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REGULATORS OF SIEGEL UNITS AND APPLICATIONS

by

François Brunault

Abstract. — We present a formula for the regulator of two arbitrary Siegel units in terms of
L-values of pairwise products of Eisenstein series of weight one. We give applications to Boyd’s
conjectures and Zagier’s conjectures for elliptic curves of conductors 14, 21, 35, 48 and 54.

1. Introduction

In a recent work [21], W. Zudilin proved a formula for the regulator of two modular units.

The aim of this article is to generalize this result to arbitrary Siegel units and give applications

to elliptic curves.

For any two holomorphic functions f and g on a Riemann surface, define the real 1-form

η(f, g) = log ∣f ∣d arg g − log ∣g∣d arg f.

Note that if f and g are two holomorphic functions which do not vanish on the upper half-plane

H, then η(f, g) is a well-defined 1-form on H. We prove the following theorem.

Theorem 1. — Let N ≥ 1 be an integer. Let u = (a, b) and v = (c, d) be two nonzero vectors

in (Z/NZ)2, and let gu and gv be the Siegel units associated to u and v (see Section 2 for the

definition). We have

(1) ∫

i∞

0
η(gu, gv) = πΛ∗(ea,deb,−c + ea,−deb,c,0)

where ea,b is the Eisenstein series of weight 1 and level N2 defined by

(2) ea,b(τ) = α0(a, b) + ∑
m,n≥1

m≡a, n≡b(N)

qmn − ∑
m,n≥1

m≡−a, n≡−b(N)

qmn (q = e2πiτ)

with

α0(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if a = b = 0
1
2 − { b

N } if a = 0 and b ≠ 0
1
2 − { a

N } if a ≠ 0 and b = 0

0 if a ≠ 0 and b ≠ 0.

Here Λ∗(f,0) denotes the regularized value of the completed L-function Λ(f, s) at s = 0 (see

Section 3 for the definition).
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Remark 2. — Let Y (N) be the affine modular curve of level N over Q, and let X(N) be

the smooth compactification of Y (N). The homology group H = H1(X(N)(C),{cusps},Z) is

generated by the modular symbols ξ(γ) = {γ0, γ∞} with γ ∈ GL2(Z/NZ). If c is an element of

H, we may write c = ∑i λiξ(γi), and it follows that

∫
c
η(gu, gv) =∑

i

λi∫
∞

0
η(guγi , gvγi).

Moreover, the Siegel units generate (up to constants) the group O(Y (N))× ⊗Q. Therefore

Theorem 1 (together with Lemma 5) gives a formula for all possible regulator integrals ∫c η(u, v)

with c ∈H and u, v ∈ O(Y (N))×.

Remark 3. — Theorem 1 is a generalization of [21, Thm 1]. More precisely, let g̃a, a ∈ Z/NZ

denote the modular units arising in [21]. Then for every c ∈ Z/NZ, we have

g̃a(c/N + it) = ga,ac(iNt) (t > 0).

We recover [21, Thm 1] by taking u = (a, ac) and v = (b, bc) in Theorem 1. Note that in

this case fa,b,c = ea,bceac,−b + ea,−bceac,b belongs to Q[[qN]], and fa,b,c(τ/N) is a modular form

on Γ1(N). More generally, if M = (
a b

c d
) ∈ M2(Z/NZ) is any matrix such that det(M) = 0,

then FM(τ/N) = (ea,deb,−c + ea,−deb,c)(τ/N) is a modular form of weight 2 on Γ1(N). It would

be interesting to study further the properties of these modular forms and to understand their

possible relations with the toric modular forms introduced by L. Borisov and P. Gunnells [1].

The proof of Theorem 1 follows the strategy of [21]. We express the logarithms of Siegel

units as a double infinite sum (Lemma 16) and deduce an expression for the regulator as a

quadruple sum. We then perform the same analytical change of variables from [16], leading to

the Mellin transform of a product of Eisenstein series. The key lemma to do this (Lemma 8)

suggests that similar results should hold in higher weight.

We point out that the simple shape of the Eisenstein series ea,b makes Theorem 1 particularly

amenable to explicit computations. We give some applications of Theorem 1 in Section 6, for

elliptic curves which are parametrized by modular units [6].

I would like to thank Wadim Zudilin for helpful exchanges related to this work. This work is

partly supported by the research grant ANR Régulateurs (Grant Number ANR-12-BS01-0002).

2. Siegel units

We recall some basic definitions and results about Siegel units, for which we refer the reader

to [9, §1] and [10].

Let B2 = X2 − X + 1
6 be the second Bernoulli polynomial. For x ∈ R, we define B(x) =

B2({x}) = {x}2 − {x} + 1
6 , where {x} = x − ⌊x⌋ denotes the fractional part of x.

Let H be the upper half-plane. Let N ≥ 1 be an integer and ζN = e2πi/N . For any (a, b) ∈

(Z/NZ)2, (a, b) ≠ (0,0), the Siegel unit ga,b on H is defined by

(3) ga,b(τ) = q
B(a/N)/2

∏
n≥0

(1 − qnqã/NζbN)∏
n≥1

(1 − qnq−ã/Nζ−bN ) (q = e2πiτ)

where ã is the representative of a satisfying 0 ≤ ã < N . Here qα = e2πiατ for α ∈ Q. It is known

that the function g12Na,b is modular for the group

Γ(N) = {γ ∈ SL2(Z) ∶ γ ≡ I2 (mod N)}.
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In fact ga,b defines an element of O(Y (N))×⊗Q, where Y (N) denotes the affine modular curve

of level N over Q. Recall that the group GL2(Z/NZ) acts on Y (N) by Q-automorphisms. For

any γ ∈ GL2(Z/NZ), we have the identity in O(Y (N))× ⊗Q

(4) ga,b∣γ = g(a,b)γ.

Lemma 4. — Let (a, b) ∈ (Z/NZ)2, (a, b) ≠ (0,0). We have

(5) ga,b(−1/τ) = e−2πi({
a
N

}− 1
2
)({ b

N
}− 1

2
)gb,−a(τ) (τ ∈ H).

Proof. — By taking the matrix γ = (
0 −1

1 0
) in (4), we see that ga,b(−1/τ) = wa,bgb,−a(τ) for

some root of unity wa,b. The formula for wa,b follows from [10, Chap. 2, §1, K1, K4].

Lemma 5. — For any a, b ∈ Z/NZ, we have

(6) ∫

∞

0
d arg ga,b =

⎧⎪⎪
⎨
⎪⎪⎩

0 if a = 0 or b = 0

2π({ a
N } − 1

2)({
b
N } − 1

2) if a ≠ 0 and b ≠ 0.

Proof. — If a = 0 or b = 0 then ga,b has constant argument on the imaginary axis τ = it, t > 0,

hence ∫
∞

0 d arg ga,b = 0.

If a ≠ 0 and b ≠ 0, it is easily seen that arg ga,b(it)
t→∞
ÐÐ→ 0. Moreover, by Lemma 4, we have

arg ga,b(it)
t→0
ÐÐ→ −2π({ a

N } − 1
2)({

b
N } − 1

2) (mod 2π). This proves (6) up to a multiple of 2π. In

order to establish the exact equality, let us introduce the Klein forms [10, Chap. 2, §1, p. 27]:

kα,β(τ) = e
− 1

2
η(ατ+β,τ)(ατ+β)σ(ατ + β, τ) (α,β ∈R; τ ∈ H)

where η and σ denote the Weierstrass functions. The link with Siegel units is given by

ga,b(τ) = wka/N,b/N(τ)∆(τ)1/12 (1 ≤ a, b ≤ N − 1)

where w is a root of unity [10, p. 29]. Since ∆ is positive on the imaginary axis, it follows that

∫

∞

0
d arg ga,b = ∫

∞

0
d arg ka/N,b/N .

Using the q-product formula for the σ function [11, Chap. 18, §2] and the Legendre relation

η2ω1 − η1ω2 = 2πi, we find

(7) kα,β(it) =
1

2πi
e−πα

2teπiαβ(eπiβe−παt − e−πiβeπαt)∏
n≥1

(1 − e−2π(n+α)te2πiβ)(1 − e−2π(n−α)te−2πiβ)

(1 − e−2πnt)2
.

Assume 0 < α,β < 1. Then by (7), we have arg kα,β(it)
t→∞
ÐÐ→ π(αβ −β + 1

2). Moreover, the Klein

forms are homogeneous of weight -1 [10, p. 27, K1], which implies

kα,β(−1/τ) =
1

τ
kβ,−α(τ).

From this we get arg kα,β(it)
t→0
ÐÐ→ π(−αβ + α) (mod 2π) and

∫

∞

0
d arg kα,β ≡ 2π(α −

1

2
)(β −

1

2
) (mod 2π).

Moreover, using the fact that ∫
∞

0 d arg kα,β = ∫
∞

i d arg kα,β −∫
∞

i d arg kβ,−α and taking the imagi-

nary part of the logarithm of (7), we may express ∫
∞

0 d arg kα,β as an infinite sum, which shows

that it is a continuous function of (α,β) ∈ (0,1)2. But for β = 1
2 , the Klein form kα, 1

2
(it) has

constant argument. This implies that ∫
∞

0 d arg kα,β = 2π(α − 1
2)(β −

1
2) for any 0 < α,β < 1.
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3. L-functions of modular forms

In this section we recall basic results on the functional equation satisfied by L-functions of

modular forms.

Let f(τ) = ∑
∞
n=0 anq

n be a modular form of weight k ≥ 1 on the group Γ1(N). The L-function

of f is defined by L(f, s) = ∑
∞
n=1 ann

−s, R(s) > k. Define the completed L-function

Λ(f, s) ∶= N s/2(2π)−sΓ(s)L(f, s) = N s/2
∫

∞

0
(f(iy) − a0)y

sdy

y
.

Recall that the Atkin-Lehner involution WN on Mk(Γ1(N)) is defined by

(WNf)(τ) = i
kN−k/2τ−kf(−1/(Nτ)).

Note that in the case k = 2 this WN is the opposite of the usual involution acting on differential

1-forms. The following theorem is classical (see [14, Thm 4.3.5]).

Theorem 6. — Let f = ∑
∞
n=0 anq

n ∈ Mk(Γ1(N)). The function Λ(f, s) can be analytically

continued to the whole s-plane, and satisfies the functional equation Λ(f, s) = Λ(WNf, k − s).

Moreover, write WNf = ∑
∞
n=0 bnq

n. Then the function

Λ(f, s) +
a0
s
+

b0
k − s

is holomorphic on the whole s-plane.

Definition 7. — The notations being as in Theorem 6, we define the regularized values of

Λ(f, s) at s = 0 and s = k by

Λ∗(f,0) ∶= lim
s→0

Λ(f, s) +
a0
s

(8)

Λ∗(f, k) ∶= lim
s→k

Λ(f, s) +
b0
k − s

.(9)

Note that the functional equation translates into the equalities of regularized values

(10) Λ∗(f,0) = Λ∗(WNf, k) Λ∗(f, k) = Λ∗(WNf,0).

We will need the following lemma.

Lemma 8. — Let f = ∑
∞
n=0 anq

n ∈ Mk(Γ1(N)) and g = ∑
∞
n=0 bnq

n ∈ M`(Γ1(N)) with k, ` ≥ 1.

Let h =WN(g). Write f∗ = f − a0 and g∗ = g − b0. Then for any s ∈C, we have

(11) N s/2
∫

∞

0
f∗(iy)g∗(

i

Ny
)ys

dy

y
= Λ(fh, s + `) − a0Λ(h, s + `) − b0Λ(f, s).

Proof. — Note that the integral in (11) is absolutely convergent because f∗(τ) and g∗(τ) have

exponential decay when I(τ) tends to +∞. Moreover, it is easy to check, using Theorem 6,

that the right hand side of (11) is holomorphic on the whole s-plane. Therefore it suffices to

establish (11) when R(s) > k. Since WNg = h, we have

N s/2
∫

∞

0
f∗(iy)g∗(

i

Ny
)ys

dy

y
= N s/2

∫

∞

0
f∗(iy)(g(

i

Ny
) − b0)y

sdy

y

= N s/2
∫

∞

0
f∗(iy)(N `/2y`h(iy) − b0)y

sdy

y
.

Now, we remark that f∗h = fh − a0h = (fh)∗ − a0h∗. Thus

N s/2
∫

∞

0
f∗(iy)g∗(

i

Ny
)ys

dy

y
= N s/2

∫

∞

0
(N `/2y`((fh)∗(iy) − a0h

∗(iy)) − b0f
∗(iy))ys

dy

y

= Λ(fh, s + `) − a0Λ(h, s + `) − b0Λ(f, s).
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Specializing Lemma 8 to the (regularized) value at s = k, we get the following formula.

Lemma 9. — Let f = ∑
∞
n=0 anq

n ∈ Mk(Γ1(N)) and g = ∑
∞
n=0 bnq

n ∈ M`(Γ1(N)) with k, ` ≥ 1.

Let h =WN(g). Write f∗ = f − a0 and g∗ = g − b0. Then we have

(12) Nk/2
∫

∞

0
f∗(iy)g∗(

i

Ny
)yk

dy

y
= Λ∗(fh, k + `) − a0Λ(h, k + `) − b0Λ

∗(f, k).

4. Eisenstein series of weight 1

In this section we define some Eisenstein series of weight 1. These are the same as those

arising in [21].

Definition 10. — For any a, b ∈ Z/NZ, we let

(13) ea,b = α0(a, b) + ∑
m,n≥1

m≡a, n≡b(N)

qmn − ∑
m,n≥1

m≡−a, n≡−b(N)

qmn

where

α0(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if a = b = 0
1
2 − { b

N } if a = 0 and b ≠ 0
1
2 − { a

N } if a ≠ 0 and b = 0

0 if a ≠ 0 and b ≠ 0.

Lemma 11. — The function ea,b(τ/N) is an Eisenstein series of weight 1 on the group Γ(N),

and the function ea,b is an Eisenstein series of weight 1 on Γ1(N2).

Proof. — In [17, Chap. VII, §2.3], for any (a, b) ∈ (Z/NZ)2 the following Eisenstein series are

introduced

G1,(a,b)(τ) = −
2πi

N
(γ0(a, b) + ∑

m,n≥1
n≡a(N)

ζbmN qmn/N − ∑
m,n≥1
n≡−a(N)

ζ−bmN qmn/N)

where

γ0(a, b) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 if a = b = 0
1
2

1+ζbN
1−ζbN

if a = 0 and b ≠ 0

1
2 − { a

N } if a ≠ 0.

The function G1,(a,b) is an Eisenstein series of weight 1 on the group Γ(N). We have

ea,b (
τ

N
) = α0(a, b) + ∑

m,n≥1
m≡a, n≡b(N)

qmn/N − ∑
m,n≥1

m≡−a, n≡−b(N)

qmn/N

= α0(a, b) +
1

N

N−1

∑
c=0

ζcaN
⎛

⎝
∑

m,n≥1
n≡b(N)

ζ−cmN qmn/N − ∑
m,n≥1
n≡−b(N)

ζcmN qmn/N
⎞

⎠

= α0(a, b) −
1

N

N−1

∑
c=0

ζcaN γ0(b,−c) −
1

2πi

N−1

∑
c=0

ζcaN G1,(b,−c).

If b ≠ 0 then
1

N

N−1

∑
c=0

ζcaN γ0(b,−c) =
1

N

N−1

∑
c=0

ζcaN (
1

2
− {

b

N
}) = α0(a, b),
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hence ea,b(τ/N) is an Eisenstein series of weight 1 on Γ(N). If a ≠ 0 then the same is true

because ea,b = eb,a. Finally if a = b = 0 then

α0(a, b) −
1

N

N−1

∑
c=0

ζcaN γ0(b,−c) = −
1

N

N−1

∑
c=0

γ0(0, c) = 0

because γ0(0,−c) = −γ0(0, c).

The second assertion follows from the fact that (
N 0

0 1
)Γ1(N2)(

N 0

0 1
)

−1

⊂ Γ(N).

Definition 12. — For any a, b ∈ Z/NZ, we let

(14) fa,b = β0(a, b) + ∑
m,n≥1

(ζam+bnN − ζ−am−bnN )qmn

where

β0(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if a = b = 0
1
2

1+ζbN
1−ζbN

if a = 0 and b ≠ 0

1
2

1+ζaN
1−ζaN

if a ≠ 0 and b = 0

1
2(

1+ζaN
1−ζaN

+
1+ζbN
1−ζbN

) if a ≠ 0 and b ≠ 0.

As the next lemma shows, the functions fa,b are also Eisenstein series; they relate to ea,b by

the Atkin-Lehner involution of level N2.

Lemma 13. — We have the relation

(15) ea,b (−
1

Nτ
) = −

τ

N
fa,b (

τ

N
) (τ ∈ H).

The function fa,b(τ/N) is an Eisenstein series of weight 1 on Γ(N), and the function fa,b is

an Eisenstein series of weight 1 on Γ1(N2). Moreover, we have WN2(ea,b) = −
i
N fa,b.

Proof. — The relation (15) follows from [21, Lemma 2] (the proof there works for arbitrary

a, b ∈ Z/NZ). We deduce that fa,b(τ/N) is a multiple of the function obtained from ea,b(τ/N)

by applying the slash operator ∣ (
0 −1

1 0
) in weight 1. Hence fa,b(τ/N) is an Eisenstein series of

weight 1 on Γ(N). The last assertion follows from replacing τ by Nτ in (15).

We will need the following formula for the completed L-function of fa,b.

Lemma 14. — For any a, b ∈ Z/NZ, we have

(16) Λ(fa,b + f−a,b, s) = N
sΓ(s)(2π)−s(∑

m≥1

ζamN + ζ−amN

ms
)(∑

n≥1

ζbnN − ζ−bnN

ns
).

Proof. — See the proof of [21, Lemma 3].

In the special cases s = 1 and s = 2, this gives the following formulas. Note that formula (18)

is none other than [21, Lemma 3].

Lemma 15. — We have

Λ∗(fa,b + f−a,b,1) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 if b = 0

2iNγ ⋅ (1
2 − { b

N }) if a = 0 and b ≠ 0

−2iN log ∣1 − ζaN ∣ ⋅ (1
2 − { b

N }) if a ≠ 0 and b ≠ 0

(17)

Λ(fa,b + f−a,b,2) = iN
2B(

a

N
)Cl2(

2πb

N
)(18)
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where γ is Euler’s constant and

Cl2(x) =
∞

∑
m=1

sin(mx)

m2
(x ∈R)

denotes the Clausen dilogarithmic function.

Proof. — If a = 0 then ∑
∞
n=1 ζ

an
N n−s = ζ(s) = 1

s−1 + γ + Os→1(s − 1). If a ≠ 0 then ∑
∞
n=1 ζ

an
N /n =

− log(1 − ζaN) where we use the principal value of the logarithm. Formula (17) follows, noting

that − log
1−ζbN
1−ζ−bN

= 2πi(1
2 − { b

N }). Formula (18) is [21, Lemma 3].

5. The computation

Lemma 16. — For any (a, b) ∈ (Z/NZ)2, (a, b) ≠ (0,0), we have

log ga,b(it) = −πB(a/N)t +Ca,b − ∑
m≥1

∑
n≥1

n≡a(N)

ζbmN
m
e−

2πmnt
N − ∑

m≥1

∑
n≥1

n≡−a(N)

ζ−bmN

m
e−

2πmnt
N(19)

= −
πB(b/N)

t
+Cb,−a + iθa,b − ∑

m≥1

∑
n≥1

n≡b(N)

ζ−amN

m
e−

2πmn
Nt − ∑

m≥1

∑
n≥1

n≡−b(N)

ζamN
m

e−
2πmn
Nt(20)

where θa,b = 2π({ a
N } − 1

2)({
b
N } − 1

2) and

(21) Ca,b =

⎧⎪⎪
⎨
⎪⎪⎩

log(1 − ζbN) if a = 0,

0 if a ≠ 0.

Proof. — By the definition of Siegel units, we have

log ga,b = πiB(a/N)τ +∑
n≥0

log(1 − qnqã/NζbN) +∑
n≥1

log(1 − qnq−ã/Nζ−bN )

Using the identity log(1−x) = −∑
∞
m=1

xm

m and substituting τ = it, we get (19). Applying Lemma

4 with τ = i/t, we have ga,b(it) = eiθa,bgb,−a(i/t), whence (20).

We will need the following lemma from [21].

Lemma 17. — (See [21, Lemma 4].) For any a, b ∈ Z/NZ, we have

I(a, b) ∶=∫
∞

0

1

it
d

∞

∑
m=1

ζamN − ζ−amN

m

⎛

⎝
∑
n≥1

n≡b(N)

− ∑
n≥1

n≡−b(N)

⎞

⎠
exp(−

2πmn

Nt
)

=

⎧⎪⎪
⎨
⎪⎪⎩

0 if a = 0 or b = 0

−iCl2(
2πa
N )

1+ζbN
1−ζbN

if a ≠ 0 and b ≠ 0.

(22)

Proof of Theorem 1. — By Lemma 16, we get

(23) log ∣gu(it)∣ = −
πB(b/N)

t
+R(Cb,−a) −

1

2
∑
m≥1

ζamN + ζ−amN

m

⎛

⎝
∑
n≥1

n≡b(N)

+ ∑
n≥1

n≡−b(N)

⎞

⎠
e−

2πmn
Nt
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and

d arg gu(it) = −
1

2i
d∑
m≥1

ζbmN − ζ−bmN

m

⎛

⎝
∑
n≥1

n≡a(N)

− ∑
n≥1

n≡−a(N)

⎞

⎠
e−

2πmnt
N(24)

=
1

2i
d∑
m≥1

ζamN − ζ−amN

m

⎛

⎝
∑
n≥1

n≡b(N)

− ∑
n≥1

n≡−b(N)

⎞

⎠
e−

2πmn
Nt .(25)

Let u = (a, b), v = (c, d) ∈ (Z/NZ)2, u, v ≠ (0,0). We have

η(gu, gv) = (−
πB(b/N)

t
+R(Cb,−a)) ⋅

1

2i
d∑
m≥1

ζcmN − ζ−cmN

m

⎛

⎝
∑
n≥1

n≡d(N)

− ∑
n≥1

n≡−d(N)

⎞

⎠
e−

2πmn
Nt

−
1

2
∑
m1≥1

ζam1

N + ζ−am1

N

m1

⎛

⎝
∑
n1≥1

n1≡b(N)

+ ∑
n1≥1

n1≡−b(N)

⎞

⎠
e−

2πm1n1
Nt

× −
1

2i
d ∑
m2≥1

ζdm2

N − ζ−dm2

N

m2

⎛

⎝
∑
n2≥1

n2≡c(N)

− ∑
n2≥1

n2≡−c(N)

⎞

⎠
e−

2πm2n2t

N

− (−
πB(d/N)

t
+R(Cd,−c)) ⋅

1

2i
d∑
m≥1

ζamN − ζ−amN

m

⎛

⎝
∑
n≥1

n≡b(N)

− ∑
n≥1

n≡−b(N)

⎞

⎠
e−

2πmn
Nt

+
1

2
∑
m1≥1

ζcm1

N + ζ−cm1

N

m1

⎛

⎝
∑
n1≥1

n1≡d(N)

+ ∑
n1≥1

n1≡−d(N)

⎞

⎠
e−

2πm1n1
Nt

× −
1

2i
d ∑
m2≥1

ζbm2

N − ζ−bm2

N

m2

⎛

⎝
∑
n2≥1

n2≡a(N)

− ∑
n2≥1

n2≡−a(N)

⎞

⎠
e−

2πm2n2t

N .

(26)

The terms involving double sums can be integrated using Lemmas 5 and 17. This gives

∫

∞

0
η(gu, gv) = −

π

2
B(

b

N
)I(c, d) +

π

2
B(

d

N
)I(a, b)

+R(Cb,−a)∫
∞

0
d arg gv −R(Cd,−c)∫

∞

0
d arg gu + I

(27)

with

I =
πi

2N
∑

m1,m2≥1

⎛

⎝
(ζam1

N + ζ−am1

N )(ζdm2

N − ζ−dm2

N )
⎛

⎝
∑
n1≥1

n1≡b(N)

+ ∑
n1≥1

n1≡−b(N)

⎞

⎠

⎛

⎝
∑
n2≥1

n2≡c(N)

− ∑
n2≥1

n2≡−c(N)

⎞

⎠

− (ζcm1

N + ζ−cm1

N )(ζbm2

N − ζ−bm2

N )
⎛

⎝
∑
n1≥1

n1≡d(N)

+ ∑
n1≥1

n1≡−d(N)

⎞

⎠

⎛

⎝
∑
n2≥1

n2≡a(N)

− ∑
n2≥1

n2≡−a(N)

⎞

⎠

⎞

⎠
⋅

⋅
n2

m1
∫

∞

0
exp(−2π (

m1n1

Nt
+
m2n2t

N
))dt.

(28)

Making the change of variables t′ = n2

m1
t, we have

(29)
n2

m1
∫

∞

0
exp(−2π (

m1n1

Nt
+
m2n2t

N
))dt = ∫

∞

0
exp(−2π (

n1n2

Nt′
+
m1m2t′

N
))dt′.
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Replacing in (28) and interchanging integral and summation, we get

I =
πi

2N ∫
∞

0
∑

m1,m2≥1

(ζam1

N + ζ−am1

N )(ζdm2

N − ζ−dm2

N )e−
2πm1m2t

′

N ⋅

⋅
⎛

⎝
∑
n1≥1

n1≡b(N)

+ ∑
n1≥1

n1≡−b(N)

⎞

⎠

⎛

⎝
∑
n2≥1

n2≡c(N)

− ∑
n2≥1

n2≡−c(N)

⎞

⎠
e−

2πn1n2
Nt′

− ∑
m1,m2≥1

(ζcm1

N + ζ−cm1

N )(ζbm2

N − ζ−bm2

N )e−
2πm1m2t

′

N ⋅

⋅
⎛

⎝
∑
n1≥1

n1≡d(N)

+ ∑
n1≥1

n1≡−d(N)

⎞

⎠

⎛

⎝
∑
n2≥1

n2≡a(N)

− ∑
n2≥1

n2≡−a(N)

⎞

⎠
e−

2πn1n2
Nt′ dt′.

(30)

Making the change of variables y = t′/N , we obtain

I =
πi

2 ∫
∞

0
(f∗a,d + f

∗
−a,d)(iy) ⋅ (e

∗
b,c + e

∗
−b,c)(

i

N2y
)

− (f∗c,b + f
∗
−c,b)(iy) ⋅ (e

∗
d,a + e

∗
−d,a)(

i

N2y
)dy.

(31)

We compute this integral using Lemma 9 with k = ` = 1, taking into account Lemma 13: for

any a, b, c, d ∈ Z/NZ, we have

(32) ∫
∞

0
f∗a,b(iy)e

∗
c,d(

i

N2y
)dy = −

i

N2
(Λ∗(fa,bfc,d,2) − β0(a, b)Λ(fc,d,2)) −

α0(c, d)

N
Λ∗(fa,b,1).

Replacing in (31), we get I = I1 + I2 + I3 with

I1 =
π

2N2
Λ∗((fa,d + f−a,d)(fb,c + f−b,c) − (fc,b + f−c,b)(fd,a + f−d,a),2)

(33)

I2 = −
π

2N2
((β0(a, d) + β0(−a, d))Λ(fb,c + f−b,c,2) − (β0(c, b) + β0(−c, b))Λ(fd,a + f−d,a,2))

(34)

I3 = −
πi

2N
((α0(b, c) + α0(−b, c))Λ

∗(fa,d + f−a,d,1) − (α0(d, a) + α0(−d, a))Λ
∗(fc,b + f−c,b,1))

(35)

Using the fact that fa,b = fb,a = −f−a,−b, I1 simplifies to

(36) I1 =
π

N2
Λ∗(fa,df−b,c − fa,−dfb,c,2).

The terms involving Λ(fa,b,2) can be evaluated with (18); they simplify with the terms involving

I(a, b) in (27):

(37) I2 =
π

2
B(

b

N
)I(c, d) −

π

2
B(

d

N
)I(a, b).

The terms involving Λ∗(fa,b,1) can be evaluated with (17). Note that α0(b, c) + α0(−b, c) is

nonzero only in the case b = 0 and c ≠ 0. Since we assumed u ≠ 0, this implies a ≠ 0 and the

case of Lemma 15 involving Euler’s constant does not happen. Anyway I3 simplifies with the

terms involving ∫
∞

0 d arg gu in (27):

(38) I3 = −R(Cb,−a)∫
∞

0
d arg gv +R(Cd,−c)∫

∞

0
d arg gu.
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Putting everything together, we get

(39) ∫

∞

0
η(gu, gv) = I1 =

π

N2
Λ∗(fa,df−b,c − fa,−dfb,c,2).

Theorem 1 now follows from (10), taking into account the fact that

WN2(fa,bfc,d) =WN2(fa,b)WN2(fc,d) = −N
2ea,bec,d.

Remark 18. — It would be interesting to find a definition of g0,0 so that Theorem 1 holds for

any vectors u, v ∈ (Z/NZ)2.

6. Applications

In this section we investigate the applications of Theorem 1 to elliptic curves. Our strategy

can be explained as follows. In [6], we determined a list of elliptic curves defined over Q

which can be parametrized by modular units. Let E be such an elliptic curve, with modular

parametrization ϕ ∶X1(N)→ E. Let x, y be functions on E such that u ∶= ϕ∗(x) and v ∶= ϕ∗(y)

are modular units. Assume that {x, y} ∈ K2(E) ⊗ Q. Then the minimal polynomial P of

(x, y) is tempered and in favorable cases, the Mahler measure of P can be expressed in terms

of a regulator integral ∫γ η(x, y) where γ is a (non necessarily closed) path on E. Using the

techniques of [6], we compute the images of the various cusps under ϕ and deduce the divisors

of u and v. Since the divisors of Siegel units are easily computed using (3) and (4), we get an

expression of u and v in terms of Siegel units, and may apply Theorem 1.

We will need the following expression for the regulator integral in terms of Bloch’s elliptic

dilogarithm. Let E/Q be an elliptic curve, and let DE ∶ E(C) → R be the elliptic dilogarithm

associated to a chosen orientation of E(R). ExtendDE by linearity to a function Z[E(C)]→R.

Let γ+E be the generator of H1(E(C),Z)+ corresponding to the chosen orientation.

Proposition 19. — Let x ∈ K2(E) ⊗ Q. Choose rational functions fi, gi on E such that

x = ∑i{fi, gi}, and define η(x) = ∑i η(fi, gi). Then for every γ ∈H1(E(C),Z), we have

∫
γ
η(x) = −(γ+E ● γ)DE(β)

where ● denotes the intersection product on H1(E(C),Z), and β is the divisor given by

β =∑
i

∑
p,q∈E(C)

ordp(fi)ordq(gi)(p − q).

Proof. — Since x ∈ K2(E) ⊗Q, the integral of η(x) over a closed path γ avoiding the zeros

and poles of fi, gi depends only on the class of γ in H1(E(C),Z). Let δ be an element of

H1(E(C),Z) such that γ+E ● δ = 1. Let c denote the complex conjugation on E(C). Since

c∗η(x) = −η(x), we have ∫γ+E
η(x) = 0 and it suffices to prove the formula for γ = δ. Choose an

isomorphism E(C) ≅C/(Z + τZ) which is compatible with complex conjugation. We have

∫
E(C)

η(x) ∧ dz = ∫
E(C)

η(x) ∧ dz = ∫
E(C)

c∗(−η(x) ∧ dz) = ∫
E(C)

η(x) ∧ dz

so that ∫E(C)
η(x) ∧ dz ∈R. By [5, Prop. 6], we get

∫
E(C)

η(x) ∧ dz =DE(β).

Since (γ+E, δ) is a symplectic basis of H1(E(C),Z), we have [3, A.2.5]

∫
E(C)

η(x) ∧ dz = ∫
γ+E

η(x) ⋅ ∫
δ
dz − ∫

γ+E

dz ⋅ ∫
δ
η(x) = −∫

δ
η(x).
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The following proposition is a slight generalization of a technique introduced by A. Mellit

[13] to prove identities involving elliptic dilogarithms. Let E/Q be an elliptic curve, which we

view as a smooth cubic in P2.

Definition 20. — For any lines ` and m in P2, let βE(`,m) be the divisor of degree 9 on

E(C) defined by βE(`,m) = ∑x∈`∩E∑y∈m∩E(x − y).

Proposition 21. — Let `1, `2, `3 be three incident lines in P2. Then

(40) DE(βE(`1, `2)) +DE(βE(`2, `3)) +DE(βE(`3, `1)) = 0.

Proof. — Let f1, f2, f3 be equations of `1, `2, `3 such that f1 + f2 = f3. Using the Steinberg

relation {
f1
f3
, f2f3} = 0, we deduce {f1, f2}+ {f2, f3}+ {f3, f1} = 0 in K2(C(E))⊗Q. Applying the

regulator map and taking the real part [5, Prop. 6], we deduce

DE(β(f1, f2)) +DE(β(f2, f3)) +DE(β(f3, f1)) = 0

where β(fi, fi+1) is defined as in Proposition 19. We have div(fi) = (`i ∩E) − 3(0) so that

β(fi, fi+1) = βE(`i, `i+1) − 3(`i ∩E) − 3ι∗(`i+1 ∩E) + 9(0)

where ι denotes the map p↦ −p on E(C). Since DE is odd, the proposition follows.

Remark 22. — If the incidence point of `1, `2, `3 lies on E, then the relation (40) is trivial in

the sense that it is a consequence of the fact that DE is odd.

We will also need the following lemma to relate elliptic dilogarithms on isogenous curves.

Lemma 23. — Let ϕ ∶ E → E′ be an isogeny between elliptic curves defined over Q. Choose

orientations of E(R) and E′(R) which are compatible under ϕ, and let dϕ be the topological

degree of the map E(R)0 → E′(R)0, where (⋅)0 denotes the connected component of the origin.

Then for any point P ′ ∈ E′(C), we have

(41) DE′(P ′) = dϕ ⋅ ∑
ϕ(P )=P ′

DE(P ).

Proof. — Choose isomorphisms E(C) ≅ C/(Z + τZ) and E′(C) ≅ C/(Z + τ ′Z) which are

compatible with complex conjugation. Then E(R)0 = R/Z and E′(R)0 = R/Z so that ϕ is

given by [z] ↦ [dϕz]. We have isomorphisms E(C) ≅ C×/qZ and E′(C) ≅ C×/(q′)Z with

q = e2πiτ and q′ = e2πiτ
′

. Let π ∶ C× → E(C) and π′ ∶ C× → E′(C) be the canonical maps. Let

P ′ be a point of E′(C). By definition DE′(P ′) = ∑π′(x′)=P ′D(x′) where D is the Bloch-Wigner

function, and similarly DE(P ) = ∑π(x)=P D(x). Now ϕ is induced by the map x ↦ xdϕ , so

that (41) follows from the usual functional equation D(xr) = r∑ur=1D(ux) for any r ≥ 1 [15,

(21)].

Note that in the particular case ϕ is the multiplication-by-n map on E, Lemma 23 gives the

usual functional equation

DE(nP ) = n ∑
Q∈E[n]

DE(P +Q).
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6.1. Conductors 14, 35 and 54. — We prove the following cases of Boyd’s conjectures [4,

Table 5, k = −1,−2,−3]. Note that the case of conductor 14 was proved by A. Mellit [13].

Theorem 24. — Let Pk be the polynomial Pk(x, y) = y2+kxy+y−x3, and let Ek be the elliptic

curve defined by the equation Pk(x, y) = 0. We have the identities

m(P−1) = 2L′(E−1,0)(42)

m(P−2) = L
′(E−2,0)(43)

m(P−3) = L
′(E−3,0).(44)

By the discussion in [4, p. 62], the polynomial Pk does not vanish on the torus for k ∈ R,

k < −1. For these values of k we thus have

m(Pk) =
1

2π ∫γk
η(x, y)

where γk is the closed path on Ek(C) defined by

γk = {(x, y) ∈ Ek(C) ∶ ∣x∣ = 1, ∣y∣ ≤ 1}.

The point A = (0,0) on Ek has order 3 and the divisors of x and y are given by

div(x) = (A) + (−A) − 2(0) div(y) = 3(A) − 3(0).

The tame symbols of {x, y} at 0, A, −A are respectively equal to 1,−1,−1, so that {x, y}

defines an element of K2(Ek)⊗Q. Moreover γk is a generator of H1(Ek(C),Z)− which satisfies

γ+Ek ● γk = −2, so that Proposition 19 gives

(45) m(Pk) =
1

π
DEk(β(x, y)) =

9

π
DEk(A) (k < −1).

Note that by continuity (45) also holds for k = −1.

Now assume k ∈ {−1,−2,−3}. The elliptic curves E−1, E−2, E−3 are respectively isomorphic

to 14a4, 35a3 and 54a3. By [6], these curves are parametrized by modular units. Since the

functions x and y are supported in the rational torsion subgroup, their pull-back u = ϕ∗x and

v = ϕ∗y are modular units, and we may express them in terms of Siegel units. For brevity, we

put gb = g0,b in what follows. We also let f−k be the newform associated to E−k, and we define

ωf−k = 2πif−k(τ)dτ .

In the case k = −1, N = 14, we find explicitly

u =
g5g6
g1g2

v = −
g3g5g26
g21g2g4

.

We now wish to express the Deninger path γ−1 in terms of modular symbols. Using Magma [2]

and Pari/GP [18], we compute ∫
−2/7

2/7 ωf−1 = −Ω−
E−1

, where Ω−
E−1

∈ iR>0 is the imaginary period

of E−1. The Magma and Pari/GP codes to evaluate numerically both sides of this identity are

as follows:

// Magma code to evaluate the left hand side

E:=EllipticCurve("14a4");

M:=ModularSymbols(E);

phi:=PeriodMapping(M,1000);

phi(M!<1,[Cusps()|2/7,-2/7]>);

\\ Pari/GP code to evaluate the right hand side

e=ellinit("14a4");

-(e.omega[1]-2*e.omega[2])



REGULATORS OF SIEGEL UNITS AND APPLICATIONS 13

Thus we get

γ−1 = ϕ∗ {
2

7
,−

2

7
} = ϕ∗ (−ξ (

2 1

7 4
) − ξ (

1 0

4 1
) + ξ (

1 0

−4 1
) + ξ (

−2 1

7 −4
)) .

Using Theorem 1, we obtain

∫
γ−1
η(x, y) = ∫

−2/7

2/7
η(u, v) = πL′(4f−1,0).

This proves (42).

In the case k = −2, N = 35, we find explicitly

u =
g2g9g12g15g16
g3g4g10g11g17

v = −
g22g5g

2
9g

2
12g15g

2
16

g1g3g4g6g8g210g11g13g17
.

Moreover the Deninger path is the following sum of modular symbols

γ−2 = ϕ∗ {
1

5
,−

1

5
} = ϕ∗ (ξ (

1 0

−5 1
) − ξ (

1 0

5 1
)) .

Using Theorem 1, we obtain

∫
γ−2
η(x, y) = ∫

−1/5

1/5
η(u, v) = πL′(2f−2,0).

This proves (43).

In the case k = −3, N = 54, we find explicitly

u =
g2g4g25g

2
13g14g16g20g21g22g

2
23g24

g1g7g28g
2
10g11g12g15g17g19g25g

2
26

v = −
g32g3g

3
5g

3
13g

3
16g

3
20g21g

3
23g

2
24

g31g6g
3
8g

3
10g12g

2
15g

3
17g

3
19g

3
26

.

Moreover the Deninger path is the following sum of modular symbols

γ−3 = ϕ∗ {−
1

8
,
1

8
} = ϕ∗ (ξ (

1 0

8 1
) − ξ (

1 0

−8 1
)) .

Using Theorem 1, we obtain

∫
γ−3
η(x, y) = ∫

1/8

−1/8
η(u, v) = πL′(2f−3,0).

This proves (43).

Using (45), we also deduce Zagier’s conjectures for these elliptic curves.

Theorem 25. — We have the identities

(46) L(E−1,2) =
9π

7
DE−1(A) L(E−2,2) =

36π

35
DE−2(A) L(E−3,2) =

2π

3
DE−3(A).

6.2. Conductor 21. — The modular curve X0(21) has genus 1 and is isomorphic to the

elliptic curve E0 = 21a1 with minimal equation y2 + xy = x3 − 4x − 1. The Mordell-Weil group

E0(Q) is isomorphic to Z/4Z×Z/2Z and is generated by the points P = (5,8) and Q = (−2,1),

with respective orders 4 and 2. The modular curve X0(21) has 4 cusps: 0, 1/3, 1/7, ∞ and we

may choose the isomorphism ϕ0 ∶ X0(21)
≅
Ð→ E0 so that ϕ0(0) = 0, ϕ0(1/3) = (−1,−1) = P +Q,

ϕ0(1/7) = Q and ϕ0(∞) = P . Let fP and fQ be functions on E with divisors

(fP ) = 4(P ) − 4(0) (fQ) = 2(Q) − 2(0).

These modular units can be expressed in terms of the Dedekind η function [12, §3.2]:

fP ∼Q×

η(3τ)η(21τ)5

η(τ)5η(7τ)
fQ ∼Q×

η(3τ)η(7τ)3

η(τ)3η(21τ)
.
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They can in turn be expressed in terms of Siegel units using the formula

η(dτ)

η(τ)
= Cd

(d−1)/2

∏
k=1

g0,kN/d(τ) (Cd ∈C
×).

Thus we can take

fP =
g0,7(∏

10
b=1 g0,b)

5

g0,3g0,6g0,9
fQ =

g0,7(g0,3g0,6g0,9)3

∏
10
b=1 g0,b

.

The homology group H1(E0(C),Z)− is generated by the modular symbol γ = {−1
3 ,

1
3} =

ξ (
1 0

3 1
) − ξ (

1 0

−3 1
). Using Theorem 1 and a computer algebra system, we find

∫
γ
η(fP , fQ) = πΛ∗(F,0)

where F is the modular form of weight 2 and level 21 given by

F = 68q + 220q2 + 68q3 + 508q4 + 440q5 + 220q6 + 508q7 + 1068q8 + 68q9 +⋯

The space M2(Γ0(21)) has dimension 4 and is generated by f0, E2,3, E2,7 and E2,21 where f0 is

the newform associated to E0 and E2,d(τ) = E2(τ) − dE2(dτ). We find explicitly

F = −4f0 + 72E2,3 +
72

7
E2,7 −

72

7
E2,21

We have L(E2,d, s) = (1 − d1−s)ζ(s)ζ(s − 1) and a little computation gives

L(F, s) = −4L(E0, s) +
72

7 ⋅ 21s
(7 ⋅ 21s − 21 ⋅ 7s − 7 ⋅ 3s + 21)ζ(s)ζ(s − 1).

Thus L(F,0) = 0 and using ζ(0) = −1/2 and ζ(−1) = −1/12, we find

Λ∗(F,0) = Λ(F,0) = L′(F,0) = −4L′(E0,0) − 6 log 7.

The extraneous term 6 log 7 stems from the fact that the Milnor symbol {fP , fQ} does not

extend to K2(E0)⊗Q. Indeed, the tame symbols are given by

∂0{fP , fQ} = 1 ∂P{fP , fQ} = fQ(P )−4 = ζ−47 7−4 ∂Q{fP , fQ} = ζ
−4
7 74.

Since fP and fQ are supported in torsion points, there is a standard trick (due to Bloch) to alter

the symbol {fP , fQ} to make an element of K2(E0) ⊗Q. We will see that the corresponding

regulator integral is proportional to L′(E0,0) alone. We put x ∶= {fP , fQ} + {7, fP /f 2
Q}, which

belongs to K2(E0)⊗Q, and we define

η(x) ∶= η(fP , fQ) + η(7, fP /f
2
Q) = η(fP , fQ) + log 7 ⋅ d arg(fP /f

2
Q).

We can compute the integral of d arg(fP /f 2
Q) using Lemma 5, which results in

∫
γ
η(x) = −4πL′(E0,0).

On the other hand, we have ∫γ ωf0 ≈ 1.91099i which shows that γ+E0
● γ > 0. Since E0(R) has

two connected components, this implies γ+E0
● γ = 1 and Proposition 19 gives

∫
γ
η(x) = −DE0(β).

We have β = 8(P +Q) − 8(P ) − 8(Q) + 8(0). Since DE0 is odd, this gives

∫
γ
η(x) = −8(DE0(P +Q) −DE0(P )).

Taking into account the functional equation L′(E0,0) =
21
4π2L(E0,2), we have thus shown Za-

gier’s conjecture for E0.
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Theorem 26. — We have the identity L(E0,2) =
8π
21

(DE0(P +Q) −DE0(P )).

We will now deduce Boyd’s conjecture [4, Table 1, k = 3] for the elliptic curve E1 of conductor

21 given by the equation P (x, y) = x + 1
x + y +

1
y + 3 = 0.

Theorem 27. — We have the identity m(x + 1
x + y +

1
y + 3) = 2L′(E1,0).

The change of variables

X = x(x + y + 3) + 1 Y = x(x + 1)(x + y + 3) + 1

puts E1 in the Weierstrass form Y 2 +XY = X3 +X. This is the elliptic curve labelled 21a4 in

Cremona’s tables [7]. The Mordell-Weil group E1(Q) is isomorphic to Z/4Z and is generated

by P1 = (1,1).

The polynomial P satisfies Deninger’s conditions [8, 3.2], so we have

m(P ) =
1

2π ∫γP
η(x, y)

where γP is the path defined by γP = {(x, y) ∈ E1(C) ∶ ∣x∣ = 1, ∣y∣ ≤ 1}. The path γP joins

the point Ā = (ζ̄3,−1) to A = (ζ3,−1). Note that these points have last coordinate −1, so

the discussion in [8, p. 272] applies and γP defines an element of H1(E1(C),Q). After some

computation, we find that γP = 1
2γ1 where γ1 is a generator of H1(E1(C),Z)− such that γ+E1

●γ1 =

2 (note that E1(R) is connected). Using Proposition 19, it follows that

∫
γP
η(x, y) =

1

2 ∫γ1
η(x, y) = −DE1(β)

where β = div(x) ∗ div(y)− is the convolution of the divisors of x and y. We have

div(x) = (P1) + (2P1) − (−P1) − (0) div(y) = (P1) − (2P1) − (−P1) + (0)

so that β = 4(P1) − 4(−P1). This gives

∫
γP
η(x, y) = −8DE1(P1).

We are now going to relate elliptic dilogarithms on E1 and E0 using Proposition 21 and

Lemma 23. The curve E1 is the X1(21)-optimal elliptic curve in the isogeny class of E0. We

have a 2-isogeny λ ∶ E1 → E0 whose kernel is generated by 2P1 = (0,0). Using Vélu’s formulas

[19], we find that an equation of λ is

λ(X,Y ) = (
X2 + 1

X
,−

1

X
+
X2 − 1

X2
Y ).

The preimages of P +Q under λ are the points A = (ζ3,−1 − ζ3) and Ā = (ζ̄3,−1 − ζ̄3), while

the preimages of P are given by B = (5+
√
21

2 ,4 +
√

21) and B′ = (5−
√
21

2 ,4 −
√

21). Note that

2A = −P1 and 2B = P1 so that A and B have order 8 and we have the relations Ā = A+2P1 = 5A

and B′ = 5B. Moreover C = A +B is the 2-torsion point given by C = (−1+3i
√
7

8 , 1−3i
√
7

16 ). Using

Theorem 26 and Lemma 23, we have

L′(E0,0) =
4

π
(DE1(A) +DE1(Ā) −DE1(B) −DE1(B

′))

so that Theorem 27 reduces to show

DE1(P1) = −2(2DE1(A) −DE1(B) −DE1(B
′)).

We look for lines ` in P2 such that ` ∩ E1 is contained in the subgroup generated by A and

B. Using a computer search, we find that the tangents to E at A and −A and the line
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` ∶ Y + 1
2X = 0 passing through the 2-torsion points of E are incident. By Proposition 21, we

deduce the relation

4DE1(2A) + 4DE1(3A) +DE1(4A) + 2DE1(−2A) + 4DE1(−A)

+ 2DE1(2A +C) + 4DE1(3A +C) + 2DE1(−2A +C) + 4DE1(−A +C) = 0.

Since DE1 is odd and DE1(3A) = −DE1(Ā) = −DE1(A), this simplifies to

2DE1(2A) − 8DE1(A) + 4DE1(B) + 4DE1(B
′) = 0

which is the desired equality.

6.3. Conductor 48. — We prove the following case of Boyd’s conjectures [4, Table 1, k = 12].

Theorem 28. — We have the identity m(x+ 1
x +y+

1
y +12) = 2L′(E,0), where E is the elliptic

curve defined by x + 1
x + y +

1
y + 12 = 0.

The curve x + 1
x + y +

1
y + 12 = 0 is isomorphic to the elliptic curve E = 48a5. We have a

commutative diagram

(47)

X1(48) X0(48)

E1 E0 E.

π

ϕ1 ϕ0

λ0 λ

Here E1 = 48a4 is the X1(48)-optimal elliptic curve and E0 = 48a1 is the strong Weil curve in

the isogeny class of E. They are given by the equations

(48) E1 ∶ y
2 = x3 + x2 + x E0 ∶ y

2 = x3 + x2 − 4x − 4.

The isogeny λ0 has degree 2 and its kernel is generated by P1 = (0,0). Using Vélu’s formulas,

we find an explicit equation for λ0:

(49) λ0(x, y) = (x +
1

x
, (1 −

1

x2
)y) .

The modular parametrization ϕ0 has degree 2 and we have

ϕ0(0) = ϕ0(1/2) = 0 ϕ0(1/3) = ϕ0(1/6) = (−1,0)

ϕ0(1/8) = ϕ0(1/16) = (−2,0) ϕ0(1/24) = ϕ0(1/48) = (2,0)

ϕ0(1/4) = (0,2i) ϕ0(−1/4) = (0,−2i)

ϕ0(1/12) = (−4,−6i) ϕ0(−1/12) = (−4,6i).

Moreover the ramification indices of ϕ0 at the cusps 1
4 ,−

1
4 ,

1
12 ,−

1
12 are equal to 2. Let S0 be

the set of points P of E0(C) such that ϕ−10 (P ) is contained in the set of cusps of X0(48), and

similarly let S1 be the set of points P of E1(C) such that ϕ−11 (P ) is contained in the set of

cusps of X1(48). By the previous computation, we have

(50) S0 = E0[2] ∪ {(0,±2i), (−4,±6i)}.

The curve E0 doesn’t admit a parametrization by modular units, but the curve E1 does. Indeed,

consider the point A = (i, i) ∈ E1(C). It has order 8 and satisfies Ā = 3A and 4A = P1. Moreover

λ0(A) = (0,2i). Because of the commutative diagram (47), we know that S1 contains λ−10 (S0);

in particular S1 contains the subgroup generated by A. Therefore the following functions on

E1 are modular units

(51) (f) = 2(P1) − 2(0) (g) = 2(A) + 2(Ā) − 4(0).
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We may take f = x and g = x2 − 2y + 2x + 1. It is plain that f and g parametrize E1. Moreover

the tame symbols of {f, g} at 0, P1,A, Ā are equal to 1,1,−1,−1 so that {f, g} belongs to

K2(E1)⊗Q. The expression of f and g in terms of Siegel units is

(52) ϕ∗1f =
g2g20g22
g4g10g14

ϕ∗1g =
g21g2g10g

2
11g

4
12g

2
13g14g22g

2
23

g34g
2
5g

2
6g

2
7g

2
17g

2
18g

2
19g20

.

A generator γ1 of H1(E1(C),Z)− is given by

γ1 = (ϕ1)∗ {−
1

7
,
1

7
} = (ϕ1)∗ (ξ (

1 0

7 1
) − ξ (

1 0

−7 1
)) .

Using Theorem 1, we find

(53) ∫
γ1
η(f, g) = ∫

1/7

−1/7
η(ϕ∗1f,ϕ

∗
1g) = πL

′(F1,0)

where F1 is the modular form of weight 2 and level 48 given by

F1 = 4q2 + 8q3 − 4q6 − 8q10 − 32q11 − 16q15 + 4q18 + 32q19 + . . .

This time F1 is not a multiple of the newform fE1 associated to E1. We look for another

modular symbol. Another generator γ2 of H1(E1(C),Z)− is given by

γ2 = (ϕ1)∗ {−
2

11
,

2

11
} = (ϕ1)∗ (ξ (

2 1

11 6
) + ξ (

1 0

6 1
) − ξ (

−2 1

11 −6
) − ξ (

1 0

−6 1
)) .

Using Theorem 1, we find

(54) ∫
γ2
η(f, g) = ∫

2/11

−2/11
η(ϕ∗1f,ϕ

∗
1g) = πL

′(F2,0)

where F2 is the modular form of weight 2 and level 48 given by

F2 = −4q + 8q2 + 12q3 + 8q5 − 8q6 − 4q9 − 16q10 − 48q11 + 8q13 − 24q15 − 8q17 + 8q18 + 48q19 + . . .

A computation reveals that 2F1 − F2 = 4fE1 . Summing (53) and (54), we get

(55) ∫
2γ1−γ2

η(f, g) = 4πL′(E1,0).

Since γ+E1
● γ1 = γ+E1

● γ2 = 2, Proposition 19 gives

(56) ∫
2γ1−γ2

η(f, g) = −2DE1(β(f, g)) = −32DE1(A).

Combining (55) and (56), we have thus shown Zagier’s conjecture for E1.

Theorem 29. — We have the identities L′(E1,0) = −
8
πDE1(A) and L(E1,2) = −

2π
3 DE1(A).

Let us now turn to the elliptic curve E. Let Pk be the polynomial Pk(x, y) = x+1/x+y+1/y+k.

For k /∈ {0,±4}, let Ck be the elliptic curve defined by Pk(x, y) = 0. The change of variables

X = 4x(x + y + k) Y = 8x2(x + y + k)

puts Ck in Weierstrass form Y 2 + 2kXY + 8kY = X3 + 4X2. The point Q = (0,0) on Ck has

order 4. We show that the Mahler measure of Pk can be expressed in terms of the elliptic

dilogarithm.

Proposition 30. — Let k be a real number such that ∣k∣ > 4. We have

m(Pk) =

⎧⎪⎪
⎨
⎪⎪⎩

− 4
πDCk(Q) if k > 0,

4
πDCk(Q) if k < 0.
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Proof. — Since ∣k∣ > 4, the polynomial Pk doesn’t vanish on the torus, so that

m(Pk) =
1

2π ∫γk
η(x, y)

where γk is the closed path on Ck(C) defined by

γk = {(x, y) ∈ Ck(C) ∶ ∣x∣ = 1, ∣y∣ ≤ 1}.

It turns out that γk is a generator of H1(Ck(C),Z)− which satisfies γ+Ck ● γk = sgn(k). The

divisors of x and y are given by

div(x) = (Q) + (2Q) − (−Q) − (0) div(y) = (Q) − (2Q) − (−Q) + (0).

Since Pk is tempered, we have {x, y} ∈K2(Ck)⊗Q, and Proposition 19 gives

∫
γk
η(x, y) = − sgn(k)DCk(β(x, y)) = −8 sgn(k)DCk(Q).

Remark 31. — The fact that m(Pk) can be expressed as an Eisenstein-Kronecker series was

also proved by F. Rodriguez-Villegas [20].

We are now going to relate elliptic dilogarithms on E = C12 and E1. Let λ′ ∶ E1 → E be

the isogeny λ ○ λ0 from (47). It is cyclic of degree 8 and its kernel is generated by the point

B = (−2 −
√

3,3i + 2i
√

3). A preimage of Q under λ′ is given by

C = (
1

2
(α3 + α2 + α − 1),

1

2
(α3 + α2 − α − 3))

with α =
4
√
−3. The point C has order 4 and we have A = B + 2C. By Lemma 23, we have

(57) DE(Q) = 2 ∑
k∈Z/8Z

DE1(C + kB).

Combining Theorem 29, Proposition 30 and (57), Theorem 28 reduces to show

(58) ∑
k∈Z/8Z

DE1(C + kB) = 2DE1(A).

Let T be the subgroup generated by B and C. It is isomorphic to Z/8Z × Z/4Z. There are

187 lines ` of P2 such that ` ∩ E1 is contained in T . A computer search reveals that among

them, there are 691 unordered triples of lines meeting at a point outside E1. These incident

lines yield a subgroup R of Z[T ] of rank 18 such that DE1(R) = 0. Let Rtriv be the subgroup

of Z[T ] generated by the following elements

(59) [P ] − [P̄ ], [P ] + [−P ], [2P ] − 2 ∑
Q∈E1[2]

[P +Q] (P,Q ∈ T ).

The group Rtriv has rank 26 and by Lemma 23, we have DE1(Rtriv) = 0. Moreover R +Rtriv

has rank 27 and a generator of (R +Rtriv)/Rtriv is given (for example) by the divisor

β = βE1(`1, `2) + βE1(`2, `3) + βE1(`3, `1)

where `1, `2, `3 are the lines defined by

`1 ∩E1 = (B) + (−B) + (0)

`2 ∩E1 = (B + 2C) + (B −C) + (−2B −C)

`3 ∩E1 = (4B +C) + (−3B + 2C) + (−B +C).
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Computing explicitly, this gives

β = 2
⎛

⎝
∑

k∈Z/8Z

(2C + kB) + (3C + kB)
⎞

⎠
− 2(−A) − 2(−Ā) + (4B) − (2C) − (4B + 2C).

Using the functional equations (59) of DE1 , we obtain (58).
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