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Abstract

This note summarizes in a sketchy way some findings (filtering, parameter
estimation, comparison with models) that have been obtained with time-
frequency analyses of the gravitational wave signals corresponding to the
event GW150914, as detected by LIGO on Sept. 14, 2016.

1 Data

The first direct observation of a gravitational wave emitted by the merger of a
binary black hole has recently been reported [1], soon after followed by a second
announcement [2].

We will here focus on the first observation, which consists in two transient
signals of short-duration (a fraction of a second) associated to an event referred
to as GW150914, as detected on Sept. 14, 2015 by the two LIGO giant inter-
ferometers located respectively in Hanford, WA and Livingston, LA.

The corresponding data has been made publicly available at the LIGO
website (see https://losc.ligo.org/events/GW150914/), together with ad-
ditional information such as numerical relativity models for the observed wave-
forms.

2 Time-frequency analysis

The event GW150914 corresponds to the merger of two black holes, entering the
category of transient bursts that are characterized by a “chirp” signature, with
an increase in both amplitude and instantaneous frequency during the inspiral
part that precedes the coalescence. As it has already been observed many times
(see, e.g., [6, 7] or [11]), this peculiar structure suggests to perform the analysis
in a time-frequency domain, giving the signature the simple form of a trajectory
in the plane.
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2.1 Spectrogram and reassigned spectrogram

As far as time-frequency analysis is concerned, many possibilities are offered
[4, 8], and we will here make only use of simple and well-established techniques
based on the short-time Fourier transform (STFT), namely the spectrogram
(squared magnitude of the STFT) and its reassigned version (whose purpose is
to dramatically increase the localization of chirps in the plane [12, 3, 9].

Thanks to these techniques, the chirping nature of the two recorded wave-
forms is clearly evidenced, see Figure 1.

In both cases, the observation is made of 3441 data points, sampled at the
rate of 16, 384 Hz. The TF analysis (spectrogram and its reassigned version)
has been made with a time step of 8 samples and a frequency zoom in on the
lower part of the spectrum by a factor of 24. This results in a TF matrix of size
431×85, covering the effective TF domain [0.25 s, 0.46 s] × [0 Hz, 341 Hz]. The
short-time window is a Gaussian whose size (1,023 samples) has been chosen to
be almost “circular” (see [10]) for the retained sampling of the TF plane. All
calculations have been made in Matlab, using scripts of the Time-Frequency
ToolBox that is available at http://tftb.nongnu/org.

2.2 Filtering from spectrogram zeros

A new technique [10] has recently been proposed for disentangling multicom-
ponent nonstationary signals into coherent AM-FM structures, thus making
possible a time-frequency filtering of chirp-like signals. In contrast with conven-
tional techniques (e.g., ridges [5]) that tend to identify components with “large”
values of the transform, the new approach is only based on the zeros (that are
known to completely characterize the transform (and, hence, the signal) for the
proper choice of a “circular” Gaussian window [13]).

Considering zeros as nodes for a Delaunay triangulation [14], the key ob-
servation [10] is that, in noise only situations, triangles have edges that obey
a given, regular, distribution whereas, when a signal component is added, its
presence is marked by longer edges. In a nutshell, the method proceeds therefore
as follows:

1. Perform a Delaunay triangulation over the spectrogram zeros;

2. Identify outlier edges (with respect to the edge length distribution in the
noise-only case);

3. Keep triangles with at least one outlier edge;

4. Group adjacent such triangles in connected, disjoint domains;

5. Multiply the STFT with labeled 1/0 masks attached to the different com-
ponents;

6. Reconstruct the disentangled components, domain by domain, by using
standard reconstruction formulæ.
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As for the reconstruction step, it can be achieved by using either the standard
2D formula or its simplified, yet exact 1D form:

xj(t) =
1

g(0)

∫
(t,ω)∈Dj

F (g)
x (t, ω)

dω

2π
(1)

where F
(g)
x (t, ω) stands for the STFT with window g of the signal x, and Dj for

the j-th selected TF domain.

2.3 GW150914 analyses

In order to fix the threshold for discriminating outlier edges, the edge distribu-
tion is estimated from a number of surrogate spectrograms computed on noise
only signals, under the same conditions as the ones used for the signal under
test. A further specification can be added with respect to area: in case a De-
launay cell would have a “too small” area while having at least one outlier edge
(in terms of length), the cell is rejected. This is illustrated in Figure 2 in the
case of the Hanford signal, with the result of the overall proposed procedure of
TF filtering in Figure 3.

The case of the Livingston signal proved to be more noisy, and thus more
difficult to handle in an automatic way. One possibility would be to supervise
the analysis and complete by hand the selection of relevant triangles. Because
the proposed approach to TF filtering is fundamentally based on zeros, another
option is however possible, which consists in adding a small amount of noise
to the observation prior its analysis. This results in a slight perturbation of
the zeros constellation that may lead to more favourable triangulations (this
noise-aided technique has to be explored further). The Livingston counterpart
of the previous Hanford analyis is reported in Figures 4 and 5.

3 Comparisons

3.1 Filtered data vs. models

Besides observed data, results of numerical gravity computations are also avail-
able, and thus amenable to comparisons between theory and measurements.
Such a comparison is reported in Figure 6, evidencing in both cases an amazing
agreement.

3.2 Hanford vs. Livingston

Since both Hanford and Livingston signals are supposed to correspond to the
same event, it is possible to make them coincide after a proper shift related
to the propagation, at the speed of light, of the gravitational wave from one
detector to the next.

The geometry of the system indicates that such a shift should involve a
phase term of π radians as well as a time delay of at most 10 ms, given that
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the two detectors are distant from about 3, 000 km. This expectation is clearly
supported by Figure 7 in which is plotted the cross-correlation between the
two filtered waveforms. The shape of this cross-correlation function is nearly
symmetric, with a negative peak off the origin. The fact that this peak is
negative evidences the phase shift of π radians that is expected in between the
waveforms, due to the relative positioning of the detectors. Furthermore, the
time distance at which the peak is located from the origin turns out to be of
6.8 ms, corresponding to an effective, acceptable distance of 2, 000 km. (Let us
remark that the detection in Hanford following that in Livingston, this suggests
that the event took place in the Southern Hemisphere.)

Figure 8 displays the similarity between the two filtered waveforms, once
properly synchronized according to the above mentioned shifts as well as to an
ad hoc amplitude adjustement.

3.3 Chirp parameters estimation

Once the observations have been filtered, one can go further and estimate the
chirp parameters under the assumption that the inspiral part of the coalescence
(before it attains its maximum and then evolves in a different ring-down mode)
follows the approximation that describes the way the amplitude and the instan-
taneous frequency diverge when approaching the coalescence time t0. Indeed,
according to a first post-Newtonian approximation, the waveform expected to
be observed from a coalescing binary reads (see, e.g., [15] or [16]):

x(t; t0, C) = A(t0 − t)−α cos
(
2πd(t0 − t)β + ϕ

)
Θ(t0 − t),

where A stands for the amplitude, α = 1/4, β = 5/8, ϕ is a phase factor, Θ(.)
the unit step function, and d the “chirp rate”. This last coefficient quantifies
the power-law divergence of the instantaneous frequency which reads [6]:

fx(t) =
5d

8
(t0 − t)−3/8Θ(t0 − t).

This chirp rate d happens to be related to the so-called “chirp mass” M, a
quantity that combines the masses of the two coalescing objects, according to

the relation d = 160 × 33/8M−5/8� (where M� = M/M� and M� stands for
the solar mass) [15, 6], thus allowing to convert estimated chirp rates into chirp
masses.

Given this model, two main parameters have therefore to be estimated,
namely the coalescence time t0 and the chirp mass M�. The classical ap-
proach for such a task is to make use of a bank of matched filters [15] but, as
suggested in [6, 7], an (approximate) equivalent formulation can be given in the
time-frequency plane: it suffices to perform a path integration along trajectories
that precisely correspond to the instantaneous frequency model. Examples of
this strategy are reported in Figures 9 and 10 (Hanford signal), and Figures 11
and 12 (Livingston signal). One can observe coherent results, though with an
increased contrast when using a reassigned spectrogram in place of a conven-
tional one. The obtained values for the chirp mass range from 27.8 to 28.9 solar
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masses, with an average value of 28.5 solar masses which is pretty consistent
with what is reported in [1].
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Figure 1: Waveforms and time-frequency signatures — Left column: Han-
ford, WA; Right column: Livingston, LA. In both cases, the waveforms (top row)
have a “chirping” time-frequency signature, as evidenced by a spectrogram (mid-
dle row) and its reassigned version (bottom row). The displayed frequency range
of the analysis is [0 Hz, 341 Hz].
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Figure 2: Delaunay triangles selection (Hanford) — Comparing the dis-
tribution of geometrical attributes of the Delaunay triangles (top: edge length,
bottom: cell area) of the observed data (red) with those of a set of 500 noise
surrogates (black) used as null reference, permits to fix thresholds (blue) for
retaining outlier triangles with a given false alarm rate.
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Figure 3: Time-frequency filtering (Hanford) — Top left: original signal
(noisy observation). Middle left: spectrogram. Bottom left: spectrogram with
the Delaunay triangulation based on its zeros. Bottom right: Delaunay domains
obtained by concatenating adjacent triangles with at least one outlier edge and
sufficient area. Middle right: TF filtered spectrogram, as masked by the indicator
function of the (blue) Delaunay domain of interest. Top right: filtered signal
obtained from the masked short-time Fourier transform.
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Figure 4: Delaunay triangles selection (Livingston) — Comparing the
distribution of geometrical attributes of the Delaunay triangles (top: edge length,
bottom: cell area) of the observed data (red) with those of a set of 500 noise
surrogates (black) used as null reference, permits to fix thresholds (blue) for
retaining outlier triangles with a given false alarm rate.
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Figure 5: Time-frequency filtering (Livingston) — Top left: original signal
(noisy observation). Middle left: spectrogram. Bottom left: spectrogram with
the Delaunay triangulation based on its zeros. Bottom right: Delaunay domains
obtained by concatenating adjacent triangles with at least one outlier edge and
sufficient area. Middle right: TF filtered spectrogram, as masked by the indicator
function of the (blue) Delaunay domain of interest. Top right: filtered signal
obtained from the masked short-time Fourier transform.
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Figure 6: Reconstruction and model — Superimposition of the filtered signal
(black) and of the model computed by numerical relativity (red), evidencing an
amazing agreement in both cases of the Hanford signal (top) and Livingston
signal (bottom).
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Figure 7: Cross-correlating Hanford and Livingston signals — The cross-
correlation between the (TF filtered) Hanford and Livingston signals is nearly
symmetric, with a negative peak off the origin. This supports the expected claim
that, due to propagation and the relative positioning of the detectors, the two
observations differ by a phase shift of π radians and a time shift of 6.8 ms.
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Figure 8: Hanford and shifted Livingston — Superimposition of the filtered
Hanford signal (red), shifted in time by 6.84 ms, and of the filtered Livingston
signal (black), shifted in phase by π radians.
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time−frequency matched filter (t0 = 0.428 s ; M = 28.5 solar mass)
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Figure 9: Parameters estimation from spectrogram (Hanford) — Bot-
tom: output of the time-frequency matched filter obtained by the path integration
of a spectrogram along the instantaneous frequency curve of the binary coales-
cence model, as a function of the chirp mass and of the coalescence time (maxi-
mum is indicated by the white dot). Top: spectrogram of the filtered signal, with
the optimum model trajectory and the corresponding coalescence time superim-
posed in yellow.
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time−frequency matched filter (t0 = 0.425 s ; M = 27.8 solar mass)
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Figure 10: Parameters estimation from reassigned spectrogram (Han-
ford) — Bottom: output of the time-frequency matched filter obtained by the
path integration of a reassigned spectrogram along the instantaneous frequency
curve of the binary coalescence model, as a function of the chirp mass and of
the coalescence time (maximum is indicated by the white dot). Top: reassigned
spectrogram of the filtered signal, with the optimum model trajectory and the
corresponding coalescence time superimposed in yellow.
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time−frequency matched filter (t0 = 0.421 s ; M = 28.9 solar mass)
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Figure 11: Parameters estimation from spectrogram (Livingston) —
Bottom: output of the time-frequency matched filter obtained by the path inte-
gration of a spectrogram along the instantaneous frequency curve of the binary
coalescence model, as a function of the chirp mass and of the coalescence time
(maximum is indicated by the white dot). Top: spectrogram of the filtered sig-
nal, with the optimum model trajectory and the corresponding coalescence time
superimposed in yellow.
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time−frequency matched filter (t0 = 0.419 s ; M = 28.6 solar mass )
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Figure 12: Parameters estimation from reassigned spectrogram (Liv-
ingston) — Bottom: output of the time-frequency matched filter obtained by the
path integration of a reassigned spectrogram along the instantaneous frequency
curve of the binary coalescence model, as a function of the chirp mass and of
the coalescence time (maximum is indicated by the white dot). Top: reassigned
spectrogram of the filtered signal, with the optimum model trajectory and the
corresponding coalescence time superimposed in yellow.
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