [Graillat et al. 2015] give an error bound on the value re-
turned by Algorithm 1 when directed rounding functions are used. We will improve on
their bound, showing that the algorithm always returns the best possible result, namely a
floating-point number t closer to the error of the floating-point addition of a and b than any
other floating-point number. We will perform a similar analysis with the 2Sum algorithm.

There is another issue with these two algorithms. One can rather easily convince one-
self that they are immune to underflow. The main reason for this is that, as shown by
Hauser [Hauser 1996], if the sum a + b of two floating-point numbers is below the under-
flow threshold, then that sum is a floating-point number, which implies that it is computed
exactly, with any rounding function (it can be viewed as a consequence of Lemma 2.4 be-
low). It is, however, much more difficult to know if these algorithms are, at least for some
restricted input domain, immune to overflow. More precisely, if the first operation (namely
the floating-point addition of a and b) does not overflow, can one of the following opera-
tions overflow?

The goal of this paper is to deal with these two issues, and to show that Fast2Sum and
2Sum (Algorithms 1 and 2) are much more robust than it is in general believed: for any
combination of rounding functions (we can even have a different rounding function at each
step of the algorithm) they are immune to overflow (except for a very limited number of
“extreme” cases that are easy to detect), and they always produce a very accurate estimate
of the error of the floating-point addition a+ b. The algorithms that we will analyze are the
following:

ALGORITHM 3: Fast2Sum with faithful roundings: ◦1, ◦2, ◦3 are rounding functions (see Defini-
tion 2.1).
s← ◦1(a+ b)
z ← ◦2(s− a)
t← ◦3(b− z)

1This happens when the result of an operation is first rounded to a wider floating-point format, before being
rounded to the destination format.
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ALGORITHM 4: 2Sum with faithful roundings: ◦i, for i = 1, . . . , 6, are rounding functions (see
Definition 2.1).

(1) s← ◦1(a+ b)
(2) a′ ← ◦2(s− b)
(3) b′ ← ◦3(s− a′)
(4) δa ← ◦4(a− a′)
(5) δb ← ◦5(b− b′)
(6) t← ◦6(δa + δb)

We will make much use of the following result, due to Sterbenz [Sterbenz 1974] (see for
instance [Hauser 1996] or [Muller et al. 2010] for a proof).

LEMMA 2.3 (STERBENZ). In a radix-β floating-point system with subnormal numbers avail-
able, if x and y are finite floating-point numbers such that

y

2
≤ x ≤ 2y,

then x− y is a floating-point number.

Lemma 2.4 below is common computer arithmetic folklore. We give a proof of it for the
sake of completeness.

LEMMA 2.4. Let a and b be two binary FP numbers of respective exponents ea and eb. Let
s ∈ {RD(a + b),RU(a + b)}. If the exponent es of s is less than or equal to min(ea, eb) then
s = a+ b exactly.

PROOF. First a and b are multiple of 2ea−p+1 and 2eb−p+1, respectively. Since es ≤
min(ea, eb), the number a+ b is an integer multiple of 2es−p+1. Hence:

— the largest multiple of 2es−p+1 less than or equal to a+ b is a+ b itself, and
— the smallest multiple of 2es−p+1 larger than or equal to a+ b is a+ b itself.

Therefore RD(a+ b) = a+ b, and RU(a+ b) = a+ b. Hence s = a+ b.

The following lemma allows one to understand the behavior of the first two lines of
Fast2Sum.

LEMMA 2.5. Let a and b be two binary FP numbers, with ea ≥ eb. Let s ∈ {RD(a+b),RU(a+
b)}. The number s − a is a floating-point number (which implies that it will be computed exactly,
with any rounding function).

Notice that Lemma 2.5 only holds in radix 2. With floating-point systems of higher
radices, we can build counter-examples. For instance, in radix 3 with p = 4 and ◦ = RU,
if a = 10023 = 2910 and b = 22223 = 8010, then s = RU(a + b) = 110103 = 11110, so that
s− a = 100013 = 8210 is not exactly representable with precision 4.

PROOF. We have a = Ma · 2ea−p+1 and b = Mb · 2eb−p+1, with |Ma|, |Mb| ≤ 2p − 1.
Without loss of generality, we assume Ma ≥ 0. Let Ms and es be the integral significand
and the exponent of s, respectively. Since |s| ≤ 2 max{|a|, |b|}, we have es ≤ ea + 1.

(1) if es = ea + 1, then

Ms ∈
{⌊

Ma

2
+

Mb

21+(ea−eb)

⌋
,

⌈
Ma

2
+

Mb

21+(ea−eb)

⌉}
. (1)

Defining µ = 2Ms −Ma, from (1), we obtain
Mb

2ea−eb
− 2 < µ <

Mb

2ea−eb
+ 2,
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which implies |µ| ≤ |Mb|+1 ≤ 2p. An immediate consequence is that s−a = µ·2ea−p+1

is a floating-point number.
(2) if es ≤ ea then first notice that if es ≤ eb then s = a + b exactly by Lemma 2.4 so

that s − a = b is a floating-point number. Therefore we need only to focus on the case
es > eb. In that case

s ∈
{⌊

2ea−esMa + 2eb−esMb

⌋
· 2es−p+1,

⌈
2ea−esMa + 2eb−esMb

⌉
· 2es−p+1

}
;

so that (
2eb−esMb − 1

)
· 2es−p+1 < s− a <

(
2eb−esMb + 1

)
· 2es−p+1.

Hence |s− a| is of the form K · 2es−p+1, with

|K| ≤ |Mb|
2

+ 1 < 2p,

which implies that it is a floating-point number.

The following lemma shows that even when the rounding function is not round-to-
nearest, the error of a floating-point addition will very frequently be exactly representable
by a floating-point number.

LEMMA 2.6. Let a and b be binary, precision-p, floating-point numbers. Let s ∈ {RD(a +
b),RU(a + b)}. If the difference |ea − eb| of the exponents of a and b does not exceed p − 1, then
s− (a+ b) is a binary, precision-p, floating-point number.

PROOF. Without loss of generality, we assume |a| ≥ |b|, and ea−eb ≤ p−1. The numbers
a and b are multiple of 2eb−p+1, therefore a+ b and s are multiple of 2eb−p+1 too. Therefore,
there exists an integer Z such that

(a+ b)− s = Z · 2eb−p+1. (2)

Let es be the FP exponent of s. Since |s− (a+ b)| < ulp(s), we have |(a+ b)− s| < 2es−p+1.
Since |b| ≤ |a|, we have |s| ≤ 2|a|, which implies es ≤ ea + 1. Therefore

|(a+ b)− s| < 2ea−p+2 ≤ 2eb+1. (3)

By combining (2) and (3) we deduce that |Z| ≤ 2p−1, therefore (a+b)−s is a FP number.

3. ACCURACY OF FAST2SUM IN THE ABSENCE OF OVERFLOW
Let us first deal with Algorithm Fast2Sum with arbitrary rounding functions (Algo-
rithm 3).

THEOREM 3.1. If no overflow occurs, and ea ≥ eb then the values s and t returned by Algo-
rithm 3 satisfy

t = ◦3((a+ b)− s),
i.e., t is a faithful rounding of the error of the FP addition s← ◦1(a+ b).

Notice that if we combine this theorem with Lemma 2.6, we deduce that if the difference of
the exponents of a and b does not exceed p− 1 (which will occur in many practical cases),
then t is exactly (a+ b)− s.

PROOF. Lemma 2.5 above implies that s−a is a floating-point number. Hence, z = s−a,
so that

t = ◦3(b− z) = ◦3((a+ b)− s).
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4. ACCURACY OF 2SUM IN THE ABSENCE OF OVERFLOW
We now consider Algorithm 2Sum with arbitrary rounding functions (Algorithm 4). Con-
trarily to what happens in the previous section with Algorithm 3, we do not always obtain
a final value t equal to a faithful rounding of (a+ b)− s. Consider the following example,
in binary32/single-precision arithmetic (p = 24):

— a = 3076485 · 2−21, b = −6130317 · 2−49;
— ◦1 = ◦2 = ◦5 = RU, ◦3 = ◦4 = ◦6 = RD.

We successively obtain:

s = a = 3076485 · 2−21;
a′ = 12305941 · 2−23;
b′ = −2−23;
δa = −2−23;
δb = 15244637 · 2−47;
t = −1532579 · 2−47.

and since (a+ b)− s = b is a floating-point number, with any rounding function ◦, ◦((a+
b)−s) = b is different from t. However, (a+b−s)−t = −2−49, so that t remains a very good
approximation to (a+ b)− s. As we are going to see, this is always true. More precisely, we
prove together the following two results. The first one (Theorem 4.1) is the main result of
this section. The second one (Lemma 4.2) is needed in the proof of Theorem 6.2.

THEOREM 4.1. If p ≥ 4 and no overflow occurs, then the values s and t returned by Algo-
rithm 4 satisfy

t = (a+ b)− s+ α,

with |α| < 2−p+1 · ulp(a + b) ≤ 2−p+1 · ulp(s). Furthermore, if the floating-point exponents es
and eb of s and b satisfy es − eb ≤ p− 1 then t is a faithful rounding of (a+ b)− s.

LEMMA 4.2. If p ≥ 4 and no overflow occurs in lines (1) to (5) of Algorithm 4, then the
variables δa and δb computed at lines (4) and (5) satisfy

|δa + δb| ≤ ulp(a+ b).

PROOF. We prove together Theorem 4.1 and Lemma 4.2. This means the case split and
intermediate results are the same, but they do not rely one on another. Without loss of
generality, we assume a ≥ 0. Figure 4 below illustrates the various cases that are discussed
in the proof. Case 1 (|b| ≥ a) just uses Theorem 3.1 (we can exhibit Algorithm 3, hidden in
the lines of Algorithm 4). Case 2 (|b| < a and |s| ≤ |b|) is a simple application of Sterbenz’
Lemma (Lemma 2.3), and Case 3 (|b| < a and |s| > |b|) requires more effort. Notice that in
Cases 1 and 2, t will always be a faithful rounding of a + b − s. Hence, the part in the
theorem that is specific to the case es − eb ≤ p − 1 does not need to be addressed in these
first two cases.

Case 1

Case 2 Case 3

b

−a a0

−a/2

Fig. 1. Various cases discussed in the proof.
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Case 1 – If |b| ≥ a then lines (1), (2), and (4) of Algorithm 4 are equivalent to
Fast2Sum(b,a). Therefore, from Theorem 3.1, we have a′ = s − b and δa = ◦4(a + b − s),
hence |δa| ≤ ulp(a+ b). An immediate consequence of a′ = s− b is b′ = b and δb = 0. From
this, we find

t = ◦4(a+ b− s),
which proves the result of Theorem 4.1; and |δa + δb| ≤ ulp(a + b), so that the result of
Lemma 4.2 holds.

Case 2 – If |b| < a and |s| ≤ |b| (which is equivalent to saying that −a < b ≤ −a/2) then
by Sterbenz Lemma, s = a+ b. An immediate consequence is a′ = a, b′ = b, δa = δb = 0 (so
that, obviously, the result of Lemma 4.2 holds) , t = 0. Hence t = (a + b) − s (so that the
result of Theorem 4.1 holds).

Case 3 – If |b| < a and |s| > |b| (which is equivalent to saying that−a/2 < b < a), notice
that we have s > 0. Let u = 21−p (i.e., u is the rounding unit for directed roundings). We
have

s = (a+ b) · (1 + ε1); with |ε1| ≤ u;
a′ = (s− b) · (1 + ε2); with |ε2| ≤ u.

Thus a′ = (a+aε1 + bε1) · (1 + ε2). Since |b| < a, aε1 + bε1 can be written 2aε3, with |ε3| ≤ u.
Therefore

a′ = a · (1 + η),

with |η| ≤ 3u+ 2u2. As soon as p ≥ 4, we have |η| < 1/2, so that a′ ≥ 0 and a/2 ≤ a′ ≤ 2a.
Therefore, Sterbenz Lemma applies to line (4) of Algorithm 4, and

δa = a− a′. (4)

Also, since s > |b|, Lines (2) and (3) of Algorithm 4 are equivalent to the first two lines of
Fast2Sum(s,−b), so that

b′ = s− a′, (5)

and

δb = ◦5(a′ − (s− b)). (6)

Notice that, from Lemma 2.6, as soon as the exponents es and eb of s and b satisfy es−eb ≤
p − 1, (6) implies δb = a′ − (s − b), which, combined with (4), gives t = ◦6(a + b − s), so
that Theorem 4.1 holds. Also, in that case, δa + δb = (a + b) − s, so that Lemma 4.2 holds.
Hence, let us now assume that es − eb ≥ p. Notice that this implies

|b| < 2eb+1 ≤ 2es−p+1 = ulp(s).

Hence,

a′ ∈ {succ(s), s,pred(s),pred(pred(s))}.
Notice that the case a′ = pred(pred(s)) can occur only when s is a power of 2.
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spred(s) succ(s)

area where s− b can lie

ulp(s)

possible locations of a′ = ◦2(s− b)

Fig. 2. General case: s is not a power of 2

s

pred(pred(s))

succ(s)

area where s− b can lie

ulp(s)

possible locations of a′ = ◦2(s− b)

Fig. 3. Special case: s is a power of 2

(1) If a′ = s then b′ = 0. It follows that δb = b and δa = a − s, for which we deduce
t = ◦6(δa + δb) = ◦6(a+ b− s), so that Theorem 4.1 holds, and |δa + δb| = |a+ b− s| <
ulp(a+ b), so that Lemma 4.2 holds.

(2) If a′ 6= s then

a′ = s− σ · ulp(s),with σ ∈ {−1, 1/2, 1},
(the case σ = 1/2 can occur only when s is a power of 2), and we have

b′ = σ · ulp(s)
δa = a− s+ σ · ulp(s)
δb = ◦5(b− σ · ulp(s)).

We know that |b| < ulp(s). Furthermore, b has the same sign as σ. Therefore
— either |b| ≥ |σ|/2 · ulp(s), in which case Sterbenz Lemma implies δb = b− σ · ulp(s),

so that δa+ δb = a+ b− s. This has two consequences: firstly, |δa+ δb| = |a+ b− s| <
ulp(a + b), so that Lemma 4.2 holds; and secondly, t = ◦6(a + b − s), therefore
Theorem 4.1 holds;

— or |b| < |σ|/2 · ulp(s), in which case
|b− σ · ulp(s)| < |σ| · ulp(s)

(unless b = 0 but that case is straightforwardly handled), so that (since |σ| · ulp(s) is
a power of 2)

|δb − (b− σ · ulp(s))| < |σ|
2

ulp(ulp(s)) = |σ| · 2−pulp(s)

(since ulp(s) is a power of 2). An immediate consequence is
|(δa + δb)− (a+ b− s)| < |σ| · 2−pulp(s). (7)
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Since we already know that |(a+ b)− s| < ulp(a+ b), we deduce

|δa + δb| < ulp(a+ b) + |σ| · 2−pulp(s). (8)

Let us try to slightly improve on the bound (8). First, from |b| ≤ ulp(s) one easily
deduces a > s/2 (otherwise, we would have a + b ≤ s/2 + ulp(s), which would
imply s = ◦1(a + b) ≤ ◦1(s/2 + ulp(s)) = s/2 + ulp(s)). Hence δa is a multiple of
1
2ulp(s). Also, ulp(a+ b) is equal to ulp(s) or 1

2ulp(s).
Finally, |b| < |σ|/2 · ulp(s) and b′ = σ · ulp(s) imply |b − b′| > |σ|

2 ulp(s), so that
|δb| ≥ |σ|2 ulp(s), which implies that δb is a multiple of |σ| ·2−pulp(s). All this implies
that δa + δb is a multiple of |σ| · 2−pulp(s). Hence, from (8), we deduce

|δa + δb| ≤ ulp(a+ b).

First, this proves Lemma 4.2. Furthermore, since ulp(a+b) is a power of 2, we obtain

|◦6(δa + δb)− (δa + δb)| ≤
1

2
ulp (ulp(a+ b)) = 2−pulp(a+ b).

Combined with (7), this gives

|t− (a+ b− s)| < 2−p · (ulp(a+ b) + |σ| · ulp(s)) . (9)

This already gives |t−(a+b−s)| < 2−p+1 ·ulp(s). Let us now try to express a bound
on |t− (a+ b− s)| as a function of ulp(a+ b) only. We have four cases to consider
(a) if s is not a power of 2, or if a + b ≥ s, then ulp(a + b) = ulp(s), which gives
|t− (a+ b− s)| < 2−p+1 · ulp(a+ b), so that Theorem 4.1 holds;

(b) if s is a power of 2 and a+ b < s and σ = 1/2, then ulp(a+ b) = 1/2 ·ulp(s), and
(9) implies |t− (a+ b− s)| < 2−p+1 · ulp(a+ b), so that Theorem 4.1 holds;

(c) the case when s is a power of 2, a+ b < s, and σ = 1 is impossible: we assumed
|b| < |σ|/2 · ulp(s) = 1/2 · ulp(s), which implies s − b ≥ s − 1/2 · ulp(s) =
pred(s), which implies a′ = ◦2(s − b) ≥ pred(s), which is not compatible with
the assumption σ = 1, since a′ = s− σulp(s);

(d) if s is a power of 2, a + b < s, and σ = −1, we have the following relations
(see Fig. 4): a′ = succ(s) = s + ulp(s), b′ = −ulp(s), and −1/2 · ulp(s) <
b < 0. We deduce that a > pred(s) = s − 1

2ulp(s) (otherwise we would have
a+b < pred(s), which would imply s = ◦1(a+b) ≤ pred(s)). Similarly, we have
a < succ(s) = s+ulp(s) (otherwise, we would have a+b ≥ succ(s)− 1

2ulp(s) >
s). Therefore a = s, from which we immediately deduce δa = −ulp(s) and
δb = ◦5(b+ ulp(s)). Now, δa and δb have opposite signs, and

1

2
ulp(s) < b+ ulp(s) < ulp(s),

(notice that since ulp(s) is a power of 2, this implies ulp(b+ulp(s)) ≤ 2−pulp(s))
from which we deduce

|δa|
2

=
1

2
ulp(s) ≤ ◦5(b+ ulp(s)) = δb ≤ |δa| = ulp(s),

hence we can apply Sterbenz lemma to the addition of δa and δb, which gives

t = ◦6(δa + δb) = δa + δb
= −ulp(s) + ◦5(b+ ulp(s))
= b+ η
= a+ b− s+ η,

(since a = s), with |η| < ulp(b+ ulp(s)) ≤ 2−p ·ulp(s) = 2−p+1ulp(a+ b), hence
Theorem 4.1 holds.
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s = a succ(s) = a′

area where a− b can lie

−b′ = ulp(s)

Fig. 4. Last case: s is a power of 2, a+ b < s, and σ = −1

5. FAST2SUM IS IMMUNE TO OVERFLOW
Let us now consider Algorithm 3, with ea ≥ eb, where ea and eb are the floating-point
exponents of a and b, and let us assume that no overflow occurred in the first line (s ←
◦1(a + b)). Without loss of generality, we can assume a > 0. Let us first deal with the
second line of the algorithm (z ← ◦2(s− a)).

We have s = a + b + ε, with |ε| < ulp(a + b) ≤ 2ulp(a). Hence s − a = b + ε. Therefore,
if the computation of z = ◦2(s − a) overflows, it means that either b < −Ω + 2ulp(a) or
b > Ω− 2ulp(a).

The second case is impossible: if b > Ω − 2ulp(a) ≥ Ω − 2ulp(Ω), then (since ea ≥ eb,
which here implies ea = eb = emax) then a+b ≥ Ω−2ulp(Ω)+2emax = 3·2emax−3·2emax−p+1,
which implies that a + b overflows. Let us consider the first case. In that case, we have
b < −Ω + 2ulp(a) ≤ −Ω + 2ulp(Ω) and (since ea ≥ eb which implies here ea = emax),
Ω/2 < 2emax ≤ a ≤ Ω), in the first operation we are in the conditions of Sterbenz Lemma,
so that s = a+ b, which implies z = b: in that case the computation of z does not overflow.

Hence, in all cases, the second line of Algorithm 3 cannot overflow. Let us now deal with
the last line (t← ◦3(b−z)). We know from Lemma 2.5 that z = s−a, so that b−z = a+b−s.
The computation of t can overflow only if |b− z| > Ω, but this is impossible since

|b− z| = |(a+ b)− s| < ulp(s) < |s|.

We immediately deduce

THEOREM 5.1. Assume that we perform Algorithm 3 with input values a and b whose expo-
nents satisfy ea ≥ eb. If the computation of s (first line of the algorithm) does not overflow, then the
other lines of the algorithm cannot overflow.

6. 2SUM IS ALMOST IMMUNE TO OVERFLOW
The overflow analysis of Algorithm 4 will be significantly more difficult. Our main result
is Theorem 6.2 below. To make its proof simpler, we first prove the following result.

LEMMA 6.1. If there are no overflows at lines (1) to (5) of Algorithm 4, there cannot be an
overflow at line (6).

PROOF. From Lemma 4.2, we know that |δa+ δb| ≤ ulp(a+ b). Since no overflow occurs
at line (1), a + b is in the representable range, so that ulp(a + b) ≤ 2−p+1|a + b| is much
below the overflow threshold. Hence line (6) of Algorithm 4 (namely, t ← ◦6(δa + δb))
cannot overflow.

THEOREM 6.2. If the first input value a of Algorithm 4 satisfies |a| < Ω and if there is no
overflow at line (1) of the algorithm, then there will be no overflow at lines (2) to (6).
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PROOF. Without loss of generality, we assume a > 0 and b 6= 0. Assume that no over-
flow occurred in the first line (s← ◦1(a+ b)).

(1) If b > 0
The monotonicity of the rounding functions implies: i) s ≥ b, so that a′ ≥ ◦2(0) = 0;
and ii) a′ ≤ ◦2(s) = s. Therefore

0 ≤ a′ ≤ s, (10)

which implies that there is no overflow at line (2) of the algorithm. Now, (10) implies
0 ≤ s− a′ ≤ s, so that

0 ≤ b′ ≤ s. (11)

As a consequence, there is no overflow at line (3) of the algorithm.
Now, since a > 0 and a′ ≥ 0, we deduce |a − a′| ≤ max{a, a′}, hence line (4) cannot
overflow.
Similarly, since b > 0 and b′ ≥ 0, we obtain |b − b′| ≤ max{b, b′}, hence line (5) cannot
overflow.
Lemma 6.1 implies that line (6) cannot overflow.

(2) If b < 0
Notice that there cannot be an overflow at line (1): |a+b| (hence |s|) is less than or equal
to max{|a|, |b|}.
(a) if −b < a, then a+ b− ulp(a+ b) < s < a+ b+ ulp(a+ b), so that

a+ b− ulp(a) < s < a+ b+ ulp(a) (12)

(since |a+ b| < a, which implies ulp(a+ b) ≤ ulp(a)). We therefore deduce

a− ulp(a) < s− b < a+ ulp(a).

therefore, unless a = Ω, there will be no overflow at line (2) of the algorithm, and
a′ = ◦2(s− b) will satisfy

a− ulp(a) ≤ a′ ≤ a+ ulp(a). (13)

(this is deduced using the monotonicity of the rounding function ◦2 and the fact
that a − ulp(a) and a + ulp(a) are floating-point numbers). We now assume a 6=
Ω (which, with our assumption −b < a, implies −b < pred(Ω)), i.e., since b is a
floating-point number,

|b| = −b ≤ pred(pred(Ω)). (14)

From (12) and (13), we find

b− 2ulp(a) < s− a′ < b+ 2ulp(a), (15)

This, along with (14) and ulp(a) ≤ ulp(Ω) implies that line (3) of the algorithm
cannot overflow. Notice that 0 < −b < a implies

|b± 2ulp(a)| < a+ 2ulp(a). (16)

It also implies that a cannot be the smallest nonzero subnormal floating-point
number 2emin−p+1. Hence a ≥ 2emin−p+2, so that a ≥ 2ulp(a). This and (16) give
|b ± 2ulp(a)| ≤ 2a so that ulp(b ± 2ulp(a)) ≤ 2ulp(a). Combined with (15), this
gives

b− 4ulp(a) ≤ b′ ≤ b+ 4ulp(a). (17)

Now, from (13) and (17), we deduce |a− a′| ≤ ulp(a) and |b− b′| ≤ 4ulp(a), to that
lines (4) and (5) of the algorithm cannot overflow. Lemma 6.1 implies that line (6)
cannot overflow.
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(b) if −b ≥ a. First, notice that the case a ≥ −b/2 is easily handled, since Sterbenz
Lemma applied to line (1) of Algorithm 4implies s = a + b, so that a = a′, b = b′,
and δa = δb = t = 0. Hence we only need to focus on the case a < −b/2.
From 0 ≤ a < −b/2 we deduce b ≤ a+ b < b/2, which implies2

b ≤ s ≤ b/2. (18)
The consequence of (18) is twofold. First, we immediately deduce 0 ≤ s−b ≤ −b/2,
so that Line (2) of Algorithm 4 cannot overflow, and second, Sterbenz Lemma can
be applied to line (2) of Algorithm 4, so that a′ = s − b. It follows that b′ = b and
Line (3) cannot overflow. Therefore a− a′ = a+ b− s, so that |a− a′| < ulp(a+ b),
hence Line (4) cannot overflow. We finally have δb = b− b′ = 0 and t = δa: lines (5)
and (6) cannot overflow.

Notice that condition |a| < Ω is necessary. Assume all rounding functions are RN (with
ties-to-even tie-breaking rule). The choice a = Ω and b = −(3/2) · ulp(Ω) will give no
overflow at line (1), and an overflow at line (2).

Conclusion
We have shown that, in binary floating-point arithmetic, the 2Sum and Fast2Sum algo-
rithms are more “robust” than it is usually believed: even when the error of the initial
floating-point addition is not exactly representable, they return a very good approxima-
tion to that error. Also, they are almost totally immune to overflow: the only case where
a “spurious” overflow may occur is with 2Sum, when the absolute value of operand a is
equal to the largest floating-point number.
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