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REGULATORS OF SIEGEL UNITS AND APPLICATIONS

by

Frangois Brunault

Abstract. — We present a formula for the regulator of two arbitrary Siegel units in terms of
L-values of pairwise products of Eisenstein series of weight one. We give applications to Boyd’s
conjectures and Zagier’s conjectures for elliptic curves of conductors 14, 21, 35, 48 and 54.

1. Introduction

In a recent work [21], W. Zudilin proved a formula for the regulator of two modular units.
The aim of this article is to generalize this result to arbitrary Siegel units and give applications
to elliptic curves.

For any two holomorphic functions f and g on a Riemann surface, define the real 1-form

n(f,9) =log|f|dargg —log|g|darg f.
Note that if f and g are two holomorphic functions which do not vanish on the upper half-plane

H, then n(f,g) is a well-defined 1-form on H. We prove the following theorem.

Theorem 1. — Let N > 1 be an integer. Let u = (a,b) and v = (c,d) be two nonzero vectors
in (Z|NZ)?, and let g, and g, be the Siegel units associated to u and v (see Section 2 for the
definition). We have

(1) '/0 77(9u; gv) = 7Tj\*(ea,deb,—c + €4,-dCb,c; 0)
where eqy, is the Eisenstein series of weight 1 and level N? defined by

(2) eap(T) =a0(a,b)+ > g™ - Y g™ (g=€"")

m,n>1 m,n>1

m=a, n=b(N) m=-a, n=—b(N)
with
0 Zfa/:bzo
ag(a,b) = 5—{%} ifa=0andb#0
| 1-{%} ifa#0andb=0

e}

ifa+0 and b +0.

Here A*(f,0) denotes the reqularized value of the completed L-function A(f,s) at s =0 (see
Section 3 for the definition).
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Remark 2. — Let Y(N) be the affine modular curve of level N over Q, and let X (N) be
the smooth compactification of Y (V). The homology group H = H;(X(N)(C),{cusps},Z) is
generated by the modular symbols £(7y) = {70, voo} with v € GLy(Z/NZ). If ¢ is an element of
H, we may write ¢ = Y; \;i((;), and it follows that

fcn(gmgv) = ZAfO 1(Guris o )-

Moreover, the Siegel units generate (up to constants) the group O(Y(N))* ® Q. Therefore
Theorem 1 (together with Lemma 5) gives a formula for all possible regulator integrals [, n(u, v)

with ¢ce H and u,v e O(Y(N))*.

Remark 3. — Theorem 1 is a generalization of [21, Thm 1]. More precisely, let §,, a € Z/NZ
denote the modular units arising in [21]. Then for every c € Z/NZ, we have

9a(c/N +it) = gaac(iNt) — (¢>0).

We recover [21, Thm 1] by taking v = (a,ac) and v = (b,bc) in Theorem 1. Note that in
this case fope = €abcCacb + €a—bcCacpy Delongs to Q[[¢V]], and fup.(7/N) is a modular form
b
d
then Fiy(7/N) = (€q.a€p-c + €a-dep)(T/N) is a modular form of weight 2 on I'y(N). It would
be interesting to study further the properties of these modular forms and to understand their
possible relations with the toric modular forms introduced by L. Borisov and P. Gunnells [1].

on I'1(N). More generally, if M = (Z ) € My(Z/NZ) is any matrix such that det(M) =0,

The proof of Theorem 1 follows the strategy of [21]. We express the logarithms of Siegel
units as a double infinite sum (Lemma 16) and deduce an expression for the regulator as a
quadruple sum. We then perform the same analytical change of variables from [16], leading to
the Mellin transform of a product of Eisenstein series. The key lemma to do this (Lemma 8)
suggests that similar results should hold in higher weight.

We point out that the simple shape of the Eisenstein series e, ;, makes Theorem 1 particularly
amenable to explicit computations. We give some applications of Theorem 1 in Section 6, for
elliptic curves which are parametrized by modular units [6].

I would like to thank Wadim Zudilin for helpful exchanges related to this work. This work is
partly supported by the research grant ANR Régulateurs (Grant Number ANR-12-BS01-0002).

2. Siegel units

We recall some basic definitions and results about Siegel units, for which we refer the reader
to [9, §1] and [10].

Let B, = X2 - X + ¢ be the second Bernoulli polynomial. For z € R, we define B(z) =
By({z}) = {x}? - {«} + §, where {2} =z — | 2| denotes the fractional part of .

Let H be the upper half-plane. Let N > 1 be an integer and (y = e*™/N. For any (a,b) €
(Z/NZ)2, (a,b) #(0,0), the Siegel unit g,, on H is defined by

(3) Gap(7) = PR (1= "¢V &) [T(1 - 4"V ) (¢ = €2™i7)

n>0 n>1

where a is the representative of a satisfying 0 < a < N. Here ¢ = e?™7 for o € Q. It is known

that the function ¢!2V is modular for the group

['(N)={yeSLy(Z):vy=1o (mod N)}.
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In fact g, defines an element of O(Y (V))* ® Q, where Y (V) denotes the affine modular curve
of level N over Q. Recall that the group GLy(Z/NZ) acts on Y (N) by Q-automorphisms. For
any v € GLy(Z/NZ), we have the identity in O(Y(N))*® Q

<4> ga,bh/ = g(a,b)'y-
Lemma 4. — Let (a,b) € (Z/NZ)?, (a,b) + (0,0). We have
(5) Gop(~1/7) = e URIDARID)g, () (reH),

Proof. — By taking the matrix v = ((1) 0

some root of unity w,p. The formula for w,; follows from [10, Chap. 2, §1, K1, K4]. O

in (4), we see that g,,(-1/7) = wWapgp-a(7) for

Lemma 5. — For any a,be Z/NZ, we have
% 0 ifa=0o0rb=0
<6> f darggab: a 1 b 1 .
0 27T({N}—5 ({N}—E ZfCLiO and b+ 0.

Proof. — If a =0 or b =0 then g,; has constant argument on the imaginary axis 7 = it, ¢ > 0,
hence f0°° darggep = 0.

If a#0 and b#0, it is easily seen that arg g, ,(it) =20 Moreover, by Lemma 4, we have
arg gap(it) it “2m({&£}-2) ({2} -3) (mod 27). This proves (6) up to a multiple of 27. In
order to establish the exact equality, let us introduce the Klein forms [10, Chap. 2, §1, p. 27]:

tap(r) = IO NG (ar + B,7) (o, feR;T e H)
where 77 and o denote the Weierstrass functions. The link with Siegel units is given by
Gap(T) = wea/]\f,b/]\f(7')A(7')1/12 (1<a,b<N-1)

where w is a root of unity [10, p. 29]. Since A is positive on the imaginary axis, it follows that

[O darg gep = fo darg, N

Using the g-product formula for the o function [11, Chap. 18, §2] and the Legendre relation
Nowy — Mws = 271, we find

1 ) ) ) ) (1 _ e—27r(n+a)te27riﬁ)(1 _ e—27r(n—a)te—27riﬁ)
7 Ea i) = -rat ymiaf (  mif —wat _ —mif  wat
(7) €, p(it) 5 em P (e™Pe e ™Pe )TE[1 (1= c-zmi2

Assume 0 < o, 3 < 1. Then by (7), we have argt, (it) o, m(afB - B+3). Moreover, the Klein
forms are homogeneous of weight -1 [10, p. 27, K1], which implies

1
bus(-1/7) = Tt a(r).
From this we get arg®, g(it) Sl m(—af +a) (mod 27) and

/(:Dodargéawg =27(a - %)(5— %) (mod 27).

Moreover, using the fact that [;~ dargt, s = [~ dargt, s— [, dargts _, and taking the imagi-
nary part of the logarithm of (7), we may express f0°° dargt, 5 as an infinite sum, which shows
that it is a continuous function of (a, 8) € (0,1)2. But for § = 3, the Klein form Ea’%(z’t) has

constant argument. This implies that [~ darg€,s=2m(a-3)(8-3) forany O<a,f<1. O
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3. L-functions of modular forms

In this section we recall basic results on the functional equation satisfied by L-functions of
modular forms.

Let f(7) = X0 ang™ be a modular form of weight k£ > 1 on the group I'; (V). The L-function
of fis defined by L(f,s) =Y ann=2, R(s) > k. Define the completed L-function

0o ) sd
A(f.8) = N2 m) ()L, 8) = NP [ (1) a0y -
Recall that the Atkin-Lehner involution Wy on M (T'1(N)) is defined by
(W f)(r) = " NP8 f(-1/(NT)).

Note that in the case k = 2 this Wy is the opposite of the usual involution acting on differential
1-forms. The following theorem is classical (see [14, Thm 4.3.5]).

Theorem 6. — Let [ = Y qa,q" € M (T'1(N)). The function A(f,s) can be analytically
continued to the whole s-plane, and satisfies the functional equation A(f,s) = A(Wnf,k-s).
Moreover, write Wy f = 30" bng™. Then the function

bo
k-s

A(f,s) + %o ,
S
18 holomorphic on the whole s-plane.

Definition 7. — The notations being as in Theorem 6, we define the regularized values of
A(f,s) at s=0and s =k by

(8) A*(£,0) =l A(f) + =2

bo
9 A*(f, k) :=limA :
9) (f,k) = im A(f, 5) + —
Note that the functional equation translates into the equalities of regularized values

<1O> A*(fao):A*(WNfak) A*(fak):A*(WNfao)'

We will need the following lemma.

Lemma 8. — Let f =% ga,q" € M(T'1(N)) and g = X0 g bug™ € My(T1(N)) with k, 0 > 1.
Let h=Wx(g). Write f*=f—ag and g* = g—by. Then for any s € C, we have

(11) N2 fo‘” f*(iy)g*(Niy)ysd—;/ CA(fhy s+ 0) = agA(hy s+ €) — boA (. 5).

Proof. — Note that the integral in (11) is absolutely convergent because f*(7) and ¢g*(7) have
exponential decay when J(7) tends to +oo. Moreover, it is easy to check, using Theorem 6,

that the right hand side of (11) is holomorphic on the whole s-plane. Therefore it suffices to
establish (11) when R(s) > k. Since Wyg = h, we have

2 [ i (= Vs Y - a2 [ i (ol <2 — b Y
N 2f0 f(iy)g (Ny)y y =N 2[() f (Zy)(g(Ny) bo)y Y
=NS/Qfmf*(iy)(Né/Zy“h(iy)—bo)ys%‘
0 Yy
Now, we remark that f*h = fh—aoh = (fh)* - agh*. Thus
o0 . d o0 d
NP L g (G S = N[ (VR ) = aoh () = b (i)
=A(fh,s+€)—aogA(h,s+ 1) —bgA(f,s).
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Specializing Lemma 8 to the (regularized) value at s = k, we get the following formula.

Lemma 9. — Let f =Y ga,q" € M(T'1(N)) and g = X7 g bug™ € My(T'1(N)) with k, 0 > 1.
Let h=Wny(g). Write f*= f—ag and g* = g—by. Then we have

(12) N2 fow f*(iy)g*(NLy)yk% CA (b +0) = agh (b, + 0) — boA* ([, k).

4. Eisenstein series of weight 1

In this section we define some Eisenstein series of weight 1. These are the same as those
arising in [21].

Definition 10. — For any a,be Z/NZ, we let
(13) eap = ap(a,b) + Z qm" - Z qm™

where

0 ifa=b=0
1-{%} ifa=0andb#0
1-{&} ifa#+0andb=0
0 if a+0 and b=0.

Lemma 11. — The function e, ,(7/N) is an Eisenstein series of weight 1 on the group I'(IN),
and the function e,y is an Eisenstein series of weight 1 on I'y(N?).

Proof. — In [17, Chap. VII, §2.3], for any (a,b) € (Z/NZ)? the following Eisenstein series are
introduced

G1(an(T) = —%(%(a b+ Y G- Y e
JZZE?J) nZL_Z(ZJ%/)
where
0 ifa=b=0
Yo(a,b) = % Cg if a=0and b+0
s-{&} ifa=#0.

The function Gy (q4) is an Eisenstein series of weight 1 on the group I'(/V). We have

€ab (%) = O{O(CL, b) + Z qmn/N - Z qmn/N

m,n>1 m,n>1
m=a, n=b(N) m=-a, n=—b(N)
ao(a,b) + = Zc(gfwww—gﬁwwﬂ
n—,b(]_\f) nz—,b(_N)

1 N-1
M%—Z@%w@3E;W&ww
If b+ 0 then
1 N= 1 N= b
N Z ’Vo(ba = N Z (__{N}) =O¢0(@7b)7
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hence e,,(7/N) is an Eisenstein series of weight 1 on I'(/V). If @ # 0 then the same is true
because e, = € 4. Finally if a = b =0 then

1 N-1
(a,b) - Z (N o(b,—c) = N Z(:) Y%(0,¢) =

because (0, —c) = =70(0, ¢).

N 0 N o)
The second assertion follows from the fact that ( 0 1) ['1(N?) ( 0 1) cI'(N). O
Definition 12. — For any a,be Z/NZ, we let
(14> fab — BO(Q b Z (Caerlm CK[amfbn)qmn
m,n>1
where
0 ifa=b=0
1y ifa=0andb+0
a,b) = ¥
fo(a;0) %icg if a#0and b=0
%(iffzv + ig{l}) if a#0 and b#0.
N N

As the next lemma shows, the functions f,; are also Eisenstein series; they relate to e,; by
the Atkin-Lehner involution of level NZ2.

Lemma 13. — We have the relation

(15) Cab (_NLT) =_%fa,b(%) (TeH).

The function f,p,(T/N) is an Eisenstein series of weight 1 on I'(N), and the function f, is
an Eisenstein series of weight 1 on I'y(N?). Moreover, we have Wyz2(eqp) = —%fa’b.

Proof. — The relation (15) follows from [21, Lemma 2| (the proof there works for arbitrary
a,be Z/NZ). We deduce that f,,(7/N) is a multiple of the function obtained from e, ;,(7/N)

-1
by applying the slash operator | (1) ) in weight 1. Hence f,,(7/N) is an Eisenstein series of

0
weight 1 on I'(V). The last assertion follows from replacing 7 by N7 in (15). O
We will need the following formula for the completed L-function of f, .

Lemma 14. — For any a,be Z|/NZ, we have

(16) A+ fans) = NoT(s) 2m) o3 ) (3 GG

m21 m? nx1 n )
Proof. — See the proof of [21, Lemma 3]. O]

In the special cases s = 1 and s = 2, this gives the following formulas. Note that formula (18)
is none other than [21, Lemma 3].

Lemma 15. — We have

0 ifb=0

(17) A*(fap + f-ap:1) =1 2iNy- (3 - {L}) ifa=0 and b#0
—2iNlog|l - C&|- (3 -{2Z}) ifa+#0andb+0

(18) A(fap+ f-ap,2) = ZN2B( )012(%6)

N
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where v is Euler’s constant and

&, sin(mzx)
Cl2(x):n;17 (I’ER)
denotes the Clausen dilogarithmic function.
Proof. — If a =0 then Y77, (%"n=* = ((s) = 5 +7+ Oei(s—1). If a # 0 then Y52, (3/n =
—log(1-¢ N) where we use the principal Value of the logarithm. Formula (17) follows, noting
that —log — CN =27i(1 - {2£}). Formula (18) is [21, Lemma 3]. O

5. The computation
Lemma 16. — For any (a,b) € (Z/NZ)?, (a,b) + (0,0), we have

-bm

0g gap2t) = —T(a +Cup— o IR - 2t
19 1 (et B(a/N)t +C, N
m2l  n2l msl nx1 M
n= a>(N) n=—a(N)
ﬂ-B b N 27rmn 27rmn
(20) - (/ )+Cb a+Z6ab_Z Z _Z Z 2mmn
m>1 n>1 m>1 n>1
n=b(N) n=-b(N)

where Oy =2r({£} - ({2} -3) and

21) O,y - {log(l -¢%) ifa=0,

0 if a # 0.

Proof. — By the definition of Siegel units, we have

10g gop = miB(a/N)T + Y log(1-¢"¢"™N () + > log(1 - ¢"¢ N ()

n>0 n>1

Using the identity log(1-x) = - Yor_; £~ and substituting 7 = it, we get (19). Applying Lemma
4 with T =i/t, we have g, ,(it) = e?arg, _,(i/t), whence (20). O

We will need the following lemma from [21].

Lemma 17 — (See [21, Lemma 4].) For any a,be Z/NZ, we have

Iab)= [7 Z i (Z 5 )exp( o

m= n>1 n>1
n=b(N) n=-b(N)

{0 ifa=00rb=0

—@'012(2%@)% ifa+0 andb#0.

Proof of Theorem 1. — By Lemma 16, we get

%(C —a) 2 Z <am+—( Z + Z )6_27;‘?75”1

: 7wB(b/N
23)  loglau(in)] = -2
mx1 m n>1 n>1

n=b(N) n=-b(N)
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and
bm ~bm 2mmnt
(24) darg g, (it) = ——d > 2N SN o= > TN
2i m>1 m n>1 n>1
nza(N) mn=-a(N)
1 am - 27rmn
(25) = ;d >, ( > 2 )
(S| n=1 n>1
n=b(N) =-b(N)

Let u = (a,b), v=_(c,d) € (Z/NZ)?, u,v # (0,0). We have

B b N ]. - Cm Tmn
1(Gu, go) = (‘M R(Cy, a)) —d Z i Z - Z e N
: 2o Ny ")

my>1 ni>1 n1>1
n1=b(N) ni1=-b(N)

ps(g . g )

dma dmg S———
B R o

mo>1 ng>1 ng>1
na2=c(N) no=-c(N)

+9%(Cd,c) —dz i m( S -y )e&”

m>1 n>1
n=b(N) mn=-b(N)

(26)
~ (_WB(d/N)
t

m1>1 ni>1 ni>1
ni=d(N) mni=—d(N)

Ccml cm1 S
R e RN S

bma bmg P—
d e D S S [Ca

mo>1 ng>1 no>1
ne=a(N) ng=-a(N)

The terms involving double sums can be integrated using Lemmas 5 and 17. This gives

o [ 00 00) = =SB d) + 5B (0.0) )
+9‘{(Cb7a)f0 darggv—fﬁ(CdJ)fo dargg, +1
with

mthZl ni>1 ni>1 ng>1 na>1
n1=b(N) mn1=-b(N)" ‘na=c(N) na=—c(N)

= ((c&mwc“ml)(@dm— d’”“’( A )( 5 T & )

(28) - (G G chm)( DY )( DY ))

ni>1 ni>1 no>1 ng>1
ni=d(N) ni=—d(N)" ‘ng=a(N) no=—a(N)

ng [ miny  Monat
= -2 dt.
o e (o ()

Making the change of variables ¢' = 72¢, we have

T A miny mgngt b niny mlmgt’
oo e (e (e e (o ))or
S T Wl W R o TP N TN
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Replacing in (28) and interchanging integral and summation, we get

—dm _27Tmmt’
T [T G - e
mi,ma>1
1 2+ X > - X e
ni>1 ni>1 ng>1 na>1
(30) n1=b(N) n1=-b(N)" ‘ne=c(N) mno=—c(N)
—bm 727rmmt/
_ Z 1(<]cvm1+<« cml)(cbmg_ Nb 2)6 le 2
mi,mo>
(z+ 2z -5 )=
ni>1 ni>1 no>1 no>1

ni=d(N) ni=—d(N)" ‘no=a(N) no=-a(N)
Making the change of variables y = ¢'/ N, we obtain
Tr/l/ *® * * N * * Z
5 Uiat Fad @) v et ) ()

)
N2y

(31)

—( cb+f—cb)(21/) (eda € d,a)( )d3/~

We compute this integral using Lemma 9 with k£ = ¢ = 1, taking into account Lemma 13: for
any a,b,c,d € Z| NZ, we have

ap(c, d)
N

82 [ g ) = 5 Uandoan2) = Ao DAL 2)) = 0PN (e ).

Replacing in (31), we get I = I + I + I3 with
(33)

I = QNQA ((faa+ f-aa)(foe+ f-ve) = (fep + f-cp)(faa + f-d.a):2)
(34)
~ 53 ((Bo(a.d) + fo(=a, DA+ Foner2) = (Bo(e,0) + o= DDA + foar2))
(35)
Iy =~ ((00(0,€) + 00, DA (aa + Fat 1) = (0(dsa) + (=, ))A" (fo + F e 1)
Using the fact that f,; = fo.q = = f-a-s, 11 simplifies to
(36) I = %A*(fa,df—b,c = fa-afoe:2)-

The terms involving A( f, 5, 2) can be evaluated with (18); they simplify with the terms involving
I(a,b) in (27):
(37) I = EB( )1( ,d) ——B( )I(a b).

The terms involving A*(f,p,1) can be evaluated with (17). Note that ag(b,c) + ap(-b,c) is
nonzero only in the case b = 0 and ¢ # 0. Since we assumed u # 0, this implies a # 0 and the
case of Lemma 15 involving Euler’s constant does not happen. Anyway I3 simplifies with the
terms involving [, darg g, in (27):

(33) Iy=-R(Ch0) [ dargg,+R(Ca) [ dargg,
0 0
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Putting everything together, we get
(39) L n(guagv) :Il _A*(fadf b,ec — fa,—dfb,ca2)-

Theorem 1 now follows from (10), taking into account the fact that

WNz(fa,bfc,d) = WNz(fa,b)WNz(fc,d) = _Nzea,bec,d'
]

Remark 18. — It would be interesting to find a definition of gy ¢ so that Theorem 1 holds for
any vectors u,v € (Z/NZ)2.

6. Applications

In this section we investigate the applications of Theorem 1 to elliptic curves. Our strategy
can be explained as follows. In [6], we determined a list of elliptic curves defined over Q
which can be parametrized by modular units. Let £ be such an elliptic curve, with modular
parametrization ¢ : X;(IN) - E. Let z,y be functions on E such that u := ¢*(z) and v := p*(y)
are modular units. Assume that {z,y} € Ky(EF) ® Q. Then the minimal polynomial P of
(z,y) is tempered and in favorable cases, the Mahler measure of P can be expressed in terms
of a regulator integral f7 n(z,y) where v is a (non necessarily closed) path on E. Using the
techniques of [6], we compute the images of the various cusps under ¢ and deduce the divisors
of u and v. Since the divisors of Siegel units are easily computed using (3) and (4), we get an
expression of u and v in terms of Siegel units, and may apply Theorem 1.

We will need the following expression for the regulator integral in terms of Bloch’s elliptic
dilogarithm. Let F/Q be an elliptic curve, and let Dg : E(C) — R be the elliptic dilogarithm
associated to a chosen orientation of F(R). Extend Dg by linearity to a function Z[ E(C)] - R.
Let ~% be the generator of H,(E(C),Z)* corresponding to the chosen orientation.

Proposition 19. — Let x € Ky(E) ® Q. Choose rational functions f;,g; on E such that
v = S fogi}, and define n(x) = £un(frgi)- Then for every € Hy(E(C),Z), we have

ﬂ n(z) = -(75 ) Di(B)

where o denotes the intersection product on Hi(E(C),Z), and 8 is the divisor given by

B=2 Y ordy(fi)ordy(g:)(p-q)

i p,qeE(C)

Proof. — Since x € K3(E) ® Q, the integral of n(x) over a closed path 7 avoiding the zeros
and poles of f;,g; depends only on the class of v in H;(E(C),Z). Let ¢ be an element of
H,(E(C),Z) such that v 0 = 1. Let ¢ denote the complex conjugation on E(C). Since
c*n(x) = -n(z), we have fvg n(x) = 0 and it suffices to prove the formula for v = J. Choose an
isomorphism E(C) 2z C/(Z + 7Z) which is compatible with complex conjugation. We have

/ n(z) Adz = f n(x) Adz = / c(-n(x) ndz) = f n(z) Adz
E(C) E(C) E(C) E(C)
so that [; ) n(z) Adz€R. By [5, Prop. 6], we get

dz=D .
Sy 1) Az = Di(8)
Since (74, 6) is a symplectic basis of H;(E(C),Z), we have [3, A.2.5]

[E(C)n(x)/\dzz[ (x)- /dz_/;EdZ fn(x)— f??(x)
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[]

The following proposition is a slight generalization of a technique introduced by A. Mellit
[13] to prove identities involving elliptic dilogarithms. Let E//Q be an elliptic curve, which we
view as a smooth cubic in P2.

Definition 20. — For any lines ¢ and m in P2, let Sg(¢,m) be the divisor of degree 9 on
E(C) defined by BE(& m) = er(nE ZyemﬂE(x - y)'

Proposition 21. — Let (1,05, (3 be three incident lines in P2. Then
(40) Dg(Be(l1,l2)) + Dp(Be(l2,43)) + De(Be(ls, (1)) = 0.

Proof. — Let fi, fo, f3 be equations of ¢, /¢5,¢3 such that f; + fo = f3. Using the Steinberg

relation {%, %} =0, we deduce {f1, fo} +{f2, fs} +{f3, f1} =0 in K3(C(F))® Q. Applying the
regulator map and taking the real part [5, Prop. 6], we deduce

Dg(B(f1, f2)) + De(B(f2, f3)) + De(B(fs, f1)) =0
where B(fi, fiz1) is defined as in Proposition 19. We have div(f;) = ({;n E) - 3(0) so that

B(fis fix1) = Be(lis 1) =3(6in E) =30 (Lisa n E) +9(0)

where ¢ denotes the map p » —p on E(C). Since Dg is odd, the proposition follows. O

Remark 22. — If the incidence point of ¢1, {5, (3 lies on E, then the relation (40) is trivial in
the sense that it is a consequence of the fact that Dg is odd.

We will also need the following lemma to relate elliptic dilogarithms on isogenous curves.

Lemma 23. — Let p: E - E' be an isogeny between elliptic curves defined over Q. Choose
orientations of E(R) and E'(R) which are compatible under ¢, and let d, be the topological
degree of the map E(R)? - E'(R)?, where (-)° denotes the connected component of the origin.
Then for any point P’ € E'(C), we have

(41) Dp/(P')=d,- >, Dg(P).
o(P)=P"

Proof. — Choose isomorphisms E(C) = C/(Z + 7Z) and E'(C) = C/(Z + 7'Z) which are
compatible with complex conjugation. Then F(R)? = R/Z and E’'(R)° = R/Z so that ¢ is
given by [z] = [d,z]. We have isomorphisms E(C) = C*/¢% and E’(C) =z C*/(¢')% with
q=e*" and ¢ = 2™, Let m: C* - E(C) and 7’ : C* - E'(C) be the canonical maps. Let
P’ be a point of E’(C). By definition Dp/(P’) = ¥ 1/(z-pr D(2") where D is the Bloch-Wigner
function, and similarly Dg(P) = ¥, )-p D(z). Now ¢ is induced by the map = + z%, so
that (41) follows from the usual functional equation D(x") =r¥,._; D(uz) for any r > 1 [15,
(21)]. O

Note that in the particular case ¢ is the multiplication-by-n map on E, Lemma 23 gives the
usual functional equation

Dp(nP)=n ). Dg(P+Q).
Q<E[n]
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6.1. Conductors 14, 35 and 54. — We prove the following cases of Boyd’s conjectures [4,
Table 5, k = -1,-2,-3]. Note that the case of conductor 14 was proved by A. Mellit [13].

Theorem 24. — Let Py be the polynomial Py(x,y) = y>+kxy+y—x3, and let Ey, be the elliptic
curve defined by the equation Py(x,y) =0. We have the identities

(42) m(P..) = 2L/ (E_1,0)
(43) m(P.y) = L'(E-3,0)
(44) m(P_3) = L'(E_3,0).

By the discussion in [4, p. 62|, the polynomial P, does not vanish on the torus for k € R,
k < —1. For these values of k we thus have
1
m(Pe) =5 [ ne.y)
™ Ik
where 7y is the closed path on Ex(C) defined by

e ={(z,y) € Ex(C) :[z] = 1,]y[ < 1}.
The point A = (0,0) on Ej has order 3 and the divisors of  and y are given by
div(z) = (A) + (-4) - 2(0) div(y) = 3(A) - 3(0).

The tame symbols of {z,y} at 0, A, —A are respectively equal to 1,-1,-1, so that {z,y}
defines an element of Ky(FE) ® Q. Moreover 7, is a generator of Hy(FEy(C),Z)~ which satisfies
Vg, ® vk = —2, so that Proposition 19 gives

(15) m(P) = D (5(x,9)) = 2 Dp,(4)  (k<-1).

Note that by continuity (45) also holds for k = 1.

Now assume k € {-1,-2,-3}. The elliptic curves E_;, F_5, E_3 are respectively isomorphic
to 14a4, 35a3 and 54a3. By [6], these curves are parametrized by modular units. Since the
functions x and y are supported in the rational torsion subgroup, their pull-back u = p*x and
v = p*y are modular units, and we may express them in terms of Siegel units. For brevity, we
put g, = go in what follows. We also let f_; be the newform associated to E_, and we define
wy, =2mif(7)dr.

In the case k= -1, N =14, we find explicitly

9596 939592
u="== v=-

9192 979291
We now wish to express the Deninger path v_; in terms of modular symbols. Using Magma [2]
and Pari/GP [18], we compute fzﬁﬁ wy, = - , where Qp € iR, is the imaginary period
of E_;. The Magma and Pari/GP codes to evaluate numerically both sides of this identity are
as follows:

// Magma code to evaluate the left hand side
E:=EllipticCurve("14a4");
M:=ModularSymbols(E);

phi:=PeriodMapping (M, 1000) ;

phi(M!<1, [Cusps () 12/7,-2/71>);

\\ Pari/GP code to evaluate the right hand side
e=ellinit("14a4");
-(e.omega[1]-2%e.omega[2])
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Thus we get

R R GO S VY R P R o

Using Theorem 1, we obtain

-2/7
f71 n(z,y) = '/2/7 n(u,v) =nL'(4f1,0).

This proves (42).
In the case k= -2, N =35, we find explicitly

u = 7299912915916 V= 9595939291596

9394910911917 91939496989%0911913917 '
Moreover the Deninger path is the following sum of modular symbols

e e )0 )

Using Theorem 1, we obtain

f_2 n(z,y) = [/;1/577(%@) =7L'(2f5,0).

v

This proves (43).
In the case k = -3, N =54, we find explicitly

o = D29193013911916920921 922933921 95939591391692092195.954

919793970911912915917G19925 G55 919693910912915917919936
Moreover the Deninger path is the following sum of modular symbols

~ {_ll}_ §10—510
V-3 = Px 878 = Px 8 1 8 1 .
Using Theorem 1, we obtain
1/8 ,
[ = [ ntwe) =7L(25,0).

-3 -1/8

This proves (43).
Using (45), we also deduce Zagier’s conjectures for these elliptic curves.

Theorem 25. — We have the identities

(46) L(E_1,2):977TDE1(A) L(E_2,2)=336—57TDE2(A) L(E_3,2)=2§DE3(A).

6.2. Conductor 21. — The modular curve Xy(21) has genus 1 and is isomorphic to the
elliptic curve Ey = 21al with minimal equation y? + zy = 2% — 42 — 1. The Mordell-Weil group
Eo(Q) is isomorphic to Z/4Z x Z/2Z and is generated by the points P = (5,8) and @ = (-2, 1),
with respective orders 4 and 2. The modular curve X,(21) has 4 cusps: 0, 1/3, 1/7, oo and we
may choose the isomorphism ¢ : X(21) = Ey so that o(0) = 0, ¢(1/3) = (-1,-1) = P+ Q,
©0o(1/7) = @Q and @y(o0) = P. Let fp and fg be functions on E with divisors

(fp) =4(P)=4(0)  (fo) =2(Q) - 2(0).
These modular units can be expressed in terms of the Dedekind 7 function [12, §3.2]:

Fpog MGONEATY L n(BTn(T)’
VT (r)sn(7r) QT L (F)n(21T)
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They can in turn be expressed in terms of Siegel units using the formula

d (d-1)/2
n(dr) =Cy H go,kN/d(T) (CqeCX).

n(7) k=1
Thus we can take
fp = 90.7(ITy21 9op)? fo = 90,7(90,390,690,9)*
" 40,390,690,9 9 Hé& 9o,b '

The homology group H;(Ez(C),Z)~ is generated by the modular symbol ~ = {—%,%} =

1 1
& ( 3 (1)) =& (_ 5 (1)) Using Theorem 1 and a computer algebra system, we find

[ nttr.fo) = 7a*(£.0)
where F'is the modular form of weight 2 and level 21 given by
F = 68q + 220¢% + 68¢> + 508¢* + 440¢° + 220¢° + 508¢" + 1068¢® + 68¢° + ---

The space M2(I'9(21)) has dimension 4 and is generated by fo, Fa3, Eo7 and Fs 9 where f is
the newform associated to Ey and Es 4(7) = Eo(7) — dEy(dT). We find explicitly

72 72
F=-4fy+72E 3+ — Bar - 7E2,21
We have L(Esq4,s) = (1 -d'=%)((s)((s—1) and a little computation gives

72
7-215
Thus L(F,0) =0 and using ¢(0) = -1/2 and ¢(-1) = -1/12, we find

A*(F,0) = A(F,0) = L'(F,0) = —4L'(E,,0) - 6log 7.

L(F,s)=-4L(Ey,s) + (7-21°-21-7°-7-3°+21)((s)C(s - 1).

The extraneous term 6log7 stems from the fact that the Milnor symbol {fp, fo} does not
extend to Ky(Fp) ® Q. Indeed, the tame symbols are given by

Ooifr.fot=1  Op{fr.fo} =fo(P) =G T dolfr. fo} =G'T"

Since fp and fg are supported in torsion points, there is a standard trick (due to Bloch) to alter
the symbol {fp, fo} to make an element of Ky(Ep) ® Q. We will see that the corresponding
regulator integral is proportional to L'(Ey,0) alone. We put x := {fp, fo} + {7, fp/f3}, which
belongs to K3(FEp) ® Q, and we define

n(x) = n(fp, fo) +n(7, fr[ 1) = n(fr, fo) +1og T darg(fp/f3)-
We can compute the integral of darg(fp/ fé) using Lemma 5, which results in
/n(x) = —4rL'(Ey,0).
N

On the other hand, we have fv wy, ~# 1.91099¢ which shows that 75 e~ > 0. Since Ep(R) has
two connected components, this implies v, e~ =1 and Proposition 19 gives

1) = ~De, ().
We have 8 =8(P+Q)-8(P)-8(Q) +8(0). Since D, is odd, this gives
[ n(@) = 8(Di (P + Q) = Dy (P)).

Taking into account the functional equation L'(Ey,0) = 25 L(Ey,2), we have thus shown Za-
gier’s conjecture for Ej.
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Theorem 26. — We have the identity L(Fy,2) = g—q(DEO(P +Q) - DEO(P)).

We will now deduce Boyd’s conjecture [4, Table 1, k = 3| for the elliptic curve E; of conductor
21 given by the equation P(z,y) =x+;+y+;+3=0.

Theorem 27. — We have the identity m(z + 5 +y + 5 +3) = 2L/(Ey,0).
The change of variables
X=z(zx+y+3)+1 Y=z(z+1)(z+y+3)+1
puts E; in the Weierstrass form Y2 + XY = X3 + X. This is the elliptic curve labelled 21a4 in
Cremona’s tables [7]. The Mordell-Weil group E;(Q) is isomorphic to Z/4Z and is generated
by P1 = (1, 1)
The polynomial P satisfies Deninger’s conditions [8, 3.2], so we have

m(P)=5= [ nay)

2m
where ~p is the path defined by vp = {(x,y) € E1(C) : |z| = 1,|y| < 1}. The path ~p joins
the point A = ((3,-1) to A = ((3,-1). Note that these points have last coordinate —1, so
the discussion in [8, p. 272] applies and yp defines an element of H;(E;(C), Q). After some
computation, we find that yp = 571 where 7, is a generator of H(E,(C),Z)~ such that v, ey =
2 (note that £ (R) is connected). Using Proposition 19, it follows that

1
f n(@y) =3 f n(z,y) = -Dg, (B)
P Y1
where = div(z) * div(y)~ is the convolution of the divisors of x and y. We have
div(z) = (P1) + (2P) - (-P1) - (0) div(y) = (P1) - (2P1) = (=F1) +(0)
so that 8 =4(P;) —4(-P;). This gives

| 0.y = 8D, (1),

P
We are now going to relate elliptic dilogarithms on F; and E, using Proposition 21 and
Lemma 23. The curve Ej is the X;(21)-optimal elliptic curve in the isogeny class of Ey. We
have a 2-isogeny A : B} - Ey whose kernel is generated by 2P, = (0,0). Using Vélu’s formulas
[19], we find that an equation of A is
X2+1 1 X?2-1
~ X + =2 Y).
The preimages of P + @ under A are the points A = ({3,-1 - (3) and A = ((3,~1 - (3), while
the preimages of P are given by B = (%ﬁ,él ++/21) and B’ = (5‘\2/ﬁ,4 —+/21). Note that
2A =-P; and 2B = P, so that A and B have order 8 and we have the relations A= A+2P, =54

and B’ =5B. Moreover C' = A + B is the 2-torsion point given by C' = (%"ﬁ, %ﬁ)ﬁ) Using

AX,Y) = (

Theorem 26 and Lemma 23, we have
4 _
L,(E07 O) = ;(DE1(A) + DE1 (A) - DEl(B) - DEI (B,))
so that Theorem 27 reduces to show
DEl(Pl) = _2(2DE1(A) - DE1(B) - DE1(B,))

We look for lines ¢ in P? such that ¢ n E; is contained in the subgroup generated by A and
B. Using a computer search, we find that the tangents to £ at A and —A and the line
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(Y + %X = 0 passing through the 2-torsion points of E are incident. By Proposition 21, we
deduce the relation
4DE1 (2A) + 4DE1 (3A) + DE1 (4A) + 2DE1 (—2A) + 4DE1 (—A)

+2Dp, (2A+C) +4Dg, (3A+C) +2Dg, (-2A+C) +4Dg, (-A+C) = 0.
Since Dp, is odd and Dg, (3A) = =Dg, (A) = —=Dg, (A), this simplifies to
2DE1 (2A) - 8DE1 (A) + 4DE1(B) + 4DE1 (BI) =0
which is the desired equality.
6.3. Conductor 48. — We prove the following case of Boyd’s conjectures [4, Table 1, k = 12].

Theorem 28. — We have the identity m(z+<+y+ é +12) =2L'(E,0), where E is the elliptic
curve defined byx+%+y+i+ 12=0.

The curve x + % +y+ i + 12 = 0 is isomorphic to the elliptic curve E = 48a5. We have a
commutative diagram

X1(48) — 75 X, (48)

(47) lgm PO

B —> g2 L p

Here E) = 48a4 is the X;(48)-optimal elliptic curve and Ej = 48al is the strong Weil curve in
the isogeny class of E. They are given by the equations

(48) Ei:y=2+2%+2 Ey:y? =23+ 2% - 4o - 4.

The isogeny A\ has degree 2 and its kernel is generated by P; = (0,0). Using Vélu’s formulas,
we find an explicit equation for Ay:

1 1

(49) No(a.) = (o 7.(1- )y).
x x

The modular parametrization ¢y has degree 2 and we have

©0(0) =¢o(1/2) =0 o(1/3) = o(1/6) = (-1,0)
©o(1/8) = po(1/16) = (=2,0)  wo(1/24) = ¢o(1/48) = (2,0)
po(1/4) = (0,20)  wo(-1/4) = (0,-2i)
wo(1/12) = (-4,-61)  @o(-1/12) = (-4,64).

Moreover the ramification indices of ¢y at the cusps i, —}1, %, —% are equal to 2. Let Sy be

the set of points P of Ey(C) such that ¢y'(P) is contained in the set of cusps of X(48), and
similarly let S; be the set of points P of F;(C) such that ¢7'(P) is contained in the set of
cusps of X;(48). By the previous computation, we have

(50) So = Bp[2] U {(0, £2i), (-4, £67)}.

The curve Ej doesn’t admit a parametrization by modular units, but the curve £ does. Indeed,
consider the point A = (4,7) € E1(C). It has order 8 and satisfies A = 34 and 44 = P,. Moreover
Ao(A) = (0,2i). Because of the commutative diagram (47), we know that S; contains A\;'(Sp);
in particular S; contains the subgroup generated by A. Therefore the following functions on
FE, are modular units

(51) (f)=2(P1)-2(0)  (9)=2(A) +2(A) - 4(0).
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We may take f =z and g = 22 -2y +2x + 1. It is plain that f and g parametrize E;. Moreover
the tame symbols of {f g} at 0,P;, A, A are equal to 1,1,-1,-1 so that {f,g} belongs to
Ky(FE1) ® Q. The expression of f and g in terms of Siegel units is

* 92920922 % 979291097 g G3391492295
(52) 901 — 8019 1 — 2112 lg 13 23
94910914 94959697917918919920

A generator v, of Hi(F1(C),Z)" is given by

=033} =0 (e(7 1) -¢(5 1))

Using Theorem 1, we find

17
(53) ﬁ n(f.9) = [1/7 n(eif e1g) =L (F1,0)
where F} is the modular form of weight 2 and level 48 given by
Fy=4¢* + 8¢% - 4¢% — 8¢*° — 32¢*! — 16¢"° + 4¢'® + 32¢"% + . ..

This time F} is not a multiple of the newform fg, associated to E;. We look for another
modular symbol. Another generator v, of Hi(F1(C),Z)" is given by

2 2 1 10 2 1 10
72:(901)*{‘ﬁ>ﬁ} (1)< ( (11 6) 5(6 1)_5(11 —6)_5(—6 1))

Using Theorem 1, we find

2/11
(54) f7 n(f,g) = [2/11 n(eif,pig) =mL'(F,0)

where Fj is the modular form of weight 2 and level 48 given by
Fy = —4q+8¢* +12¢% + 8¢° - 8¢° — 4¢° — 16¢'° — 48¢* + 8¢* — 24¢"° - 8¢'™ + 8¢*® + 48¢'% + . ..
A computation reveals that 2F) — Fy = 4fg,. Summing (53) and (54), we get

(55) L n(f.9) = axL(Br,0).
271-72
Since 73, ® 71 =g, ® 72 = 2, Proposition 19 gives
(56) f% 1 9) = =2De (5(f.9)) = =32Dr, (A).
1—72

Combining (55) and (56), we have thus shown Zagier’s conjecture for Ej.
Theorem 29. — We have the identities L'(E1,0) = -2 Dg, (A) and L(E1,2) = -3 Dg, (A).

Let us now turn to the elliptic curve E. Let Py be the polynomial P, (z,y) = z+1/z+y+1/y+k.
For k ¢ {0,+4}, let C} be the elliptic curve defined by Py(x,y) = 0. The change of variables
X=dr(z+y+k) Y=82*(z+y+k)

puts Cj in Weierstrass form Y2 + 2kXY + 8kY = X3 +4X?2. The point @ = (0,0) on C has
order 4. We show that the Mahler measure of P, can be expressed in terms of the elliptic
dilogarithm.

Proposition 30. — Let k be a real number such that |k| >4. We have

|-2Dc, (Q) if k>0,
m(P’“)'{%DCk(@ if k <0.
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Proof. — Since |k| > 4, the polynomial P, doesn’t vanish on the torus, so that

m(Pk)=%f n(z,y)

Tk

where 7y is the closed path on Cy(C) defined by

e ={(z,y) € Cu(C) 1] = L, [y[ < 1}.
It turns out that v is a generator of H(Cy(C),Z)” which satisfies ¢, e vx = sgn(k). The
divisors of x and y are given by
div(z) = (Q) + (2Q) - (-Q) - (0)  div(y) = (Q) - (2Q) - (-Q) + (0).
Since P is tempered, we have {x,y} € K2(Cy) ® Q, and Proposition 19 gives

f7 n(.y) = ~san(k) Do (3(r.)) = ~Ssen(k) Do, (Q).
L]

Remark 31. — The fact that m(P;) can be expressed as an Eisenstein-Kronecker series was
also proved by F. Rodriguez-Villegas [20].

We are now going to relate elliptic dilogarithms on F = C5 and E;. Let M : £} - E be
the isogeny Ao A\ from (47). It is cyclic of degree 8 and its kernel is generated by the point
B =(-2-/3,3i+2i\/3). A preimage of Q under ) is given by

C= (%(a3+o¢2+a—1),%(0z3+a2—a—3))
with a = v/=3. The point C has order 4 and we have A = B +2C. By Lemma 23, we have
(57) Dp(Q)=2 ), Dg,(C+kB).

keZ/3Z

Combining Theorem 29, Proposition 30 and (57), Theorem 28 reduces to show
keZ/8Z

Let T be the subgroup generated by B and C. It is isomorphic to Z/8Z x Z/4Z. There are
187 lines ¢ of P? such that ¢ n E; is contained in T. A computer search reveals that among
them, there are 691 unordered triples of lines meeting at a point outside E;. These incident
lines yield a subgroup R of Z[T'] of rank 18 such that Dg, (R) = 0. Let Ry be the subgroup
of Z[T] generated by the following elements

(59) [P]-[P], [P]+[-P], [2P]-2 ) [P+Q] (P,QeT).

QeE1[2]
The group Ry, has rank 26 and by Lemma 23, we have Dg, (Ryiy) = 0. Moreover R + Ry
has rank 27 and a generator of (R + Riyiy)/ Ry is given (for example) by the divisor

B =B, (b1, ) + B, (2, 03) + Br, (L3, (1)
where (1, {5, (5 are the lines defined by
LinEy=(B)+(-B)+(0)
lnE =(B+2C)+(B-C)+(-2B-0)
l3nE1=(4B+C)+(-3B+2C)+(-B+0C).
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Computing explicitly, this gives

B=2 ( > (2C+kB)+(3C+ kB)) -2(=A)-2(-A) + (4B) - (2C) - (4B +20).

keZ/8Z

Using the functional equations (59) of Dp,, we obtain (58).

[1]
2]

References

L. A. Borisov & P. E. GUNNELLS — “Toric modular forms and nonvanishing of L-functions”,
J. Reine Angew. Math. 539 (2001), p. 149-165.

W. BosMma, J. CANNON & C. PLAYOUST — “The Magma algebra system. I. The user language”,
J. Symbolic Comput. 24 (1997), no. 3-4, p. 235-265, Computational algebra and number theory
(London, 1993).

J.-B. BosT — “Introduction to compact Riemann surfaces, Jacobians, and abelian varieties”, in
From number theory to physics (Les Houches, 1989), Springer, Berlin, 1992, p. 64-211.

D. W. BoyDp — “Mahler’s measure and special values of L-functions”, Ezperiment. Math. 7
(1998), no. 1, p. 37-82.

F. BRUNAULT — “On Zagier’s conjecture for base changes of elliptic curves”, Doc. Math. 18
(2013), p. 395-412, http://www.math.uiuc.edu/documenta/vol-18/16.pdf.

, “Parametrizing elliptic curves by modular units”, To appear in Journal of the Australian
Mathematical Society, http://arxiv.org/abs/1504.00999, 2015.

J. E. CREMONA — Algorithms for modular elliptic curves, second ed., Cambridge University Press,
Cambridge, 1997.

C. DENINGER — “Deligne periods of mixed motives, K-theory and the entropy of certain Z"-
actions”, J. Amer. Math. Soc. 10 (1997), no. 2, p. 259-281.

K. KaTo - “p-adic Hodge theory and values of zeta functions of modular forms”, Astérisque 295
(2004), p. ix, 117-290, Cohomologies p-adiques et applications arithmétiques (III).

D. S. KUBERT & S. LANG — Modular units, Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Science|, vol. 244, Springer-Verlag, New York, 1981.

S. LANG — Elliptic functions, second ed., Graduate Texts in Mathematics, vol. 112, Springer-
Verlag, New York, 1987, With an appendix by J. Tate.

G. LicozAT — Courbes modulaires de genre 1, Société Mathématique de France, Paris, 1975, Bull.
Soc. Math. France, Mém. 43, Supplément au Bull. Soc. Math. France Tome 103, no. 3.

A. MELuIT — “Elliptic dilogarithm and parallel lines”, Preprint of the Max-Planck-Institut fiir
Mathematik, Bonn (June 2009).

T. MIYAKE — Modular forms, english ed., Springer Monographs in Mathematics, Springer-Verlag,
Berlin, 2006, Translated from the 1976 Japanese original by Yoshitaka Maeda.

J. OESTERLE — “Polylogarithmes”, Astérisque (1993), no. 216, p. Exp. No. 762, 3, 49-67,
Séminaire Bourbaki, Vol. 1992/93.

M. ROGERS & W. ZUDILIN — “From L-series of elliptic curves to Mahler measures”, Compos.
Math. 148 (2012), no. 2, p. 385-414.

B. SCHOENEBERGC — Elliptic modular functions: an introduction, Springer-Verlag, New York-
Heidelberg, 1974, Translated from the German by J. R. Smart and E. A. Schwandt, Die
Grundlehren der mathematischen Wissenschaften, Band 203.

The PARI Group — Bordeaux, PARI/GP wversion 2.7.3, 2015, available from http://pari.
math.u-bordeaux.fr/.

J. VELU — “Isogénies entre courbes elliptiques”, C. R. Acad. Sci. Paris, sér. A 273 (1971),
p. 238-241.

F. R. VILLEGAS — “Modular Mahler measures. I”, in Topics in number theory (University Park,
PA, 1997), Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, p. 17-48.

W. ZuDILIN — “Regulator of modular units and Mahler measures”, Math. Proc. Cambridge Philos.
Soc. 156 (2014), no. 2, p. 313-326.



20 F. BRUNAULT

F. BrRuUNAULT, ENS Lyon, UMPA, 46 allée d’Italie, 69007 Lyon, France
E-mail : francois.brunault@ens-lyon.fr e Url:http://perso.ens-lyon.fr/francois.brunault



