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We present a formula for the regulator of two arbitrary Siegel units in terms of L-values of pairwise products of Eisenstein series of weight one. We give applications to Boyd's conjectures and Zagier's conjectures for elliptic curves of conductors 14, 21, 35, 48 and 54. 

Introduction

In a recent work [START_REF] Zudilin | Regulator of modular units and Mahler measures[END_REF], W. Zudilin proved a formula for the regulator of two modular units. The aim of this article is to generalize this result to arbitrary Siegel units and give applications to elliptic curves.

For any two holomorphic functions f and g on a Riemann surface, define the real 1-form η(f, g) = log f d arg glog g d arg f.

Note that if f and g are two holomorphic functions which do not vanish on the upper half-plane H, then η(f, g) is a well-defined 1-form on H. We prove the following theorem.

Theorem 1. -Let N ≥ 1 be an integer. Let u = (a, b) and v = (c, d) be two nonzero vectors in (Z N Z) 2 , and let g u and g v be the Siegel units associated to u and v (see Section 2 for the definition). We have q mnm,n≥1 m≡-a, n≡-b(N ) q mn (q = e 2πiτ ) with

α 0 (a, b) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 0 if a = b = 0 1 2 -{ b N } if a = 0 and b ≠ 0 1 2 -{ a N } if a ≠ 0 and b = 0 0 if a ≠ 0 and b ≠ 0.
Here Λ * (f, 0) denotes the regularized value of the completed L-function Λ(f, s) at s = 0 (see Section 3 for the definition).

Remark 2. -Let Y (N ) be the affine modular curve of level N over Q, and let X(N ) be the smooth compactification of Y (N ). The homology group H = H 1 (X(N )(C), {cusps}, Z) is generated by the modular symbols ξ(γ) = {γ0, γ∞} with γ ∈ GL 2 (Z N Z). If c is an element of H, we may write c = ∑ i λ i ξ(γ i ), and it follows that

c η(g u , g v ) = i λ i ∞ 0 η(g uγ i , g vγ i ).
Moreover, the Siegel units generate (up to constants) the group O(Y (N )) × ⊗ Q. Therefore Theorem 1 (together with Lemma 5) gives a formula for all possible regulator integrals ∫ c η(u, v) with c ∈ H and u, v ∈ O(Y (N )) × .

Remark 3. -Theorem 1 is a generalization of [21, Thm 1]. More precisely, let ga , a ∈ Z N Z denote the modular units arising in [START_REF] Zudilin | Regulator of modular units and Mahler measures[END_REF]. Then for every c ∈ Z N Z, we have ga (c N + it) = g a,ac (iN t) (t > 0).

We recover [ It would be interesting to study further the properties of these modular forms and to understand their possible relations with the toric modular forms introduced by L. Borisov and P. Gunnells [START_REF] Borisov | Toric modular forms and nonvanishing of L-functions[END_REF].

The proof of Theorem 1 follows the strategy of [START_REF] Zudilin | Regulator of modular units and Mahler measures[END_REF]. We express the logarithms of Siegel units as a double infinite sum (Lemma 16) and deduce an expression for the regulator as a quadruple sum. We then perform the same analytical change of variables from [START_REF] Rogers | From L-series of elliptic curves to Mahler measures[END_REF], leading to the Mellin transform of a product of Eisenstein series. The key lemma to do this (Lemma 8) suggests that similar results should hold in higher weight.

We point out that the simple shape of the Eisenstein series e a,b makes Theorem 1 particularly amenable to explicit computations. We give some applications of Theorem 1 in Section 6, for elliptic curves which are parametrized by modular units [START_REF]Parametrizing elliptic curves by modular units[END_REF].

I would like to thank Wadim Zudilin for helpful exchanges related to this work. This work is partly supported by the research grant ANR Régulateurs (Grant Number ANR-12-BS01-0002).

Siegel units

We recall some basic definitions and results about Siegel units, for which we refer the reader to [9, §1] and [START_REF] Kubert | Grundlehren der Mathematischen Wissenschaften[END_REF].

Let B 2 = X 2 -X + 1 6 be the second Bernoulli polynomial. For x ∈ R, we define B(x) = B 2 ({x}) = {x} 2 -{x} + 1 6 , where {x} = x -⌊x⌋ denotes the fractional part of x. Let H be the upper half-plane. Let N ≥ 1 be an integer and

ζ N = e 2πi N . For any (a, b) ∈ (Z N Z) 2 , (a, b) ≠ (0, 0), the Siegel unit g a,b on H is defined by (3) g a,b (τ ) = q B(a N ) 2 n≥0 (1 -q n q ã N ζ b N ) n≥1 (1 -q n q -ã N ζ -b N ) (q = e 2πiτ )
where ã is the representative of a satisfying 0 ≤ ã < N . Here

q α = e 2πiατ for α ∈ Q. It is known that the function g 12N a,b is modular for the group Γ(N ) = {γ ∈ SL 2 (Z) ∶ γ ≡ I 2 (mod N )}.
In fact g a,b defines an element of O(Y (N )) × ⊗ Q, where Y (N ) denotes the affine modular curve of level N over Q. Recall that the group GL 2 (Z N Z) acts on Y (N ) by Q-automorphisms. For any γ ∈ GL 2 (Z N Z), we have the identity in

O(Y (N )) × ⊗ Q (4) g a,b γ = g (a,b)γ . Lemma 4. -Let (a, b) ∈ (Z N Z) 2 , (a, b) ≠ (0, 0). We have (5) g a,b (-1 τ ) = e -2πi({ a N }-1 2 )({ b N }-1 2 ) g b,-a (τ ) (τ ∈ H).
Proof.

-By taking the matrix γ = 0 -1 1 0 in (4), we see that g 

∞ 0 d arg g a,b = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 0 if a = 0 or b = 0 2π({ a N } -1 2 )({ b N } -1 2 ) if a ≠ 0 and b ≠ 0. Proof. -If a = 0 or b = 0 then g a,b has constant argument on the imaginary axis τ = it, t > 0, hence ∫ ∞ 0 d arg g a,b = 0. If a ≠ 0 and b ≠ 0, it is easily seen that arg g a,b (it) t→∞ → 0. Moreover, by Lemma 4, we have arg g a,b (it) t→0 → -2π({ a N } -1 2 )({ b N } -1 2 ) (mod 2π (6) 
). This proves (6) up to a multiple of 2π. In order to establish the exact equality, let us introduce the Klein forms [10, Chap. 2, §1, p. 27]:

k α,β (τ ) = e -1 2 η(ατ +β,τ )(ατ +β) σ(ατ + β, τ ) (α, β ∈ R; τ ∈ H)
where η and σ denote the Weierstrass functions. The link with Siegel units is given by

g a,b (τ ) = wk a N,b N (τ )∆(τ ) 1 12 (1 ≤ a, b ≤ N -1)
where w is a root of unity [10, p. 29]. Since ∆ is positive on the imaginary axis, it follows that

∞ 0 d arg g a,b = ∞ 0 d arg k a N,b N .
Using the q-product formula for the σ function [START_REF] Lang | Elliptic functions[END_REF]Chap. 18, §2] and the Legendre relation

η 2 ω 1 -η 1 ω 2 = 2πi, we find (7) k α,β (it) = 1 2πi e -πα 2 t e πiαβ (e πiβ e -παt -e -πiβ e παt ) n≥1 (1 -e -2π(n+α)t e 2πiβ )(1 -e -2π(n-α)t e -2πiβ ) (1 -e -2πnt ) 2 . Assume 0 < α, β < 1.
Then by [START_REF] Cremona | Algorithms for modular elliptic curves[END_REF], we have arg

k α,β (it) t→∞ → π(αβ -β + 1 2 )
. Moreover, the Klein forms are homogeneous of weight -1 [10, p. 27, K1], which implies

k α,β (-1 τ ) = 1 τ k β,-α (τ ).
From this we get arg k α,β (it)

t→0 → π(-αβ + α) (mod 2π) and ∞ 0 d arg k α,β ≡ 2π(α - 1 2 )(β - 1 2 
) (mod 2π).

Moreover, using the fact that

∫ ∞ 0 d arg k α,β = ∫ ∞ i d arg k α,β -∫ ∞ i d arg k β,-α
and taking the imaginary part of the logarithm of (7), we may express ∫ ∞ 0 d arg k α,β as an infinite sum, which shows that it is a continuous function of (α, β) ∈ (0, 1) 2 . But for β = 1 2 , the Klein form

k α, 1 2 (it) has constant argument. This implies that ∫ ∞ 0 d arg k α,β = 2π(α -1 2 )(β - 1 
2 ) for any 0 < α, β < 1.

L-functions of modular forms

In this section we recall basic results on the functional equation satisfied by L-functions of modular forms.

Let f (τ ) = ∑ ∞ n=0 a n q n be a modular form of weight k ≥ 1 on the group Γ 1 (N ). The L-function of f is defined by

L(f, s) = ∑ ∞ n=1 a n n -s , R(s) > k. Define the completed L-function Λ(f, s) ∶= N s 2 (2π) -s Γ(s)L(f, s) = N s 2 ∞ 0 (f (iy) -a 0 )y s dy y .
Recall that the Atkin-Lehner involution W N on M k (Γ 1 (N )) is defined by

(W N f )(τ ) = i k N -k 2 τ -k f (-1 (N τ )).
Note that in the case k = 2 this W N is the opposite of the usual involution acting on differential 1-forms. The following theorem is classical (see [START_REF] Miyake | Modular forms[END_REF]Thm 4.3.5]).

Theorem 6. -Let f = ∑ ∞ n=0 a n q n ∈ M k (Γ 1 (N )).
The function Λ(f, s) can be analytically continued to the whole s-plane, and satisfies the functional equation

Λ(f, s) = Λ(W N f, k -s). Moreover, write W N f = ∑ ∞ n=0 b n q n . Then the function Λ(f, s) + a 0 s + b 0 k -s is holomorphic on the whole s-plane. Definition 7.
-The notations being as in Theorem 6, we define the regularized values of Λ(f, s) at s = 0 and s = k by

Λ * (f, 0) ∶= lim s→0 Λ(f, s) + a 0 s (8) Λ * (f, k) ∶= lim s→k Λ(f, s) + b 0 k -s . ( 9 
)
Note that the functional equation translates into the equalities of regularized values

(10) Λ * (f, 0) = Λ * (W N f, k) Λ * (f, k) = Λ * (W N f, 0).
We will need the following lemma.

Lemma 8. -Let f = ∑ ∞ n=0 a n q n ∈ M k (Γ 1 (N )) and g = ∑ ∞ n=0 b n q n ∈ M (Γ 1 (N )) with k, ≥ 1. Let h = W N (g). Write f * = f -a 0 and g * = g -b 0 . Then for any s ∈ C, we have (11) N s 2 ∞ 0 f * (iy)g * i N y y s dy y = Λ(f h, s + ) -a 0 Λ(h, s + ) -b 0 Λ(f, s).
Proof. -Note that the integral in [START_REF] Lang | Elliptic functions[END_REF] is absolutely convergent because f * (τ ) and g * (τ ) have exponential decay when I(τ ) tends to +∞. Moreover, it is easy to check, using Theorem 6, that the right hand side of ( 11) is holomorphic on the whole s-plane. Therefore it suffices to establish (11) when R(s) > k. Since W N g = h, we have

N s 2 ∞ 0 f * (iy)g * i N y y s dy y = N s 2 ∞ 0 f * (iy) g i N y -b 0 y s dy y = N s 2 ∞ 0 f * (iy)(N 2 y h(iy) -b 0 )y s dy y . Now, we remark that f * h = f h -a 0 h = (f h) * -a 0 h * . Thus N s 2 ∞ 0 f * (iy)g * i N y y s dy y = N s 2 ∞ 0 N 2 y ((f h) * (iy) -a 0 h * (iy)) -b 0 f * (iy) y s dy y = Λ(f h, s + ) -a 0 Λ(h, s + ) -b 0 Λ(f, s).
Specializing Lemma 8 to the (regularized) value at s = k, we get the following formula.

Lemma 9. -Let f = ∑ ∞ n=0 a n q n ∈ M k (Γ 1 (N )) and g = ∑ ∞ n=0 b n q n ∈ M (Γ 1 (N )) with k, ≥ 1. Let h = W N (g). Write f * = f -a 0 and g * = g -b 0 . Then we have (12) N k 2 ∞ 0 f * (iy)g * i N y y k dy y = Λ * (f h, k + ) -a 0 Λ(h, k + ) -b 0 Λ * (f, k).

Eisenstein series of weight 1

In this section we define some Eisenstein series of weight 1. These are the same as those arising in [START_REF] Zudilin | Regulator of modular units and Mahler measures[END_REF]. (a,b) is an Eisenstein series of weight 1 on the group Γ(N ). We have

Definition 10. -For any a, b ∈ Z N Z, we let (13) e a,b = α 0 (a, b) + m,n≥1 m≡a, n≡b(N ) q mn - m,n≥1 m≡-a, n≡-b(N ) q mn where α 0 (a, b) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 0 if a = b = 0 1 2 -{ b N } if a = 0 and b ≠ 0 1 2 -{ a N } if a ≠ 0 and b = 0 0 if a ≠ 0 and b ≠ 0.
G 1,(a,b) (τ ) = - 2πi N γ 0 (a, b) + m,n≥1 n≡a(N ) ζ bm N q mn N - m,n≥1 n≡-a(N ) ζ -bm N q mn N where γ 0 (a, b) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 0 if a = b = 0 1 2 1+ζ b N 1-ζ b N if a = 0 and b ≠ 0 1 2 -{ a N } if a ≠ 0. The function G 1,
e a,b τ N = α 0 (a, b) + m,n≥1 m≡a, n≡b(N ) q mn N - m,n≥1 m≡-a, n≡-b(N ) q mn N = α 0 (a, b) + 1 N N -1 c=0 ζ ca N ⎛ ⎝ m,n≥1 n≡b(N ) ζ -cm N q mn N - m,n≥1 n≡-b(N ) ζ cm N q mn N ⎞ ⎠ = α 0 (a, b) - 1 N N -1 c=0 ζ ca N γ 0 (b, -c) - 1 2πi N -1 c=0 ζ ca N G 1,(b,-c) . If b ≠ 0 then 1 N N -1 c=0 ζ ca N γ 0 (b, -c) = 1 N N -1 c=0 ζ ca N 1 2 -{ b N } = α 0 (a, b), hence e a,b (τ N ) is an Eisenstein series of weight 1 on Γ(N ). If a ≠ 0 then the same is true because e a,b = e b,a . Finally if a = b = 0 then α 0 (a, b) - 1 N N -1 c=0 ζ ca N γ 0 (b, -c) = - 1 N N -1 c=0 γ 0 (0, c) = 0 because γ 0 (0, -c) = -γ 0 (0, c).
The second assertion follows from the fact that

N 0 0 1 Γ 1 (N 2 ) N 0 0 1 -1 ⊂ Γ(N ). Definition 12. -For any a, b ∈ Z N Z, we let (14) f a,b = β 0 (a, b) + m,n≥1 (ζ am+bn N -ζ -am-bn N )q mn where β 0 (a, b) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 0 if a = b = 0 1 2 1+ζ b N 1-ζ b N if a = 0 and b ≠ 0 1 2 1+ζ a N 1-ζ a N if a ≠ 0 and b = 0 1 2 1+ζ a N 1-ζ a N + 1+ζ b N 1-ζ b N if a ≠ 0 and b ≠ 0.
As the next lemma shows, the functions f a,b are also Eisenstein series; they relate to e a,b by the Atkin-Lehner involution of level N 2 . Lemma 13. -We have the relation 

(15) e a,b - 1 N τ = - τ N f a,b τ N (τ ∈ H).
(16) Λ(f a,b + f -a,b , s) = N s Γ(s)(2π) -s m≥1 ζ am N + ζ -am N m s n≥1 ζ bn N -ζ -bn N n s . Proof. -See the proof of [21, Lemma 3].
In the special cases s = 1 and s = 2, this gives the following formulas. Note that formula (18) is none other than [21, Lemma 3].

Lemma 15. -We have Λ * (f a,b + f -a,b , 1) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 0 if b = 0 2iN γ ⋅ ( 1 2 -{ b N }) if a = 0 and b ≠ 0 -2iN log 1 -ζ a N ⋅ ( 1 2 -{ b N }) if a ≠ 0 and b ≠ 0 (17) Λ(f a,b + f -a,b , 2) = iN 2 B a N Cl 2 2πb N ( 18 
)
where γ is Euler's constant and

Cl 2 (x) = ∞ m=1 sin(mx) m 2 (x ∈ R)
denotes the Clausen dilogarithmic function.

Proof.

-If a = 0 then ∑ ∞ n=1 ζ an N n -s = ζ(s) = 1 s-1 + γ + O s→1 (s -1). If a ≠ 0 then ∑ ∞ n=1 ζ an N n = -log(1 -ζ a N )
where we use the principal value of the logarithm. Formula ( 17) follows, noting thatlog 18) is [21, Lemma 3].

1-ζ b N 1-ζ -b N = 2πi( 1 2 -{ b N }). Formula (

The computation

Lemma 16. -For any (a, b) ∈ (Z N Z) 2 , (a, b) ≠ (0, 0), we have log g a,b (it) = -πB(a N )t + C a,b - m≥1 n≥1 n≡a(N ) ζ bm N m e -2πmnt N - m≥1 n≥1 n≡-a(N ) ζ -bm N m e -2πmnt N (19) = - πB(b N ) t + C b,-a + iθ a,b - m≥1 n≥1 n≡b(N ) ζ -am N m e -2πmn N t - m≥1 n≥1 n≡-b(N ) ζ am N m e -2πmn N t ( 20 
)
where

θ a,b = 2π({ a N } -1 2 )({ b N } -1 2 ) and (21) C a,b = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ log(1 -ζ b N ) if a = 0, 0 if a ≠ 0.
Proof. -By the definition of Siegel units, we have

log g a,b = πiB(a N )τ + n≥0 log(1 -q n q ã N ζ b N ) + n≥1 log(1 -q n q -ã N ζ -b N )
Using the identity log(1

-x) = -∑ ∞ m=1
x m m and substituting τ = it, we get [START_REF] Vélu | Isogénies entre courbes elliptiques[END_REF]. Applying Lemma 4 with τ = i t, we have g a,b (it) = e iθ a,b g b,-a (i t), whence [START_REF] Villegas | Modular Mahler measures. I[END_REF].

We will need the following lemma from [START_REF] Zudilin | Regulator of modular units and Mahler measures[END_REF].

Lemma 17. -(See [21, Lemma 4].) For any a, b ∈ Z N Z, we have I(a, b) ∶= ∞ 0 1 it d ∞ m=1 ζ am N -ζ -am N m ⎛ ⎝ n≥1 n≡b(N ) - n≥1 n≡-b(N ) ⎞ ⎠ exp - 2πmn N t = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 0 if a = 0 or b = 0 -i Cl 2 ( 2πa N ) 1+ζ b N 1-ζ b N if a ≠ 0 and b ≠ 0. ( 22 
)
Proof of Theorem 1. -By Lemma 16, we get

(23) log g u (it) = - πB(b N ) t + R(C b,-a ) - 1 2 m≥1 ζ am N + ζ -am N m ⎛ ⎝ n≥1 n≡b(N ) + n≥1 n≡-b(N ) ⎞ ⎠ e -2πmn N t and d arg g u (it) = - 1 2i d m≥1 ζ bm N -ζ -bm N m ⎛ ⎝ n≥1 n≡a(N ) - n≥1 n≡-a(N ) ⎞ ⎠ e -2πmnt N (24) = 1 2i d m≥1 ζ am N -ζ -am N m ⎛ ⎝ n≥1 n≡b(N ) - n≥1 n≡-b(N ) ⎞ ⎠ e -2πmn N t . (25) Let u = (a, b), v = (c, d) ∈ (Z N Z) 2 , u, v ≠ (0, 0). We have η(g u , g v ) = - πB(b N ) t + R(C b,-a ) ⋅ 1 2i d m≥1 ζ cm N -ζ -cm N m ⎛ ⎝ n≥1 n≡d(N ) - n≥1 n≡-d(N ) ⎞ ⎠ e -2πmn N t - 1 2 m 1 ≥1 ζ am 1 N + ζ -am 1 N m 1 ⎛ ⎝ n 1 ≥1 n 1 ≡b(N ) + n 1 ≥1 n 1 ≡-b(N ) ⎞ ⎠ e -2πm 1 n 1 N t × - 1 2i d m 2 ≥1 ζ dm 2 N -ζ -dm 2 N m 2 ⎛ ⎝ n 2 ≥1 n 2 ≡c(N )
-

n 2 ≥1 n 2 ≡-c(N ) ⎞ ⎠ e -2πm 2 n 2 t N -- πB(d N ) t + R(C d,-c ) ⋅ 1 2i d m≥1 ζ am N -ζ -am N m ⎛ ⎝ n≥1 n≡b(N ) - n≥1 n≡-b(N ) ⎞ ⎠ e -2πmn N t + 1 2 m 1 ≥1 ζ cm 1 N + ζ -cm 1 N m 1 ⎛ ⎝ n 1 ≥1 n 1 ≡d(N ) + n 1 ≥1 n 1 ≡-d(N ) ⎞ ⎠ e -2πm 1 n 1 N t × - 1 2i d m 2 ≥1 ζ bm 2 N -ζ -bm 2 N m 2 ⎛ ⎝ n 2 ≥1 n 2 ≡a(N )
-

n 2 ≥1 n 2 ≡-a(N ) ⎞ ⎠ e -2πm 2 n 2 t N . ( 26 
)
The terms involving double sums can be integrated using Lemmas 5 and 17. This gives

∞ 0 η(g u , g v ) = - π 2 B b N I(c, d) + π 2 B d N I(a, b) + R(C b,-a ) ∞ 0 d arg g v -R(C d,-c ) ∞ 0 d arg g u + I (27) 
with

I = πi 2N m 1 ,m 2 ≥1 ⎛ ⎝ (ζ am 1 N + ζ -am 1 N )(ζ dm 2 N -ζ -dm 2 N ) ⎛ ⎝ n 1 ≥1 n 1 ≡b(N ) + n 1 ≥1 n 1 ≡-b(N ) ⎞ ⎠ ⎛ ⎝ n 2 ≥1 n 2 ≡c(N ) - n 2 ≥1 n 2 ≡-c(N ) ⎞ ⎠ -(ζ cm 1 N + ζ -cm 1 N )(ζ bm 2 N -ζ -bm 2 N ) ⎛ ⎝ n 1 ≥1 n 1 ≡d(N ) + n 1 ≥1 n 1 ≡-d(N ) ⎞ ⎠ ⎛ ⎝ n 2 ≥1 n 2 ≡a(N ) - n 2 ≥1 n 2 ≡-a(N ) ⎞ ⎠ ⎞ ⎠ ⋅ ⋅ n 2 m 1 ∞ 0 exp -2π m 1 n 1 N t + m 2 n 2 t N dt. ( 28 
)
Making the change of variables t ′ = n 2 m 1 t, we have

(29) n 2 m 1 ∞ 0 exp -2π m 1 n 1 N t + m 2 n 2 t N dt = ∞ 0 exp -2π n 1 n 2 N t ′ + m 1 m 2 t ′ N dt ′ .
Replacing in (28) and interchanging integral and summation, we get

I = πi 2N ∞ 0 m 1 ,m 2 ≥1 (ζ am 1 N + ζ -am 1 N )(ζ dm 2 N -ζ -dm 2 N )e -2πm 1 m 2 t ′ N ⋅ ⋅ ⎛ ⎝ n 1 ≥1 n 1 ≡b(N ) + n 1 ≥1 n 1 ≡-b(N ) ⎞ ⎠ ⎛ ⎝ n 2 ≥1 n 2 ≡c(N ) - n 2 ≥1 n 2 ≡-c(N ) ⎞ ⎠ e -2πn 1 n 2 N t ′ - m 1 ,m 2 ≥1 (ζ cm 1 N + ζ -cm 1 N )(ζ bm 2 N -ζ -bm 2 N )e -2πm 1 m 2 t ′ N ⋅ ⋅ ⎛ ⎝ n 1 ≥1 n 1 ≡d(N ) + n 1 ≥1 n 1 ≡-d(N ) ⎞ ⎠ ⎛ ⎝ n 2 ≥1 n 2 ≡a(N ) - n 2 ≥1 n 2 ≡-a(N ) ⎞ ⎠ e -2πn 1 n 2 N t ′ dt ′ . (30)
Making the change of variables y = t ′ N , we obtain

I = πi 2 ∞ 0 (f * a,d + f * -a,d )(iy) ⋅ (e * b,c + e * -b,c ) i N 2 y -(f * c,b + f * -c,b )(iy) ⋅ (e * d,a + e * -d,a ) i N 2 y dy. ( 31 
)
We compute this integral using Lemma 9 with k = = 1, taking into account Lemma 13: for any a, b, c, d ∈ Z N Z, we have

(32) ∞ 0 f * a,b (iy)e * c,d i N 2 y dy = - i N 2 Λ * (f a,b f c,d , 2) -β 0 (a, b)Λ(f c,d , 2) - α 0 (c, d) N Λ * (f a,b , 1). 
Replacing in (31), we get I = I 1 + I 2 + I 3 with

I 1 = π 2N 2 Λ * ((f a,d + f -a,d )(f b,c + f -b,c ) -(f c,b + f -c,b )(f d,a + f -d,a ), 2) (33) 
I 2 = - π 2N 2 (β 0 (a, d) + β 0 (-a, d))Λ(f b,c + f -b,c , 2) -(β 0 (c, b) + β 0 (-c, b))Λ(f d,a + f -d,a , 2) 
(34)

I 3 = - πi 2N (α 0 (b, c) + α 0 (-b, c))Λ * (f a,d + f -a,d , 1) -(α 0 (d, a) + α 0 (-d, a))Λ * (f c,b + f -c,b , 1) (35) 
Using the fact that f a,b = f b,a = -f -a,-b , I 1 simplifies to (36)

I 1 = π N 2 Λ * (f a,d f -b,c -f a,-d f b,c , 2).
The terms involving Λ(f a,b , 2) can be evaluated with [START_REF] Bordeaux | PARI/GP version 2.7.3[END_REF]; they simplify with the terms involving I(a, b) in ( 27):

(37)

I 2 = π 2 B b N I(c, d) - π 2 B d N I(a, b).
The terms involving Λ * (f a,b , 1) can be evaluated with [START_REF] Schoeneberg | Elliptic modular functions: an introduction[END_REF]. Note that α 0 (b, c) + α 0 (-b, c) is nonzero only in the case b = 0 and c ≠ 0. Since we assumed u ≠ 0, this implies a ≠ 0 and the case of Lemma 15 involving Euler's constant does not happen. Anyway I 3 simplifies with the terms involving ∫ ∞ 0 d arg g u in (27):

(38)

I 3 = -R(C b,-a ) ∞ 0 d arg g v + R(C d,-c ) ∞ 0 d arg g u .
Putting everything together, we get (39

) ∞ 0 η(g u , g v ) = I 1 = π N 2 Λ * (f a,d f -b,c -f a,-d f b,c , 2) 
. Theorem 1 now follows from [START_REF] Kubert | Grundlehren der Mathematischen Wissenschaften[END_REF], taking into account the fact that

W N 2 (f a,b f c,d ) = W N 2 (f a,b )W N 2 (f c,d ) = -N 2 e a,b e c,d .
Remark 18. -It would be interesting to find a definition of g 0,0 so that Theorem 1 holds for any vectors u, v ∈ (Z N Z) 2 .

Applications

In this section we investigate the applications of Theorem 1 to elliptic curves. Our strategy can be explained as follows. In [START_REF]Parametrizing elliptic curves by modular units[END_REF], we determined a list of elliptic curves defined over Q which can be parametrized by modular units. Let E be such an elliptic curve, with modular parametrization ϕ ∶ X 1 (N ) → E. Let x, y be functions on E such that u ∶= ϕ * (x) and v ∶= ϕ * (y) are modular units. Assume that {x, y} ∈ K 2 (E) ⊗ Q. Then the minimal polynomial P of (x, y) is tempered and in favorable cases, the Mahler measure of P can be expressed in terms of a regulator integral ∫ γ η(x, y) where γ is a (non necessarily closed) path on E. Using the techniques of [START_REF]Parametrizing elliptic curves by modular units[END_REF], we compute the images of the various cusps under ϕ and deduce the divisors of u and v. Since the divisors of Siegel units are easily computed using ( 3) and ( 4), we get an expression of u and v in terms of Siegel units, and may apply Theorem 1.

We will need the following expression for the regulator integral in terms of Bloch's elliptic dilogarithm. Let E Q be an elliptic curve, and let D E ∶ E(C) → R be the elliptic dilogarithm associated to a chosen orientation of E(R). Extend D E by linearity to a function Z[E(C)] → R. Let γ + E be the generator of H 1 (E(C), Z) + corresponding to the chosen orientation. Proposition 19. -Let x ∈ K 2 (E) ⊗ Q. Choose rational functions f i , g i on E such that x = ∑ i {f i , g i }, and define η(x) = ∑ i η(f i , g i ). Then for every γ ∈ H 1 (E(C), Z), we have

γ η(x) = -(γ + E • γ)D E (β)
where • denotes the intersection product on H 1 (E(C), Z), and β is the divisor given by

β = i p,q∈E(C) ord p (f i ) ord q (g i )(p -q).
Proof. -Since x ∈ K 2 (E) ⊗ Q, the integral of η(x) over a closed path γ avoiding the zeros and poles of f i , g i depends only on the class of γ in H 1 (E(C), Z). Let δ be an element of

H 1 (E(C), Z) such that γ + E • δ = 1. Let c denote the complex conjugation on E(C). Since c * η(x) = -η(x), we have ∫ γ + E η(x) = 0
and it suffices to prove the formula for γ = δ. Choose an isomorphism E(C) ≅ C (Z + τ Z) which is compatible with complex conjugation. We have

E(C) η(x) ∧ dz = E(C) η(x) ∧ dz = E(C) c * (-η(x) ∧ dz) = E(C) η(x) ∧ dz so that ∫ E(C) η(x) ∧ dz ∈ R. By [5, Prop. 6], we get E(C) η(x) ∧ dz = D E (β). Since (γ + E , δ) is a symplectic basis of H 1 (E(C), Z), we have [3, A.2.5] E(C) η(x) ∧ dz = γ + E η(x) ⋅ δ dz - γ + E dz ⋅ δ η(x) = - δ η(x).
The following proposition is a slight generalization of a technique introduced by A. Mellit [START_REF] Mellit | Elliptic dilogarithm and parallel lines[END_REF] to prove identities involving elliptic dilogarithms. Let E Q be an elliptic curve, which we view as a smooth cubic in P 2 . Definition 20. -For any lines and m in P 2 , let β E ( , m) be the divisor of degree 9 on E(C) defined by β E ( , m) = ∑ x∈ ∩E ∑ y∈m∩E (x -y).

Proposition 21. -Let 1 , 2 , 3 be three incident lines in P 2 . Then

(40) D E (β E ( 1 , 2 )) + D E (β E ( 2 , 3 )) + D E (β E ( 3 , 1 )) = 0. Proof. -Let f 1 , f 2 , f 3 be equations of 1 , 2 , 3 such that f 1 + f 2 = f 3 . Using the Steinberg relation { f 1 f 3 , f 2 f 3 } = 0, we deduce {f 1 , f 2 } + {f 2 , f 3 } + {f 3 , f 1 } = 0 in K 2 (C(E)) ⊗ Q.
Applying the regulator map and taking the real part [5, Prop. 6], we deduce

D E (β(f 1 , 2 )) + D E (β(f 2 , f 3 )) + D E (β(f 3 , f 1 )) = 0 where β(f i , f i+1 ) is defined as in Proposition 19. We have div(f i ) = ( i ∩ E) -3(0) so that β(f i , f i+1 ) = β E ( i , i+1 ) -3( i ∩ E) -3ι * ( i+1 ∩ E) + 9(0)
where ι denotes the map p ↦ -p on E(C). Since D E is odd, the proposition follows.

Remark 22. -If the incidence point of 1 , 2 , 3 lies on E, then the relation ( 40) is trivial in the sense that it is a consequence of the fact that D E is odd.

We will also need the following lemma to relate elliptic dilogarithms on isogenous curves.

Lemma 23. -Let ϕ ∶ E → E ′ be an isogeny between elliptic curves defined over Q. Choose orientations of E(R) and E ′ (R) which are compatible under ϕ, and let d ϕ be the topological degree of the map E(R) 0 → E ′ (R) 0 , where (⋅) 0 denotes the connected component of the origin. Then for any point P ′ ∈ E ′ (C), we have

(41) D E ′ (P ′ ) = d ϕ ⋅ ϕ(P )=P ′ D E (P ). Proof. -Choose isomorphisms E(C) ≅ C (Z + τ Z) and E ′ (C) ≅ C (Z + τ ′ Z) which are compatible with complex conjugation. Then E(R) 0 = R Z and E ′ (R) 0 = R Z so that ϕ is given by [z] ↦ [d ϕ z]. We have isomorphisms E(C) ≅ C × q Z and E ′ (C) ≅ C × (q ′ ) Z with q = e 2πiτ and q ′ = e 2πiτ ′ . Let π ∶ C × → E(C) and π ′ ∶ C × → E ′ (C) be the canonical maps. Let P ′ be a point of E ′ (C). By definition D E ′ (P ′ ) = ∑ π ′ (x ′ )=P ′ D(x ′ )
where D is the Bloch-Wigner function, and similarly D E (P ) = ∑ π(x)=P D(x). Now ϕ is induced by the map x ↦ x dϕ , so that (41) follows from the usual functional equation D(x r ) = r ∑ u r =1 D(ux) for any r ≥ 1 [15, (21)].

Note that in the particular case ϕ is the multiplication-by-n map on E, Lemma 23 gives the usual functional equation 5, k = -1, -2, -3]. Note that the case of conductor 14 was proved by A. Mellit [START_REF] Mellit | Elliptic dilogarithm and parallel lines[END_REF].

D E (nP ) = n Q∈E[n] D E (P + Q).
Theorem 24. -Let P k be the polynomial P k (x, y) = y 2 +kxy +y -x 3 , and let E k be the elliptic curve defined by the equation P k (x, y) = 0. We have the identities

m(P -1 ) = 2L ′ (E -1 , 0) (42) m(P -2 ) = L ′ (E -2 , 0) (43) m(P -3 ) = L ′ (E -3 , 0). ( 44 
)
By the discussion in [4, p. 62], the polynomial P k does not vanish on the torus for k ∈ R, k < -1. For these values of k we thus have

m(P k ) = 1 2π γ k η(x, y)
where γ k is the closed path on E k (C) defined by

γ k = {(x, y) ∈ E k (C) ∶ x = 1, y ≤ 1}.
The point A = (0, 0) on E k has order 3 and the divisors of x and y are given by div

(x) = (A) + (-A) -2(0) div(y) = 3(A) -3(0).
The tame symbols of {x, y} at 0, A, -A are respectively equal to 1, -1, -1, so that {x, y} defines an element of

K 2 (E k ) ⊗ Q. Moreover γ k is a generator of H 1 (E k (C), Z) -which satisfies γ + E k • γ k = -2, so that Proposition 19 gives (45) m(P k ) = 1 π D E k (β(x, y)) = 9 π D E k (A) (k < -1).
Note that by continuity (45) also holds for k = -1. Now assume k ∈ {-1, -2, -3}. The elliptic curves E -1 , E -2 , E -3 are respectively isomorphic to 14a4, 35a3 and 54a3. By [START_REF]Parametrizing elliptic curves by modular units[END_REF], these curves are parametrized by modular units. Since the functions x and y are supported in the rational torsion subgroup, their pull-back u = ϕ * x and v = ϕ * y are modular units, and we may express them in terms of Siegel units. For brevity, we put g b = g 0,b in what follows. We also let f -k be the newform associated to E -k , and we define

ω f -k = 2πif -k (τ )dτ .
In the case k = -1, N = 14, we find explicitly

u = g 5 g 6 g 1 g 2 v = - g 3 g 5 g 2 6 g 2 1 g 2 g 4
.

We now wish to express the Deninger path γ -1 in terms of modular symbols. Using Magma [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF] and Pari/GP [START_REF] Bordeaux | PARI/GP version 2.7.3[END_REF], we compute

∫ -2 7 2 7 ω f -1 = -Ω - E -1 , where Ω - E -1 ∈ iR >0
is the imaginary period of E -1 . The Magma and Pari/GP codes to evaluate numerically both sides of this identity are as follows:

// Magma code to evaluate the left hand side E:=EllipticCurve("14a4"); M:=ModularSymbols(E); phi:=PeriodMapping(M,1000); phi(M!<1,[Cusps()|2/7,-2/7]>); \\ Pari/GP code to evaluate the right hand side e=ellinit("14a4"); -(e.omega [START_REF] Borisov | Toric modular forms and nonvanishing of L-functions[END_REF]-2*e.omega [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF])

Thus we get γ -1 = ϕ * 2 7 , - 2 7 = ϕ * -ξ 2 1 7 4 -ξ 1 0 4 1 + ξ 1 0 -4 1 + ξ -2 1 7 -4 .
Using Theorem 1, we obtain

γ -1 η(x, y) = -2 7 2 7 η(u, v) = πL ′ (4f -1 , 0).
This proves (42).

In the case k = -2, N = 35, we find explicitly .

u = g 2 g
Moreover the Deninger path is the following sum of modular symbols

γ -2 = ϕ * 1 5 , - 1 5 = ϕ * ξ 1 0 -5 1 -ξ 1 0 5 1 .
Using Theorem 1, we obtain

γ -2 η(x, y) = -1 5 1 5 η(u, v) = πL ′ (2f -2 , 0).
This proves (43).

In the case k = -3, N = 54, we find explicitly .

u = g 2 g 4 g 2
Moreover the Deninger path is the following sum of modular symbols

γ -3 = ϕ * - 1 8 , 1 8 = ϕ * ξ 1 0 8 1 -ξ 1 0 - 8 1 
.

Using Theorem 1, we obtain

γ -3 η(x, y) = 1 8 -1 8 η(u, v) = πL ′ (2f -3 , 0).
This proves (43). Using (45), we also deduce Zagier's conjectures for these elliptic curves.

Theorem 25. -We have the identities

(46) L(E -1 , 2) = 9π 7 D E -1 (A) L(E -2 , 2) = 36π 35 D E -2 (A) L(E -3 , 2) = 2π 3 D E -3 (A).
6.2. Conductor 21. -The modular curve X 0 (21) has genus 1 and is isomorphic to the elliptic curve E 0 = 21a1 with minimal equation

y 2 + xy = x 3 -4x -1. The Mordell-Weil group E 0 (Q) is isomorphic to Z 4Z × Z 2Z
and is generated by the points P = (5, 8) and Q = (-2, 1), with respective orders 4 and 2. The modular curve X 0 (21) has 4 cusps: 0, 1 3, 1 7, ∞ and we may choose the isomorphism ϕ 0 ∶ X 0 (

≅ → E 0 so that ϕ 0 (0) = 0, ϕ 0 (1 3) = (-1, -1) = P + Q, ϕ 0 (1 7) = Q and ϕ 0 (∞) = P . Let f P and f Q be functions on E with divisors

(f P ) = 4(P ) -4(0) (f Q ) = 2(Q) -2(0).
These modular units can be expressed in terms of the Dedekind η function [12, §3.2]:

f P ∼ Q × η(3τ )η(21τ ) 5 η(τ ) 5 η(7τ ) f Q ∼ Q × η(3τ )η(7τ ) 3 η(τ ) 3 η(21τ ) .
They can in turn be expressed in terms of Siegel units using the formula

η(dτ ) η(τ ) = C d (d-1) 2 k=1 g 0,kN d (τ ) (C d ∈ C × ).
Thus we can take f P = g 0,7 (∏ 10 b=1 g 0,b ) 5 g 0,3 g 0,6 g 0,9

f Q = g 0,7 (g 0,3 g 0,6 g 0,9 ) 3

∏ 10 b=1 g 0,b
.

The homology group H 1 (E 0 (C), Z) -is generated by the modular symbol γ = {-

1 3 , 1 3 } = ξ 1 0 3 1 -ξ 1 0 - 3 1 
. Using Theorem 1 and a computer algebra system, we find

γ η(f P , f Q ) = πΛ * (F, 0)
where F is the modular form of weight 2 and level 21 given by

F = 68q + 220q 2 + 68q 3 + 508q 4 + 440q 5 + 220q 6 + 508q 7 + 1068q 8 + 68q 9 + ⋯
The space M 2 (Γ 0 (21)) has dimension 4 and is generated by f 0 , E 2,3 , E 2,7 and E 2,21 where f 0 is the newform associated to E 0 and E 2,d (τ ) = E 2 (τ ) -dE 2 (dτ ). We find explicitly

F = -4f 0 + 72E 2,3 + 72 7 E 2,7 - 72 7 E 2,21
We have

L(E 2,d , s) = (1 -d 1-s )ζ(s)ζ(s -1
) and a little computation gives

L(F, s) = -4L(E 0 , s) + 72 7 ⋅ 21 s (7 ⋅ 21 s -21 ⋅ 7 s -7 ⋅ 3 s + 21)ζ(s)ζ(s -1). Thus L(F, 0) = 0 and using ζ(0) = -1 2 and ζ(-1) = -1 12, we find Λ * (F, 0) = Λ(F, 0) = L ′ (F, 0) = -4L ′ (E 0 , 0) -6 log 7.
The extraneous term 6 log 7 stems from the fact that the Milnor symbol {f P , f Q } does not extend to K 2 (E 0 ) ⊗ Q. Indeed, the tame symbols are given by

∂ 0 {f P , f Q } = 1 ∂ P {f P , f Q } = f Q (P ) -4 = ζ -4 7 7 -4 ∂ Q {f P , f Q } = ζ -4 7 7 4
. Since f P and f Q are supported in torsion points, there is a standard trick (due to Bloch) to alter the symbol {f P , f Q } to make an element of K 2 (E 0 ) ⊗ Q. We will see that the corresponding regulator integral is proportional to L ′ (E 0 , 0) alone. We put x ∶= {f P , f Q } + {7, f P f 2 Q }, which belongs to K 2 (E 0 ) ⊗ Q, and we define

η(x) ∶= η(f P , f Q ) + η(7, f P f 2 Q ) = η(f P , f Q ) + log 7 ⋅ d arg(f P f 2 Q ). We can compute the integral of d arg(f P f 2 Q ) using Lemma 5, which results in γ η(x) = -4πL ′ (E 0 , 0).
On the other hand, we have ∫ γ ω f 0 ≈ 1.91099i which shows that γ + E 0 • γ > 0. Since E 0 (R) has two connected components, this implies γ + E 0 • γ = 1 and Proposition 19 gives

γ η(x) = -D E 0 (β).
We have β = 8(P + Q) -8(P ) -8(Q) + 8(0). Since D E 0 is odd, this gives

γ η(x) = -8 D E 0 (P + Q) -D E 0 (P ) .
Taking into account the functional equation L ′ (E 0 , 0) = 21 4π 2 L(E 0 , 2), we have thus shown Zagier's conjecture for E 0 .

Theorem 26. -We have the identity L(E 0 , 2) = 8π

21 D E 0 (P + Q) -D E 0 (P ) .

We will now deduce Boyd's conjecture [4, Table 1, k = 3] for the elliptic curve E 1 of conductor 21 given by the equation P (x, y) = x + 1

x + y + 1 y + 3 = 0.

Theorem 27. -We have the identity m(x

+ 1 x + y + 1 y + 3) = 2L ′ (E 1 , 0).
The change of variables

X = x(x + y + 3) + 1 Y = x(x + 1)(x + y + 3) + 1
puts E 1 in the Weierstrass form Y 2 + XY = X 3 + X. This is the elliptic curve labelled 21a4 in Cremona's tables [START_REF] Cremona | Algorithms for modular elliptic curves[END_REF]. The Mordell-Weil group E 1 (Q) is isomorphic to Z 4Z and is generated by P 1 = (1, 1). The polynomial P satisfies Deninger's conditions [8, 3.2], so we have

m(P ) = 1 2π γ P η(x, y)
where γ P is the path defined by γ P = {(x, y) ∈ E 1 (C) ∶ x = 1, y ≤ 1}. The path γ P joins the point Ā = ( ζ3 , -1) to A = (ζ 3 , -1). Note that these points have last coordinate -1, so the discussion in [8, p. 272] applies and γ P defines an element of H 1 (E 1 (C), Q). After some computation, we find that γ P = 1 2 γ 1 where γ 1 is a generator of

H 1 (E 1 (C), Z) -such that γ + E 1 •γ 1 = 2 (note that E 1 (R) is connected). Using Proposition 19, it follows that γ P η(x, y) = 1 2 γ 1 η(x, y) = -D E 1 (β)
where β = div(x) * div(y) -is the convolution of the divisors of x and y. We have div(x) = (P 1 ) + (2P 1 ) -(-P 1 ) -(0) div(y) = (P 1 ) -(2P 1 ) -(-P 1 ) + (0) so that β = 4(P 1 ) -4(-P 1 ). This gives γ P η(x, y) = -8D E 1 (P 1 ).

We are now going to relate elliptic dilogarithms on E 1 and E 0 using Proposition 21 and Lemma 23. The curve E 1 is the X 1 (21)-optimal elliptic curve in the isogeny class of E 0 . We have a 2-isogeny λ ∶ E 1 → E 0 whose kernel is generated by 2P 1 = (0, 0). Using Vélu's formulas [START_REF] Vélu | Isogénies entre courbes elliptiques[END_REF], we find that an equation of λ is ). Using Theorem 26 and Lemma 23, we have

λ(X, Y ) = X 2 + 1 X , - 1 X + X 2 -1 X 2 Y
L ′ (E 0 , 0) = 4 π D E 1 (A) + D E 1 ( Ā) -D E 1 (B) -D E 1 (B ′ )
so that Theorem 27 reduces to show

D E 1 (P 1 ) = -2 2D E 1 (A) -D E 1 (B) -D E 1 (B ′ ) .
We look for lines in P 2 such that ∩ E 1 is contained in the subgroup generated by A and B. Using a computer search, we find that the tangents to E at A and -A and the line ∶ Y + 1 2 X = 0 passing through the 2-torsion points of E are incident. By Proposition 21, we deduce the relation

4D E 1 (2A) + 4D E 1 (3A) + D E 1 (4A) + 2D E 1 (-2A) + 4D E 1 (-A) + 2D E 1 (2A + C) + 4D E 1 (3A + C) + 2D E 1 (-2A + C) + 4D E 1 (-A + C) = 0. Since D E 1 is odd and D E 1 (3A) = -D E 1 ( Ā) = -D E 1 (A), this simplifies to 2D E 1 (2A) -8D E 1 (A) + 4D E 1 (B) + 4D E 1 (B ′ ) = 0
which is the desired equality. 

+ 12) = 2L ′ (E, 0)
, where E is the elliptic curve defined by x + 1

x + y + 1 y + 12 = 0.

The curve x + 1

x + y + 1 y + 12 = 0 is isomorphic to the elliptic curve E = 48a5. We have a commutative diagram (47) X 1 (48)

X 0 (48)

E 1 E 0 E. π ϕ1 ϕ0 λ0 λ
Here E 1 = 48a4 is the X 1 (48)-optimal elliptic curve and E 0 = 48a1 is the strong Weil curve in the isogeny class of E. They are given by the equations

(48) E 1 ∶ y 2 = x 3 + x 2 + x E 0 ∶ y 2 = x 3 + x 2 -4x -4.
The isogeny λ 0 has degree 2 and its kernel is generated by P 1 = (0, 0). Using Vélu's formulas, we find an explicit equation for λ 0 :

(49) λ 0 (x, y) = x + 1 x , (1 -1

x 2 )y . The modular parametrization ϕ 0 has degree 2 and we have

ϕ 0 (0) = ϕ 0 (1 2) = 0 ϕ 0 (1 3) = ϕ 0 (1 6) = (-1, 0) ϕ 0 (1 8) = ϕ 0 (1 16) = (-2, 0) ϕ 0 (1 24) = ϕ 0 (1 48) = (2, 0) ϕ 0 (1 4) = (0, 2i) ϕ 0 (-1 4) = (0, -2i) ϕ 0 (1 12) = (-4, -6i) ϕ 0 (-1 12) = (-4, 6i).
Moreover the ramification indices of ϕ 0 at the cusps 1 4 , -1 4 , 1 12 , -1 12 are equal to 2. Let S 0 be the set of points P of E 0 (C) such that ϕ -1 0 (P ) is contained in the set of cusps of X 0 (48), and similarly let S 1 be the set of points P of E 1 (C) such that ϕ -1 1 (P ) is contained in the set of cusps of X 1 (48). By the previous computation, we have (50)

S 0 = E 0 [2] ∪ {(0, ±2i), (-4, ±6i)}.
The curve E 0 doesn't admit a parametrization by modular units, but the curve E 1 does. Indeed, consider the point A = (i, i) ∈ E 1 (C). It has order 8 and satisfies Ā = 3A and 4A = P 1 . Moreover λ 0 (A) = (0, 2i). Because of the commutative diagram (47), we know that S 1 contains λ -1 0 (S 0 ); in particular S 1 contains the subgroup generated by A. Therefore the following functions on E 1 are modular units

(51) (f ) = 2(P 1 ) -2(0) (g) = 2(A) + 2( Ā) -4(0).
We may take f = x and g = x 2 -2y + 2x + 1. It is plain that f and g parametrize E 1 . Moreover the tame symbols of {f, g} at 0, P 1 , A, Ā are equal to 1, 1, -1, - A generator γ 1 of H 1 (E 1 (C), Z) -is given by

γ 1 = (ϕ 1 ) * - 1 7 , 1 7 = (ϕ 1 ) * ξ 1 0 7 1 -ξ 1 0 - 7 1 
.

Using Theorem 1, we find (53)

γ 1 η(f, g) = 1 7 -1 7 η(ϕ * 1 f, ϕ * 1 g) = πL ′ (F 1 , 0)
where F 1 is the modular form of weight 2 and level 48 given by 

F 1 = 4q 2 + 8q 3 -4q 6 -
γ 2 = (ϕ 1 ) * - 2 11 , 2 11 = (ϕ 1 ) * ξ 2 1 11 6 + ξ 1 0 6 1 -ξ -2 1 11 -6 -ξ 1 0 - 6 1 
.

Using Theorem 1, we find (54)

γ 2 η(f, g) = 2 11 -2 11 η(ϕ * 1 f, ϕ * 1 g) = πL ′ (F 2 , 0)
where F 2 is the modular form of weight 2 and level 48 given by F 2 = -4q + 8q 2 + 12q 3 + 8q 5 -8q 6 -4q 9 -16q 10 -48q 11 + 8q 13 -24q 15 -8q 17 + 8q 18 + 48q 19 + . . .

A computation reveals that 2F 1 -F 2 = 4f E 1 . Summing (53) and (54), we get (55) Proposition 30. -Let k be a real number such that k > 4. We have

2γ 1 -γ 2 η(f, g) = 4πL ′ (E 1 , 0). Since γ + E 1 • γ 1 = γ + E 1 • γ 2 = 2,
m(P k ) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ -4 π D C k (Q) if k > 0, 4 π D C k (Q) if k < 0.
Proof. -Since k > 4, the polynomial P k doesn't vanish on the torus, so that Remark 31. -The fact that m(P k ) can be expressed as an Eisenstein-Kronecker series was also proved by F. Rodriguez-Villegas [START_REF] Villegas | Modular Mahler measures. I[END_REF].

We are now going to relate elliptic dilogarithms on E = C 12 and E 1 . Let λ ′ ∶ E 1 → E be the isogeny λ ○ λ 0 from (47). It is cyclic of degree 8 and its kernel is generated by the point B = (-2 -√ 3, 3i + 2i √ 3). A preimage of Q under λ ′ is given by [P + Q] (P, Q ∈ T ).

C = 1 2 (α 3 + α 2 + α -1), 1 2 (α 3 
The group R triv has rank 26 and by Lemma 23, we have D E 1 (R triv ) = 0. Moreover R + R triv has rank 27 and a generator of (R + R triv ) R triv is given (for example) by the divisor

β = β E 1 ( 1 , 2 ) + β E 1 ( 2 , 3 ) + β E 1 ( 3 , 1 )
where 1 , 2 , 3 are the lines defined by Using the functional equations (59) of D E 1 , we obtain (58).

  u , g v ) = πΛ * (e a,d e b,-c + e a,-d e b,c , 0) where e a,b is the Eisenstein series of weight 1 and level N 2 defined by (2) e a,b (τ ) = α 0 (a, b) + m,n≥1 m≡a, n≡b(N )

  21, Thm 1] by taking u = (a, ac) and v = (b, bc) in Theorem 1. Note that in this case f a,b,c = e a,bc e ac,-b + e a,-bc e ac,b belongs to Q[[q N ]], and f a,b,c (τ N ) is a modular form on Γ 1 (N ). More generally, if M = a b c d ∈ M 2 (Z N Z) is any matrix such that det(M ) = 0, then F M (τ N ) = (e a,d e b,-c + e a,-d e b,c )(τ N ) is a modular form of weight 2 on Γ 1 (N ).

  a,b (-1 τ ) = w a,b g b,-a (τ ) for some root of unity w a,b . The formula for w a,b follows from [10, Chap. 2, §1, K1, K4]. Lemma 5. -For any a, b ∈ Z N Z, we have

Lemma 11 .

 11 -The function e a,b (τ N ) is an Eisenstein series of weight 1 on the group Γ(N ), and the function e a,b is an Eisenstein series of weight 1 on Γ 1 (N 2 ). Proof. -In [17, Chap. VII, §2.3], for any (a, b) ∈ (Z N Z) 2 the following Eisenstein series are introduced

  The function f a,b (τ N ) is an Eisenstein series of weight 1 on Γ(N ), and the function f a,b is an Eisenstein series of weight 1 on Γ 1 (N 2 ). Moreover, we have W N 2 (e a,b ) = -i N f a,b . Proof. -The relation (15) follows from [21, Lemma 2] (the proof there works for arbitrary a, b ∈ Z N Z). We deduce that f a,b (τ N ) is a multiple of the function obtained from e a,b (τ N ) by applying the slash operator 0 -1 1 0 in weight 1. Hence f a,b (τ N ) is an Eisenstein series of weight 1 on Γ(N ). The last assertion follows from replacing τ by N τ in (15). We will need the following formula for the completed L-function of f a,b . Lemma 14. -For any a, b ∈ Z N Z, we have

6. 1 .

 1 Conductors 14, 35 and 54. -We prove the following cases of Boyd's conjectures[START_REF] Boyd | Mahler's measure and special values of L-functions[END_REF] Table 

.

  The preimages of P + Q under λ are the points A = (ζ 3 , -1 -ζ 3 ) and Ā = ( ζ3 , -1 -ζ3 ), while the preimages of P are given by B = ( that 2A = -P 1 and 2B = P 1 so that A and B have order 8 and we have the relations Ā = A + 2P 1 = 5A and B ′ = 5B. Moreover C = A + B is the 2-torsion point given by C = (

2 η 1 .

 21 (f, g) = -2D E 1 (β(f, g)) = -32D E 1 (A).Combining (55) and (56), we have thus shown Zagier's conjecture for E Theorem 29. -We have the identitiesL ′ (E 1 , 0) = -8 π D E 1 (A) and L(E 1 , 2) = -2π 3 D E 1 (A).Let us now turn to the elliptic curve E. Let P k be the polynomial P k (x, y) = x+1 x+y+1 y+k. For k ∈ {0, ±4}, let C k be the elliptic curve defined by P k (x, y) = 0. The change of variablesX = 4x(x + y + k) Y = 8x 2 (x + y + k) puts C k in Weierstrass form Y 2 + 2kXY + 8kY = X 3 + 4X 2 .The point Q = (0, 0) on C k has order 4. We show that the Mahler measure of P k can be expressed in terms of the elliptic dilogarithm.

  where γ k is the closed path on C k (C) defined byγ k = {(x, y) ∈ C k (C) ∶ x = 1, y ≤ 1}. It turns out that γ k is a generator of H 1 (C k (C), Z) -which satisfies γ + C k • γ k = sgn(k). The divisors of x and y are given by div(x) = (Q) + (2Q) -(-Q) -(0) div(y) = (Q) -(2Q) -(-Q) + (0). Since P k is tempered, we have {x, y} ∈ K 2 (C k ) ⊗ Q,and Proposition 19 gives γ k η(x, y) = -sgn(k)D C k (β(x, y)) = -8 sgn(k)D C k (Q).

+ α 2 -α - 3 ) with α = 4 √ - 3 .

 2343 The point C has order 4 and we have A = B + 2C. By Lemma 23, we have(57) D E (Q) = 2 k∈Z 8Z D E 1 (C + kB).Combining Theorem 29, Proposition 30 and (57), Theorem 28 reduces to show (58)k∈Z 8Z D E 1 (C + kB) = 2D E 1 (A).Let T be the subgroup generated by B and C. It is isomorphic to Z 8Z × Z 4Z. There are 187 lines of P 2 such that ∩ E 1 is contained in T . A computer search reveals that among them, there are 691 unordered triples of lines meeting at a point outside E 1 . These incident lines yield a subgroup R of Z[T ] of rank 18 such that D E 1 (R) = 0. Let R triv be the subgroup of Z[T ] generated by the following elements

1 ∩

 1 E 1 = (B) + (-B) + (0) 2 ∩ E 1 = (B + 2C) + (B -C) + (-2B -C) 3 ∩ E 1 = (4B + C) + (-3B + 2C) + (-B + C).Computing explicitly, this givesβ = 2 ⎛ ⎝ k∈Z 8Z (2C + kB) + (3C + kB) ⎞ ⎠ -2(-A) -2(-Ā) + (4B) -(2C) -(4B + 2C).

  9 g 12 g 15 g 16 g 3 g 4 g 10 g 11 g 17 g 3 g 4 g 6 g 8 g 2 10 g 11 g 13 g 17

	v = -	g 1	g 2 2 g 5 g 2 9 g 2 12 g 15 g 2 16

  5 g 2 13 g 14 g 16 g 20 g 21 g 22 g 2 23 g 24 g 1 g 7 g 2 8 g 2 10 g 11 g 12 g 15 g 17 g 19 g 25 g 2

	26	v = -	g 3 2 g 3 g 3 5 g 3 13 g 3 16 g 3 20 g 21 g 3 23 g 2 24 g 3 1 g 6 g 3 8 g 3 10 g 12 g 2 15 g 3 17 g 3 19 g 3 26

  6.3. Conductor 48. -We prove the following case of Boyd's conjectures [4, Table 1, k = 12].

	Theorem 28. -We have the identity m(x + 1 x + y + 1 y

  1 so that {f, g} belongs to K 2 (E 1 ) ⊗ Q. The expression of f and g in terms of Siegel units is

	(52)	ϕ * 1 f =	g 2 g 20 g 22 g 4 g 10 g 14	ϕ * 1 g =	g 2 1 g 2 g 10 g 2 11 g 4 12 g 2 13 g 14 g 22 g 2 23 g 3 4 g 2 5 g 2 6 g 2 7 g 2 17 g 2 18 g 2 19 g 20	.

  8q 10 -32q 11 -16q 15 + 4q 18 + 32q 19 + . . . This time F 1 is not a multiple of the newform f E 1 associated to E 1 . We look for another modular symbol. Another generator γ 2 of H 1 (E 1 (C), Z) -is given by
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