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Abstract

We describe the Schwinger-Dyson equation related with the free difference quotient.
Such an equation appears in different fields such as combinatorics (via the problem of the
enumeration of planar maps), operator algebra (via the definition of a natural integration
by parts in free probability), in classical probability (via random matrices or particles in
repulsive interaction). In these lecture notes, we shall discuss when this equation uniquely
defines the system and in such a case how it leads to deep properties of the solution. This
analysis can be extended to systems which approximately satisfy these equations, such as
random matrices or Coulomb gas interacting particle systems.

1 Introduction

Dan Voiculescu gave the Takagi lectures [49] in 2007 on some aspects of free analysis. He
emphasizes the role of the free difference quotient that he introduced in [47]. It is the natural
derivation for non-commutative variables with the highest degree of non-commutativity, as
introduced in free probability theory. The free difference quotient is as well the central object
of these lectures notes, as we discuss the analysis of equations, called Schwinger-Dyson (or
loop) equations, that it governs. These equations appear in different domains in combinatorics,
operator algebras, or probability theory. In free probability, they play the role of an integration
by parts for non-commutative laws. A classical analogue of such equations is given by∫

x f (x)dγ(x) =
∫

f ′(x)dγ(x) (1)

for a large set of test functions, for instance polynomial functions. If we add the condition∫
1dγ(x) = 1, we have a unique solution. For instance we can compute recursively the mo-

ments and see that they are given by the number of pair partitions. In fact this equation char-
acterizes the Gaussian law and it is often used to show convergence to this law, for instance by
∗MIT and CNRS, guionnet@math.mit.edu. This work was partially supported by the NSF and Simons founda-
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Stein’s method. We shall consider similar equations but in a non-commutative setting. They
are often derived by integration by parts or, more generally, by using Gauge invariance and
perturbations. As in the classical setting (1), the Schwinger-Dyson equations provide a bridge
between combinatorics and analysis. Integration by parts can ultimately be used to uniquely
define the density of the measure in classical probability theory. In non-commutative probabil-
ity theory, there is no notion of density, and integration by parts is a legitimate replacement for
that. However, Schwinger-Dyson equation does not in general specify the non-commutative
law uniquely. Also, unlike in classical probability theory, it is not easy to say much about the
properties of a law satisfying such a Schwinger-Dyson equation. In fact, in such a generality,
the only properties of such a law that are known were proved by Y. Dabrowski [16]. He consid-
ers the von Neumann algebra associated with the solution by the Gelfand-Naimark-Segal con-
struction (this is a non-commutative analogue of the space of bounded measurable functions).
He showed the non-Gamma property (there are no non-trivial asymptotically central sequences
of elements) and factoriality (the associated von Neumann algebra has a trivial center). Under
a further technical assumption, Y. Dabrowski and A. Ioana [19] proved that there are no Cartan
subalgebras. However, one could expect much more. For instance, in the classical case, if the
density of a probability measure is smooth and strictly positive, one can build it as a smooth
transport of the Lebesgue measure, hence showing that the associated C∗ and W ∗ algebras are
isomorphic. One of the goal of these notes is to develop techniques to study Schwinger-Dyson
equation and its solutions, and eventually to investigate such questions. To be more precise, let
∂Xi be the free difference quotient given, for any choice of indices j1, . . . , jk ∈ {1, . . . ,d}, by

∂XiX j1 · · ·X jk =
∑
j`=i

X j1 · · ·X j`−1⊗X j`+1 · · ·X jk .

Let µ be a linear functional on the set of polynomial functions in d non-commutative indeter-
minates. We say that µ satisfies the Schwinger-Dyson (or loop) equation iff

µ⊗µ(∂XiP) = µ(PJi) (2)

for any polynomial P and some given polynomial (or more general) functions (Ji,1 ≤ i ≤ d).
This can be understood as an integration by parts, with the notable difference from the classical
case, that the difference quotient takes values in the tensor product. In the classical case where
∂Xi is the classical derivative, such an equation has a unique solution and Ji = −∂xi log dµ

dxi
.

Knowing Ji,1 ≤ i ≤ d, defines uniquely µ and in fact gives all properties you might wish
to know about µ. Even uniqueness of solutions to Schwinger-Dyson equation is not true in
general in the non-commutative setting, and we shall first investigate this question. Then we
shall study properties of these solutions and mainly prove that in the domain where we can
prove uniqueness, we can also build transport maps between solutions. Namely assume that
Ji = DXiV with DXi the cyclic derivative:

DXiX j1 · · ·X jk =
∑
j`=i

X j`+1 · · ·X jk X j1 · · ·X j`−1 .
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If V =
∑

X2
i , it is is easy to see that there is a unique solution to the corresponding Schwinger-

Dyson equation, called the law of d semi-circle laws, and denoted by σd . If V is a small
perturbation of the quadratic case or even strictly convex, we can prove uniqueness of the so-
lutions, denoted by µV . Then we can prove that there are smooth functions (namely absolutely
converging series) T1, . . . ,Td ant T ′1, . . . ,T

′
d such that for all polynomial P

µV (P) = σ
d (P(T1(X1 . . . ,Xd), . . . ,Td(X1 . . . ,Xd)))

σ
d(P) = µV

(
P(T ′1(X1 . . . ,Xd), . . . ,T ′d(X1 . . . ,Xd))

)
.

Such a property allows to show that the associated C∗ and von Neumann algebras are isomor-
phic. It turns out that generating functions for planar maps also satisfy such Schwinger-Dyson
equations. This is reminiscent to the characterization of the Gaussian law as the law whose
moments count pair partitions. Ultimately, this allows to identify the moments of solutions
with generating functions of planar maps, and eventually transport maps could be used to com-
pute critical exponents of the latter. Moreover, this property has several other consequences:
the associated C∗-algebras are projectionless, and in particular self-adjoint polynomials have
connected support [28]. Furthermore, the associated von Neumann algebras and C*-algebras
have the so-called Haagerup property [28].

There are also domains in probability theory where the Schwinger-Dyson equation appears,
but only at a large parameter (a dimension) limit. For instance, we can construct random
models such that the Schwinger-Dyson equation is true, but only in average, or/and up to a
small error. This is the case for matrix models which are laws on N ×N random matrices
where typically the linear functional given by the normalized trace 1

N Tr satisfies

E[
1
N

Tr⊗ 1
N

Tr(∂XiP)] = E[
1
N

Tr(PDXiV )] (3)

for all polynomial P and i ∈ {1, . . . ,d}. It turns out that one can prove in some cases that
1
N Tr(P) self-averages (i.e is close to its expectation) and therefore any limit point satisfies the
Schwinger-Dyson equation (2). When uniqueness of the solutions to the latter holds, we de-
duce that it converges towards this limit. But in fact Schwinger-Dyson equation can be used
even further to find a complete expansion for E[Tr(P)] in terms of N−1. Indeed, the large di-
mension behavior of such systems can be analyzed thanks to (3), by expanding the observables
around their limit, in the spirit of Stein method or, more simply, perturbation theory. These are
called topological expansion as in the case of random matrices, each coefficient of the series
corresponds to a generating function for the enumeration of maps of a given genus. Moreover,
the ideas related to transport maps can be developed in this setting as well, yielding approx-
imate transport maps (that is functions which map one probability to the other, up to a small
error). The latter allows to derive fine properties of the eigenvalues such as the universality of
the fluctuations of the eigenvalues. To be more precise let us consider the so-called β-models
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given by the probability on RN :

dPV
N,β(λ1, . . . ,λN) =

1
ZN

∏
i< j

|λi−λ j|βe−N
∑

V (λi)
∏

dλi .

The case β= 2 corresponds to the random matrix model introduced above with d = 1: Equation
(3) can be checked with 1

N Tr replaced by the empirical measure of the λi’s. The fluctuations
of the variables (λi)1≤i≤N in the case V (x) = βx2/2 were studied first in the case β = 2 by
Tracy and Widom [43, 44, 20] based on the integrable structure of the law, and much more
recently for all β’s by Ramirez, Rider, Virag [40]. It is shown that if we order the eigenvalues
λ1 < .. . < λN , the largest eigenvalue fluctuates around its limit 2 like N2/3 and the limiting law
is denoted TWβ. Inside the bulk, the correlation functions converge vaguely towards the Sineβ

distribution. This entails the convergence in average of the spacings distribution N(λi−λi−1)
to the Gaudin distribution when β= 2 [42]. We can construct approximate transport maps from
Pβx2

N to PV
N for a large family of nice potentials V . Controlling the large dimension behavior

of this transport map, we can prove that the fluctuations of the eigenvalues are like in the case
V = βx2 for any of these nice potentials. This kind of arguments can be generalized to several
matrix models.

Hence, Schwinger-Dyson equations seem to be a common theme in several problems,
where it can be used to analyze fine properties such as isomorphisms and universality. Unique-
ness of solutions to Schwinger-Dyson equation allow to show that apparently different quanti-
ties such as generating functions for the enumeration of planar maps and asymptotics of matrix
integrals are related, as both quantities satisfy these equations. In fact, topological expansions
can also be retrieved from Schwinger-Dyson equations through the so-called topological re-
cursion which are based on the free difference quotient, see e.g. the discussion in section 4.1.
These topological recursions seem to appear in many other domains, see e.g. the work of B.
Eynard et al, see e.g. [21, 7].

We will first describe domains where Schwinger-Dyson equation shows up. We start by re-
lating it with the problem of enumerating planar maps. Subsequently, it represents integration
by parts in the context of non-commutative variables. This can be extended to other settings
such as planar algebras and/or type III factors [section 2.8]. The fact that Schwinger-Dyson
equation appears in seemingly different domains allows to connect them, moments of non-
commutative variables being often described by combinatorial objects, namely planar maps.
There are other domains in probability where such an equation appears, at least asymptotically.
This is the case of random matrices, or particles systems in repulsive interaction. This allows
to derive topological expansion (that is large dimension expansions of the observables)[section
4.1] and universality (that is criteria to show that fluctuations of some observables do not de-
pend much on the model) [sections 4.3 and 4.3.2] .

The idea developed in these lecture notes are inspired by Voiculescu’s program to develop
free probability as a generalization of classical probability for non-commutative variables, en-
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capsulating the central notion of freeness which replaces independence. The analogy between
these two domains allows to bring ideas from one to the other. In the intermediate level, ran-
dom matrices are random objects which converge towards non-commutative variables: as such,
understanding their limit allows to analyze them. Reciprocally, random matrices can be used
to find out how to adapt concepts from classical probability to the free set-up. We here illus-
trate this point with the example of transport maps, which are developed in free probability and
random matrix theory based on ideas going back to Monge and Ampère.

2 The free difference quotient and the Schwinger-Dyson equations

2.1 The free difference quotient

The free difference quotient ∂X was defined by D. Voiculescu as a natural derivation in the
context of non-commutative variables. Let X1, . . . ,Xd be non-commutative indeterminates. We
will assume that the space of polynomials C〈X1, . . . ,Xd〉 is equipped with an involution ∗ and
that the indeterminates X1, . . . ,Xd are self-adjoint with respect to this involution; Xi = X∗i , 1≤
i≤ d. Hence, for any complex number z, any j1, . . . , jk ∈ {1, . . . ,d}

(zX j1 · · ·X jk)
∗ = zX jk · · ·X j1 .

The free difference quotient with respect to the variable Xi is then given, for any choice of
indices j1, . . . , jk ∈ {1, . . . ,d} by

∂XiX j1 · · ·X jk =
∑
j`=i

X j1 · · ·X j`−1⊗X j`+1 · · ·X jk .

In other words, ∂Xi satisfies the Leibniz rule

∂Xi(PQ) = ∂XiP× (1⊗Q)+(P⊗1)×∂XiQ (4)

as well as
∂XiX j = 1 j=i1⊗1 .

The fact that the difference quotient takes values in the tensor product allows to keep track of
the position of the variable which was differentiated. Moreover, such a definition is a natural
extension of classical derivatives applied to matrices. Indeed, if X1, . . . ,Xd are N×N Hermitian
matrices, a straightforward computation shows that for all i ∈ {1, . . . ,d}, `,k,r,s ∈ {1, . . . ,N},

∂X i
k`
(P(X1, . . . ,Xd))r,s = ((∂XiP)(X1, . . . ,Xd))r`,ks , (5)

where (A⊗B)r`,ks :=Ar`Bks. Note that the free difference quotient is not the standard derivative
even in the case where one considers only one variable as it is given by

∂X Xk =
k−1∑
`=0

X `⊗Xk−`−1
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Identifying the tensor product space with the space of functions of two variables x and y we
have

∂X Xk(x,y) =
k−1∑
`=0

x`yk−`−1 =
xk− yk

x− y

and therefore for a general C1 function we get

∂X f (x,y) =
f (x)− f (y)

x− y
. (6)

Another derivative of interest is the cyclic derivative DXi given by

DXiP = (m◦∂Xi)P, m(A⊗B) = BA .

Again this is a natural notion when applied to matrices as for all i∈ {1, . . . ,d},k, `∈ {1, . . . ,N}

∂X i
k`

Tr(P(X1, . . . ,Xd)) = (DXiP)k`.

2.2 Non-commutative laws

A non-commutative law is a linear form µ on C〈X1, . . . ,Xd〉 with values in C which satisfies

1. The positivity property: for all polynomial P ∈ C〈X1, . . . ,Xd)

µ(P∗) = µ(P), µ(PP∗)≥ 0 .

2. The mass condition
µ(1) = 1 .

3. The trace property : for all polynomials P,Q ∈ C〈X1, . . . ,Xd)

µ(PQ) = µ(QP) .

Typical examples are again provided by matrices: if XN = (XN
1 , . . . ,XN

d ) are d N×N Hermitian
matrices,

τXN (P) :=
1
N

Tr(P(XN
1 , . . . ,XN

d ))

is a non-commutative law, with Tr(A)=
∑N

i=1 Aii. We will call it the empirical non-commutative
law of XN . If XN is random, E[τXN ] is also a non-commutative law. The non-commutative
laws that we shall consider will be bounded, that is that there exists R < ∞ such that for all
ik ∈ {1, . . . ,d}, all ` ∈ N,

|µ(Xi1 · · ·Xi`)| ≤ R` .
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By the Gelfand-Naimark-Segal construction, we can associate to µ a Hilbert space H, Ω ∈ H,
and a1, . . . ,ad bounded linear operators on H so that for all polynomial P

µ(P(X1, . . . ,Xd)) = 〈Ω,P(a1, . . . ,ad)Ω〉H .

The C∗-algebra associated to µ is also described by the C∗-algebra generated by a1, . . . ,ad
inside B(H), the set of bounded linear operators on H. We can also associate to µ the von
Neumann algebra generated by a1, . . . ,ad as the weak closure of its C∗-algebra in B(H).

2.3 Schwinger-Dyson equation

A linear form µ on C〈X1, . . . ,Xd〉 satisfies the Schwinger-Dyson equation with conjugate vari-
ables J = (J1, . . . ,Jd) iff for any polynomial P, any i ∈ {1, . . . ,d},

µ⊗µ(∂XiP) = µ(JiP)

and µ(1) = 1. This equation makes sense when the Ji are polynomials, but also in the C∗ or
the von Neumann algebras associated with µ. We shall however mainly consider this equation
when the conjugate variables are polynomials, or absolutely converging series.

We next discuss settings where this equation appears, and start with the enumeration of
planar maps.

2.4 Generating function for planar maps

We shall see here that generating functions for planar maps satisfy Schwinger-Dyson equation.
We summarize below the enumeration problem; more details and discussions can be found for
instance in [50]. A map is a connected graph which is properly embedded into a surface, that
is so that its edges do not cross and the faces (obtained by cutting the surface along the edges
of the graph) are homeomorphic to disks. The genus g of a map is the genus of this surface. It
can be computed thanks to Euler formula

2−2g = #{vertices}−#{edges}+#{ f aces} .

1
2

3

2−2g = 2−3+3

1

2−2g = 2−3+1
We are interested in enumerating maps with a given genus and a given set of vertices. To

do that, we shall consider rooted maps, that is maps equipped with a distinguished edge, called
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the root. This in particular means that we will count maps regardless of some symmetries.
In fact, we will even count maps built over sets of vertices which are already drawn on the
(orientable) surface and with prescribed degree. A nice way to do that is to start by drawing
the vertices on the surface as follows: a vertex of degree p is drawn on an orientable surface
together with p “half-edges” around it as well as a half-edge root. In other words, a vertex
comes with labelled half-edges corresponding with the way it should be drawn on the surface.
The question of enumerating maps then becomes the question of matching the end points of
the half-edges. More generally, we will be interested by counting maps with colored edges.
For instance, we would like to count maps with n red vertices of degree 4, m blue vertices
of degree 4 and p edges between the blue and red vertices: this is called the Ising model on
random graphs. To formulate this enumeration problem, we associate (bijectively) colored
vertices to monomials in d indeterminates (if we are dealing with enumerating maps with d
different colors) as follows. Let q(X1, . . . ,Xd) = Xi1Xi2 · · ·Xip be a monomial. A “star of type
q” is the vertex with first (the root) half-edge of color i1, the second color i2 etc until the last
half edge which has color ip.

We then let M((qi,ki)1≤i≤m;g) denote the number of maps with genus g build on ki stars of
type qi, 1≤ i≤ m.

Ising model on random graphs

Given monomials q,q1, . . . ,qk, complex variables ti ∈ C,1 ≤ i ≤ d, and monomial q, we
set

Mt(q) =
∑

n1,...,nk≥0

∏ tni
i

ni!
M((q,1),(qi,ni)1≤i≤k;0)

8



be the generating function for the enumeration of planar maps with one star of type q (which
varies and play in combinatorics the role of an external face) and stars of type qi,1 ≤ i ≤ k,
coming from the model. This formal series can be seen to be absolutely convergent for |ti| ≤ ε,
1 ≤ i ≤ d, for ε small enough. For polynomials P =

∑
αiqi, Mt(P) is defined by linearity by

Mt(P) =
∑

αiMt(qi).

Theorem 1. (Tutte [46]) For t1, . . . , tk small enough, Mt satisfies the Schwinger-Dyson equa-
tion: for all monomial q, all i ∈ {1, . . . ,d},

Mt ⊗Mt(∂Xiq) = Mt(qDiVt)

with Vt =
1
2
∑

X2
i −

∑
tiqi .

The proof of this identity follows from the techniques of “surgery” introduced by Tutte.
Let us illustrate it in the case of the enumeration of planar maps with vertices of degree 3. Let
M(p,n) = M((xn,1),(x3, p);0) be the number of planar maps with p vertices of degree 3 and
one of degree n (again vertices should be thought as stars). Then, we can get an induction
relation on M(p,n) by considering what can happen to the root edge of the vertex of degree n
(sometimes called the external face). Either it should be matched with an edge of another star
(of degree 3) or to another edge of the vertex of degree n.

M(p,n)

In both cases, erasing the matched edge, we arrive either at the situation where the external
face has one edge extra, but one star of degree 3 disappeared, or the planar map is cut into two
disjoint planar maps (where one contains a number ` ∈ [0, p] of vertices of degree three, and
the other p− `). This yields the relation

M(p,n) = 3pM(p−1,n+1)+
n−2∑
k=0

p∑
`=0

(
p
`

)
M(`,k)M(p− `,n− k−2)

Here the combinatorial factors 3p and
(

p
`

)
are due to the fact that we consider labelled

edges; no symmetries are taken into account. Putting Mt(xn) :=
∑

p≥0
t p

p! M(p,n), we deduce
from the above that it satisfies the Schwinger-Dyson equation with potential Vt =

1
2 x2− tx3:

Mt ⊗Mt(∂xxn) = Mt(xn(x−3tx2)) .
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2.5 Non-commutative variables

In the framework of free probability, a non-commutative law µ is said to have conjugate vari-
ables Ji,1 ≤ i ≤ d, iff it satisfies the Schwinger-Dyson equation: for any polynomial P, any
i ∈ {1, . . . ,d}

µ⊗µ(∂XiP) = µ(PJi) .

Schwinger -Dyson equation can be seen as an integration by part formula: in fact we shall see
that it can be retrieved from classical integration by parts when applied to random matrices. In
the classical case where the difference quotient would be replaced by the classical derivative
and µ simply be a probability measure, the Ji would simply be the derivative of the log-density.
The case where Ji is a cyclic gradient of a polynomial corresponds to the Schwinger-Dyson
equation satisfied by the generating functions for the enumeration of planar maps. In fact,
it was shown by D. Voiculescu [48] that if the Ji are polynomial functions they have to be
cyclic gradient of a polynomial. Hence, in this case, the Schwinger-Dyson equations which
are relevant are of the same type as those encountered in the enumeration of planar maps.
However, in general, potentials need not be small perturbations of the quadratic potential.

2.6 Approximate Schwinger-Dyson equations and large random matrices

In this section, we show that large random matrices ensembles satisfy the Schwinger-Dyson
equation in average. The first example is given by the Gaussian Unitary Ensemble (GUE)
which is described by the N×N Hermitian matrices XN with independent entries which are
complex centered Gaussian variables with covariance N−1 above the diagonal and real centered
Gaussian variables with covariance N−1 on the diagonal. In other words, the law of XN is given
by the law on N×N Hermitian matrices given by

dPN(XN) =
1

ZN exp{−N
2

Tr((XN)2)}dXN

where dXN =
∏

i< j dℜ(XN(i j))
∏

i≤ j dℑ(XN(i j)) is the Lebesgue measure on the entries and
ZN is the normalization constant. Take XN

1 , . . . ,XN
d be d independent GUE matrices. According

to the Gaussian integration by parts∫
(x+ iy) f (x+ iy,x− iy)e−N(x2+y2)dxdy =

1
N

∫
∂2 f (x+ iy,x− iy)e−N(x2+y2)dxdy, (7)

and by definition (5), one readily finds that

EP⊗d
N

(
1
N

Tr(XN
i P(XN

1 , . . . ,XN
d ))

)
= EP⊗d

N

(
1
N

Tr⊗ 1
N

Tr
(
(∂XiP)(X

N
1 , . . . ,XN

d ))
))

. (8)
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Here and after, EP denotes the expectation under a probability measure P. Hence, independent
GUE matrices satisfy the Schwinger-Dyson equation in average, for the quadratic potential
V = 1

2
∑

X2
i . We shall see later that as 1

N Tr(P(XN
1 , . . . ,XN

d )) self-averages, it converges as N
goes to infinity and its limit satisfies the Schwinger-Dyson equation. This can be generalized
to the case of random matrices in interaction. To this end take a polynomial V so that

dPV
N(X

N
1 , . . . ,XN

d ) =
1

ZV
N

exp{−NTr(V (XN
1 , . . . ,XN

d ))}dXN
1 · · ·dXN

d

makes sense (that is ZV
N is well defined and finite). Then, again by integration by parts, one

easily sees that the following averaged Schwinger-Dyson equation holds :

EPV
N

(
1
N

Tr⊗ 1
N

Tr(∂XiP)
)
= EPV

N

(
1
N

Tr(DXiV P)
)
.

In the case where ZV
N is infinite, one can add a cutoff so that the matrices keep an operator norm

bounded (this however creates boundary terms in the Schwinger-Dyson equation).

2.7 Approximate Schwinger-Dyson equation and Coulomb gas interacting par-
ticle systems

Let us consider the following β-models:

dPV,β
N (λ1, . . . ,λN) =

1
ZV

N

∏
i< j

|λi−λ j|βe−N
∑

V (λi)
∏

dλi

When β = 2, this corresponds to the joint law of the eigenvalues of the matrix models we just
considered but with only one matrix. Then, the empirical measure LN = 1

N

∑N
i=1 δλi satisfies

the approximate Schwinger-Dyson equation:∫ (
β

2

∫∫
∂X f (x,y)dLN(x)dLN(y)−

∫
V ′(x) f (x)dLN(x)

)
dPV,β

N

=
1
N
(
β

2
−1)

∫ ∫
f ′(x)dLN(x)dPV,β

N , (9)

for any C1 function f . Here, ∂X was defined in (6). In this case, we see that an additional error
term appears when we deal with the case β 6= 2: it will yield an expansion of the observable∫ ∫

xkdLN(x)dPV,β
N in 1/N instead of 1/N2.
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2.8 Generalization of Schwinger-Dyson equations

It is possible to define analogous equations in other settings, for instance in models build on
a structure of planar maps, such as planar algebras [24]. A simple example of planar algebra
is given by Temperly-Lieb algebra. Temperley-Lieb elements are boxes containing an even
number of boundary points, a starting point, and non-intersecting strings between these points
:

*

These elements could as well be endowed with a shading: we do not discuss this point here.
We can endow this set with the multiplication:

and the trace given by
τ(S) =

∑
R∈TL

δ
]loops in S.R

where the sum holds over Temperley diagrams with the same number of boundary points as S
and

      T

T.S=

     S

In the above drawing, T.S has two loops. For δ ∈ I := {2cos(π

n )}n≥4∪]2,∞[, it was shown
[23] that τ is a tracial state, as a limit of matrix models. This can also be shown by combi-
natorial arguments [31]. Moreover, the von Neumann algebra associated to τ was shown to
be a factor (and a tower with index δ2 can be built). τ can also be constructed by matricial
approximation. In [24], perturbations of such a law were introduced, allowing to replace the
sum over Temperley-Lieb diagrams by a sum over planar diagrams constructed by matching
the end points of copies of some Temperley-Lieb elements. This in particular includes the
Potts model on random graphs. In these cases, the Schwinger-Dyson equation has a similar
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graphical interpretation that we gave for planar maps, and can be seen to be equivalent to the
following diagrammatic equation:

Tr′

=
∑
i odd

Tr′ Tr′

i
(10)

+
∑
i even

Tr′

W
i

Namely, expected values can be seen to amount to either split the diagrams into two disjoint
pieces or to glue it with elements from the potential: this is very similar to what we saw for the
generating functions of planar maps.

Schwinger-Dyson equation can also be derived for more general matrices, for instance
Unitary matrices following the Haar measure [15, 27]. Let us for instance consider

PV
N (dU1, . . . ,dUm) =

1
IN(V,Ai)

eNTr(V (Ui,U∗i ,Ai,1≤i≤m))dU1 · · ·dUm

for some polynomial V in (Ui,U∗i ,Ai)1≤i≤m and dU the Haar measure on the unitary group.
Traces of polynomials also satisfy an averaged Schwinger-Dyson equation but the free differ-
ence quotient has to be modified. Let us first define the analogue to the free difference quotient
given by the linear maps ∂ j such that for all i, j ∈ {1, . . . ,m}

∂ jAi = 0 ∂ jUi = 1i= jU j⊗1 ∂ jU∗i =−1i= j1⊗U∗j (11)

and satisfying the Leibnitz rule (4). We let D j = m◦∂ j be the associated cyclic gradient (recall
that m(A⊗B) = BA). Using the invariance by multiplication of the Haar measure (which is
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analogous to using the invariance by translation of Lebesgue measure which led us to the inte-
gration by parts we used for Hermitian matrices) one can prove the Schwinger-Dyson equation:

EPV
N

(
1
N

Tr⊗ 1
N

Tr(∂ jP)
)
+EPV

N

(
1
N

Tr(PD jV )

)
= 0 . (12)

This is proved by noticing that if we set U j(t) = U jeitB and leave the other Uk(t) = Uk
unchanged for a Hermitian matrix B then for all k, l ∈ {1, . . . ,N}

∂t

∫
P(Up(t),1≤ p≤ m,Ai)(k, l)eNTr(V (Up(t),Up(t)∗,Ai)dU1 · · ·dUm = 0

Taking B to be the matrix Bst = 1st=kl +1st=lk or Bst = i1st=kl− i1st=lk shows that we can choose
by linearity B to be the matrix Bst = 1st=kl even though this is not self-adjoint. This yields the
result after summation over k and `.

It is also possible to define Schwinger-Dyson equations in case of non tracial states [36],
that is type III factors. Again the appropriate differential calculus has to be developed. Another
extension concerns discrete analogue of the β-ensembles consisting in summing over λi taking
values in a lattice instead of on the real line. Integration by parts give equations which are not
easy to handle, but Nekrasov [35, 34, 33] defined non-perturbative Schwinger-Dyson equations
which can be analyzed [6].

To sum up, the Schwinger-Dyson equations show up in many non-commutative or ordered
systems. The free difference quotient appears as the natural derivation in this setting. We shall
now analyze these equations.

3 Properties of solutions to Schwinger-Dyson equations

Even though the Schwinger-Dyson equation can be seen as an integration by part formula in
free probability, it is not clear at all that it has a unique solution. In fact it does not in general.
Indeed, even if d = 1, there may be several solutions to the Schwinger-Dyson equation. Indeed,
we can choose V so that any solution will have the same disconnected support, for instance by
taking V with two global minima and with large enough values in between these minima.
Then, the Schwinger-Dyson equation will have a solution for any choice of mass given to these
connected components. We start by investigating this question of uniqueness and then we study
properties of the solutions when they are unique.

3.1 Uniqueness

Let µ be a linear form on C〈X1, · · · ,Xd〉 so that

µ⊗µ(∂XiP) = µ(DXiV P) ∀P ∈ C〈X1, . . . ,Xd〉,∀i ∈ {1, . . . ,d} . (13)
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Assume µ(1) = 1. We investigate in the next subsection the cases where we know that a unique
solution exists.

3.1.1 Quadratic case

Note that when V = 1
2
∑

X2
i , uniqueness is clear since then

µ(XiP) = µ⊗µ(∂XiP)

allows to define µ(Xi1 · · ·Xik) for all choices of i1, . . . , ik ∈ {1, . . . ,d} by induction over k, start-
ing from µ(I) = 1. This solution is denoted by σd . It is the solution for the enumeration of
maps with one star and therefore we see that σd(Xi1 · · ·Xik) corresponds to the number of planar
maps that one can build over a star of type Xi1 · · ·Xik . Note that we can equivalently see a star
as a circle decorated with colored dots one colored dot (with color i1) and with colored dots
drawn in the clockwise order of color i2, i3, . . . , ik, and that in case of a single star this is also
equivalent to a line with first point with color i1, second i2, . . . In the later case, the planar map
can be identified with a non-crossing pair partition blocks of points of the same color. The
non-crossing property is simply that if (a,b) and (c,d) are two pairings then a < b < c < d or
a < c < d < b and ia = ib, ic = id .This interpretation of σd(q) can be compared with that of
Gaussian moments which are given by the enumeration of pair partitions. In fact, σd plays the
role of the law of independent Gaussian variables in free probability. We will see that it also
gives the limit of moments of GUE variables. Moreover, it encapsulates the notion of freeness
which is central in free probability. In fact, σd can be defined as follows:

• if we restrict σd to polynomials in one variable, it is given by the semi-circle distribution,
that is

σ
d(Xk

i ) =
1

2π

∫ 2

−2
xk
√

4− x2dx .

• whereas more general moments can be computed from the property that X1, . . . ,Xd are
free under σd : we say that X1, . . . ,Xd are free under µ iff

µ(q1(Xi1)q2(Xi2) · · ·q`(Xi`)) = 0 (14)

for any polynomials qk,1 ≤ k ≤ `, so that µ(qk(Xik)) vanishes and any indices i j ∈
{1, . . . ,d} so that ik 6= ik+1,1≤ k ≤ `−1. It is not hard to see that (14) defines uniquely
the law once the marginal distributions are known.

The equivalence of the two definitions of σd above, by planar maps or freeness, amounts to
showing that any planar map built on a star of type q must leave at least one subset of con-
nected one-color half-edges (corresponding to each of the monomials qi) to having only self-
matchings (this contribution then vanishes by centering). This can be checked by induction
over the degree of q.
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3.1.2 Perturbative case

Theorem 2. [25] Let R ∈ (2,+∞) and V = 1
2
∑

X2
i + εW for a self-adjoint polynomial W =∑p

i=1 tiqi, for some monomials qi and complex numbers ti. Then for ε small enough (depending
on R) there exists a unique solution µV to (13) so that µ(1)= 1 and for any k∈N, any i1, . . . , ik ∈
{1, . . . ,d}k

|µ(Xi1 · · ·Xik)| ≤ Rk . (15)

Moreover it is a tracial state: for any polynomials P,Q,

µ(P∗) = µ(P), µ(PP∗)≥ 0, µ(PQ) = µ(QP) .

The idea of the proof is perturbative, the situation ti ≡ 0 being clear according to the previ-
ous section. Indeed, take two solutions τ, τ̃ and denote by

∆k := sup
q:deg(q)≤k

|τ(q)− τ̃(q)|

where the supremum is taken on monomials (or words) of degree smaller or equal to k. We
have

∆k+1 = max
i

sup
q:deg q=k

|τ(Xiq)− τ̃(Xiq)|

whereas by using (13), (15) and ∆0 = 0, if D+1 = max1≤i≤p deg(qi) we get for any monomial
q with degree k,

|τ(Xiq)− τ̃(Xiq)| ≤ |τ⊗ τ(∂Xiq)− τ̃⊗ τ̃(∂Xiq)|+Dε

p∑
j=1

|t j|∆k+D−1

≤ 2
k−1∑
l=1

∆lRk−1−l +Dε

p∑
j=1

|t j|∆k+D−1

Hence,

∆k+1 ≤ 2
k−1∑
l=1

∆lRk−1−l +Dε

∑
|t j|∆k+D−1, ∆k ≤ 2Rk

so that for γ < R−1∧1, we deduce that

∆γ :=
∑
k≥1

γ
k
∆k ≤

2γ2

1−Rγ
∆γ +

εD
∑
|t j|

γD−2 ∆γ . (16)
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Hence, if ε is small enough so that there exists γ ∈ (0,1/R∧1) such that

2γ2

1−Rγ
+

εD
∑
|t j|

γD−2 < 1

we deduce that ∆γ = 0, which implies τ = τ̃.

3.1.3 Strictly convex case

We need to find the right definition of strict convexity in the non-commutative setup. It should
as in the classical case be related with the idea that a second order differential of the function is
bounded below by a multiple of the identity. The difficulty here is that derivatives have values
in the tensor product, and there are many possible topologies that can be implemented on the
space of tensor product valued functions. We will use classes of differentiable functions with
values in the Haagerup tensor product M⊗ehcD2 of some von Neumann algebra M. We do not
detail more precisely this space here (see e.g. [17]) but emphasize that it is nice, for instance
to make sure that composition of smooth functions are smooth, or to get smoothness of natural
operations that show up in the analysis.

Proposition 3. The following are equivalent.

1. A = A∗ ∈Md(M⊗ehcD2) has a semigroup of contraction e−At for all t ≥ 0.

2. A=A∗ ∈Md(M⊗ehcD2) has a resolvent family for all α> 0, α+A is invertible in Md(M⊗ehcD2)
and || α

α+A || ≤ 1.

In this case we say A≥ 0.

Definition 4. Let c,R∈R+,∗. Let V =V ∗ be a smooth function on non-commutative variables.
V is said to be generalized (c,R)-convex if (∂XiDX jV )(X1, . . . ,Xd)−cId ≥ 0 for some c > 0

and all X1, . . . ,Xd self-adjoint variables bounded by R in the von Neumann algebra M.

We then can prove that

Theorem 5. Let R > 0. Then there exists c(R) > 0 so that if V is (c,R)-convex for some
c≥ c(R), there exists a unique solution to the Schwinger-Dyson equation (13).

The arguments to prove this theorem are more sophisticated than the previous ones as they
appeal to dynamics. In fact, it is shown that the solutions to Schwinger-Dyson equation are
stationary solutions of the free stochastic differential equation given by

X i
t = X i +Si

t −
1
2

∫ t

0
DXiV (Xs)ds (17)

where (S1,S2, . . . ,Sd) are d free free Brownian motion. Such equations are well defined and
discussed in [4, 5]. Let us shortly describe them. The free Brownian motion S is constructed
similarly to the Brownian motion by the requirements that
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1. S0 = 0,

2. For any t1 ≤ t2 ≤ ·· · ≤ tr,

(tr− tr−1)
−1/2(Str −Str−1), . . . ,(t2− t1)−1/2(St2−St1), t

−1/2
1 St1

are free semi-circular variables with distribution σr.

(S1,S2, . . . ,Sd) are free in the sense that their marginals satisfy (14). Existence and uniqueness
of solutions to (17) can be proved by using standard Picard arguments (here we assume that
V is a polynomial, but any non-commutative function satisfying a Lipschitz property would
work) and the fact that solutions stay bounded uniformly in time by R if their initial condition
has sufficiently small norm when the potential is (c,R)-convex, see [4]. Let τ be the non
commutative law of Xt = (X1

t , . . . ,X
d
t ), t ≥ 0, with initial condition X . The free analogue of

Itô’s calculus implies that the distribution of Xt satisfies the differential equation

τ(P(Xt)) = τ(P(X))+

∫ t

0
τ⊗ τ(

1
2

d∑
i=1

∂XiDXiP(Xs))ds− 1
2

∫ t

0
τ(

d∑
i=1

DXiP(Xs)DXiV (Xs))ds .

Hence, we see that the right hand side vanishes when the non-commutative distribution of Xs

satisfies the Schwinger-Dyson equation. Moreover, the strict convexity of V allows to show, as
in the classical case, that the law of Xs does not depend much on the initial condition X when s
goes to infinity, hence implying uniqueness of the stationary measure. This allows to conclude.

Remark 6. Uniqueness of solutions fails in general, even in the case d = 1 as we already
noticed.

3.2 Free transport and isomorphisms

In this section, we discuss the construction of transport maps between non-commutative laws.
Let τ,µ be two non-commutative laws of d (resp. m) variables X = (X1, . . . ,Xd) (resp. Y =
(Y1, . . . ,Ym)). We seek for “transport maps” T = (T1, . . . ,Tm) and T ′ = (T ′1, . . . ,T

′
d) of d (resp.

m) variables so that for all polynomials P,Q

τ(P(X)) = µ(P(T1(Y ), . . . ,Td(Y )))

µ(Q(Y )) = τ(Q(T ′1(X), . . . ,T ′m(X)))

In this case, we denote τ = T ]µ and µ = T ′]τ. At this point, transport map could either be
polynomials, or in the C∗ algebra, or in the von Neumann algebra associated with the non-
commutative laws by the GNS construction. In fact, the existence of such transport maps gives
isomorphisms between these algebras (depending on the regularity of the transport maps). The
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classical analogue of such a question is, for given two probability measures µ and ν on Rd

and Rm respectively, whether we can build a transport map from µ to ν, that is a measurable
function T : Rd → Rm so that for all bounded continuous function f∫

f (T (x))dµ(x) =
∫

f (x)dν(x) .

We denote T #µ = ν. We can similarly seek for T ′ so that T ′#ν = µ. Von Neumann proved
that, except for very degenerate cases (such as µ being a Dirac mass at a point), one can always
build a transport map between two probability measures. For instance, one can always build
transport maps from the Lebesgue measure on [0,1] to any probability measure on Rm for any
m≥ 1. In fact, this transport map may be quite rough, and no more than measurable.

In the non-commutative setting, this type of question is widely open. In fact, a result of
Ozawa [38] shows that there is no non-commutative law analogous to Lebesgue measure in the
sense that any non-commutative measure could be seen as its image by some transport map.

In this section, we want to discuss the existence of such transport map in very nice cases,
in fact for solutions to Schwinger-Dyson equation. We will restrict ourselves to when this
equation has a unique solution as seen in the previous section. So let V be a self-adjoint
polynomial and consider the solution µV to the Schwinger-Dyson equation

µV ⊗µV (∂XiP) = µV (DXiV P) . (18)

When we restrict ourselves to pertubative setting, a natural topology on the space of functions
is given by the Banach norm

‖P‖R =
∑
|〈q,P〉|Rdeg(q) (19)

where the sum is over monomials q entering in the decomposition of P by P =
∑
〈q,P〉q and

deg(q) denotes the degree of the monomial q. We let AR be the completion of the set of
polynomials for ‖.‖R.

Theorem 7 (G.–Shlyakhtenko [29]). Let A > A′ > 4 and V = 1
2
∑

X2
i +βW self-adjoint with

‖W‖A < ∞. Then, for β small enough, there exist FV ,TV transport maps in AA′ between µV

and σd = µ∑X2
i /2 so that

µV = TV ]σd , σ
d = FV ]µV .

In particular the related C∗ algebras and von Neumann algebras are isomorphic.

In a work in progress with Y. Dabrowski, we extend this result to the strictly convex case:

Theorem 8 (Dabrowski-G–Shlyakhtenko [18]). Let R > 4. Then, there exists c(R) > 0 finite
so that for any (c,R) function V , the C∗ and W ∗-algebras associated with the unique solution
µV to (18) are isomorphic to that of d free semicircular variables.

19



These results allow to prove new isomorphisms. Let us for instance consider q-Gaussian
laws introduced by Bozejko and Speicher [4] as an interpolation between classical Gaussian
variables and free semi-circular laws. The moments of d q-Gaussian variables are described
by

τq,d(Xi1 · · ·Xip) =
∑

π

qi(π) ∀ik ∈ {1, · · · ,d}

where the sum is over pair partitions and i(π) counts the number of crossings. Hence, q = 1
corresponds to commutative Gaussian variables whereas the case q = 0 corresponds to free
semi-circular variables. It was shown by Y. Dabrowski that for qd small enough, τq,d satisfies
the Schwinger-Dyson equation with a potential V which is a small perturbation of the quadratic
potential in some AR, as in Theorem 7. Hence, we can apply our result to prove the following
corollary.

Corollary 9. [29] Let d ∈N∗. For qd small enough, there exist R> 0 finite and transport maps
in AR between τq,d and τ0,d = σd . In particular the C∗-algebra and von Neumann algebras of
q-Gaussian laws, q small, are isomorphic to that of the free semicircle law σd .

The ideas to construct such transport maps follow very classical ideas going back to Monge-
Ampère, that we now describe in the classical probability setting. Let µ,ν be probability mea-
sures on Rd that have smooth densities

µ(dx) = e−V (x)dx, ν(dx) = e−W (x)dx .

Then T #µ = ν is equivalent to

∫
f (T (x))e−V (x)dx =

∫
f (x)e−W (x)dx

=

∫
f (T (y))e−W (T (y))JT (y)dy

with JT the Jacobian of T . Hence, it is equivalent to the transport equation

V (x) =W (T (x))− logJT (x) .

Monge-Ampère equation amounts to taking T to be a gradient. Such an equation can not be
solved in general, except in the case where V −W is small. Indeed, then we can look for a
solution T close to identity, in which case JT is close to one and therefore the equation does
not touch the singularity of the logarithm. Hence, it can be solved by the implicit function
theorem.

This type of arguments can be generalized to the non-commutative setting by showing that
the Schwinger-Dyson equation is equivalent to a free Monge-Ampère equation. The latter
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takes the form

(1⊗ τ+ τ⊗1)TrlogJ F = S
[{

1
2

∑
F(X)2

j +W (F(X))

}
− 1

2

∑
X2

j

]
where S is a certain symmetrization operator and J is a natural generalization of the notion of
Jacobian based on the free difference quotient. Based on this formula, one can develop in the
non-commutative setting arguments similar to those of the implicit function theorem.

B. Nelson showed that it is also possible to extend these ideas to more general setups; to
construct a transport map in the case of type III factors [36] and in the case of finite depth sub
factor planar algebras [37].

Such arguments do not work a priori to prove non-perturbative results and with Dabrowski
and Shlyakhtenko, we used a follow up to this idea based on interpolating potentials. Let us
first outline this idea in the classical set up. Then, again consider for potentials V,W properly
renormalized, the probability measures

µV (dx) = e−V (x)dx , µW (dx) = e−W (x)dx .

Consider for Vt = (1− t)W + tV + log
∫

e−(1−t)W (y)−tV (y)dy, the transport map T0,t from µW to
µVt . Let

ϕt = ∂tT0,t ◦T−1
0,t (20)

Some algebra reveals that Monge-Ampère equation becomes

Ltψt =W −V (21)

if we assume that ϕt = ∇ψt . Moreover Lt is the infinitesimal generator :

Lt = ∆−∇Vt .∇ .

Hence, to construct a transport map it is enough to solve the Poisson equation (21) and then
the transport equation (20) driven by ∇ψt to find T0,t . Taking t = 1 provides a transport map
from µW to µV . To solve the Poisson equation (21), one needs to invert Lt , that is find the
Green function. Alternatively, one can consider the semi-group Pt

s = esLt and in the case when
it converges fast enough to a unique invariant measure µt (for instance in the case when Vt is
strictly convex), use that (21) is satisfied if

ψt(x) =−
∫

∞

0
[Pt

s −µVt ](W −V )(x)ds .

This scheme can be generalized to the free setting by using again free stochastic differential
equations. Indeed, for a strictly convex interaction, if XY,t

. is the solution of the free SDE with
potential Vt and initial condition Y , we can define

ψt(Y ) =−
∫

∞

0

(
τ[(V −W )(XY,t

s )|Y ]− τ[(V −W )(XY,t
∞ )]

)
ds
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where above we have used conditional expectation with respect to the initial data. The above
integral converges absolutely provided that we have a strictly convex interaction. The main
point to finally construct the transport by the transport equation is to make sure that ψt de-
scribed above is a sufficiently smooth function. This in fact requires to understand better the
set up of free analysis and its natural topologies.

4 Models asymptotically driven by ∂X

In this section we investigate models which are only asymptotically driven by the free differ-
ence quotient, such as random matrices or particles in Coulomb gas interaction. We show that
the approximate Schwinger-Dyson equation then allows to get a topological expansion, that is
an expansion of observables in terms of the dimension. The first order is given by the solution
to the Schwinger-Dyson equation, and the corrections are computed recursively by linearizing
the approximate Schwinger-Dyson equation around their limit.

This expansion is said to be topological because if the dimension is seen as a parameter,
then the observables can be seen as generating functions for maps of all genus. This can
be proved again because the equations are driven by the free difference quotient, yielding a
combinatorial interpretation: each correction can be interpreted as some number of maps with
a given genus. We also investigate transport maps in this setting and show that we can construct
approximate transport maps to prove this time the universality of the local fluctuations of the
eigenvalues. Hence, this section follows roughly the scheme we have developed in the previous
section, but pushed to get corrections of the solutions of the approximate Schwinger-Dyson
equation with respect to the solution of the limiting equation.

4.1 Matrix models

Let V be a self-adjoint polynomial in d non-commutative indeterminates and consider the ma-
trix integral

dPV
N(X

N
1 , . . . ,XN

d ) =
1

ZV
N

e−NTr(V (XN
1 ,...,XN

d ))
∏

i

1‖XN
i ‖≤RdXN

i (22)

where ‖X‖ denotes the spectral radius of the matrix X . dXN
i denotes the Lebesgue measure.

We denote in short Tr(q) for Tr(q(XN
1 , . . . ,XN

d )) and dPV
N for dPV

N(X
N
1 , . . . ,XN

d ). Then we first
state the topological expansion for this matrix model.

Theorem 10 (G–Maurel-Segal [25]). Take R ∈ (2,+∞) and fix K ∈ N. Let qi,1 ≤ i ≤ p, be
monomials. Assume Vt =V ∗t = 1

2
∑

X2
i −

∑p
i=1 tiqi with ti small enough. Then

1.

EPVt
N
[

1
N

Tr(q)] =
K∑

g=0

1
N2g τ

t
g(q)+o(

1
N2K )
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with τt
g(q) =

∑
ki≥0

∏ tki
i

ki!
M((q,1),(qi,ki)1≤i≤p;g) where M((q,1),(qi,ki)1≤i≤p;g) is the

number of maps with genus g build over a star of type q and ki stars of type qi, 1≤ i≤ p.

2.
1

N2 log
ZN

Vt

ZN
V0

=

K∑
g=0

1
N2g Fg(t)+o(

1
N2K )

where Fg(t) =
∑∏ tki

i
ki!

M((qi,ki)1≤i≤p;g).

Note that the cutoff R is mainly required to make the partition function ZN
V finite. In the

case when V is strictly convex, it can be removed. The main tool to find these asymptotic
expansions is again the Schwinger-Dyson equation which is a consequence of integration by
parts and given by

EPV
N

(
1
N

Tr(DXi(V )P)
)
= EPV

N

(
1
N

Tr⊗ 1
N

Tr(∂XiP)
)
. (23)

Moreover, to study these equations we will need tools such as concentration of measure and
Brascamp-Lieb inequality (see [1] and [22]). They imply that there exists a finite constant
C(which only depends on c) so that for any monomial q of degree less than

√
N∫

| 1
N

Tr(q)|dPV
N ≤Cdegq , (24)

and ∫ ∣∣∣∣ 1
N

Tr(q)−
∫

1
N

Tr(q)dPV
N

∣∣∣∣2 dPV
N ≤

Cdeg(q)

N2 . (25)

As a consequence of (24), the family {
∫ 1

N Tr(q)dPV
N ,q} indexed by monomials in non-

commutative variables is tight. Any limit point {τ(q),q} can be extended by linearity to poly-
nomials and then satisfies the Schwinger-Dyson equation

µV (PDXiV ) = µV ⊗µV (∂XiP) (26)

with µV (I) = 1. Moreover, for any monomial q, we deduce from (24) that

|µV (q)| ≤Cdeg(q) . (27)

But we know by Theorem 2 that such an equation has a unique solution provided that the ti’s are
small enough. We then deduce readily that {

∫ 1
N Tr(q)dPV

N ,q} converges towards {µV (q),q}
with µV the unique solution to the Schwinger-Dyson equation (26).

23



To derive the corrections to this limit, the first point is to prove an a priori rough estimate by
showing that there exists a finite constant C > 0 so that for all ti’s small enough, all monomials
q of degree less than N1/2−ε for ε > 0, we have

|EPV
N
[

1
N

Tr(q)−µV (q)| ≤
Cdeg(q)

N2 . (28)

The proof elaborates on the ideas developed around (16) to prove uniqueness of the solution to
Schwinger-Dyson equation and the concentration inequalities (25), see [26]. We next turn to
the precise estimate of the asymptotics of δ

N
(P) = EPV

N
[Tr(P)]−NµV (P). To this end, we shall

introduce the following cumulants:

WV
2 (P,Q) = EPV

N
[(TrP−EPV

N
TrP)(TrQ−EPV

N
[TrQ])]

= ∂εPV−εN−1Q(TrP)|ε=0

WV
3 (P,Q,R) = ∂εWV−εN−1R

2 (P,Q) .

Rewriting (23) reveals after some algebra:

EPV
N
[Tr(ΞiP)] =

1
N

WV
2 (∂XiP)+

1
N

δ
N⊗δ

N
(∂XiP) , (29)

where
ΞiP = ∂XiV #P− (µV ⊗ I + I⊗µV )∂XiP .

By our a priori estimate (28) on δ
N

the last term in the right hand side of (29) is at most of order
N−3. Hence, to estimate the first order correction, we would like to estimate the asymptotics of
WV

2 as well as “invert” Ξi. It turns out that even though Ξi is hardly invertible, a combination
of the Ξi’s is. Because Ξ can be modified by cyclic rearrangement since it is taken under the
trace, we let Ξ be the operator on A0 = {P ∈ C〈X1, . . . ,Xd〉 : µV (P) = 0} given by

ΞP =
∑

i

(∂XiP#DXiV − (µV ⊗ I + I⊗µV )∂XiDXiP) .

Then the image of Ξ lies in A0 by the Schwinger-Dyson equations. We see that in the case
where V =

∑
X2

i /2, we have for any monomial P

Ξ0P :=
∑

i

∂XiP#DXiV = deg(P)P

that is Ξ is the sum of the degree operator and an operator which lowers the degree. It can
be inverted on the space of polynomials with no constant terms : indeed for any non constant
monomial P we have

Ξ
−1
0 (P) =

1
deg(P)

P .

24



When V is a small perturbation of the quadratic potential, it can be seen that Ξ is invertible on
the space given by the closure of polynomials for the norm ‖.‖C, see (19).

To estimate WV
2 , we obtain a new equation by replacing V by V + εW and identifying the

linear terms in ε in (23). we find

WV
2 (P,W ) = EPV

N
[

1
N

Tr(
∑

i

DXiΞ
−1PDXiW )]

+N−1

(
WV

3 (
∑

i

∂XiDXiΞ
−1P,W )+(WV

2 ⊗δ
N
+δ

N⊗WV
2 )(
∑

i

∂XiDXiΞ
−1P,W )

)
.

It turns out that the terms in WV
3 and WV

2 are bounded by concentration inequalities (25)

whereas δ
N

is bounded by our previous rough estimate (28). Hence we conclude that

lim
N→∞

WV
2 (P,W ) = µV (

∑
i

DXiΞ
−1P×DXiW ) =: w2(P,W )

and therefore plugging this back into (29) we deduce the first order correction is given by

EPV
N
[

1
N

Tr(P)] = µV (P)+
1

N2 w2[
∑

i

∂XiDXi(Ξ
−1P)]+o(N−2) .

The next orders of the asymptotic expansion can be derived similarly, by considering a family
of Schwinger-Dyson equations which are obtained by perturbating the first one with respect to
small additional potentials. We refer the interested reader to [26, 32] for full details.

Hence, we see that deriving the topological expansion boils down to

• Derive Schwinger-Dyson equations,

• Use concentration arguments to be able to separate elements on different scales,

• Invert a linear differential operator, which can be interpreted as the limit of the infinites-
imal generators related with the Gibbs measures.

It turns out that Schwinger-Dyson equations can be established for many other models which
are not directly related with Gaussian random matrices. It seems that a large family of Schwinger-
Dyson equations give rise to topological expansions. We describe below the case of the β-
ensembles and the integration over the unitary group.

4.2 Topological expansion for β-matrix models

The law of the eigenvalues of the GUE follows the distribution on RN

dPN(λ) =
1

ZN

∏
i< j

|λi−λ j|2e−N
∑

λ2
i
∏

dλi
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as can be checked by doing the change of variables associating to X its ordered eigenvalues
and a parametrization of its eigenvectors. β-ensembles are the following generalization of this
distribution:

dPV,β
N (λ) =

1
ZV

N,β

∏
i< j

|λi−λ j|βe−N
∑

V (λi)
∏

dλi

It is related with invariant matrix ensembles only in the cases β = 1,2,4 and a priori has no
relations with Gaussian entries otherwise. However, it was proved in [9], see [13] for a formal
proof, that β-ensembles have a large-N (also called topological) expansion which generalizes
the expansion we discussed for GUE matrices in the previous section (restricted to d = 1).
More precisely, assume that

Assumption 11. • lim|x|7→∞

V (x)
2β log |x| > 1,

• V is analytic in a neighborhood of the real line,

• Consider

I(µ) =
∫ ∫ (

V (x)+V (y)
2

− β

2
log |x− y|

)
dµ(x)dµ(y) (30)

It is strictly convex and therefore has a unique minimizer µV which is characterized by
the fact that the effective potential Veff(x) = V (x)− 2β

∫
log |x− y|dµV (y) is equal to a

constant C on the support of µV and greater than C outside of the support. We assume
that the support of µV is connected.

• Assume also that the effective potential Veff achieves its minimal value only on the sup-
port of µV .

• The density of µV vanishes like a square root at the boundary of the support.

Then for any z ∈ C\R, and K ≥ 0∫
1
N

N∑
i=1

1
z−λi

dPV,β
N (λ) =

K∑
k=0

N−k WV,k(z)+o(N−K) (31)

where o(N−K) is uniform on compacts. Moreover, we have

WV,k(z) =
bk/2c∑
g=0

(
β

2

)−g (
1− 2

β

)k−2g+1
W V ;(g;k−2g+1)(z) .

Note that the hypothesis that the support is connected is important since otherwise the
result is not true in general. The proof of this expansion relies as well on the Schwinger-Dyson
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equations (9). As a consequence, one sees that the equilibrium measure µV satisfies the limiting
Schwinger-Dyson equation

β

2

∫ ∫
f (x)− f (y)

x− y
dµV (x)dµV (y) =

∫
f (x)V ′(x)dµV (x) . (32)

If V is a small perturbation of the quadratic potential one can develop arguments similar to
those of the previous section to check that moments under µV are generating functions for
planar maps.

In fact, the limiting equation (32) does not always have a unique solution as it is a weak
characterization of the minimizers of (30), but it does as soon as the support of the limiting
equation has a connected support. Indeed in this case we can use the theory of integral equa-
tions, and in particular that of the airfoil equation [45], to get uniqueness of the solution of
Schwinger-Dyson equation and invertibility of the relevant linear operators. In any case, µV

governs the first order of the expansion. To get the higher order terms in the expansion the idea
is, as in the previous section, to write equations for all the cumulants

WV
n (x1, . . . ,xn) = ∂ε1 · · ·∂εn

(
lnZ

V− 2
βN

∑
i

εi
xi−•

N,β

)∣∣∣
εi=0

by differentiating the Schwinger-Dyson equation (9) with respect to the potential. As the linear
differential operator Ξ appearing when one linearizes the Schwinger-Dyson equation around
its limit is invertible (in the connected support case), the strategy developed in the previous
section can be generalized.

In the case where the support of the limiting equilibrium measure has r connected compo-
nents S j,1 ≤ j ≤ r, r ≥ 2, it turns out that the Schwinger-Dyson equation (32) has a unique
solution given the mass of each connected components S j,1 ≤ j ≤ r. Moreover, in this case
the operator Ξ is as well invertible. Hence, we can use the previous scheme to expand in N the
partition function

ZV
n1,...,nr

=

∫ r∏
s=1

n1+···+n j∏
j=n1+···+n j−1+1

1
λ j∈Sδ

j

∏
i< j

|λi−λ j|βe−N
∑

V (λi)
∏

dλi

where Sδ
j = {x : d(x,S j) ≤ δ} for some δ > 0. The expansion does not depend on δ because

the eigenvalues will stay inside ∪S j with very large probability. This allows to retrieve [8]
an expansion in N for the partition function where the number of eigenvalues in each S j is
randomly chosen:

ZV
N =

∑
n1+···+nr=N

ZV
n1,...,nr

and for the correlators WV
n (x1, . . . ,xn). As the sum above is dominated by one set of filling frac-

tions n1, . . . ,nr, these expansions contain a Theta-function, representing the fact that the eigen-
values at the boundary of the support will tunnel from S j to S j+1 for some j ∈ {1, . . . ,r− 1}
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following a discrete gaussian law (which depends on the values of NµV (S j)−bNµV (S j)c,1 ≤
j ≤ r, and therefore may only converge under subsequences). In particular, central limit theo-
rem for linear statistics do not hold in general, see [8, Section 8.3] and also [39].

Finally, the previous considerations also generalize [10] to more general potentials of the
form N−k+1∑N

i1,...,ik=1V (λi1 , . . . ,λik). A more complicated generalization is to deal with mod-
els which interact via a potential which vanishes at the origin, but which is not homogenous as
the Coulomb gas interaction. In a recent work with Borot and Kozlowski, we consider the case
where the interaction is given by∏

i< j

sinh(ω1(λi−λ j))sinh(ω2(λi−λ j)) .

4.2.1 Topological expansion for the Haar measure on the unitary group

In this section we shall consider the Haar measure dU on the unitary group, that is the unique
measure on U(N) which is invariant under left multiplication by unitary matrices and with
mass one. We consider matrix integrals given by

IN(V,Ai) =

∫
eNTr(V (Ai,Ui,U∗i ,1≤i≤m))dU1 · · ·dUm ,

where (Ai,1≤ i≤m) are N×N deterministic uniformly bounded matrices, and V is a polyno-
mial function in the non-commutative variables (Ui,U∗i ,Ai,1≤ i≤m). A well-known example
is the Harich-Chandra-Itzykson-Zuber integral

HCIZ(A1,A2) =

∫
eNTr(A1UA2U∗)dU .

For technical reasons, we assume that the polynomial V satisfies Tr(V (Ui,U∗i ,Ai,1≤ i≤m))∈
R for all Ui ∈U(N) and all Hermitian matrices Ai,1 ≤ i ≤ m and N ∈ N. Under those very
general assumptions, the formal convergence of the integrals could already be deduced from
[14]. The following theorem is a precise description of the results from [15, 27] which gives
an asymptotic expansion:

Theorem 12. [15, 27]Let K ∈ N. Under the above hypotheses and if we further assume that
the spectral radius of the N×N matrices (Ai,1 ≤ i ≤ m) is uniformly bounded (by say M),
there exists ε = ε(M,V )> 0 so that for z ∈ [−ε,ε], the expansion

1
N2 log IN(zV,Ai) =

K∑
k=0

1
N2g FzV

g +o(
1

N2K )

holds. Moreover, FV,τ(z) is an analytic function of z ∈ {z ∈ C : |z| ≤ ε} which only depends on
the empirical non-commutative law of the (Ai)1≤i≤m. Furthermore, if we let

P zV
N (dU1, . . . ,dUm) =

1
IN(zV,Ai)

ezNTr(V (Ui,U∗i ,Ai,1≤i≤m))dU1 · · ·dUm
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for every polynomial P in (Ui,U∗i ,Ai)1≤i≤m we have the expansion∫
1
N

Tr(P((Ui,U∗i ,Ai)1≤i≤m))dP zV
N =

K∑
k=0

1
N2g τ

zV
g (P)+o(

1
N2K )

A combinatorial interpretation of the limits FzV
0 and τ

zV
0 in terms of planar maps was pro-

vided in [15], but is still open for higher orders FzV
g ,τzV

g , g≥ 1.
The strategy of the proof of Theorem 12 is again to study the Schwinger-Dyson equations

under the associated Gibbs measure PV
N , that is (12). By using concentration of measure,

we know that for every polynomial P, N−1Tr(P(Ui,U∗i ,Ai)) is not far from its expectation
and therefore we deduce that the limit points of these (bounded) quantities τ(P) satisfy the
Schwinger-Dyson equation

τ⊗ τ(∂ jP)+ zτ(D jV P) = 0 ,τ(Q(A1, . . . ,Am)) =
1
N

Tr(Q(A1, . . . ,Am)) =: τA(Q) (33)

where ∂ j is the modified free difference quotient as given in (11) and Q is a polynomial in the
deterministic matrices A1, . . . ,Am whereas P is a polynomial in Ui,U∗i ,Ai,1 ≤ i ≤ m. Unique-
ness of the solution to such an equation in the perturbative regime is done as in the Gaussian
case; when z = 0 it is clear as it defines all moments recursively from the knowledge of the
empirical non-commutative law τA and a perturbation argument shows this is still true for small
parameters. Uniqueness of the solutions to (33) provides the convergence whereas the study
of this solution shows that it expands as a generating series in the enumeration of some planar
maps. Next orders can be derived by arguments similar to those developed for the GUE.

4.3 Approximate transport maps and universality

In this section, we discuss the generalization of transport maps to models which are approxi-
mately driven by the free difference quotient and show that this entails universality properties
for the fluctuations of the eigenvalues.

4.3.1 β-models

Let us again consider the β-models given by

dPV
N,β(λ1, . . . ,λN) =

1
ZN

∏
i< j

|λi−λ j|βe−N
∑

V (λi)
∏

dλi

and recall that there is an equilibrium measure µV such that

lim
N→∞

1
N

N∑
i=1

f (λi) =

∫
f (x)dµV (x) a.s.
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Theorem 13. [3] Assume V,W are C31 and satisfy Assumption 11. Then there exists T0 ∈
C19(R,R), T N

1 = (T N,1
1 , . . . ,T N,N

N ) ∈C1(RN ,RN) so that

‖(T⊗N
0 +

T N
1
N

)#PV
N −PW

N ‖TV ≤ const.

√
logN

N
,

where ‖.‖TV is the total variation norm. Moreover, there exists a positive finite constant C such
that sup1≤k≤N ‖T

N,k
1 ‖L1(PV

N ) ≤C logN and

PV
N,β

(
sup
k,k′

|T N,k
1 (λ)−T N,k′

1 (λ)|√
N|λk−λk′ |

≤C logN

)
≥ 1−NN/C. (34)

In this theorem T0 is simply the optimal transport map from the equilibrium measures µV

to µW ; T0]µV = µW . In particular T0 is increasing. The proof of such a result follows the
approach by Poisson equation developed in section 3.2. The idea is to write these equations
for β-models and find an approximate solution by linearizing these equations around the limit,
and showing that the leftovers only produce a small error in the density, hence producing a
small error in total variation. Theorem 13 entails universality of the fluctuations, namely that
the local fluctuations of the eigenvalues under PV

N,β and PW
N,β are the same. Taking V = 1

2 x2, it
yields for instance the following theorem:

Theorem 14. Let W be C31 and satisfying Assumption 11. Assume that the eigenvalues are
ordered λ1 ≤ ·· · ≤ λN . Then,

1. if the support of µV is given by [a,b], there is a constant ρ so that N2/3ρ(λN − a) con-
verges in distribution to the Tracy-Widom law TWβ. A similar result holds at the left
edge b.

2. Take ε > 0 and i ∈ [εN,(1− ε)N] so that i/N ' E. Then, there exists a constant cE so
that NcE(λi−λi−1) fluctuates as in the case where W = x2

2 , in particular following the
Gaudin distribution if β = 2.

Such a result was also proved in [11, 12] under weaker assumptions on V (but for β ≥ 1)
and by Scherbina [41] (in the bulk but including cases where the support of µV is not connected,
an extension that was also considered in [2] by using approximate transport maps).

It is quite clear that approximate transport maps entail universality, as in the case where T N
1

is null, the eigenvalues λW
i under PW,β

N are just push forward of those under Px2

N so that

N2/3(λW
i −a) = N2/3(T0(λ

x2

i )−T0(2))' N2/3T ′0(2)(λ
x2

i −2)

and a similar result holds inside the bulk. (34) allows indeed to neglect T N
1 .
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4.3.2 Matrix models

One would like to understand as well the fluctuations of the eigenvalues of polynomials in
several independent matrices from the GUE or of matrices randomly chosen according to (22).
Let us consider d independent matrices XN

1 , . . . ,XN
d taken from the GUE and P a polynomial

in d non-commutative indeterminates. Then, it was shown (in fact also based on the analysis
of Schwinger-Dyson equation) by Haagerup and Thorbjørnsen [30] that the operator norm of
P(XN

1 , . . . ,XN
d ) converges almost surely towards its free limit:

‖P‖= lim
n→∞

σ
d((PP∗)n)1/2n .

One could wonder about the fluctuations around this limit. Of course, it should depend on
properties of the polynomial P since even in the case d = 1, the largest eigenvalue of P(XN

1 )
could either be the image of the largest eigenvalue of XN

1 or of an eigenvalue inside the bulk. It
would be interesting to understand what are the optimal conditions so that the fluctuations are
still given by the Tracy-Widom law. With Figalli, we could prove that this is the case when P
is a small perturbation of the identity.

Theorem 15. Let P be a self-adjoint polynomial. For ε small enough (independent of N), the
eigenvalues of

Y N = XN
1 + εP(XN

1 , . . . ,XN
d )

fluctuates locally as when ε = 0, that is following the sine-kernel in the bulk and the Tracy-
Widom law at the edge.

In fact, for ε small enough, a change of variable shows that the law of Y N is of the type
described in (22) (but with a slightly more complicated potential), hence we now focus on
proving universality in the latter case. Take Va =

∑d
i=1Wi(Xi)+aW (X1, . . . ,Xd) and consider

PVa
N (dXN

1 , . . . ,dXN
d ) =

1
ZN

Va

e−NTr(Va(XN
1 ,...,XN

d ))
∏

i

dXN
i

where integration holds over Hermitian or symmetric matrices. Denote PVa,i
N the law of the or-

dered eigenvalues of XN
i under PVa

N . The main result is that we can again construct approximate
transport maps:

Theorem 16 ( Figalli–G 2014). Assume V,Wi smooth enough, W ′′i ≥ c > 0.Then, there exists
a(c)> 0 so that for a ∈ [−a(c),a(c)], there exist T0 : R 7→ R,T N

1 : RN 7→ RN smooth functions
so that

‖(T⊗N
0 +

T N
1
N

)#P
∑

X2
j ,i

N −PVa,i
N ‖TV ≤ const.

√
logN

N
,
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with sup 1≤k≤N
1≤i≤d

E[|T N,k
1,i |]≤C logN and

P
∑

X2
j ,i

N ( sup
1≤k,k′≤N

1≤i≤d

|T N,k
1,i −T N,k′

1.,i |√
N|λi

k−λi
k′ |
≥C logN)≤ N−cN .

As a consequence, under PVa
N , the law of the spacing distribution of XN

i , Nci
j(λ

i
j − λi

j+1),
converges to the Gaudin distribution, and that of N2/3ci(max j λi

j −Ci) to the Tracy-Widom
law, for some appropriate constants ci,Ci and ci

j.

The idea to prove this theorem follows the arguments used in the previous section together
with the fact that we can control integrals over the unitary groups by [27], hence rewrite, the
law of the eigenvalues PVa

N of X1
N , . . . ,X

d
N under PN

Va
is

PVa
N (dλ

i
j) =

1
Z̃V

N
IaV
N (λi

j)
d∏

i=1

∏
j<k

|λi
j−λ

i
k|βe−N

∑
Wi(λ

i
j)dλ

i
j

where
IaV
N (λi

j) =

∫
e−aNTr(V (UN

1 D(λ1)(UN
1 )∗,...,UN

d D(λ1)(UN
d )∗)dUN

1 · · ·dUN
d

and integration holds under the Haar measure over the unitary group or the orthogonal group.
By Theorem 12, we get

IaV
N (λi

j) = (1+O(
1
N
))exp{(N2Fa

2 +NFa
1 +Fa

0 )(
1
N

∑
δλi

j
,1≤ i≤ d)}

We are then in position to construct approximate transport maps as for β-models.
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