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We study the physics of adhesion and the contact mechanics at the nanoscale with a peeling experiment of
a carbon nanotube on a flat substrate. Using an interferometric atomic force microscope and an extended
force modulation protocol, we investigate the frequency response of the stiffness of the nano-contact from DC
to 20 kHz. We show that this dynamic stiffness is only weakly frequency dependent, increasing by a factor
2 when the frequency grows by 3 orders of magnitude. Such behavior may be the signature of amorphous
relaxations during the mechanical solicitation at the nano-scale.

I. INTRODUCTION

At the nanometer scale, the interaction between ob-
jects can be quite different from what expected at the
macroscopic level: the large surface to volume ratio am-
plifies the effects of some phenomena, such as the Van
der Waals forces. Adhesion is therefore ubiquitous, and
impacts on the mechanical interaction between nano-
objects. It has for instance a strong influence in atomic
force microscopy (AFM)1, where a nanometric tip is used
to measure the topography by scanning a surface at con-
stant interaction. It also drives the behavior of nano-
particules, nano-wires or nano-tubes in contact with a
substrate2. Quantifying adhesion processes is thus im-
portant to understand the physics in the nano-world.
Atomic force microscopy, thanks to its ability to ap-

ply and measure forces and displacements in the nN and
nm range respectively, is a first-choice tool to explore
nano-mechanics. For example, the AFM has been suc-
cessfully used to characterize the adhesion of one dimen-
sional nano-object, such as carbon nanotubes3–6. In par-
ticular, in peeling experiments, one measures the force
while the nanotube is pulled from a flat substrate7–14.
The force versus distance curve displays a signature spe-
cific to this peeling process, and can be used to extract
the energy of adhesion between the nano-object and the
surface. Scanning electron microscopy has also been used
to substantiate those conclusions by confirming the ge-
ometry of the contact during peeling10,11,15,16.
These peeling experiments are however restricted to

the quasi-static mechanical behavior of the contact, since
the time scales probed are of the order 1 s. In this article,
we explore the dynamic response of the contact, which
can be quite different. Indeed, in previous works13,14, we
showed that at frequencies higher than 10 kHz, the adhe-
sion processes can be considered as frozen: the nanotube
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has no time to adhere to (or detach from) the substrate,
leading to a dynamic stiffness which is greater than the
static one. We are therefore interested in probing the in-
termediate frequency range: does any characteristic time
scale govern this dynamic behavior ? What are the phys-
ical processes associated to this “freezing” of the adhe-
sion ?

To explore this frequency range, we will extend one
mode of operation of AFM, generally referred to as force
modulation17. In this mode, one adds a small amplitude
sinusoidal oscillation to modulate the force while the tip
is in contact with the sample. Using an adequate model
of the rheological behavior of the sample, the response of
the AFM probe at this frequency leads to the ability of
mapping rheological properties at the nanometer scale.
In our case, such force modulation is tricky in two as-
pects. First, the amplitude of the modulation has to be
extremely small to probe the linear response of the nan-
otube. Second, several frequencies should be measured at
the same time, since the precise contact configuration can
vary between successive experiments. We will introduce
a protocol to address those two points, and measure the
frequency behavior of the dynamic stiffness of the con-
tact.

This article is organized as follows: in part II, we
first describe the experiment and the quasi-static force
curve measurements, leading to the characterization of
the adhesion energy between an individual carbon nan-
otube and a substrate of mica. In part III, we study the
dynamic stiffness, either using a thermal noise analysis
of the AFM probe during the peeling process, or per-
forming extended force modulation experiments. In the
last part, we discuss the experimental results and sug-
gest some physical interpretation of the weak frequency
dependence of the dynamic stiffness of the contact.
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II. QUASI-STATIC FORCE MEASUREMENTS

The nanotubes are grown directly18 at the tip apex of
AFM probes by Chemical Vapor Deposition (CVD): the
bare silicon cantilevers are fully dipped into the catalyst
solution, then gently dried in a nitrogen flux before be-
ing placed in the furnace. CNTs grow everywhere on the
cantilever, and around 1 in 3 cantilevers has a CNT at the
tip14. A typical sample is shown by the SEM (Scanning
Electron Microscopy) image of figure 1(a). Growth pa-
rameters are tuned to produce mainly single wall CNTs,
but the effective sample may slightly differ from this goal.
It may consist of a bundle of a few single wall nanotubes,
carry a significant amount of amorphous carbon19, or be
a few-wall nanotube. No TEM (Transmission Electron
Microscopy) images are available for our samples, since
they tend to break during extensive testing, and thus no
a posteriori imaging can be performed.
In the experiments, the nanotube is pushed against a

flat mica substrate, as shown in the schematic diagram of
figure 1(b). The translation of the substrate is performed
with a piezo translation platform (Physik Instrumente —
PI P527.3) operated in closed loop, featuring an accuracy
of 0.3 nm rms thanks to its embedded capacitive sensor.
We measure the deflection d of the AFM cantilever with a
home-made highly sensitive quadrature phase differential
interferometer, which detects the optical path difference
between the sensing beam (focused on the cantilever tip)
and the reference beam (focused on the static base)20–22

— see sketch in figure 1(b). The deflection d and the sam-
ple vertical position zs are simultaneously recorded with
high resolution acquisition cards (National Instruments
— NI-PXI-446x) at 200kHz.
With both zs and d being calibrated, using a proper

definition of the origins (zc0, zs0) we can compute at any
time the compression of the nanotube:

zc = zs − d cos θ (1)

where θ = 15◦ accounts for the inclination of the can-
tilever with respect to the substrate. With the hypothe-
sis that the horizontal forces acting on the nanotube are
negligible, we can also compute the vertical force acting
on the nanotube13,14:

F = −
k0

cos θ
d (2)

with k0 the static stiffness of the AFM cantilever (cali-
brated from its thermal noise23). Using compression in-
stead of sample position allows us to take into account
the compliance of the cantilever, thus to focus on the
nanotube properties only in the force versus compres-
sion curves. In the following, we will drop cos θ when
writing the equations to ease their reading (thus taking
θ = 0◦), but taking into account this small correction is
straightforward and has been done during the data anal-
ysis. Figure 1(c) reports the sketch the simplified model.
An example of a force curve is plotted in figure 2(a). It

presents a strong hysteresis due to the adhesion between
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FIG. 1. (Color online) – (a) Scanning electron micrograph of
a soft CNT grown directly on an AFM tip. The nanotube
length is Lc ∼ 500 nm. (b) When the nanotube is pressed
almost perpendicularly against a mica surface (θ = 15◦ in-
clination of the AFM cantilever with the substrate), part of
the nanotube adheres to the surface due to Van der Waals in-
teractions. The shape of the CNT is fixed by an equilibrium
between the adhesion of the part in contact and the bending
of the free standing part of the nanotube. From the measure-
ment of the AFM cantilever deflection d (using differential in-
terferometry20) and sample position zs, the force F acting on
the nanotube and its compression zc can be recorded. (c) The
system is modeled by the effective mass m of the cantilever
being connected to two springs: the cantilever (spring con-
stant k0) attached to the static reference, and the nanotube in
contact with the substrate (effective stiffness kc). The sketch
corresponds to the simplified equation where θ = 0◦ and the
origins are defined such as zc0 = zs0 = 0.

approach and retraction, with a plateau-like behavior of
the force during retraction: this is the signature of an
adhesion and peeling process of the nanotube on the sur-
face13,14. The steep evolution at the largest compression
corresponds to a hard contact between the AFM tip and
the substrate, while the jumps between different plateaus
during retraction are the signatures of defects in the nan-
otube. The shape of this force curve is robust to a few
hundred cycles, showing an excellent reproducibility for
different landing positions on the mica substrate. Other
nanotubes present very similar features, except for the
position of defects along their length which is naturally
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FIG. 2. (Color online) – (a) Force F of a CNT as a function of
its compression zc on a mica substrate. A strong hysteresis,
due to the adhesion can be noted between approach (blue)
and retraction (yellow/red). Plateaus in the force curve are
characteristic of a peeling process13. (b) The ramp is designed
to probe specifically the peeling configuration corresponding
to compressions zc between 160 nm and 260 nm during re-
traction. (c) As shown by the PSD of the deflection Sd, the
thermal noise of the cantilever allows the measurement of the
additional stiffness due to the contact: the resonant frequency
is higher (red) when the nanotube is in contact with the sub-
strate than before contact (blue).

specific to each sample.

We focus our attention here on the longest force
plateau during retraction of this nanotube, for compres-
sions zc ranging between 160nm and 260nm. We there-
fore use a non uniform approach and retraction speed
to enhance the resolution in this area of interest, with
a slow ramp at 0.1µm/s, as shown in figure 2(b). The
force curve in this range of compression, though present-
ing some deviations to a perfect plateau, is rather flat:
the local slope of the quasi-static force versus compres-
sion fluctuates around zero with a maximum slope below
3× 10−2N/m. The quasi-static stiffness of the nanotube
in contact with the sample, defined by this slope, is thus
close to zero in average: kQS = dF/dzc = (4±22)mN/m
(mean and standard deviation).

III. CONTACT DYNAMIC STIFFNESS

As the compression ramp is sufficiently slow, we stay
long enough around any compression zc to measure a
spectrum of the deflection driven by the cantilever ther-
mal noise or to probe the frequency response of the con-
tact. The force acting on the AFM tip is no longer due to
the deflection of the cantilever alone, since the nanotube
touching the surface has to be considered as well. The
mechanical oscillator (the first mode of cantilever) expe-
rience an effective stiffness k0 + kc, shifting its resonance
angular frequency24 from ω0 to ωc, as illustrated in fig-
ure 2(c)13,14,25. Dissipation is neglected in the following
since the quality factor of the resonances is always large,
above 20 at worse.
Let us model the system as sketched in figure 1(c):

the cantilever’s dynamics is that of a simple harmonic
oscillator (SHO, effective mass m, stiffness k0), while the
nanotube in contact with the substrate adds a stiffness
kc. The equation of motion of the tip can be written in
the time space as:

md̈ = Fext − k0d+ kczc (3)

where Fext is an hypothetical external force acting on the
tip. Moreover, the compression of the nanotube zc and
the deflection of cantilever d are linked by

zc = zs − d (4)

Let us study two different cases, depending on whether
zs is constant or externally driven.

A. Quasi-static thermal noise measurement

If zs is constant (the substrate is static — or quasi-
static), the equation of motion (3) reads in the Fourier
space:

(

k0 + kc(ω)−mω2
)

d(ω) = Fext(ω) (5)

In this last equation, we explicitly allow kc to depend
on frequency, but as the resonance is sharp enough, only
its value close to the resonance matters to accurately de-
scribe the thermal noise peak. This equation thus cor-
responds to a simple harmonic oscillator of mass m and
stiffness k0 + kc(ωc). The SHO parameters (mass, stiff-
ness) are linked to the resonance frequency by the usual
relation:

mω2
0 = k0 (6)

mω2
c = k0 + kc(ωc) (7)

We can thus easily compute the contact stiffness kc from
the angular frequency ωc of the resonance13,14,25:

kc(ωc) = k0

[

(

ωc

ω0

)2

− 1

]

(8)
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FIG. 3. (Color online) – (a) Position dependence of the quasi-
static force. (b) Contact stiffness: quasi-static (Qs.), dynamic
from response measurement (at 160Hz, 1.6 kHz and 10 kHz)
and from thermal noise analysis (fc). The dynamic stiffness
is higher than the quasi-static one, and is almost constant on
the force plateau. Some small variation are visible along the
nanotube length though, they are correlated between force
and stiffness: the larger the adhesion, the larger the dynamic
stiffness.

The resonance frequency is measured from the noise
spectrum of the cantilever13,14,25: the power spectrum
density (PSD) of the fluctuations of deflection, induced
by the thermal noise random forcing, is sharply peaked at
ωc, as illustrated in figure 2(c). During the quasi-static
ramp, we compute the PSD on a 0.4 s sliding time win-
dow, thus corresponding to only a 4 nm vertical trans-
lation of the sample. Using the procedure described
above, we report figure 3(b) the measured values of the
stiffness kc(ωc) of the contact as a function of the nan-
otube compression zc. On the force plateau probed here,
with this nanotube, we see that kc values at resonance
are independent of the compression zc, thus quite flat:
kc(ωc) = (108 ± 12)mN/m (mean and standard devia-
tion). This result contrasts singularly with the quasi-
static measurement: kQS = (4± 22)mN/m.

B. Dynamic measurements

Thermal noise is a powerful tool to probe the contact
dynamics, however it is limited to the resonant frequency
of the micro-mechanical oscillator. To bridge the gap in
the values of the contact stiffness between the quasi-static

and the resonance conditions, we use an extended force
modulation strategy: we shake the substrate vertically
and test the response of the nanotube/substrate contact
at various frequencies between 10Hz and 10 kHz. The
substrate translation stage being too massive to reach
such high frequencies, we mount the mica surface on an
additional dedicated small piezo actuator (Physik Intru-
mente — PICMA PL055, 5mm× 5mm× 2mm, with an
unloaded resonance above 300 kHz). The response func-
tion of this fast piezo to the driving voltage is calibrated
using a stiff AFM probe in hard contact with the surface.
It is flat at 16nm/V in the frequency range probed here.
From the driving voltage, we thus know precisely the in-
duced displacement zs(ω): our resolution is equivalent to
that given by the interferometer, far beyond the sensor
embedded in the translation stage. We can finally mea-
sure the response function χ(ω) of the deflection d(ω) to
zs(ω). Using equations 3 and 4 with Fext = 0, we easily
get

χ(ω) =
d(ω)

zs(ω)
=

kc(ω)

k0(1− ω2/ω2
0) + kc(ω)

(9)

This equation is transformed to express the dynamic stiff-
ness as a function of the measured response function
χ(ω):

kc(ω) =
χ(ω)

1− χ(ω)
k0

(

1−
ω2

ω2
0

)

(10)

To evaluate kc(ω) for different compression values of
the nanotube during peeling, we add the periodic driv-
ing of zs on a ramp equivalent to that of used to test
quasi-static and thermal noise properties of figure 2(b).
This periodic driving is designed as the sum of 16 sinu-
soids at frequencies approximately logarithmically spaced
between 10Hz to 10 kHz, each having an amplitude of
0.1 nm rms (see figure 4). The response function χ(ω) is
then evaluated as the ratio of the Fourier transforms of
the measured data (d and zs), at the driving frequencies
only, each FFT being performed on a small 0.4 s sliding
time window26. This strategy allows one to measure the
response function in the whole frequency range in a single
approach-retract cycle, avoiding any question about the
reproducibility of the precise peeling configuration en-
countered during successive cycles if one had to test only
one frequency at a time. Frequencies smaller than 10Hz
were too noisy to be useful (they would require slower
ramps to test each compression longer), and above 10 kHz
the transfer function of the piezo is not flat enough to en-
sure precise measurements. Moreover by staying below
10 kHz we avoid any overlap with the natural thermal
noise which is peaked around 17 kHz with a rms ampli-
tude of 0.1 nm, we thus keep a sufficient signal to noise
ratio for each sinusoidal driving.
The result of this process is plotted on figures 3 to 5: kc

as a function of nanotube compression for a few different
frequencies in figure 3(b), as a 3D plot versus compres-
sion and frequency in 4(a), and its mean value for every



5

Compression zc (nm)

S
ti
ff
n
es

s
k
c

(N
/
m

)

Fr
eq

ue
nc

y
f

(k
H
z)

S
z
s

(n
m

2
/
H

z)

Frequency f (kHz)Time t (s)

z s
(n

m
)

(a)

(c)(b)

160
180

200
220

240

0.01 0.1 1 100 5 10

0.01

0.1

1

10

10−4

10−2

100

0

200

400

0

0.02

0.04

0.06

0.08

0.1

0.12

FIG. 4. (Color online) – (a) Frequency and position depen-
dence of the contact stiffness from the response measurement.
(b) During the slow peeling ramp, a small amplitude vertical
oscillation is applied to the sample: it consists in the sum of 16
sinusoids from 10Hz to 10 kHz of 0.1 nm rms amplitude. (c)
At the excitation frequencies (evidenced with filled circles on
the PSD of the excitation), the response function χ(ω) from
this applied oscillation to the deflection of the cantilever is
measured and translated into the equivalent contact stiffness.
kc(ω) depends slightly on the position along the nanotube,
and is slowly increasing with frequency.

compression as a function of frequency in figure 5. From
these figures, we first observe that, at each frequency,
the stiffness is roughly constant (the standard deviation
is around 10% of the mean value). The small variations
with compression are correlated at every frequencies and
linked to the value of the adhesion force: the larger the
adhesion, the larger the dynamic stiffness. The behav-
ior with frequency is also quite weak: the stiffness grows
steadily by a factor of 2 when the frequency spans 3 or-
ders of magnitude. The value at high frequency tends to
that predicted by the thermal noise analysis, and the low
frequency trend is compatible with a zero stiffness for a
quasi-static driving.
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FIG. 5. (Color online) – Frequency dependence of the average
contact stiffness. Averaging the stiffness along the positions
on the force plateau, we get this slowly increasing behavior of
kc as a function of frequency (blue circles): it doubles when
f increases by 3 orders of magnitude. No characteristic time
scale is evidenced on this curve, which can be fitted by a power
law with a small exponent (∝ f0.1, black dashed line). The
high frequency behavior is compatible with the thermal noise
estimation of kc at resonance (from the resonance frequency
shift, red diamond). The low frequency behavior as well is
compatible with the quasi-static estimation of the stiffness
near 0 (gray triangle). Note that the quasi-static point should
be placed at f = 0, which cannot be seen on this logarithmic
scale, so the reported point should be understood as the limit
for f → 0. Error bars correspond to one standard deviation
in the average over position along the nanotube compression.
Larger uncertainties around 100Hz are due to a slightly higher
environnemental noise in this frequency range, degrading the
signal to noise ratio of the minute solicitation we are applying.

IV. DISCUSSION AND CONCLUSION

When the nanotube is close to the substrate, it tends
to adhere and maximize its contact length. An equilib-
rium spatial shape balancing the adhesion energy of the
adhered part and the bending energy of the free standing
part is reached. For a long nanotube free of defect, this
equilibrium translates into a force plateau in the force
versus compression curve. This force plateau should thus
correspond to a zero spring constant during the contact:
the force doesn’t depend on the position, thus no stiffness
is expected. However, as evidenced by the thermal noise
analysis, the resonance frequency of the AFM probe is
higher during the peeling than when there is no contact.
This behavior can be understood as adhesion and peeling
being “slow” processes: at the resonant frequency (over
10 kHz), if the contact between the nanotube and the
substrate is seen as “frozen”, then the free standing part
of the nanotube is clamped on each side, and has a non
zero stiffness. The question arising from this picture is
then to understand what could impede the nanotube to
relax quickly when it is retracted from or approached to
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the substrate, since the Van der Waals forces accounting
for adhesion are an instantaneous interaction.
Using a direct excitation of the contact mechanics,

we probe here its dynamic response. We find that the
contact stiffness depends only weakly on frequency, as
illustrated in figure 5: it can be approximated by a
power law in frequency with a small exponent (∝ f0.1).
In this peeling configuration, we thus do not find any
characteristic time scale for slow vs. fast adhesion pro-
cesses. Such amorphous behavior of the mechanics could
be linked to relaxation processes with widely distributed
time scales. One hypothesis is for example that nanoscale
rearrangement or diffusion of defects occur during the
strong mechanical solicitation of the contact point (the
radius of curvature is typically only 10 times the nan-
otube diameter13,14). Such defects exist undoubtedly16,
as shown by the irregularities in the measured quantities
along the cantilever length, in the form of fluctuations
around the plateaus, or more dramatic force jumps in
the force curves. Another hypothesis is that some fric-
tion occurs at the contact point, dissipating part of the
mechanical energy and leading to delays in the system
response. The last question is the role of the amorphous
carbon unavoidably left around the nanotube during the
growth19, such as its plasticity during the mechanical so-
licitation and the friction that may occur at its interface
with the nanotube or the substrate.
Answers to these questions may be found in the fu-

ture by performing peeling experiments with simultane-
ous high precision force measurements and electronic mi-
croscopy visualisation of the nanotube configuration and
of the contact shape at the nanometer scale. Compari-
son to experiments of peeling of other nano-objects (BN
nanotubes, nano-wires) may also give interesting insights
in the generality of the observed weak frequency depen-
dence of the dynamic stiffness.
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