
HAL Id: ensl-01345789
https://ens-lyon.hal.science/ensl-01345789v1

Preprint submitted on 15 Jul 2016 (v1), last revised 23 Oct 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconstruction Algorithms for Sums of Affine Powers
Ignacio Garcia-Marco, Pascal Koiran, Timothée Pecatte

To cite this version:
Ignacio Garcia-Marco, Pascal Koiran, Timothée Pecatte. Reconstruction Algorithms for Sums of
Affine Powers. 2016. �ensl-01345789v1�

https://ens-lyon.hal.science/ensl-01345789v1
https://hal.archives-ouvertes.fr

Reconstruction Algorithms

for Sums of Affine Powers

Ignacio Garcia-Marco, Pascal Koiran, Timothée Pecatte

LIP∗, Ecole Normale Supérieure de Lyon, Université de Lyon.

July 15, 2016

Abstract

A sum of affine powers is an expression of the form

f(x) =

s∑

i=1

αi(x− ai)
ei .

Although quite simple, this model is a generalization of two well-studied

models: Waring decomposition and sparsest shift. For these three models

there are natural extensions to several variables, but this paper is mostly fo-

cused on univariate polynomials. We present structural results which com-

pare the expressive power of the three models; and we propose algorithms

that find the smallest decomposition of f in the first model (sums of affine

powers) for an input polynomial f given in dense representation. We also

begin a study of the multivariate case.

This work could be extended in several directions. In particular, just

as for Sparsest Shift and Waring decomposition, one could consider exten-

sions to “supersparse” polynomials and attempt a fuller study of the multi-

variate case. We also point out that the basic univariate problem studied in

the present paper is far from completely solved: our algorithms all rely on

some assumptions for the exponents ei in a decomposition of f , and some

algorithms also rely on a distinctness assumption for the shifts ai. It would

be very interesting to weaken these assumptions, or even to remove them en-

tirely. Another related and poorly understood issue is that of the bit size of

the constants ai, αi in an optimal decomposition: is it always polynomially

related to the bit size of the input polynomial f given in dense representation?

∗UMR 5668 Ecole Normale Supérieure de Lyon, CNRS, UCBL, INRIA. The authors are sup-

ported by ANR project CompA (code ANR–13–BS02–0001–01). Email: [Pascal.Koiran,

Timothee.Pecatte]@ens-lyon.fr, iggarcia@ull.es.

1

1 Introduction

Let F be any characteristic zero field and let f ∈ F[x] be a univariate polynomial.

This work concerns the study of expressions of f as a linear combination of powers

of affine forms.

Model 1.1. We consider expressions of f of the form:

f =

s∑

i=1

αi(x− ai)
ei

with αi, ai ∈ F, ei ∈ N. We denote by AffPowF(f) the minimum value s such that

there exists a representation of the previous form with s terms.

This model was already studied in [8], where we gave explicit examples of

polynomials of degree d requiring AffPowR(f) = Ω(d) terms for the field F = R.

The main goal of this work is to design algorithms that reconstruct the optimal

representation of polynomials in this model, i.e., algorithms that receive as input

f ∈ F[x] and compute the exact value s = AffPowF(f) and a set of triplets of

coefficients, nodes and exponents {(αi, ai, ei) | 1 ≤ i ≤ s} ⊆ F× F×N such that

f =
∑s

i=1 αi(x− ai)
ei . We assume that f is given in dense representation, i.e., as

a tuple of deg(f) + 1 elements of F.

Model 1.1 extends two already well-studied models. The first one is the Waring

model, where all the exponents are equal to the degree of the polynomial, i.e.,

ei = deg(f) for all i.

Model 1.2. For a polynomial f of degree d, we consider expressions of f of the

form:

f =

s∑

i=1

αi(x− ai)
d

with αi, ai ∈ F. We denote by WaringF(f) the Waring rank of f , which is the

minimum value s such that there exists a representation of the previous form with

s terms.

Waring rank has been studied by algebraists and geometers since the 19th cen-

tury. The algorithmic study of Model 1.2 is usually attributed to Sylvester. We

refer to [14] for the historical background and to section 1.3 of that book for a de-

scription of the algorithm (see also Kleppe [16] and Proposition 46 of Kayal [17]).

Most of the subsequent work was devoted to the multivariate generalization1 of

1In the literature, Waring rank is usually defined for homogeneous polynomials. After homoge-

nization, the univariate model 1.2 becomes bivariate and the “multivariate generalization” therefore

deals with homogeneous polynomials in 3 variables or more.

2

Model 1.2, with much of the 20th century work focused on the determination of

the Waring rank of generic polynomials [1, 6, 14]. A few recent papers [20, 5] have

begun to investigate the Waring rank of specific polynomials such as monomials,

sums of coprime monomials, the permanent and the determinant.

The second model that we generalize is the Sparsest Shift model, where all the

shifts ai are required to be equal.

Model 1.3. For a polynomial f , we consider expressions of f of the form:

f =

s∑

i=1

αi(x− a)ei

with αi, a ∈ F, ei ∈ N. We denote by SparsestF(f) the minimum value s such that

there exists a representation of the previous form with s terms.

This model and its variations have been studied in the computer science liter-

ature at least since Borodin and Tiwari [4]. Some of these papers deal with mul-

tivariate generalizations [12, 9], with “supersparse” polynomials2 [11] or establish

condition for the uniqueness of the sparsest shift [19]. It is suggested at the end

of [9] to allow “multiple shifts” instead of a single shift, and this is just what we

do in this paper. More precisely, as is apparent from Model 1.1, we do not place

any constraint on the number of distinct shifts: it can be as high as the number s of

affine powers. It would also make sense to place an upper bound k on the number

of distinct shifts. This would provide a smooth interpolation between the sparsest

shift model (where k = 1) and Model 1.1, where k = s.

1.1 Our results

We provide both structural and algorithmic results. Our structural results are pre-

sented in Section 3. We compare the expressive power of our 3 models: sums of

affine powers, sparsest shift and the Waring decomposition. Namely, we show that

some polynomials have a much smaller expression as a sum of affine powers than

in the sparsest shift or Waring models. Moreover, we show that the Waring and

sparsest shift models are “orthogonal” in the sense that (except in one trivial case)

no polynomial can have a small representation in both models at the same time. We

also show that some real polynomials have a short expression as a sum of affine

powers over the field of complex numbers, but not over the field of real numbers.

Finally, we study the uniqueness of the optimal representation as a sum of affine

2In that model, the size of the monomial xd is defined to be log d instead of d as in the usual

dense encoding.

3

powers. It turns out that our reconstruction algorithms only work in a regime where

the uniqueness of optimal representations is guaranteed.

As already explained, we present algorithms that find the optimal representa-

tion of an input polynomial f . We achieve this goal in several cases, but we do not

solve the problem in its full generality. One typical result is as follows (see Theo-

rem 4.4 in Section 4 for a more detailed statement which includes a description of

the algorithm).

Theorem 1.4. Let f ∈ F[x] be a polynomial that can be written as

f =

s∑

i=1

αi(x− ai)
ei ,

where the constants ai ∈ F are all distinct, αi ∈ F \ {0}, and ei ∈ N. Assume

moreover that ni ≤ (2i/3)1/3 − 1 for all i ≥ 2, where ni denotes the number of

indices j such that ej ≤ i.
Then, AffPowF(f) = s. Moreover, there is a polynomial time algorithm that

receives f =
∑d

i=0 fix
i ∈ F[x] as input and computes the s-tuples of coefficients

C(f) = (α1, . . . , αs), of nodes N(f) = (a1, . . . , as) and exponents E(f) =
(e1, . . . , es).

From the point of view of the optimality of representations, it is quite natural to

assume an upper bound on the numbers ni. Indeed, if there is an index j such that

nj > j+1 then the powers (x−ai)ei are linearly dependent, and there would be a

smaller expression of f as a linear combination of these polynomials.3 We would

therefore have AffPowF(f) < s instead of AffPowF(f) = s. It would nonetheless

be interesting to relax the assumption ni ≤ (2i/3)1/3 − 1 in this theorem. An-

other restriction is the assumption that the shifts ai are all distinct. We relax that

assumption in Section 5 but we still need to assume that all the exponents ei cor-

responding to a given shift ai = a belong to a “small” interval (see Theorem 5.3

for a precise statement). Alternatively, we can assume instead that there is a large

gap between the exponents in two consecutive occurences of the same shift as in

Theorem 5.8.

In Section 6 we extend the sum of affine powers model to several variables. We

consider expressions of the form

f(x1, . . . , xn) =

s∑

i=1

αiℓi(x1, . . . , xn)
ei , (1)

3It is hardly more difficult to show that one must have nj ≤ ⌈ j+1
2

⌉ for any optimal expression,

see [8, Proposition 18].

4

where ei ∈ N, αi ∈ F and ℓi is a (non constant) linear form for all i. This is

clearly a generalization of the univariate model 1.1 and of multivariate Waring

decomposition. Work on multivariate sparsest shift has developed in a different

direction: one idea [9] has been to transform the input polynomial into a sparse

polynomial by applying a (possibly) different shift to each variable. The model

from [12] is more general than [9], and we do not generalize any of these two

models. Our algorithmic strategy for reconstructing expressions of the form (1) is

to transform the multivariate problem into univariate problems by projection, and

to “lift” the solution of n different projections to the solution of the multivariate

problem. This can be viewed as an analogue of “case 1” of Kayal’s algorithm for

Waring decomposition [17, Theorem 5].

1.2 Main tools

Most of our results4 hinge on the study of certain differential equations satisfied by

the input polynomial f . We consider differential equations of the form

k∑

i=0

Pi(x)f
(i) = 0 (2)

where the Pi’s are polynomials. If the degree of Pi is bounded by i+ l for every i,
we say that (2) is a Shifted Differential Equation (SDE) of order k and shift l.

The basic idea behind our algorithms is to look for a “small” SDE satisfied by

f , and hope that the powers (x−ai)ei in an optimal decomposition of f satisfy the

same SDE. This isn’t just wishful thinking because, as shown in Proposition 2.6, a

polynomial with an expression of size s in Model 1.1 satisfies a SDE of order s and

shift
(
s
2

)
. Moreover, the powers (x − ai)

ei satisfy the same SDE. This differential

equation comes from the Wronskian

Wr(f, (x− a1)
e1 , . . . , (x− as)

es). (3)

Section 2 recalls some (mostly standard) background on differential equations and

the Wronskian determinant.

Unfortunately, this basic idea by itself does not yield efficient algorithms. The

main difficulty is that f could satisfy several SDE of order s and shift
(
s
2

)
. By Re-

mark 2.7 we can efficiently find such a SDE, but what if we don’t find the “right”

SDE, i.e., the SDE coming from the Wronskian (3)? In this case, there is no guar-

antee that the powers (x− ai)
ei will satisfy the SDE discovered by our algorithm.

4The structural results about real polynomials from Section 3.1 rely instead on Birkhoff interpo-

lation [8].

5

One way around this difficulty is to assume that the exponents ei are all sufficiently

large compared to s. In this case we can show that f satisfies a unique SDE of or-

der s and shift
(s
2

)
. This fact is established in Corollary 4.2, and yields the efficient

algorithm of Theorem 4.3. The algorithm of Theorem 1.4 is more involved: con-

trary to Theorem 4.3, we cannot determine all the terms (x−ai)ei in a single pass.

Solving the SDE only allows the determination of some (high degree) terms. We

must then subtract these terms from f , and iterate.

1.3 Models of computation

Our algorithms take as inputs polynomials with coefficients in an arbitrary field K

of characteristic 0. At this level of generality, we need to be able to perform arith-

metic operations (additions, multiplications) and equality tests between elements

of K. When we write that an algorithm runs in polynomial time, we mean that the

number of such steps is polynomial in the input size. This is a fairly standard setup

for algebraic algorithms (it is also interesting to analyze the bit complexity of our

algorithms for some specific fields such as the field of rational numbers; more on

this at the end of this subsection and in Section 1.4). An input polynomial of de-

gree d is represented simply by the list of coefficients of its d+ 1 monomials, and

its size thus equals d+1. In addtion to arithmetic operations and equality tests, we

need to to be able to compute roots of polynomials with coefficients in K. This is in

general unavoidable: for an an optimal decomposition of f ∈ K[X] in Model 1.1,

the coefficients αi, ai may lie in an extension field F of K (see Section 3 and more

precisely Example 3.3 in Section 3.1 for the case K = R,F = C). If the optimal

decomposition has size s, we need to compute roots of polynomials of degree at

most s. 5 As a rule, root finding is used only to output the nodes ai of the opti-

mal decomposition,6 but the “internal working” of our algorithms remains purely

rational (i.e., requires only arithmetic operations and comparisons). This is similar

to the symbolic algorithm for univariate sparsest shifts of Giesbrecht, Kaltofen and

Lee ([9], p. 408 of the journal paper), which also needs access to a polynomial root

finder.

The one exception to this rule is the algorithm of Theorem 1.4. As mentioned

at the end of Section 1.2, this is an iterative algorithm. At each step of the itera-

tion we have to compute roots of polynomials (which may lie outside K), and we

keep computing with these roots in the subsequent iterations. For more details see

5Except in the algorithm of Theorem 5.3, where we need to compute roots of polynomials at most

s+
(

s

2

)

+ sδ. Here δ is a parameter of the algorithm, see Theorem 5.3 for details.
6Once the ai’s have been determined, we also need to do some linear algebra computations with

these nodes to determine the coefficients αi.

6

Theorem 4.4 and the discussion after that theorem. We make a first step toward re-

moving root finding from the internal working of this algorithm in Proposition 4.5.

We also take some steps toward the analysis of our algorithms in the bit model

of computation. We focus on the algorithm of Theorem 1.4 since it is the most

difficult to analyze due to its iterative nature. We show in Proposition 4.6 that for

polynomials with integer coefficients, this algorithm can be implemented in the bit

model to run in time polynomial in the bit size of the output. We do not have a

polynomial running time bound as a function of the input size (more on this in

Section 1.4).

1.4 Future work

One could try to extend the results of this paper in several directions. For instance,

one could try to handle “supersparse” polynomials like in the Sparsest Shift algo-

rithm of [11]. The multivariate case would also deserve further study. As explained

above we proceed by reduction to the univariate case, but one could try to design

more “genuinely multivariate” algorithms. For Waring decomposition, such an

algorithm is proposed in “case 2” of [17, Theorem 5]. Its analysis relies on a ran-

domness assumption for the input f (our multivariate algorithm is randomized, but

in this paper we never assume that the input polynomial is randomized).

One should also keep in mind, however, that the basic univariate problem stud-

ied in the present paper is far from completely solved: our algorithms all rely

on some assumptions for the exponents ei in a decomposition of f , and some

algorithms also rely on a distinctness assumption for the shifts ai. It would be

very interesting to weaken these assumptions, or even to remove them entirely.

With a view toward this question, one could first try to improve the lower bounds

from [18]. Indeed, the same tools (Wronskians, shifted differential equations) turn

out to be useful for the two problems (lower bounds and reconstruction algorithms)

but the lower bound problem appears to be easier. For real polynomials we have

already obtained optimal Ω(d) lower bounds in [8] using Birkhoff interpolation,

but it remains to give an algorithmic application of this lower bound method.

Another issue that we have only begun to address is the analysis of the bit

complexity of our algorithms. It would be straightforward to give a polynomial bit

size bound for, e.g., the algorithm of Theorem 4.3 but this issue seems to be more

subtle for Theorem 1.4 due to the iterative nature of our algorithm. It is in fact

not clear that there exists a solution of size polynomially bounded in the input size

(i.e., in the bit size of f given as a sum of monomials). More precisely, we ask the

following question.

Question 1.5. We define the dense size of a polynomial f =
∑d

i=0 fix
i ∈ Z[X] as

7

∑d
i=0[1 + log2(1 + |fi|)]. Assume that f can be written as

f =

s∑

i=1

αi(x− ai)
ei

with ai ∈ Z, αi ∈ Z \ {0}, and that this decomposition satisfies the conditions of

Theorem 1.4: the constants ai are all distinct, and ni ≤ (2i/3)1/3−1 for all i ≥ 2,

where ni denotes the number of indices j such that ej ≤ i.
Is it possible to bound the bit size of the constants αi, ai by a polynomial func-

tion of the dense size of f ?

As explained at the end of Section 1.3, under the same conditions we have a

decomposition algorithm that runs in time polynomial in the bit size of the output.

It follows that the above question has a positive answer if and only if there is a

decomposition algorithm that runs in time polynomial in the bit size of the input

(i.e., in time polynomial in the dense size of f).

One could also ask similar questions in the case where the conditions of Theo-

rem 1.4 do not hold. For instance, assuming that f has an optimal decomposition

with integer coefficients, is there such a decomposition where the coefficients αi, ai
are of size polynomial in the size of f ?

2 Preliminaries

In this section we present some tools that are useful for their algorithmic applica-

tions in Sections 4 and 5. Section 3 can be read independently, except for the proof

of Proposition 3.11 which uses the Wronskian.

2.1 The Wronskian

In mathematics the Wronskian is a tool mainly used in the study of differential

equations, where it can be used to show that a set of solutions is linearly indepen-

dent.

Definition 2.1 (Wronskian). For n univariate functions f1, . . . , fn, which are n−1
times differentiable, the Wronskian Wr(f1, . . . , fn) is defined as

Wr(f1, . . . , fn)(x) =

∣∣∣∣∣∣∣∣∣

f1(x) f2(x) . . . fn(x)
f ′1(x) f ′2(x) . . . f ′n(x)

...
...

. . .
...

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n

∣∣∣∣∣∣∣∣∣

8

It is a classical result, going back at least to [3], that the Wronskian captures

the linear dependence of polynomials in F[x].

Proposition 2.2. For f1, . . . , fn ∈ F[X], the polynomials are linearly dependent

if and only if the Wronskian Wr(f1, . . . , fn) vanishes everywhere.

For every f ∈ F[x] and every a ∈ F we denote by Ma (f) the multiplicity of

a as a root of f , i.e., Ma (f) is the maximum t ∈ N such that (x − a)t divides f .

The following result from [24] gives a Wronskian-based bound on the multiplicity

of a root in a sum of polynomials.

Lemma 2.3. Let f1, . . . , fn be some linearly independent polynomials and a ∈ F,

and let f(x) =
∑n

j=1 fj(x). Then:

Ma (f) ≤ n− 1 +Ma (Wr(f1, . . . , fn)) ,

where Ma (f) is finite since Wr(f1, . . . , fn) 6≡ 0.

In [22] one can find several properties concerning the Wronskian (and which

have been known since the 19th century). In this work we will use the follow-

ing properties, which can be easily derived from those of [22]. For the sake of

completeness we include a short proof.

Proposition 2.4. Let f1, . . . , fn ∈ F[x] be linearly independent polynomials and

let a ∈ F. If fj = Q
dj
j gj with Qj ∈ F[x] and dj ≥ n for all j, then Q :=

∏n
j=1Q

dj−n+1
j divides Wr(f1, . . . , fn). Moreover, if Q(a) 6= 0, then

Ma (Wr(f1, . . . , fn)) ≤
n∑

j=1

[
deg(gj) + (n− 1)deg(Qj)

]
−

(
n

2

)
.

Hence, if we set f :=
∑n

j=1 fj , then

Ma (f) ≤ n− 1 +

n∑

j=1

[
deg(gj) + (n− 1)deg(Qj)

]
−

(
n

2

)
.

Proof. Consider the n×nWronskian matrixW whose (i+1, j)-th entry is f
(i)
j (x)

with 0 ≤ i ≤ n − 1, 1 ≤ j ≤ n. Since Q
dj
j divides fj , then f

(i)
j = Q

dj−i
j gi,j =

Q
dj−n+1
j Qn−1−i

j gi,j , for some gi,j ∈ F[x] of degree deg(gj) + ideg(Qj) − i.

Since Q
dj−n+1
j divides every element in the j-th column of W , we can factor it out

from the Wronskian. This proves that Q divides Wr(f1, . . . , fn). Once we have

9

factored out Q
dj−n+1
j for all j, we observe that Wr(f1, . . . , fn) = Q(x)h(x),

where h(x) is the determinant of a matrix whose (i + 1, j)-th entry has degree

deg(gj) + (n − 1)deg(Qj) − i for all 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n. Hence,

deg(h) ≤ ∑n
j=1 [deg(gj) + (n− 1)deg(Qj)] −

(n
2

)
. Finally, we observe that if

Q(a) 6= 0:

Ma (Wr(f1, . . . , fn)) = Ma (Q) +Ma (h) = Ma (h) ≤ deg(h).

For f =
∑n

j=1 fj , the upper bound for Ma (f) follows directly from Lemma 2.3.

2

We observe that the result holds when some of the Qi(x) = 1.

2.2 Shifted Differential Equations

Definition 2.5. A Shifted Differential Equation (SDE) is a differential equation of

the form
k∑

i=0

Pi(x)f
(i)(x) = 0

where f is the unknown function and the Pi are polynomials in F[x]with deg(Pi) ≤
i+ l.
The quantity k is called the order of the equation, and the quantity l is called the

shift. We will usually denote such a differential equation by SDE(k, l).

One of the key ingredients for our results is that if AffPow(f) is small, then f
satisfies a “small” SDE. More precisely:

Proposition 2.6. Let δ ≥ 0 and let f ∈ F[x] be written as

f =
s∑

i=1

Qi(x)(x− ai)
ei ,

where Qi(x) is a polynomial of degree ≤ δ. Then, f satisfies a SDE(s,
(s
2

)
+ sδ)

which is also satisfied by Qi(x)(x − ai)
ei for all i ∈ {1, . . . , s}. In particular, if

AffPowF(f) = s, then f satisfies a SDE(s,
(s
2

)
).

Proof. We consider the SDE in the unknown g given by the following Wronskian:

Wr(g,Q1(x)(x− a1)
e1 , . . . , Qs(x)(x− as)

es)(x) = 0 (4)

To make the SDE explicit, we expand the determinant along the first column to

obtain:

W :=

s∑

i=0

(−1)iPi(x)g
(i)(x) = 0

10

where Pi is (i, 1)-th minor.

This SDE is of order s, and using the properties of the determinant, it is satisfied

by the Qi(x)(x − ai)
ei’s and by f . However, the shift of this equation might be

too large if the exponents ei are large. In this case, this equation can be reduced as

follows.

For each i ∈ {1, . . . , s}, j ∈ {0, . . . , s} we define a polynomial Sj,i of degree

≤ δ + s − j in the following way. If ei ≤ s, let Sj,i be the j-th derivative of

Qi(x)(x − ai)
ei . If ei > s, then the j-th derivative of Qi(x)(x − ai)

ei is a mul-

tiple of (x − ai)
ei−s and we let Sj,i(x) be the polynomial such that (Qi(x)(x −

ai)
ei)(j) = (x− ai)

ei−sSj,i(x). The following equality holds for W :

W =




∏

ei≥s

(x− ai)
ei−s




∣∣∣∣∣∣∣∣∣

g(x) S0,1 · · · S0,s
g′(x) S1,1 · · · S1,s

...
... · · · ...

g(s)(x) Ss,1 · · · Ss,s

∣∣∣∣∣∣∣∣∣

In particular, the determinant in the above expression yields another SDE with

exactly the same vector space of solutions and a smaller shift. More precisely, we

obtain an equation of the form

s∑

i=0

(−1)iRi(x)g
(i)(x) = 0

where deg(Ri) ≤ i +
(s
2

)
+ sδ and the shift of this SDE is at most

(s
2

)
+ sδ as

desired.

Finally, if AffPowF(f) = s, then f =
∑s

i=1 αi(x − ai)
ei with αi, ai ∈ F and

ei ∈ N. It suffices to consider the αi’s as polynomials of degree 0 to finish the

proof. 2

Remark 2.7. A polynomial f satisfies a SDE(k, l) if and only if the polynomials

(xjf (i)(x))0≤i≤k,0≤j≤i+l are linearly dependent over F. The existence of such a

SDE can therefore be decided efficiently by linear algebra, and when a SDE(k, l)
exists it can be found explicitly by solving the corresponding linear system (see,

e.g., [23, Corollary 3.3a] for an analysis of linear system solving in the bit model

of computation). We use this fact repeatedly in the algorithms of Sections 4 and 5.

In this paper we will use some results concerning the set of solutions of a SDE.

They are particular cases of properties that apply to linear homogeneous differential

equations.

11

Lemma 2.8. The set of polynomial solutions of a SDE of order k is a vector space

of dimension at most k.

Given two SDE of order k:

k∑

i=0

pi(x)g
(i)(x) = 0 and

k∑

i=0

qi(x)g
(i)(x) = 0,

we say that they are equivalent if pkqi = qkpi for all i ∈ {0, . . . , k − 1}. The

following result can be found in [22, Property 61]. We include a short proof.

Lemma 2.9. For any set of F-linearly independent polynomials f1, . . . , fk ∈ F[x],
there exists a unique SDE (up to equivalence) of order k satisfied simultaneously

by all the fi’s.

Proof. Suppose there exist two different SDE satisfied by f1, . . . , fk, namely:

k∑

i=0

pi(x)g
(i)(x) = 0 and

k∑

i=0

qi(x)g
(i)(x) = 0.

Then, we set ri := pkqi − qkpi for all i ∈ {0, . . . , k}. By definition we have

that rk = 0 and we aim at proving that ri = 0 for all i. Assume that there exists

j ∈ {0, . . . , k − 1} such that rj 6= 0. Then, the following SDE

k−1∑

i=0

ri(x) g
(i)(x) = 0

has order ≤ k − 1 and is satisfied by f1, . . . , fk, a contradiction to Lemma 2.8. 2

3 Structural results

In this section we compare the expressive power of our 3 models: sums of affine

powers, sparsest shift and the Waring decomposition. We will see in Section 3.2

that some polynomials have a much smaller expression as a sum of affine powers

than in the sparsest shift or Waring models. Moreover, we show that the Waring

and sparsest shift models are “orthogonal” in the sense that (except in one trivial

case) no polynomial can have a small representation in both models at the same

time.

We begin this investigation of structural properties with the field of real num-

bers, where an especially strong version of orthogonality holds true. We also show

12

that some real polynomials have a short expression as a sum of affine powers over

the field of complex numbers, but not over the field of real numbers. This obser-

vation has algorithmic implications: given a polynomial f ∈ F[X], we may have

to work in a field extension of F to find the optimal representation for f . These

“real” results can be derived fairly quickly from results in our previous paper [8].

We then move to arbitrary fields of characteristic zero in Section 3.2. Finally, we

study the uniqueness of optimal representations in Section 3.3. It turns out that

the algorithms of Sections 4 and 5 only work in a regime where the uniqueness of

optimal representations is guaranteed.

3.1 The real case

In [8] the authors considered polynomials with real coefficients and proved the

following result.

Theorem 3.1. [8, Theorem 13] Consider a polynomial identity of the form:

k∑

i=1

αi(x− ai)
d =

l∑

i=1

βi(x− bi)
ei

where the ai ∈ R are distinct constants, the constants αi ∈ R are not all zero, the

βi ∈ R and bi ∈ R are arbitrary constants, and ei < d for every i. Then, we must

have k + l ≥ ⌈(d+ 3)/2⌉.

Theorem 3.1 will be our main tool in Section 3.1. As a consequence of this

result, we first give a sufficient condition for a polynomial to have a unique optimal

expression in the model AffPowR.

Corollary 3.2. Let f ∈ R[x] be a polynomial of the form:

f =
s∑

i=1

αi(x− ai)
ei (5)

with αi 6= 0. For every e ∈ N we denote by ne the number of exponents smaller

than e, i.e., ne = #{i : ei ≤ e}.

If 2ne ≤ ⌈(e + 3)/2⌉ for all e ∈ N, then AffPowR(f) = s. Moreover, if 2ne <
⌈(e + 3)/2⌉ for all e then (5) is the unique optimal expression for f .

Proof. Suppose that f can be written in another way

f =

p∑

j=1

βj(x− bj)
fj (6)

13

with p ≤ s. Set d = max ((ei)1≤i≤s ∪ (fj)1≤j≤p) and denote by s′ (respectively,

p′) the index such that d = e1 = · · · = es′ > es′+1 ≥ · · · ≥ es (respectively,

d = f1 = · · · = fp′ > fp′+1 ≥ · · · ≥ fp). Note that one of the two indices s′, p′

will be equal to 0 if the exponent d appears only in one of the two expressions (5)

and (6).

Combining equations (5) and (6), we obtain the following equality:

s′∑

i=1

αi(x− ai)
d −

p′∑

j=1

βj(x− bj)
d = −

s∑

i=s′+1

αi(x− ai)
ei +

p∑

j=p′+1

βj(x− bj)
fj

We can rewrite this as

k∑

i=1

α′
i(x− a′i)

d =

l∑

i=1

β′i(x− b′i)
e′i

with α′
i 6= 0, k ≤ s′ + p′ and l ≤ (s − s′) + (p− p′).

To prove the first assertion, let us assume that 2ne ≤ ⌈(e+3)/2⌉ for all e. Assume

also for contradiction that p < s and k > 0. By Theorem 3.1, we must have

k + l ≥ ⌈(d + 3)/2⌉. The upper bounds on k and l imply 2s > s + p ≥ k + l ≥
⌈(d+3)/2⌉. However we have from our assumption that 2s = 2nd ≤ 2⌈(d+3)/2⌉,

which contradicts the previous inequality. This shows that p < s ⇒ k = 0, i.e.,

if p < s then the highest degree terms are the same. Continuing by induction, we

find that all the terms in the two expressions are equal. In particular we would have

p = s, a contradiction. This shows that p ≥ s, i.e., that AffPowR(f) = s.
To prove the second assertion, let us now assume further that 2ne < ⌈(e +

3)/2⌉ for all e. Assume also that p = s. By Theorem 3.1, either k = 0 or

k + l ≥ ⌈(d + 3)/2⌉. In the second case, the upper bounds on k and l imply that

2s = s+p ≥ k+l ≥ ⌈(d+3)/2⌉. This is in contradiction with the assumption that

2nd < ⌈(d + 3)/2⌉. We conclude that that k must be equal to 0, i.e., the highest

degree terms are the same. Continuing by induction, we obtain that all the terms

of the two decompositions are equal, thus showing that (5) is the unique optimal

expression for f in this model. 2

Let K be a field extension of F. Theorem 1 in [19] shows that whenever the

value SparsestK(f) is "small", then it is equal to SparsestF(f); more precisely, if

SparsestK(f) ≤ (d + 1)/2 then SparsestK(f) = SparsestF(f). This is no longer

the case for the Affine Power model as the following example shows.

Example 3.3. For every d ∈ N, we consider the polynomial

fd :=
∑

j≡3 (mod 4)
0≤j≤d

4

(
d

j

)
xd−j ∈ R[x]. (7)

14

We can express fd as fd = (x+1)d−(x−1)d+i(x+i)d−i(x−i)d, which proves

that AffPowC(fd) ≤ 4. Moreover, in expression (7) we have ne ≤ ⌈(e + 1)/4⌉ for

all e ∈ N. Since 2⌈(e + 1)/4⌉ ≤ ⌈(e + 3)/2⌉, it follows from Corollary 3.2 that

this expression for fd is optimal over the reals, i.e., AffPowR(fd) = ⌊(d + 1)/4⌋.

As a consequence of Theorem 3.1 we can easily derive the following result.

Corollary 3.4. Let f ∈ R[x] be a polynomial of degree d. Either f = α(x − a)d

for some α, a ∈ R (and WaringR(f) = SparsestR(f) = 1), or the following holds:

WaringR(f) + SparsestR(f) ≥
d+ 3

2

Proof. We set k = WaringR(f) and l = SparsestR(f) and assume that l ≥ 2. We

write f in two different ways:

f =

k∑

i=1

αi(x− ai)
d =

l∑

j=1

βi(x− a)ei ,

where the aj ∈ R are all distinct, and e1 < · · · < el = d. Let us move the term

βl(x−a)d to the left hand side of the equation. We then have two cases to consider:

• if a 6= ai for all i, we have k + 1 terms on the left hand side of the equation

and l − 1 terms on the right hand side. Theorem 3.1 shows that (k + 1) +
(l − 1) ≥ (d+ 3)/2.

• If a = ai for some i, we have k or k − 1 terms on the left hand side of the

equation and l−1 terms on the right hand side. By Theorem 3.1, k+(l−1) ≥
(d+ 3)/2.

2

Remark 3.5. Consider the degree d ≥ 2 polynomial

f := (x+ 1)d + (x− 1)d =
∑

i even

0≤i≤d

2

(
d

i

)
xd−i.

We observe that WaringR(f) = 2 and SparsestR(f) ≤ ⌈(d + 1)/2⌉. Hence, the

inequality in Corollary 3.4 is optimal up to one unit.

A similar proofs to that of Corollary 3.4 yield the following result:

Corollary 3.6. Let f ∈ R[x] be a polynomial of degree d. Either AffPowR(f) =
WaringR(f) or the following inequality holds:

WaringR(f) + AffPowR(f) ≥
d+ 3

2

15

3.2 Fields of characteristic zero

We now switch from the real field to an arbitrary field F of characteristic zero. By

definition we have AffPowF(f) ≤ WaringF(f) and AffPowF(f) ≤ SparsestF(f)
for any polynomial f ∈ F[X]. We show in Example 3.7 that there are polynomials

f such that AffPowF(f) is much smaller than both WaringF(f) and SparsestF(f).
We first make some basic observations about Sparsest Shift. For any a ∈ F, the

polynomials {(x − a)i | i ∈ N} are linearly independent, hence f can be uniquely

expressed as f =
∑d

i=0 αi(x − a)i where αi = f (i)(a)/i!. Consider such a

decomposition for f , and let s be the number of nonzero terms. It follows that

the d+ 1− s derivatives f (i) with αi = 0 admit a as a common root.

Example 3.7. For every d ∈ N, we consider the polynomial fd := (x + 1)d −
dxd−1 ∈ C[x]. It is easy to check that AffPow(fd) = 2 for all d ≥ 2. By [5,

Proposition 3.1] we have that if xd−1 =
∑s

i=1 αi(x − ai)
d with αi, ai ∈ C, then

s ≥ d; and thus we get that WaringC(fd) ≥ d− 1.

One can easily check that for every i ∈ {0, . . . , d− 1}, the polynomials f
(i)
d =

d!
(d−i)!fd−i and f

(i+1)
d = d!

(d−i−1)!fd−i−1 do not share a common root. Consider

a decomposition of f in the sparsest shift model. By the above observations, for

any pair of consecutive coefficients in this decomposition at least one of the 2

coefficients is nonzero. This implies that SparsestC(f) ≥ ⌈(d+ 1)/2⌉.

In the remainder of Section 3.2 we give (in Proposition 3.9) a weaker version of

Corollary 3.4 that works for any field of characteristic zero. Moreover, for F = C

we provide a family of polynomials showing that the bound from Proposition 3.9

is sharp.

We will use Jordan’s lemma [13] (see [14, Lemma 1.35] for a recent reference),

which can be restated as follows.

Lemma 3.8. Let d ∈ Z
+, e1, . . . , et ∈ {1, . . . , d}, and let a1, . . . , at ∈ F be

distinct constants. If
∑t

i=1(d+ 1− ei) ≤ d+ 1, then the set of polynomials

{(x− ai)
e | 1 ≤ i ≤ t, ei ≤ e ≤ d}

is linearly independent.

Proposition 3.9. Let f ∈ F[x] be a polynomial of degree d. Either f = α(x− a)d

for some α, a ∈ F (and WaringF(f) = SparsestF(f) = 1), or the following holds:

WaringF(f) · SparsestF(f) ≥ d+ 1

16

Proof. We set k = WaringF(f) and l = SparsestF(f) and assume that k, l ≥ 2.

We express f in two different ways:

f =

k∑

i=1

αi(x− ai)
d =

l∑

j=1

βj(x− a)ej ,

with aj ∈ F all distinct and e0 := −1 < e1 < · · · < el = d. First, we are going

to prove that ei+1 − ei ≤ k for all i ∈ {0, . . . , l − 1}. Indeed, if there exists

t ∈ {0, . . . , l − 1} such that et+1 − et ≥ k + 1, then we set r := et + 1 and

differentiate the previous equality r times to obtain

f (r) =

k∑

i=1

αi
d!

(d− r)!
(x− ai)

d−r =

l∑

j=t+1

βj
ej !

(ej − r)!
(x− a)ej−r,

where ej − r = ej − et − 1 ≥ et+1 − et − 1 ≥ k for all j ∈ {t+ 1, . . . , l}. From

this equality, we deduce that the set

B := {(x− ai)
d−r | 1 ≤ i ≤ k} ∪ {(x− a)ei−r | t+ 1 ≤ i ≤ l}

is linearly dependent. However,

B ⊆ {(x− ai)
d−r | 1 ≤ i ≤ k} ∪ {(x− a)i | k ≤ i ≤ d− r}.

The d− r+ 1 polynomials on the right-hand side are of degree at most d− r, and

they are linearly independent by Jordan’s lemma. This is a contradiction since B is

linearly dependent. We have proved that ei+1 − ei ≤ k for all i ∈ {0, . . . , l − 1},

and we conclude that

d+ 1 = el − e0 =

l∑

i=1

(ei − ei−1) ≤ kl.

2

Remark 3.10. One can slightly modify [8, Proposition 19] to obtain the following

equality of complex polynomials of degree d:

k∑

j=1

(x+ ξj)d =
∑

0≤i≤d

i≡0 (mod k)

k

(
d

i

)
xd−i

where k ∈ N and ξ ∈ C is a k-th primitive root of unity. This equality shows that

there are polynomials of degree d such that WaringC(g) ≤ k and SparsestC(g) ≤
⌈(d + 1)/k⌉ and, thus the bound from Proposition 3.9 is tight.

17

3.3 Uniqueness results for sums of affine powers

The following result is an analogue of Theorem 3.1 for polynomials with coeffi-

cients over F, where F is any field of characteristic zero.

Proposition 3.11. Consider a polynomial identity of the form:

k∑

i=1

αi(x− ai)
d =

l∑

i=1

βi(x− bi)
ei

where the ai ∈ F are distinct, the αi ∈ F are not all zero, βi, bi ∈ F are arbitrary,

and ei < d for every i. Then we must have k + l >
√

2(d+ 1).

Proof. We assume α1 6= 0 and we have the following equality:

α1(x− a1)
d = −

k∑

i=2

αi(x− ai)
d +

l∑

i=1

βi(x− bi)
ei

Consider an independent subfamily on the right hand side of this equality. We

obtain a new identity of the form:

g =

p∑

i=1

λil
fi
i

with g(x) = α1(x− a1)
d, and p ≤ k+ l− 1. Since deg(g) = d and ei < d for all

i; then there exists i such that fi = d. We assume without loss of generality that

l1 = x− a2 and f1 = d.

We take the derivatives of this equality to obtain the following system:

g =

p∑

i=1

λil
fi
i

g
′

=

p∑

i=1

λi

[
lfii

]′

...

g(p−1) =

p∑

i=1

λi

[
lfii

](p−1)

18

Using Cramer’s rule, we obtain:

λ1 =
Wr(g, lf22 , . . . , l

fp
p)

Wr(lf11 , l
f2
2 , . . . , l

fp
p)

We define ∆ = {i : 2 ≤ i ≤ p, fi ≥ p} and, following Proposition 2.4, we

factorise the Wronskians:

λ1 =
(x− a1)

d−(p−1)
∏

i∈∆ l
fi−(p−1)
i ·W1

(x− a2)d−(p−1)
∏

i∈∆ l
fi−(p−1)
i ·W2

where W1,W2 are the remaining determinants.

After some simplifications, we obtain the following identity:

λ1(x− a2)
d−(p−1)W2 = (x− a1)

d−(p−1)W1

Notice now that since we have factorised the large fi’s, the ith row of W1 and

W2 contains polynomials with degree bounded by p − i, thus degW1,degW2 ≤
p(p− 1)/2.

Moreover, since a1 6= a2, we compute the multiplicity of a1 on both sides of

the identity and obtain that

Ma1

(
(x− a1)

d−(p−1)W1

)
= Ma1

(
λ1(x− a2)

d−(p−1)W2

)
= Ma1 (W2) .

The previous remark on the degree of W2 therefore implies that

d− (p − 1) ≤ p(p− 1)

2

Finally, we set s = l + k and we use the fact that p ≤ s − 1 to obtain the desired

lower bound:

d ≤ (p+ 2)(p − 1)

2

d ≤ (s+ 1)(s − 2)

2

2d ≤ s2 − s− 2

and finally, 2(d + 1) < s2. 2

19

Remark 3.12. The same equality as in Remark 3.10 shows that the order of this

bound is tight when F = C, the field of complex numbers. Indeed, choosing k =√
d+ 1 leads to the equality

k∑

i=1

(x+ ξi)d =

k−1∑

j=0

k

(
d

jk

)
xd−jk

which has 2k = 2
√
d+ 1 terms.

As a consequence of Proposition 3.11 we obtain that whenever AffPowF(f)
is sufficiently small, the terms of highest degree in an optimal expression of f as

f =
∑s

i=1 αi(x− ai)
ei are uniquely determined.

Corollary 3.13. Let f ∈ F[x] be a polynomial of the form :

f =

k∑

i=1

αi(x− ai)
d +

l∑

j=1

βj(x− bj)
ej

with ej < d. If k + l ≤
√

d+1
2 , then the highest degree terms are unique. In other

words, for every expression of f as

f =
k′∑

i=1

α′
i(x− a′i)

d +
l′∑

j=1

β′j(x− b′j)
e′j

with e′j < d and k′ + l′ ≤
√

d+1
2 , then k = k′ and there exists a permutation

π : {1, . . . , k} → {1, . . . , k} such that αi = α′
π(i) and ai = a′π(i) for all i ∈

{1, . . . , k}.

Proof. Let us assume that we have another different decomposition for f :

f =
k′∑

i=1

α′
i(x− a′i)

d +
l′∑

j=1

β′j(x− b′j)
e′j

with k′ + l′ ≤
√

(d+ 1)/2. Hence, we have the following equality:

k∑

i=1

αi(x− ai)
d −

k′∑

i=1

α′
i(x− a′i)

d =

l∑

j=1

βj(x− bj)
ej −

l′∑

j=1

β′j(x− b′j)
e′j

Since k1 + k2 + l1 + l2 ≤
√

2(d+ 1), the result follows from Proposition 3.11. 2

Finally, as a direct consequence of Corollary 3.13, we obtain a a sufficient

condition for a polynomial to have a unique optimal expression in the AffPow

model:

20

Corollary 3.14. Let f ∈ F[x] be a polynomial of the form:

f =
s∑

i=1

αi(x− ai)
ei

For every e ∈ N we denote by ne the number of exponents smaller than e, i.e.,

ne = #{i : ei ≤ e}. If ne ≤
√

e+1
2 for all e ∈ N, then AffPowF(f) = s and the

optimal representation of f is unique.

Remark 3.15. Whenever f ∈ R[x] satisfies the hypotheses of Corollary 3.14 and

one term in the expression of f is of the form αi(x − ai)
ei with ai ∈ C − R,

then there exists j 6= i such that αj = αi, aj = ai and ej = ei. Indeed, if

we have a decomposition for f , taking the conjugate of αi and ai for all i gives

another decomposition of f , but by Corollary 3.14 these two decompositions must

be identical.

Another consequence of Proposition 3.11 is the following upper bound on the

degree of the terms involved in an optimal expression of f in the model AffPowF.

Corollary 3.16. Let f ∈ F[x] be a polynomial of degree d written as

f =

s∑

i=1

αi(x− ai)
ei

with αi, ai ∈ F, ei ∈ N and s = AffPowF(f). We set e := max{ei : 1 ≤ i ≤ s},

then e < d + s2

2 and, if F = R, then e ≤ d + 2s − 2. In particular, we have that

e < d+ (d+2)2

8 and, if F = R, then e ≤ 2d.

Proof. If e = d, then the result is trivial. Assume therefore that e > d. Now, we

differentiate d+ 1 times the expression for f to obtain the identity:

0 = f (d+1) =
∑

ei>d

αi
ei!

(ei − d− 1)!
(x− ai)

ei−d−1.

By Proposition 3.11 we have s >
√
2(e − d) and we conclude that e < d + s2

2 .

When F = R, by Theorem 3.1 we have s ≥ (e − d + 2)/2 and we conclude that

e ≤ d + 2s − 2. To finish the proof it suffices to recall that s = AffPowF(f) ≤
⌈(d + 1)/2⌉ ≤ (d+ 2)/2; see [8, Proposition 18]. 2

As a byproduct of Corollary 3.16, we obtain the exact value of AffPowF(f) for

a generic polynomial f of degree d. It turns out to be equal to the worst case value

of AffPowF(f), obtained in [8, Proposition 18].

21

Corollary 3.17. For a generic polynomial f ∈ F[x] of degree d, AffPowF(f) =
⌈d+1

2 ⌉.

Proof. The set of polynomials of degree ≤ d can be seen as a variety W of

dimension d + 1. Given f ∈ F[x] a polynomial of degree d, by [8, Proposition

18] we have AffPowF(f) ≤ ⌈d+1
2 ⌉. For k < ⌈d+1

2 ⌉, let us show that the set of

polynomials g of degree d such that AffPowF(g) ≤ k is contained in a variety

of dimension 2k < d + 1. For every e1, . . . , ek ∈ N the set of polynomials that

can be written as
∑k

i=1 αi(x − ai)
ei with ai, αi ∈ F is contained in a variety

Ve1,...,ek of dimension 2k. If we set M := d + (d+2)2

8 , Corollary 3.16 proves

that in every optimal expression of a polynomial of degree d, the exponents ei are

≤M ; thus the set of polynomials with AffPowF(f) ≤ k and degree d is contained

in
⋃

ei≤M Ve1,...,ek , which is a variety of dimesion ≤ 2k (it is a finite union of

varieties of dimension ≤ 2k). 2

4 Algorithms for distinct nodes

The goal of this and the following section is to provide algorithms that receive as

input a polynomial f and computes s = AffPowF(f) and the triplets (αi, ai, ei)
for i ∈ {1, . . . , s} such that f =

∑s
i=1 αi(x− ai)

ei . We will not able to solve the

problem in all its generality but under certain hypotheses. This section concerns

the case where the ai in the optimal expression of f are all distinct. In this setting,

our main result is Theorem 4.4 where we solve the problem when the number ne of

exponents in the optimal expression that are ≤ e is ’small’. A key point to obtain

the algorithms is given by the following Proposition. Roughly speaking, this result

says that if f satisfies a SDE, then every term in the optimal expression of f with

exponent ei big enough also satisfies the same SDE.

Proposition 4.1. Let f ∈ F[x] be written as

f =
s∑

i=1

αi(x− ai)
ei ,

with αi ∈ F nonzero, the ai ∈ F are all distinct, and ei ∈ N. Whenever f satisfies

a SDE(k, l), then for all ei ≥ k + (k + l)(s − 1) +
(s
2

)
we have that (x − ai)

ei

satisfies the same SDE.

Proof. We assume that e1 ≥ k + (k + l)(s − 1) +
(
s
2

)
and that f satisfies the

following SDE(k, l):
k∑

i=0

Pi(x) g
(i)(x) = 0,

22

with deg(Pi) ≤ i+ l. By contradiction, we assume that (x−a1)e1 does not satisfy

this equation. For every j ∈ {1, . . . , s}, we denote by fj and Rj the polynomials

such that

fj =

k∑

i=0

Pi(x) ((x − aj)
ej)(i) = Rj(x) (x − aj)

dj ,

where dj := max{ej−k, 0}. We observe that deg(fj) ≤ ej+l, so deg(Rj) ≤ k+l,
and that −f1 =

∑s
j=2 fj 6= 0. We consider a linearly independent subfamily of

f2, . . . , fs, namely {fj | j ∈ J} with J = {j1, . . . , jp} ⊆ {2, . . . , s}. Then by

Proposition 2.4 we have that

e1 − k = d1 ≤ Ma1 (f1) ≤ p− 1 +
∑

j∈J deg(Rj) + (p− 1)p −
(p
2

)

≤ p− 1 + (k + l)p+
(p
2

)
.

Since p ≤ s − 1, we get that e1 ≤ k + s − 2 + (k + l)(s − 1) +
(s−1

2

)
<

k + (k + l)(s − 1) +
(s
2

)
, a contradiction. 2

Given f ∈ F[x] and a SDE(k, l) satisfied by f :

k∑

i=0

Pi(x) g
(i)(x).

We say that it is the unique SDE(k, l) satisfied by f if for every SDE(k, l)

k∑

i=0

Qi(x) g
(i)(x)

satisfied by f , we have that Pm(x)Qi(x) = Qm(x)Pi(x) for all i ∈ {0, . . . , k}.

As a consequence of Proposition 4.1, we get Corollary 4.2 and Theorem 4.3.

They provide an effective method to obtain the optimal expression of a polynomial

f in the Affine Power model whenever all the terms involved have big exponents

and all the nodes are different.

Corollary 4.2. Let f ∈ F[x] be written as f =
∑s

i=1 αi(x − ai)
ei , with αi ∈

F \ {0}, ai ∈ F all distinct, and ei > s2(s+ 1)/2 for all i. Then,

a) {(x− ai)
ei | 1 ≤ i ≤ s} are linearly independent,

b) If f =
∑t

i=1 βi(x − bi)
di with t ≤ s, then t = s and we have the equal-

ity {(αi, ai, ei) | 1 ≤ i ≤ s} = {(βi, bi, di) | 1 ≤ i ≤ s}; in particular,

AffPowF(f) = s,

23

c) f does not satisfy any SDE(s − 1,
(
s−1
2

)
), and

d) f satisfies a unique SDE(s,
(s
2

)
). Moreover, the space of solutions of this

equation is the vector space generated by {(x − ai)
ei | 1 ≤ i ≤ s}. In

particular, (x − a)e is a solution of this SDE if and only if (a, e) = (ai, ei)
for some i ∈ {1, . . . , s}.

Proof. Notice first that (b) implies (a). Assume now that (b) does not hold, then

there is another expression of f as f =
∑t

i=1 βi(x − bi)
di with t ≤ s. Hence, by

Proposition 3.11, we get that

2s ≥ t+ s >
√

2(min({e1, . . . , es}) + 1) ≥
√
s2(s+ 1) + 4,

a contradiction. If f is a solution of a SDE(s− 1,
(
s−1
2

)
), by Proposition 4.1, then

so is (x − ai)
ei for all i. Thus, the vector space of polynomial solutions to the

SDE is of dimension ≥ s, but this is not possible by Lemma 2.8. By Proposition

2.6 we have that f satisfies a SDE(s,
(
s
2

)
) which is also satisfied by (x − ai)

ei

for all i ∈ {1, . . . , s} Assume that there is another SDE(s,
(s
2

)
) satisfied by f ,

then Proposition 4.1 yields that (x − ai)
ei is also a solution of this equation for

all i. A direct application of Lemma 2.9 yields the uniqueness of this SDE . To

finish the proof, we assume that there is another solution (x − a)e to the unique

SDE(s,
(s
2

)
), then there is a basis of the space of solutions of the SDE of the form

{(x− bj)
dj | 1 ≤ j ≤ s} with b1 = a and d1 = e. Hence, one can express f in two

different ways with at most s terms, which contradicts (b). 2

Theorem 4.3 (Big exponents). Let f ∈ F[x] be a polynomial that can be written

as

f =
s∑

i=1

αi(x− ai)
ei ,

where the constants ai ∈ F are all distinct,

αi ∈ F \ {0} and ei > s2(s + 1)/2. Then, AffPowF(f) = s. Moreover,

there is a polynomial time algorithm Build(f) that receives f =
∑d

i=0 fix
i ∈

F[x] as input and computes the s-tuples of coefficients C(f) = (α1, . . . , αs), of

nodes N(f) = (a1, . . . , as) and exponents E(f) = (e1, . . . , es). The algorithm

Build(f) works as follows:

Step 1. Take r the minimum value such that f satisfies a SDE(r,
(r
2

)
) and com-

pute explictly one of these SDE.

Step 2. Compute B = {(x− bi)
di | 1 ≤ i ≤ r}, the set of all the solutions of the

SDE of the form (x− b)e with r2(r + 1)/2 ≤ e ≤ deg(f) + (r2/2).

24

Step 3. Determine α1, . . . , αr such that f =
∑r

i=1 αi(x− bi)
di

Step 4. Output the sets C(f) = (α1, . . . , αr), N(f) = (b1, . . . , br) and E(f) =
(d1, . . . , dr).

Proof. Corollary 4.2 proves the correctness of this algorithm. Indeed, s is the

smallest value of r such that f satisfies a SDE(r,
(r
2

)
), so in Step 1 we obtain that

r = s. The set B computed in Step 2 is exactly B = {(x − ai)
ei | 1 ≤ i ≤ s)}

because, by Corollary 3.16, ei ≤ deg(f) + (s2/2) for all i. Hence, B is a basis

of the space of solutions of the same SDE and, thus f can be uniquely written as

a linear combination of the elements of B. In addition, f cannot be written as

another linear combination of t < s terms of the form (x− a)e, which proves the

result.

Finally, the four steps can be perfomed in polynomial time. Only the first two

steps require a justification. See Remark 2.7 in Section 2 regarding Step 1. In

Step 2 we substitute for each value of e the polynomial (x − b)e in the SDE. This

yields a polynomial g(x) whose coefficients are polynomials in b of degree at most

r = s. We are looking for the values of b which make g identically 0, so we find b
as a root of the gcd of the coefficients of g. 2

Now, we can proceed with the main result of this section:

Theorem 4.4 (Different nodes). Let f ∈ F[x] be a polynomial that can be written

as

f =

s∑

i=1

αi(x− ai)
ei ,

where the constants ai ∈ F are all distinct, αi ∈ F \ {0}, and ei ∈ N. Assume

moreover that ni ≤ (2i/3)1/3 − 1 for all i ≥ 2, where ni denotes the number of

indices j such that ej ≤ i.
Then, AffPowF(f) = s. Moreover, there is a polynomial time algorithm Build(f)

that receives f =
∑d

i=0 fix
i ∈ F[x] as input and computes the s-tuples of co-

efficients C(f) = (α1, . . . , αs), of nodes N(f) = (a1, . . . , as) and exponents

E(f) = (e1, . . . , es). The algorithm Build(f) works as follows:

Step 1. We take t the minimum value such that f satisfies a SDE(t,
(t
2

)
) and

compute explicitly one of these SDE.

Step 2. Consider B := {(x− bi)
di | 1 ≤ i ≤ l}, the set of all the solutions of the

SDE of the form (x− b)e with (t+ 1)3 ≤ e ≤ deg(f) + (deg(f)+2)2

8 and

assume that d1 ≥ d2 ≥ · · · ≥ dl ≥ dl+1 := (t+ 1)3.

25

Step 3. We take r ∈ {1, . . . , l} such that dr − dr+1 > t2/2 and dr+1 < deg(f).

Step 4. We set j := dr+1 + 1 and express f (j) as f (j) =
∑r

i=1 βi
di!

(di−j)!(x −
bi)

di−j with β1, . . . , βr ∈ F. We set I := {i |βi 6= 0}.

Step 5. We set f̃ :=
∑r

i=1 βi(x− bi)
di and h := f − f̃ .

If h = 0, then C(f) = (βi | i ∈ I), N(f) = (bi | i ∈ I) and E(f) =
(di | i ∈ I).

Otherwise, we set h := f − f̃ and we have that C(f) = (βi | i ∈ I) ∪
C(h), N(f) = (bi | i ∈ I) ∪ N(h) and E(f) = (di | i ∈ I) ∪ E(h),
where the triplet (C(h), N(h), E(h)) is the output of Build(h).

Proof. By Corollary 3.14 we have that AffPowF(f) = s. Concerning the algo-

rithm, first we observe that the value t computed in Step 1 is ≤ s by Proposition

2.6. Moreover, we claim that the set B computed in Step 2 has l ≤ t elements.

Otherwise, by Lemma 2.8, there exists a set I ⊆ {1, . . . , l} of size ≤ t + 1 and

there exist {γi | i ∈ I} ⊆ F \ {0} such that
∑

i∈I γi(x − bi)
di = 0. Setting

m := max{di | i ∈ I} ≥ (t + 1)3, Proposition 3.11 yields that t + 1 ≥ |I| >√
2(m+ 1) >

√
2(t+ 1)3, a contradiction.

Now we consider the set C := {(x−ai)ei | ei ≥ (s+1)3}, we have that C 6= ∅
because if we set e := max{ei | 1 ≤ i ≤ s}, then s = ne ≤ (2e/3)1/3 − 1 and

(s + 1)3 ≤ 2e/3 < e. By Proposition 4.1, we get that all the elements of C are

solution of the SDE and, by Corollary 3.16 we know that ei ≤ deg(f)+ (deg(f)+2)2

8
for all i ∈ {1, . . . , s}, hence C ⊆ B. In particular, d1 ≥ e ≥ 3

2 (s+ 1)3.

Now we take k := max{i | di > (s+1)3} (we have that 1 ≤ k ≤ l) and we are

going to prove that there exists r ∈ {1, . . . , k} such that e ≥ dr and dr − dr+1 >
t2/2. Indeed, if such a value r does not exist then (s + 1)3/2 = 3

2(s + 1)3 −
(s + 1)3 ≤ e − dk+1 ≤ d1 − dk+1 =

∑k
i=1(di − di+1) ≤ kt2/2 ≤ lt2/2 ≤

s3/2, a contradiction. We claim that if we take r such that dr − dr+1 ≥ t2/2,

then e ≥ dr if and only if dr+1 < deg(f) and, thus, the r described in Step 3

always exists. If dr+1 < deg(f), since deg(f) ≤ e and C ⊆ B, then dr ≤
e (since e is one of the di’s, it cannot be sandwiched between two consecutive

elements dr, dr+1 of this sequence). Conversely, assume now that e ≥ dr and let

us prove that dr+1 < deg(f). To prove this we first observe that setting j :=
dr+1 + 1, then f (j) can be uniquely expressed as a linear combination of B′ :=
{(x − bi)

di−j | 1 ≤ j ≤ r} . Indeed, f (j) =
∑

ei≥j αi
ei!

(ei−j)!(x − ai)
ei−j with

αi 6= 0 and (x − ai)
ei−j ∈ B′ for all ei ≥ j, and if there is another way of

expressing f (j) as a linear combination of B′, then by Proposition 3.11 we get that

t ≥ r >
√

2(min{di | 1 ≤ i ≤ r} − j) + 1 =
√

2(dr − j) + 1 ≥
√
t2 = t, a

26

contradiction. So, if dr+1 ≥ deg(f), then f (j) = 0 and the only expression of f (j)

as a linear combination of B′ would be the one in which every coefficient is 0, a

contradiction. Hence, the value r computed in Step 3 exists and dr > (s + 1)3.

We have seen that f (j) can be uniquely expressed as a linear combination of B′ as

f (j) =
∑

ei≥j αi
ei!

(ei−j)!(x− ai)
ei−j . Hence, in Step 4, one finds all the (αi, ai, ei)

such that ei ≥ j. In Step 5, either the polynomial h is 0 and we have finished or

h =
∑

ei<j αi(x − ai)
ei is written as a linear combination of strictly less than s

terms and satisfies the hypotheses of the Theorem, so by induction we are done. 2

Note that in Step 2 of this algorithm we need to compute polynomial roots,

just as in the corresponding step of Theorem 4.3 (see the proof of Theorem 4.3 for

details). One difference, however, is that we do not use the roots bi only to output

the coefficients of the optimal decomposition: we also use the bi in the subsequent

iterations of the algorithm since the polynomials f̃ and h of Step 5 are defined

in terms of the bi, and we call the algorithm recursively on input h. From this

discussion one might be lead to think that if f has its coefficients in a subfield K

of F, the coefficients of f̃ and h may lie outside K. We show in Proposition 4.5

that this is not the case: f̃ and h = f − f̃ always lie in K[X]. We do not know if

f̃ can be computed from f with a polynomial number of arithmetic operations and

comparisons (in the words of Section 1.3, this would be a way to eliminate root

finding from the “internal working” of the algorithm).

Proposition 4.5. Let K be a subfield of F. Let f ∈ K[x] be a polynomial that can

be expressed in the AffPowF model as

f =

s∑

i=1

αi(x− ai)
ei with αi, ai ∈ F,

and ne = #{i : ei ≤ e} ≤
√

e+1
2 for all e ∈ N. Then, for all m,M ∈ N, the

truncated expression

f̃ =
∑

m≤ei≤M

αi(x− ai)
ei

belongs to K[x]. In particular, whenever f ∈ F[x] satisfies the hypotheses of

Theorem 4.4 and f ∈ K[x], then the polynomial f̃ computed in Step 5 of the

algorithm also belongs to K[x].

Proof. By Corollary 3.14, we know that AffPowF(f) = s and, hence, αi, ai are

algebraic over K. We denote by T the splitting field of the minimal polynomials

of all the αi, ai over K (i.e., the smallest field T such that K(αi, ai) ⊂ T and

K ⊂ T is normal). Since K is of characteristic 0 (and, thus, the extension K ⊂ T

is separable), then K ⊂ T is a Galois extension.

27

Take now σ any element of the Galois group of the extension K ⊂ T. Since

f ∈ K[x], if we apply σ to f we obtain that f = σ(f) =
∑s

i=1 σ(αi)(x −
σ(ai))

ei . Moreover, by Corollary 3.14, we know that AffPowT(f) = s and f has a

unique optimal expression in the AffPowT model, then {(αi, ai, ei) | 1 ≤ i ≤ s} =
{(σ(αi), σ(ai), ei) | 1 ≤ i ≤ s}. In particular, for every e ∈ N, we have that

{(αi, ai, ei) | ei = e} = {(σ(αi), σ(ai), ei) | ei = e}. (8)

Now, we consider f̃ =
∑

m≤ei≤M αi(x− ai)
ei , by (8) we get that

σ(f̃) =
∑

m≤ei≤M

σ(αi)(x− σ(ai))
ei =

∑

m≤ei≤M

αi(x− ai)
ei = f̃ .

Summarizing, if we denote f̃ =
∑M

i=0 fix
i ∈ T[x], we have proved that σ(fi) = fi

for every i ∈ {0, . . . ,M} and every σ in the Galois group of the extension K ⊂ T.

This proves (see, e.g., [7, Theorem 7.1.1]) that fi ∈ K for all i ∈ {0, . . . ,M} and

f̃ ∈ K[x].
2

We define the size of the set of triplets {(αi, ai, ei) | 1 ≤ i ≤ s} ⊂ Z×Z×N as∑s
i=1[1 + log2(1 + |ai|) + log2(1 + |αi|) + ei]. As mentioned in the introduction,

it is not clear that the size of the output of the algorithm proposed in Theorem

4.4 is polynomially bounded in the input size (i.e., in the bit size of f given as a

sum of monomials). However, it is straightforward to check that the input size is

polynomially bounded by the output size. Indeed, the degree of f is upper bounded

by the maximum value of the ei and every coefficient of f can be seen as the

evaluation of a small polynomial in the αi, ai’s. In the following result we prove

that the algorithm works in polynomial time in the size of the output. Hence, a

positive answer to Question 1.5 together with Corollary 3.16 would directly yield

that the algorithm works in polynomial time (in the size of the input).

Proposition 4.6. Let f ∈ Z[x] be written as

f =
s∑

i=1

αi(x− ai)
ei

with ai ∈ Z, αi ∈ Z\{0}, ei ∈ N and assume that this decomposition satisfies the

conditions of Theorem 4.4: the constants ai are all distinct, and ni ≤ (2i/3)1/3−1
for all i ≥ 2, where ni denotes the number of indices j such that ej ≤ i.

Then, the algorithm in Theorem 4.4 works in polynomial time in the size of the

output.

28

Proof. We write f =
∑d

j=0 fjx
j with fj ∈ Z and d = deg(f) ≤ max{e1, . . . , es}.

We have that fj =
∑

ei≥j αi

(
ei
j

)
aei−j
i for all j ∈ {0, . . . , d}. Thus, the size of f

is polynomially bounded by the size of the output. To perform Step 1 we follow

Remark 2.7. We note that the coefficients of the polynomials appearing in the SDE

are polynomially bounded by the size of f . In Step 2 we have to compute the

integral roots of polynomials of degree t ≤ s with integral coefficients, which can

also be done in polynomial time (see, e.g., [21]). Step 4 can also be performed in

polynomial time by solving a linear system of equations (see, e.g., [23, Corollary

3.3a]) . The result follows from the fact that the polynomial h defined in Step 5 can

be written as h =
∑

j∈J αj(x−aj)ej for some set J ⊂ {1, . . . , s} of at most s−1
elements. After the first iteration, the algorithm is therefore called recursively on

polynomials h with an output size bounded by the output size of the original f . 2

5 Algorithms for repeated nodes

This section is a continuation of the previous one and concerns the case where

the nodes ai in the optimal expression of f in the Affine Power model are not

necessarily different. The section is divided in two. In the first subsection we

provide algorithms when all the exponents corresponding to a repeated node appear

in a small interval. The second one handles the case where the difference between

two consecutive exponents corresponding to the same node is always large.

5.1 Small intervals

We bgin with the following result generalizing Proposition 4.1, which corresponds

to δ = 0.

Proposition 5.1. Let δ ∈ Z
+ and let f ∈ F[x] be written as

f =
t∑

i=1

Qi(x) (x− ai)
ei ,

with distinct ai ∈ F, Qi ∈ F[X] with deg(Qi) ≤ δ and ei ∈ N for all i. Assume

that f satisfies the following SDE of parameters k, l:

k∑

i=0

Pi(x)f
(i)(x) = 0.

If ei ≥ k+ (t− 1)(k+ l+ δ) +
(t
2

)
, then Qi(x) (x− ai)

ei satisfies the same SDE;

as a consequence Pk(ai) = 0.

29

Proof. We take i = 1. We assume that e1 ≥ k+ (t− 1)(k+ l+ δ) +
(
t
2

)
and that

f satisfies a SDE(k, l)
k∑

i=0

Pi(x)f
(i)(x) = 0

By contradiction, suppose that Q1(x)(x− a1)
e1 does not satisfy this equation. For

every j ∈ {1, . . . , t}, we denote by gj and Rj the polynomials such that

gj =
k∑

i=0

Pi(x) (Qj(x)(x− aj)
ej)(i) = Rj(x)(x − aj)

dj

where dj := max{0, ej−k} for all j, and with degRj ≤ δ+ej+l−dj ≤ k+l+δ.
We have the equality

−g1 =
t∑

i=2

gi 6= 0. (9)

We consider a linearly independent subfamily of g2, . . . , gt, namely {gj | j ∈ J}
with J = {j1, . . . , jp} ⊆ {2, . . . , t}. Then by Proposition 2.4 we have that

e1 − k = d1 ≤ Ma1 (g1) ≤ p− 1 +
∑

j∈J deg(Rj) + p(p− 1)−
(p
2

)

≤ p− 1 + (k + l + δ)p +
(p
2

)
.

Taking into account that p ≤ t− 1, we finally obtain the inequality

e1 − k ≤ t− 2 + (t− 1)(k + l + δ) +
(t−1

2

)
,

which yields a contradiction.

Now, we take l1 ≥ e1 and R1 ∈ F[x] such that (x − a1)
li R1(x) = (x −

a1)
e1 Q1(x) and R1(a1) 6= 0. Since (x− a1)

e1 Q1(x) is a solution of the SDE, we

have that:
k∑

i=0

Pi(x) ((x− a1)
l1 R1(x))

(i) = 0,

we deduce that there exists q ∈ F[x] such that Pk(x)(x − a1)
l1−kh(x) = (x −

a1)
l1−k+1q(x), from where we deduce that Pk(a1) = 0. 2

From Proposition 5.1 we shall now derive Corollary 5.2 and Theorem 5.3. They

provide an effective method to obtain the optimal expression of a polynomial f in

the Affine Power model whenever all the exponents corresponding to a repeated

node are required to lie in a small interval.

30

Corollary 5.2. Let δ ∈ Z
+ and let f ∈ F[x] be a polynomial written as

f =

t∑

i=1

Qi(x) (x− ai)
ei ,

where:

• Qi(x) =
∑si

j=1 γi,j(x − ai)
ǫi,j ∈ F[x] with γi,j 6= 0 and 0 = ǫi,0 < ǫi,1 <

· · · < ǫi,si ≤ δ,

• the ai’s are elements of F and are all distinct, and

• ei ≥ t2(t+1)
2 + 2t2(δ + 1)2 for all i.

Then,

a) the set of polynomials {Qi(x) (x−ai)ei | 1 ≤ i ≤ t} is linearly independent,

b) AffPowF(f) =
∑t

i=1 si and the optimal representation of f is unique,

c) f does not satisfy any SDE(t− 1,
(t−1

2

)
+ (t− 1)δ), and

d) f satisfies a unique SDE(t,
(
t
2

)
+ tδ), which we denote

t∑

i=0

Pi(x)g
(i)(x) = 0.

Moreover,

• the space of solutions of this equation is the vector space generated by

{Qi(x)(x− ai)
ei | 1 ≤ i ≤ t}.

• Pt(ai) = 0 for all i ∈ {1, . . . , t}.

• The polynomial Q(x)(x − a)e with deg(Q(x)) ≤ δ, Q(a) 6= 0 is a

solution of this SDE if and only if (a, e,Q(x)) = (ai, ei, λQi(x)) for

some i ∈ {1, . . . , t} and some λ ∈ F.

Proof. Notice that (b) implies (a). To prove (b), we observe that f is written as

f =
t∑

i=1

si∑

j=1

γi,j (x− ai)
ei+ǫi,j ,

31

so AffPowF(f) ≤ ∑t
i=1 si. Now assume that f can also be expressed as f =∑r

i=1 βi(x− bi)
di with βi ∈ F and r ≤ ∑t

i=1 si ≤ t(δ + 1). By Proposition 3.11

we get that either both expressions are the same, or

2t(δ+1) ≥ r+
t∑

i=1

si ≥
√

2(min{e1, . . . , et}+ 1) >
√
t2(t+ 1) + 4t2(δ + 1)2,

which is not possible. Thus AffPowF(f) =
∑t

i=1 si and the optimal representation

of f is unique.

Let us prove (d). By Proposition 2.6 we have that there exists a SDE(t,
(
t
2

)
+tδ)

satisfied by f which is also satisfied forQi(x)(x−ai)ei for all i. Moreover, if there

is another SDE(t,
(
t
2

)
+ δt) satisfied by f , by Proposition 5.1 we have that it is also

satisfied by Qi(x)(x− ai)
ei for all i, because

ei ≥ t2(t+1)
2 + 2t2(δ + 1)2 ≥ t2(t+1)

2 + (t2 − 1)δ

= t+ (t− 1)
(
t+

(
t
2

)
+ tδ + δ

)
+

(
t
2

)
.

(10)

Therefore, Lemma 2.9 implies that there is a unique such SDE. We denote by

t∑

i=0

Pi(x) g
(i)(x) = 0

this unique SDE(t,
(
t
2

)
+ tδ). Again by Proposition 5.1, we have that Pt(ai) = 0.

We take a solution to this unique SDE of the form Q(x)(x−a)e withQ(a) 6= 0
and deg(Q(x)) ≤ δ. Since {Qi(x)(x − ai)

ei | 1 ≤ i ≤ t} is a basis of the space

of solutions of the SDE, there exist ρ1, . . . , ρk ∈ F such that Q(x)(x − a)e =∑t
i=1 ρiQi(x)(x − ai)

ei . If there is a unique ρi 6= 0, then Q(x)(x − a)e and

Qi(x)(x − ai)
ei are proportional and we are done. Suppose now that ρ1, ρ2 ∈

F \ {0}, then by Proposition 3.11

(t+ 1)(δ + 1) ≥
√

2(min{e1, . . . , et}+ 1) >
√
t2(t+ 1) + 4t2(δ + 1)2,

which is not possible.

To prove (c), assume by contradiction that f is a solution of a SDE(t−1,
(
t−1
2

)
+

(t− 1)δ). Inequality (10) shows that

ei ≥ (t− 1) + (t− 1)

(
t− 1 +

(
t− 1

2

)
+ (t− 1)δ + δ

)
+

(
t

2

)
.

Hence, Proposition 5.1 implies that Qi(x)(x − ai)
ei is also a solution of this SDE

for all i. However, by (a) the set {Qi(x)(x− ai)
ei | 1 ≤ i ≤ t} is linearly indepen-

dent, and this contradicts Lemma 2.8. 2

32

Theorem 5.3 (repeated nodes in small intervals). Let δ ∈ Z
+ and let f ∈ F[x] be

a polynomial of degree d that can be written as

f =

t∑

i=1

Qi(x) (x− ai)
ei ,

with

• Qi(x) =
∑si

j=1 γi,j(x − ai)
ǫi,j ∈ F[x] with γi,j 6= 0 and 0 = ǫi,0 < ǫi,1 <

· · · < ǫi,si ≤ δ,

• the ai’s are elements of F and are all distinct, and

• ei ≥ t2(t+1)
2 + 2t2(δ + 1)2 for all i.

Then AffPowF(f) =
∑t

i=1 si. Moreover, there is a polynomial time algorithm

Build(f, δ) that receives f =
∑d

i=0 fix
i ∈ F[x] and δ as input and computes

the t-tuples of nodes N(f) = (a1, . . . , at), the values s1, . . . , st and the tuple of

coefficients C(f) = (γi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ si), and exponents E(f) =
(ei+ ǫi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ si). The algorithm Build(f, δ) works as follows:

Step 1. Take r the minimum value such that f satisfies a SDE(r,
(r
2

)
+ rδ).

Compute explicitly one of these SDE, i.e., compute P0, . . . , Pr such that∑r
i=0 Pi(x)f

(i)(x) = 0 and deg(Pi) ≤ i+
(r
2

)
+ rδ.

Step 2. Compute R ⊆ F the set of roots of Pr . For each c ∈ R, consider the set

Bc of solutions of the SDE of the form

g(x) = R(x)(x− c)e,

with e < d+ t2(δ+1)2

2 , where R(x) is a monic polynomial of degree ≤ δ
and R(c) 6= 0. Set B := ∪c∈RBc = {g1, . . . , gp}.

Step 3. Express f as a linear combination of the elements of B, namely, f =∑p
i=1 λigi with λi ∈ F.

Step 4. Denote gi = Ri(x)(x − ci)
di for all i ∈ {1, . . . , p}. Write λiRi(x) in

the shift ci, i.e., λiRi(x) =
∑ri

j=1 βi,j(x− ci)µi,j with βi,j ∈ F\{0} and

0 = µi,0 < · · · < µi,ri ≤ δ.

Step 5. Output N(f) = (c1, . . . , cp), C(f) = (βi,j | 1 ≤ i ≤ p, 1 ≤ j ≤ ri) and

E(f) = (di + µi,j | 1 ≤ i ≤ p, 1 ≤ j ≤ ri).

33

Proof. We observe that f satisfies the hypotheses of Corollary 5.2; then, by

Corollary 5.2.(b), we have that AffPowF(f) =
∑t

i=1 si and that there is a unique

optimal expression of f in the AffPow model.

Let us prove the correctness of the algorithm Build(f, δ). Corollary 5.2.(c)

and (d) justify that the value r computed in Step 1 is equal to t. We denote by

ϕ the SDE computed at this step of the algorithm. For every c ∈ R, the set

Bc computed in Step 2 is either empty or has a unique element by Corollary

5.2.(d). Moreover, we claim that the set B of solutions to ϕ computed in Step

2 is {Qi(x)(x − ai)
ei/γi,si | 1 ≤ i ≤ t} (the division by γi,si ∈ F is due to the

fact that B contains only monic polynomials whereas Qi has leading coefficient

γi,si). Indeed, Corollary 5.2.(d) proves that the set of solutions of ϕ of the form

g = R(x)(x − r)e with r a root of Pt is exactly {λQi(x)(x − ai)
ei |λ ∈ F, 1 ≤

i ≤ t}; the upper bound e < d + t2(δ+1)2

2 is justified by Corollary 3.16 since

AffPowF(f) =
∑t

i=1 si ≤ t(δ + 1). Hence B = {Qi(x)(x − ai)
ei/γi,si | 1 ≤

i ≤ t} and, in particular, t = p. By Corollary 5.2.(a) we have that in Step 3 there

is a unique way of writing of f as a linear combination of g1, . . . , gp. Finally, it

suffices to write gi = Ri(x)(x− ci)
di and consider the Taylor expansion of Ri(x)

with respect to ci for every i ∈ {1, . . . , p} as in Step 4 to get the desired sets of

nodes, coefficients and exponents. 2

Remark 5.4. The algorithm Build(f, δ) described above can be slightly modified

to not receive δ as input as long as f satisfies the hypotheses of Theorem 5.3 for

some δ ∈ Z
+. That is, we only need to assume that there exists δ ∈ Z

+ such that

f =
t∑

i=1

Qi(x) (x− ai)
ei ,

where Qi(x) ∈ F[x] has degree ≤ δ, the ai’s are distinct elements of F, and

ei ≥ t2(t+1)
2 +2t2(δ+1)2 for all i. Indeed, it suffices to start with δ = 1 and execute

Build(f, δ) with increasing values of δ until the reconstruction of f succeeds. The

correctness of this algorithm is justified by Corollary 5.2.(b). In fact, once we find δ
such that the reconstruction is possible, we obtain the optimal expression of f in

the Affine Power model.

5.2 Big gaps

This subsection deals with polynomials f such that whenever the terms (x − a)e

and (x−a)d appear in the optimal expression of f in the Affine Power model, then

the difference between d and e is “large”. Similarly to Section 5, we begin with

some results ensuring that whenever f satisfies a SDE, then so do some of its terms

34

in the optimal expression of f in the Affine Power model. The desired algorithm

then follows as a consequence of these results.

Proposition 5.5. Let f ∈ F[x] be written as

f = (x− a)mg(x) +

s∑

i=1

αi(x− a)ei +

p∑

i=1

βi(x− ai)
di ,

with g ∈ F[x], a, ai, αi, βi ∈ F, m, ei, di ∈ N and ai 6= a for all i. We set

e := max{e1, . . . , es} if s ≥ 1 or e := −1 if s = 0. Whenever f satisfies a

SDE(k, l) with m − e > p + (k + l)(p + 1) +
(p
2

)
, then (x − a)mg satisfies the

same SDE.

Proof. Assume that f satisfies a SDE(k, l)

k∑

i=1

Pi(x)f
(i)(x) = 0

By contradiction, we assume that (x − a)mg(x) does not satisfy this equation.

Thus, there exists T (x) ∈ F[x] nonzero such that
∑k

i=0 Pi(x) ((x − a)mg)(i) =
T (x)(x − a)m−k . For every j ∈ {1, . . . , s} and every j ∈ {1, . . . , p}, we denote

by hj and gj the polynomials such that

hj =
k∑

i=0

Pi(x) ((x − a)ej)(i) and gj =
k∑

i=0

Pi(x) ((x − aj)
dj)(i).

We observe that deg(hj) ≤ ej + l ≤ e+ l and deg(gj) ≤ dj + l. Since f satisfies

the already mentioned SDE, we get that

T (x)(x− a)m−k =
s∑

i=1

αihi +

p∑

i=1

βigi.

If we differentiate (e + l + 1) times on both sides of the previous equation, we

obtain an equality of the following form

U(x)(x − a)m−k−e−l−1 =

p∑

i=1

βig
(e+l+1)
i =

p∑

i=1

Ui(x)(x− ai)
fi

with fi := max{0, di − k − e − l − 1} and deg(Ui(x)) ≤ k + l. If we take a

linearly independent family {g(e+l+1)
i : i ∈ I} ⊆ {g(e+l+1)

i : i ∈ {1, . . . , p}}

35

and compute the multiplicity of a on both sides of the previous equality using

Proposition 2.4, we obtain that

m− k − e− l − 1 ≤ p− 1 + (k + l)p+ (p− 1)p −
(
p

2

)
,

which yields that

m− e ≤ p+ (k + l)(p + 1) +

(
p

2

)
,

a contradiction. 2

The following result is a generalization of Proposition 4.1 where we allow re-

peated nodes provided their corresponding exponents are far enough.

Corollary 5.6. Let f ∈ F[x] be written as

f =
s∑

i=1

αi(x− a)ei +

p∑

i=1

βi(x− ai)
di ,

with a, ai, αi, βi ∈ F, m, ei, di ∈ N, ai 6= a for all i and es > · · · > e1 > e0 :=
−1. Assume that f satisfies a SDE(k, l) and that |ei+1−ei| > p+(k+l)(p+1)+

(p
2

)

for all i, then (x− a)ei satisfies the same SDE for all i ∈ {1, . . . , s}.

Proof. Assume that there exists an ei such that (x − a)ei does not satisfy the

SDE(k, l) and we take e the maximum of such ei. Then, we can write f(x) =
g(x)(x− a)e +

∑
ei<e αi(x− a)ei +

∑p
i=1 βi(x− ai)

di . By means of Proposition

5.5 we have that g(x)(x − a)e is a solution of the same SDE. Moreover, for all

ei > e, then (x − a)ei is also a solution of the SDE. But this is not possible since

the set of solutions is a vector space, and, hence, (x− a)e would also be a solution

to the same SDE. 2

The proof of the following Corollary is analogue to that of Corollary 4.2 but

making use of Corollary 5.6 (instead of Proposition 4.1).

Corollary 5.7. Let f ∈ F[x] be a polynomial that can be written as

f =
s∑

i=1

αi(x− ai)
ei

with ai, αi ∈ F, ei > s(s+ 1)2/2 and, whenever ai = aj for some 1 ≤ i < j ≤ s,
then |ei − ej | > s(s+ 1)2/2.

a) {(x− ai)
ei | 1 ≤ i ≤ s} are linearly independent,

36

b) If f =
∑t

i=1 βi(x − bi)
di with t ≤ s, then t = s and we have the equal-

ity {(αi, ai, ei) | 1 ≤ i ≤ s} = {(βi, bi, di) | 1 ≤ i ≤ s}; in particular,

AffPowF(f) = s,

c) f does not satisfy any SDE(s − 1,
(s−1

2

)
), and

d) f satisfies a unique SDE(s,
(s
2

)
). Moreover, the space of solutions of this

equation is the vector space generated by {(x − ai)
ei | 1 ≤ i ≤ s}. In

particular, (x − a)e is a solution of this SDE if and only if (a, e) = (ai, ei)
for some i ∈ {1, . . . , s}.

From this corollary we get the following result whose proof is analogue to that

of Theorem 4.3.

Theorem 5.8 (Big gaps). Let f ∈ F[x] be a polynomial that can be written as

f =
s∑

i=1

αi(x− ai)
ei

with ai, αi ∈ F, ei > s(s+ 1)2/2 and whenever ai = aj for some 1 ≤ i < j ≤ s,
then |ei − ej | > s(s + 1)2/2. Then, AffPowF(f) = s. Moreover, there is a

polynomial time algorithm Build(f) that receives f =
∑d

i=0 fix
i ∈ F[x] as in-

put and computes the s-tuples of nodes N(f) = (a1, . . . , as), coefficients C(f) =
(α1, . . . , αs) and exponents E(f) = (e1, . . . , es). The algorithm Build(f)works

as follows:

Step 1. Take r the minimum value such that f satisfies a SDE(r,
(
r
2

)
) and com-

pute explictly one of these SDE.

Step 2. Compute B = {(x− bi)
di | 1 ≤ i ≤ r}, the set of all the solutions of the

SDE of the form (x− b)d.

Step 3. Determine α1, . . . , αr such that f =
∑r

i=1 αi(x− bi)
di

Step 4. Output the sets C(f) = (α1, . . . , αr), N(f) = (b1, . . . , br) and E(f) =
(d1, . . . , dr).

6 The multivariate case

This section concerns the study of the multivariate version of the Affine Power

model, i.e., we study expressions of a polynomial f ∈ F[x1, . . . , xn] as

f =

s∑

i=1

αiℓ
ei
i , (11)

37

where ei ∈ N, αi ∈ F and ℓi is a (non constant) linear form for all i. We denote

by AffPowF(f) the minimum value s such that there exists a representation of the

previous form with s terms. We will study the uniqueness of optimal represen-

tations and propose an algorithm for finding such representations. In this section

only, we work in the black box model: we assume that our algorithm has access

to f only through a “black box” that outputs f(x1, . . . , xn) when queried on an

input (x1, . . . , xn) ∈ F
n. This very general model is standard for the study of

many problems about multivariate polynomials such as, e.g., factorization [15],

sparse interpolation [2, 10], sparsest shift [9] or Waring decomposition [17]. We

also assume that our algorithm has access to d = deg(f); the knowledge of an

upper bound on deg(f) would in fact suffice. As explained in the introduction,

our algorithm proceeds by reduction to the univariate case: we solve n univariate

projections of the multivariate problem, and then “lift” them to a solution of the

multivariate problem. One (very) minor difficulty is that our univariate algorithms

are presented for polynomials given in dense representation rather than in black

box representation. But it is easy to convert from black box to dense representa-

tion:

Remark 6.1. Suppose that we have black-box access to a polynomial f(x1, . . . , xn)
of degree d. We can obtain the dense representation of the univariate polynomial

f1(x1) = f(x1, 0, 0, . . . , 0) by querying f on d + 1 distinct inputs of the form

(ai, 0, . . . , 0) and interpolating f1 from its values at a0, . . . , ad.

In our algorithm we perform a random change of coordinates before projecting

to a univariate problem. Converting to dense representation in this case is hardly

more difficult:

Remark 6.2. Suppose that we have black-box access to a polynomial f(x1, . . . , xn)
of degree d. Let g(x) = f(Λ.x+ λ), where λ = (λ1, . . . , λn) ∈ F

n and Λ = (λij)
is an n× n matrix.

We can obtain the dense representation of the univariate polynomial g1(x1) =
g(x1, 0, 0, . . . , 0) = f(λ11x1 +λ1, λ21x1 + λ2, . . . , λn1x1 +λn) by evaluating g1
at d+ 1 points and interpolating from those values. Equivalently, we can observe

that a black-box for g can be constructed from the black box for f , and we can

therefore apply Remark 6.1 to g.

Having recalled these well-known facts, we proceed with uniqueness consid-

erations. Strictly speaking the optimal expressions in model (11) are never unique

since for all λ ∈ F \ {0} we have αiℓ
ei
i = βit

ei
i with βi := αiλ

ei and ti := ℓi/λ.

To deal with this ambiguity, we use the notion of essentially equal expressions.

Given f we say that two expressions of f =
∑s

i=1 αiℓ
ei
i =

∑r
i=1 βit

di
i are es-

sentially equal if r = s and there exists a permutation σ of {1, . . . , s} such that

38

αiℓ
ei
i = βσ(i)t

dσ(i)

σ(i) for all i ∈ {1, . . . , s}. Likewise, we say that f has an essen-

tially unique optimal decomposition in the multivariate Affine Powers model if two

optimal decompositions of f are always essentially equal.

If the representation of f =
∑s

i=1 αiℓ
ei
i is optimal, ℓi and ℓj cannot be pro-

portional whenever ei = ej . Otherwise if ℓi = λℓj with λ ∈ F, we can rewrite

αiℓ
ei
i + αjℓ

ej
j = (λeiαi + αj)ℓ

ej
j

The following result provides a sufficient condition for f to have an essentially

unique optimal decomposition in the multivariate Affine Powers model. Indeed, it

is an extension to the multivariate setting of Corollary 3.14.

Proposition 6.3. Let f ∈ F[x1, . . . , xn] be a polynomial of the form:

f =
s∑

i=1

αiℓ
ei
i

where αi ∈ F\{0}, the ℓi are non constant linear forms, and ℓi is not proportional

to ℓj whenever ei = ej . For every e ∈ N we denote by ne the number of exponents

smaller than e, i.e., ne = #{i : ei ≤ e}. If ne ≤
√

e+1
2 for all e ∈ N, then

AffPowF(f) = s and the optimal representation of f is essentially unique.

Proof. Let r := AffPowF(f) ≤ s and let f =
∑s+r

i=s+1 αiℓ
ei
i be an optimal

representation of f . We write ℓi =
∑n

j=1 aijxj + ai0 for all i ∈ {1, . . . , s + r}.

Consider the ring homomorphism ϕ : F[x1, . . . , xn] → F[x] induced by xi 7→
ωix + λi where ω = (ω1, . . . , ωn), λ = (λ1, . . . , λn) ∈ F

n. If we write ϕ(ℓi) =
bix+ ci, we choose ω and λ such that

(1.a) bi 6= 0 and ci 6= 0 for all i ∈ {1, . . . , r + s}, and

(1.b) for all 1 ≤ i < j ≤ s+r, ϕ(ℓi) = µϕ(ℓj) with µ ∈ F if and only if ℓi = µℓj .

It is important to observe that a generic choice of ω, λ ∈ F
n fulfils these two

conditions. Then

ϕ(f) =
∑s

i=1 αiϕ(ℓi)
ei =

∑s
i=1 αib

ei
i (x+ ci/bi)

ei

=
∑s+r

i=s+1 αiϕ(ℓi)
ei =

∑s+r
i=s+1 αib

ei
i (x+ ci/bi)

ei .

We consider the expression ϕ(f) =
∑s

i=1 αib
ei
i (x + ci/bi)

ei in the univariate

Affine Power model. By (1.b), whenever ei = ej then ci/bi 6= cj/bj . Moreover

it satisfies that {i ∈ {1, . . . , s} : ei ≤ e} = ne ≤
√

e+1
2 for all e ∈ N. Hence

we apply Corollary 3.14 to get that r ≥ AffPowF(ϕ(f)) = s ≥ r and that both

expressions for ϕ(f) are the same. After reindexing if necessary we get that

39

(2.a) αib
ei
i = αi+sb

ei+s

i+s ,

(2.b) ci/bi = ci+s/bi+s,

(2.c) and ei = ei+s for all i ∈ {1, . . . , s}.

By (2.b) we have that bix+ ci = µ(bi+sx+ ci+s) with µ := bi/bi+s. By (1.b) we

have that ℓi = µℓi+s. Finally, by (2.a) and (2.c), we conclude that

αiℓ
ei
i = αiµ

eiℓ eii+s = αi+sℓ
ei+s

i+s ,

proving that the optimal representation of f is essentially unique. 2

Our next goal is to provide algorithms that, given black-box access to a poly-

nomial f ∈ F[x1, . . . , xn], compute s = AffPowF(f) and the terms αiℓ
ei
i for

i ∈ {1, . . . , s} such that f =
∑s

i=1 αiℓ
ei
i . We are going to prove a multivariate

analogue of Theorem 4.3 where the condition of "distinct nodes" is replaced by

"the ℓi’s in the decomposition are not proportional". The same strategy that we

are going to exhibit in the proof also applies to obtain similar results for the other

algorithms of sections 4 and 5.

Theorem 6.4. Let f ∈ F[x1, . . . , xn] be a polynomial that can be written as

f =
s∑

i=1

αiℓ
ei
i ,

where ℓi are nonconstant linear forms such that ℓi 6= λℓj for all λ ∈ F, 1 ≤ i <
j ≤ s, αi ∈ F \ {0}, and ei ∈ N. Assume that ni ≤ (2i/3)1/3 − 1 for all i ≥ 2,

where ni denotes the number of indices j such that ej ≤ i. Then, AffPowF(f) = s.
Moreover, there is a randomized algorithm MultiBuild(f) that, given ac-

cess to a black box for f and to d = deg(f), computes the set of terms T (f) =
{αiℓ

ei
i | 1 ≤ i ≤ s}. The algorithm MultiBuild(f) runs in time polynomial in

n and d, and works as follows:

Step 1. We define g := φ(f) where φ is a random affine change of coordinates

(xi 7→
∑n

j=1 λijxj + λi for all i).

Step 2. For each j ∈ {1, . . . , n}, we set gj := πj(g) where πj : F[x1, . . . , xn] −→
F[x] is induced by xk 7→ 0 if k 6= j and xj 7→ x.

We apply the algorithm Build(gj) from Theorem 4.3 to obtain sj :=
AffPowF(gj) and the triplets (βij , bij , eij) ∈ F × F × N such that gj =∑sj

i=1 βij(x+ bij)
eij .

If there exist i, j such that bij = 0, then output ’It is not possible to

reconstruct f ’. Otherwise, for all j we define the set of triplets

Pj := {(cij , pij , ei,j) | cij := βijb
eij
ij , pij := 1/bij , 1 ≤ i ≤ si}.

40

Step 3. If one of these conditions holds:

(a) there exist j1 6= j2 such that sj1 6= sj2 ,

(b) there exist i1 6= i2 and j such that ci1j = ci2j , or

(c) there exist i, j such that for all i′, ci1 6= ci′j or ei1 6= ei′j;

then output: ’It is not possible to reconstruct f ’. Otherwise we set s :=
s1 = s2 = · · · = sr and reorder the elements of P2, . . . , Pn so that

ci := ci1 = ci2 = · · · = cin and ei := ei1 = ei2 = · · · = ein for all

i ∈ {1, . . . , s}.

Step 4. g =
∑s

i=1 ci(1 +
∑n

j=1 pijxj)
ei , so we output f =

∑s
i=1 ci(φ

−1(1 +∑n
j=1 pijxj))

ei

If the λi’s and the λij’s needed to define φ are chosen uniformly at random

from a finite set S, then the probability of success of the algorithm is at least

1− d2/3(2n + d)

|S| .

Proof. The input polynomial f satisfies the hypotheses of Proposition 6.3, so

AffPowF(f) = s and the optimal representation of f is essentially unique.

After applying a random φ as described in Step 1, with high probability7 we

have that φ is invertible and g =
∑s

i=1 αit
ei
i with ti =

∑n
j=1 aijxj + ai0 satisfies

the following properties:

(i) aij 6= 0 for all i, j.

(ii) for all j 6= 0, then aij/ai0 6= ai′j/ai′0 for all i, i′, and

(iii) αia
ei
i0 6= αi′a

ei′
i′0 for all i 6= i′.

It is important to observe that for a generic choice of the λi’s and λij’s involved in

the definition of φ, these conditions will be fulfilled. The goal of the algorithm is

to recover f via the following expression of g:

g =
s∑

i=1

αia
ei
i0


1 +

n∑

j=1

aij
ai0

xj




ei

;

so we are interested in computing the values

7A detailed probabilistic analysis is performed at the end of this proof.

41

• αia
ei
i0 for all i

• aij/ai0 for all i, j

• ei for all i

In Step 2, for all j ∈ {1, . . . , n} we consider

πj(g) =
s∑

i=1

αia
ei
i0

(
1 +

aij
ai0

x

)ei

=
s∑

i=1

αia
ei
ij

(
x+

ai0
aij

)ei

.

Since πj(g) satisfies the hypotheses of Theorem 4.3 Build(πj(g)) outputs the

values {
(αia

ei
ij ,
ai0
aij

, ei) | 1 ≤ i ≤ s

}
.

From these values we obtain in the sets

Pj =

{
(αia

ei
i0,
aij
ai0

, ei) | 1 ≤ i ≤ s

}
.

Before calling Build(πj(g)), we compute the dense representation of πj(g) using

Remarks 6.1 and 6.2.

Thanks to the unique expression of gj for all j and to (iii) we have that none of

the conditions of Step 3 is satisfied and we obtain g in Step 4.

If we see the values of λi, λij used to define φ as variables, the invertibility

of φ is equivalent to the nonvanishing of a degree n polynomial. Moreover, the

aij are degree one polynomials in these variables. Thus, the conditions aij 6= 0
consist in the nonvanishing of s(n + 1) polynomials of degree 1. The conditions

aij/ai0 6= ai′j/ai′0 for all i, i′, j with j 6= 0 can be seen as the nonvanishing of

s(s− 1)n/2 polynomials of degree 2. The conditions αia
ei
i0 6= αi′a

ei′
i′0 can be seen

as the nonvanishing of s(s− 1)/2 polynomials of degree at most max(ei), which,

by Corollary 3.16, is upper bounded by d+(s2/2). Hence, all the conditions to be

satisfied can be codified in a nonzero polynomial ψ of degree

n+ s(n+ 1) + s(s− 1)n+ (s(s− 1)(2d + s2)/4) ≤ 8s2n+ 2s2d+ s4

4
.

Moreover, if we set e := max(ei), then

• e ≤ d+ (s2/2), and

• s = ne ≤ (2e/3)1/3,

42

form where we deduce that s ≤ d1/3 and the degree of ψ is upper bounded by

d2/3(2n+ d). Hence, by the Schwartz-Zippel lemma, if we assume the λi, λij are

taken uniformly at random from a finite set S, the probability of satisfying all these

constraints is at least

1− d2/3(2n + d)

|S| .

and the result follows. 2

Acknowledgments

The reconstruction problem for sums of affine powers was suggested to one of us (P.K.)

by Erich Kaltofen at a Dagstuhl workshop where P.K. gave a talk on lower bounds for this

model.

References

[1] J. Alexander and A. Hirschowitz. Polynomial interpolation in several variables. Jour-

nal of Algebraic Geometry, 4(2):201–222, 1995.

[2] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polyno-

mial interpolation. In Proc. 20th annual ACM Symposium on Theory of Computing.

ACM, 1988.

[3] M. Bocher. The theory of linear dependence. Annals of Mathematics, 2(1/4): 81–96,

1900-1901.

[4] A. Borodin and P. Tiwari. On the decidability of sparse univariate polynomial inter-

polation. Computational Complexity, 1(1):67-90, 1991.

[5] M. Boij, E. Carlini, A. V. Geramita. Monomials as sums of powers: the real binary

case. Proc. Amer. Math. Soc. 139(9):3039–3043, 2011.

[6] M. C. Brambilla and G. Ottaviani. On the Alexander –Hirschowitz theorem. Journal

of Pure and Applied Algebra, 212(5):1229–1251, 2008.

[7] D. A. Cox, Galois theory. Second edition. Pure and Applied Mathematics (Hoboken).

John Wiley & Sons, Inc., 2012.

[8] I. García-Marco, and P. Koiran. Lower bounds by Birkhoff interpolation. Submitted,

arXiv:1507.02015 [cs.CC].

[9] M. Giesbrecht, E. Kaltofen, W. Lee. Algorithms for computing sparsest shifts of

polynomials in power, Chebyshev and Pochhammer bases. International Symposium

on Symbolic and Algebraic Computation (ISSAC’2002) (Lille). Journal of Symbolic

Computation 36(3-4):401–424, 2003.

[10] M. Giesbrecht, G. Labahn and W.-S. Lee. Symbolic-numeric sparse interpolation of

multivariate polynomials. Journal of Symbolic Computation 44(8):943–959, 2009.

43

[11] M. Giesbrecht, D. S. Roche. Interpolation of shifted-lacunary polynomials. Compu-

tational Complexity 19(3):333–354, 2010.

[12] D. Grigoriev and M. Karpinski. A zero-test and an interpolation algorithm for the

shifted sparse polynomials. In Proc. Applied Algebra, Algebraic Algorithms and

Error-Correcting Codes, 10th International Symposium (AAECC-10). LNCS 673,

pp. 162-169, Springer, 1993.

[13] J. H. Grace, A. Young. The algebra of invariants. Cambridge University Press, 1903.

[14] A. Iarrobino, V. Kanev, Power sums, Gorenstein algebras, and determinantal loci.

Appendix C by Iarrobino and Steven L. Kleiman. Lecture Notes in Mathematics,

1721. Springer-Verlag, Berlin, 1999.

[15] E. Kaltofen and B. Trager. Computing with polynomials given by black boxes for

their evaluations: Greatest common divisors, factorization, separation of numerators

and denominators. Journal of Symbolic Computation 9(3):301-320, 1990.

[16] J. Kleppe. Representing a Homogenous Polynomial as a Sum of Powers of Linear

Forms. Thesis for the degree of Candidatus Scientiarum (University of Oslo), 1999.

Available at http://folk.uio.no/johannkl/kleppe-master.pdf.

[17] N. Kayal. Affine projections of polynomials. In Proc. 44th annual ACM Symposium

on Theory of Computing (STOC 2012), pp. 643-662. ACM, 2012.

[18] N. Kayal, P. Koiran, T. Pecatte, and C. Saha. Lower bounds for sums of powers of low

degree univariates. In Proc. 42nd International Colloquium on Automata, Languages

and Programming (ICALP 2015), part I, LNCS 9134, pages 810–821. Springer,

2015. Available from http://perso.ens-lyon.fr/pascal.koiran.

[19] Y. N. Lakshman, B. D. Saunders, Sparse shifts for univariate polynomials. Appl.

Algebra Engrg. Comm. Comput. 7 (1996), no. 5, 351–364.

[20] J. M. Landsberg and Z. Teitler. On the ranks and border ranks of symmetric tensors.

Foundations of Computational Mathematics, 10(3):339–366, 2010.

[21] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coeffi-

cients. Math. Ann. 261 (1982), no. 4, 515–534.

[22] G. Pólya, and G. Szegö. Problems and theorems in analysis. Vol. II. Theory of func-

tions, zeros, polynomials, determinants, number theory, geometry. Revised and en-

larged translation by C. E. Billigheimer of the fourth German edition. Springer Study

Edition. Springer-Verlag, New York-Heidelberg, 1976. xi+391 pp.

[23] A. Schrijver Theory of linear and integer programming. John Wiley & Sons, 1986.

xii+471 pp.

[24] M. Voorhoeve, and A.J. Van Der Poorten. Wronskian determinants and the zeros of

certain functions. Indagationes Mathematicae, 37 (1975), no. 5, 417–424.

44

A Appendix: Algorithms for Sparsest Shift and Waring

In this appendix we apply the techniques from the previous sections to study opti-

mal decompositions of polynomials in the Waring and Sparsest Shift models. As

explained in the introduction, these two models have been extensively studied in

the literature. We do not claim that the algorithms proposed in this appendix im-

prove on the existing methods. Rather, we present them for the sole purpose of

illustrating on these two classical models the techniques developed for the more

general model of sums of affine powers.

A.1 Waring decompositions

In Proposition 2.6 we saw that if f has an expression in the AffPow model with

s terms, then f satisfies a SDE(s,
(s
2

)
). We begin this section by proving that an

expression of f with s terms in the Waring model yields a SDE satisfied by f of

order s and shift 0.

Proposition A.1. Let f ∈ F[x] be written as

f =

s∑

i=1

αi(x− ai)
d,

Then f satisfies a SDE(s, 0) that is also satisfied by the (x− ai)
d’s.

Proof. We consider the SDE in the unknown g given by the Wronskian:

Wr(g, (x − a1)
d, . . . , (x− as)

d)(x) = 0 (12)

After factoring out (x− ai)
d−s for all i, we get the reduced SDE:

s∑

i=0

Ri(x)g
(i)(x) = 0,

where

Ri =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(x− a1)
s . . . (x− as)

s

d1(x− a1)
s−1 . . . d1(x− as)

s−1

...
. . .

...

di−1(x− a1)
s−i+1 . . . di−1(x− as)

s−i+1

di+1(x− a1)
s−i−1 . . . di+1(x− as)

s−i−1

...
. . .

...

ds . . . ds

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

45

Because of the nice structure induced by all the exponents being equal to d, we

have that R′
i+1 = Ri, and hence deg(Ri) = deg(Rs) − (s − i). If we factor out

the constants on each row in Rs we get that

Rs =

s∏

i=1

di ·

∣∣∣∣∣∣∣∣∣

(x− a1)
s . . . (x− as)

s

(x− a1)
s−1 . . . (x− as)

s−1

...
. . .

...

(x− a1) . . . (x− as)

∣∣∣∣∣∣∣∣∣

We factor (x− ai) on each row and use the known formula for the determinant of

a Vandermonde matrix to obtain:

Rs =

s∏

i=1

di ·
s∏

i=1

(x− ai) ·
∏

i<j

(ai − aj)

We have deg(Rs) = s, and hence deg(Ri) = i, which shows that the reduced SDE

has in fact a zero shift. 2

Moreover, when WaringF(f) is small enough we have that the SDE provided

in Proposition A.1 is the only SDE(s, 0) satisfied by f .

Corollary A.2. Let f be a polynomial such that s = WaringF(f) ≤
√

2d/3. Then

f satisfies a unique SDE(s, 0).

Proof. Consider a SDE(s, 0) satisfied by f :

s∑

i=0

Pi(x)f
(i)(x) = 0

Since WaringF(f) = s, f can be expressed as f =
∑s

i=1 αi(x − ai)
d and {(x −

ai)
d : 1 ≤ i ≤ d} are linearly independent. By Proposition 4.1 we get that any

term (x− ai)
d satisfies this SDE because

d ≥ 3

2
s2 ≥ s+ s(s− 1) +

(
s

2

)
.

Thus, we apply Lemma 2.9 to conclude the equation given by the Proposition A.1

is the unique SDE(s, 0) satisfied by f . 2

As a direct consequence of this result, we have the following algorithm.

Algorithm A.3. Let f be a polynomial of degree d. There is a polynomial time

algorithm WaringDec(f) that receives f =
∑d

i=0 fix
i ∈ F[x] as input decides

46

if Waring(f) ≤
√

2d/3. Moreover, whenever WaringF(f) ≤
√

2d/3, with the

optimal decomposition being

f =
s∑

i=1

αi(x− ai)
d,

the algorithm computes the s-tuples of shifts S(f) = (a1, . . . , as) and coefficients

C(f) = (α1, . . . , αs). The algorithm works as follows:

Step 1. Find the minimum k such that there exists an SDE(k, 0) satisfied by f
and compute explicitly one of these SDE.

Step 2. If k >
√

2d/3, then WaringF(f) >
√

2d/3.

Step 3. Compute the set B = {(x − bi)
d | 1 ≤ i ≤ t} of solutions of the form

(x− a)d of this SDE.

Step 4. If t < k, then WaringF(f) >
√

2d/3.

Step 5. Write f =
∑t

i=1 βi(x − bi)
d, and output S(f) = (b1, . . . , bt) and

C(f) = (β1, . . . , βt).

Note that if we reach Step 5 of the algorithm, we have t = k = s ≤
√
2d/3.

A.2 Sparsest Shift decompositions

We saw in Section A.1 that a polynomial with a Waring decomposition of size s
satisfies a SDE of order s and shift 0. The same is true for the Sparsest Shift model:

Proposition A.4. Let f ∈ F[x] be written as

f =
s∑

i=1

αi(x− a)ei ,

Then f satisfies a SDE(s, 0) that is also satisfied by the (x− a)ei’s.

Proof. We will prove something stronger, namely that f satisfies an SDE(s, 0) of

the following form
s∑

i=0

γi(x− a)ig(i)(x) = 0,

47

where γ0, . . . , γs ∈ F. We take the original SDE given by the Wronskian of an

unknown polynomial g and (x− a)ei for all i ∈ {1, . . . , s}:

s∑

i=0

(−1)i Pi(x) g
(i)(x) = 0.

Because of the stepped sequence of degrees in the determinant defining Pi, there

exists an integer ∆i such that every permutation σ corresponds to a term cσ(x −
a)∆i . More precisely, we have

∆i =




s∑

j=1

ej


−

(
s

2

)
+ i

Thus, the determinant is either 0, or some constant times (x− a)∆i . Moreover, we

have ∆i+1 = ∆i + 1 and hence we can rewrite the SDE as

s∑

i=0

ci(x− a)∆0+ig(i)(x) = 0

with ci ∈ F. We factorize this equation by (x − a)∆0 to obtain the wanted

SDE(s, 0). Notice that the factorization again doesn’t change the space of solu-

tions, hence f and (x− a)ei are still solutions of this SDE. 2

Corollary A.5. Let f be a polynomial of degree d such that s = SparsestF(f) <√
d, and let a ∈ F be the corresponding sparsest shift. Let

∑k
i=1 Pi(x)f

(i)(x) = 0
be any SDE(k, 0) satisfied by f . If k ≤ s we must have Pk(a) = 0.

Proof. Assume that f satisfies an SDE(k, 0) :
∑k

i=1 Pi(x)f
(i)(x) = 0 with k ≤ s.

The sparsest shift decomposition of f is

f =
s∑

i=1

αi(x− a)ei .

Assume that e1 > e2 > · · · > es > es+1 := −1. We take t ∈ {1, . . . , s} the

maximum value such that et − et+1 − 1 ≥ s. Such a value t exists, otherwise

d ≤ e1 <
∑s

i=1(ei − ei+1) < s2, a contradiction. We rewrite f as

f = (x− a)etg(x) +

s∑

i=t+1

αi(x− a)ei .

Now we apply Proposition 5.5 with p = 0 to get that (x− a)etg satisfies the same

SDE because et − et+1 > s ≥ k. By the same argument as in Proposition 5.1, we

conclude that Pk(a) = 0. 2

48

Algorithm A.6. Let f be a polynomial of degree d. There is a polynomial time

algorithm SparsestShift(f) that receives f =
∑d

i=0 fix
i ∈ F[x] as input

decides if SparsestF(f) ≤
√
d; moreover, whenever SparsestF(f) ≤

√
d, with the

optimal decomposition being

f =

s∑

i=1

αi(x− a)ei ,

the algorithm computes the shift a ∈ F, and the s-tuples of coefficients C(f) =
(α1, . . . , αs) and exponents E(f) = (e1, . . . , es). The algorithm works as follows:

Step 1. Find the minimum k such that there exists an SDE(k, 0) satisfied by f
and compute explicitly one of these SDE. Namely,

k∑

i=0

Pi(x)f
(i)(x) = 0

Step 2. Factorize the last coefficient of this SDE, i.e., write:

Pk = c ·
k∏

i=1

(x− ai).

Step 3. For each ai, decompose f in the shifted basis ((x− ai)
j)0≤j≤d.

Step 4. If the decomposition with smallest number of terms has ≤
√
d terms, we

output this decomposition; otherwise, SparsestF(f) >
√
d.

49

