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EXPONENTIAL EXTINCTION TIME OF THE CONTACT
PROCESS ON FINITE GRAPHS

THOMAS MOUNTFORD1, JEAN-CHRISTOPHE MOURRAT1, DANIEL VALESIN2,3 AND
QIANG YAO4,5

Abstract. We study the extinction time τ of the contact process started with
full occupancy on finite trees of bounded degree. We show that, if the infection
rate is larger than the critical rate for the contact process on Z, then, uniformly
over all trees of degree bounded by a given number, the expectation of τ grows
exponentially with the number of vertices. Additionally, for any increasing
sequence of trees of bounded degree, τ divided by its expectation converges in
distribution to the unitary exponential distribution. These results also hold
if one considers a sequence of graphs having spanning trees with uniformly
bounded degree, and provide the basis for powerful coarse-graining arguments.
To demonstrate this, we consider the contact process on a random graph with
vertex degrees following a power law. Improving a result of Chatterjee and
Durrett [CD09], we show that, for any non-zero infection rate, the extinction
time for the contact process on this graph grows exponentially with the number
of vertices.

MSC 2010: 82C22, 05C80.
Keywords: contact process, interacting particle systems, metastability.

1. Introduction

We study the contact process on finite graphs. Our main goal is to present
robust results and techniques which justify that, for certain values of the infection
parameter, the contact process survives for a time which is exponential in the
number of vertices of the underlying graph. We start by introducing notations and
recalling important facts.

Let G = (V,E) be a graph with undirected edges. The contact process on G
with parameter λ > 0 is a continuous-time Markov process (ξt)t≥0 on the space of
subsets of V whose transitions are given by:

(1.1) for every x ∈ ξt, ξt → ξt \ {x} with rate 1,
for every x /∈ ξt, ξt → ξt ∪ {x} with rate λ |{y ∈ ξt : {x, y} ∈ E}|,

where for a set A, we write |A| to denote its cardinality.
Given A ⊆ V , we write (ξAt )t≥0 to denote the contact process started from the

initial configuration equal to A. For x ∈ V , we write (ξxt ) rather than (ξ{x}t ); also,
rather than (ξVt ), we write (ξ1

t ). When we write (ξt)t≥0, with no superscript, the
initial configuration will either be clear from the context or unimportant. We often
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abuse notation and associate configurations ξ ⊆ V with the corresponding indicator
functions (that is, elements of {0, 1}V ).

The contact process can be thought of as a model for the spread of an infection
in a population. Vertices of the graph (sometimes referred to as sites) represent
individuals. In a configuration ξ ∈ {0, 1}V , individuals in state 1 are said to be
infected, and individuals in state 0 are healthy. Pairs of individuals that are connected
by edges in the graph are in proximity to each other in the population. With this
terminology, the dynamics can be described as follows. First, infected individuals
recover with rate 1. Second, an individual that is infected transmits its infection to
a neighbouring site with rate λ (assuming no multiple edges).

We begin by presenting some of the properties of the contact process for certain
choices of the graph G, namely: the lattice Zd, regular infinite trees, and the finite
counterparts of these graphs. For proofs of these properties and a detailed treatment
of the topic, we refer the reader to [Li1, Li2].

On Zd (equipped with its usual nearest-neighbour graph structure), there exists a
number λc = λc(Zd) such that the following holds. If λ ≤ λc, then the contact process
dies out, meaning that for any finite initial configuration, the empty configuration
0 is almost surely eventually reached. On the other hand, if λ > λc, then the
contact process survives strongly: for any non-empty initial configuration, the event
{ξt 6= 0 for all t} has positive probability and, conditioned on this event, almost
surely any vertex of Zd becomes infected infinitely many times.

The interest in the contact process on trees was prompted when it was discovered
that death and strong survival are not the only possibilities in this case [Pe92]. For
d ≥ 2, let Td denote the infinite (d+ 1)-regular tree with a distinguished vertex o
called the root. The different phases of the process are captured by two constants
0 < λ1(Td) < λ2(Td) < +∞. If λ ≤ λ1, then the contact process dies out, while if
λ > λ2, then it survives strongly. If λ ∈ (λ1, λ2], then the process survives weakly.
That is, if started with a non-empty finite initial configurantion, then the infection
has positive probability of always being present on the graph, yet each individual
site eventually becomes permanently healthy.

If G is a finite graph, then the contact process on G dies out. This does not
however rule out qualitative changes of the behaviour of the contact process as λ
varies, as we now describe. To be precise, for A ⊆ V , let us write τAG = inf{t : ξAt = 0}
for the extinction time of the process started from occupancy in A. We may omit
the subscript G when the context is clear enough, and simply write τ when the
contact process is started from full occupancy, that is, τ = τ1. Consider the graph
{0, . . . , n}d (viewed as a subgraph of Zd) and the distribution of τ for this graph,
as n goes to infinity. If λ < λc(Zd), then τ/ logn converges in probability to a
constant [DL88], [Ch94]; see also Theorem 3.3 in [Li2]. If λ > λc, then logE[τ]/nd
converges to a positive constant, and τ/E[τ] converges in distribution to the unit
exponential distribution [DS88, Mo93, Mo99]. In particular, when λ > λc, the order
of magnitude of the extinction time is exponential in the number of vertices of the
graph; the process is said to exhibit metastability, meaning that it persists for a long
time in a state that resembles an equilibrium and then quickly moves to its true
equilibrium (0 in this case). Metastability for the contact process in this setting
was also studied in [CGOV84] and [Sc85]. Finally, if d = 1, it is also known that, if
λ = λc, then τ/n→∞ and τ/n4 → 0 in probability [DST89].

For the case of finite trees, the picture is less complete, and the available results
concerning the extinction time are contained in [St01]. Fix d ≥ 2, let Thd be the
finite subgraph of Td defined by considering up to h generations from the root
and again take the contact process started from full occupancy on this graph,
with associated extinction time τ. If λ < λ2, then there exist constants c, C > 0
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such that P (ch ≤ τ ≤ Ch) → 1 as h → ∞. If λ > λ2, then for any σ < 1,
P
[
τ > exp((σd)h)

]
→ 1 as h → ∞. This implies that τ is at least as large as a

stretched exponential function of the number of vertices, (d + 1)h. As far as we
know, no rigorous results are available concerning more general classes of graphs.

For n ∈ N and d > 0, let Λ(n, d) be the set of all (connected) trees with n vertices
and degree bounded by d, and let G(n, d) be the set of graphs having a spanning
tree in Λ(n, d). In this paper, we prove the following results.

Theorem 1.1. For any d ≥ 2 and λ > λc(Z), there exists c > 0 such that

(1.2) lim
n→∞

inf
T∈Λ(n,d)

P [τT ≥ ecn] = 1.

In particular,

(1.3) lim inf
n→∞

inf
T∈Λ(n,d)

logE[τT ]
n

≥ c.

Theorem 1.2. Let d ≥ 2, λ > λc(Z), and (Gn)n∈N be a sequence of graphs with
Gn ∈ G(n, d). The distribution of τGn/E[τGn ] converges to the unitary exponential
distribution as n tends to infinity.

Theorem 1.2 is a (weak) way of exposing the metastability of the contact process
(see part (3) of Proposition 3.2 for a finer statement; note also that from this
statement, it is easy to extend the above theorems to more general initial configura-
tions than full occupancy, with appropriate modifications). In Theorem 1.1, one
can replace Λ(n, d) by the set of all graphs having a subgraph in Λ(n, d), and in
particular, one can replace Λ(n, d) by G(n, d). For instance, the above results cover
the case of any sequence of increasingly large connected subsets of Zd. At the cost
of requiring λ > λc(Z), we thus recover and extend previously mentioned results,
without any strong assumption on the regularity of the graph. For such values of λ,
this shows in particular that on regular trees with finite depth, the extinction time
is actually exponentially large in the number of vertices.

This is however not quite the way in which we think our results are most useful.
Rather, they are the basic ingredient of a general strategy to prove that the extinction
time of the contact process is exponentially large in the number of vertices as soon as
the infection parameter is above the natural critical value of the particular graphs we
consider (instead of λc(Z)). We now expose this strategy on certain random graphs
whose degree distribution follows a power law. The case of finite homogeneous trees
is discussed in [CMMV14].

We consider random graphs given by the configuration model with degree dis-
tribution equal to a power law. Let us explain what this means. For any n ∈ N,
we construct a graph Gn on n vertices. The vertex set is simply {1, . . . , n}. The
random set of edges will be constructed from a probability p on {3, 4, . . .} with the
property that, for some a > 2,

0 < lim inf
m→∞

map(m) ≤ lim sup
m→∞

map(m) <∞.

(We assume that p is supported on integers larger than 2 because in [vdH, Theo-
rem 10.14], it is shown that under this assumption, it follows that Gn is a connected
graph with probability tending to 1 as n→∞.) We then let d1, · · · , dn be indepen-
dent random variables distributed according to p. We want

∑n
i=1 di to be even, so if

it is not, we simply add 1 to one of the di chosen uniformly at random. Next, from
each vertex i ∈ {1, . . . , n} we place di half-edges; when two half-edges are connected,
an edge is formed. We pair up the d1 + · · ·+ dn half-edges in a random way that is
uniformly chosen among all possibilities.
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Let us write P to denote a probability measure under which both the random
graph and the contact process on this graph are defined. In [CD09], it is shown that,
for any λ > 0 and any δ > 0, we have P[τGn ≥ en

1−δ ]→ 1 as n→∞. In particular,
in the limit when the number of vertices tends to infinity, the critical infection
parameter for these graphs is 0. We strengthen this observation by showing:

Theorem 1.3. For any λ > 0, there exists c > 0 such that

P [τGn ≥ ecn]→ 1 as n→∞.

Although it would be simple to deduce Theorem 1.3 from Theorem 1.1 assuming
λ > λc(Z), we stress again that Theorem 1.3 covers any non-zero infection parameter.
We think that Theorem 1.3 is true for all a > 1, but we only give the proof for
a > 2, which is the harder case (when we increase a, the degrees of the vertices
become stochastically smaller, so the graph becomes less connected).

For finite boxes of Zd, the proof that the extinction time is exponential in
the number of vertices relies on a coarse-graining argument. This coarse-graining
enables to map the initial contact process into a coarse-grained (discrete-time)
contact process with an increasingly large infection parameter. The remarkable
feature of Zd is its scale invariance, which ensures that the coarse-grained graph is
still Zd (or rather, a finite box of Zd). Now, simple percolation arguments show that
on finite boxes of Zd, the time of survival is exponential in the number of vertices if
the infection parameter is sufficiently large, say larger than λtarget. To sum up, the
proof for finite boxes of Zd consists in defining a coarse-graining scheme, and then
in fixing a finite length of coarse-graining such that the coarse-grained system has
infection parameter larger than λtarget.

For Gn given by the configuration model, coarse-grained blocks will consist of
certain stars, that is, vertices with a given large number of neighbours. The difficulty
in trying to adapt the strategy to these graphs (or to finite homogeneous trees) is
that there is no easy scale invariance as on Zd. It then becomes a very delicate
matter to control the geometry of the coarse-grained graph, and thus to define a
suitable equivalent of λtarget. However, Theorem 1.1 roughly tells us that we do not
need to control this geometry, and that we can choose λtarget = λc(Z).

The approach in [CD09] is also based on a coarse-graining procedure. There,
the question of controlling the coarse-grained geometry was bypassed by choosing
the coarse-grained scale so large as to ensure that the coarse-grained graph was a
complete graph. Since the diameter of the graphs Gn goes to infinity, this cannot
be ensured unless the length scale of the coarse-graining diverges. In other words,
in this approach, stars should have more and more vertices as n increases, and the
number of points in the coarse-grained scale must thus be o(n). With our approach,
we can choose instead a large but fixed size for the relevant stars in the graph, so
that the coarse-grained graph still contains of order n sites, and Theorem 1.3 follows
from this construction.

We close this introduction by pointing to other related works and questions. To
the best of our knowledge, the rigorous study of the behaviour of the contact process
on random graphs with a power-law degree distribution began with [BBCS05]. The
graph studied there is obtained by a generalization of the preferential attachment
mechanism introduced in [BA99, BR04]. Vertices are added one by one. When a
new vertex is added, it is connected to m of the older vertices. These are chosen
independently as follows: with probability α, the vertex is chosen uniformly; with
probability 1−α, it is chosen with a probability proportional to its degree. That the
degree distribution of these graphs follows a power law was proved in [CF03]. The
structure of these graphs is more difficult to analyse than that of the configuration
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model, and [BBCS05] could only show that the extinction time is at least exp(nβ)
for some β < 1 depending on α (where n is the number of vertices). It would be
interesting to investigate whether the results presented here (possibly in combination
with the recent [BBCS14]) enable to show that the extinction time is actually of the
order of exp(cn) for some constant c. In another direction, [VM14] computes very
precise asymptotics for the extinction time of the contact process on the complete
graph.

The question of whether or not the critical infection parameter is zero for a
given sequence of graphs still lacks a unified mathematical treatment. Results such
as [DJ07, MV14] point towards the conjecture that the epidemic threshold of a
sequence of random graphs is given by the lower critical infection parameter of the
local graph limit of the sequence (see [MV14] for a more detailed discussion on
this). The local limit of a sequence of random graphs given by the configuration
model are Galton-Watson trees. However, we do not know of a good criterion for
deciding whether the lower critical infection parameter of a given Galton-Watson
tree is 0. It is suggested in [BCP13] that this threshold is zero as soon as the
degree distribution decays slower than exponentially. Beyond this, physicists have
investigated finite-size corrections to the asymptotic behaviour discussed here, see
for instance [FCP12].
Organization of the paper. Section 2 is a brief reminder on some properties of
the contact process that will be useful for our purposes. In Section 3, we show a
weaker version of Theorem 1.1, which states that the expectation of the extinction
time is larger than ecnα for some α > 0. In order to do this, we consider two cases:
either the tree contains a large segment, or it contains a large number of disjoint
smaller segments. In the first case, the result follows from the known behavior of the
extinction time on finite intervals of Z. In the second case, we adapt an argument
of [CD09] and show that, even if the segments are not too large, the time scale of
extinction in individual segments is large enough for the infection to spread to other,
possibly inactive, segments, so that the segments can jointly sustain activity for
the desired amount of time. At this point, using a general metastability argument
from [Mo93], we prove Theorem 1.2 (for completeness, we include a version of the
argument of [Mo93] in an Appendix).

Given a tree T ∈ Λ(n, d), we decompose it into two subtrees T1, T2 by removing an
edge; we argue that this can be done so that T1 and T2 both contain a non-vanishing
proportion of the vertices of T . In Section 4, we compare the contact process (ξt)t≥0
on T to a pair of processes (ζT1,t)t≥0 on T1 and (ζT2,t)t≥0 on T2. The process ζT1

evolves as a contact process on T1 until extinction. Once extinct, the process stays
extinct for some time, and then rises from the ashes (we call it a Phoenix contact
process). This rebirth of the process reflects the fact that, as long as the true process
ξ has not died out, the tree T1 constantly receives new infections that can restore
its activity. The process ζT2 evolves independently, following the same rules. We
show that the true process ξ dominates ζT1 ∪ ζT2 up to the extinction of ξ, with
probability close to 1. With this comparison at hand, we argue that, modulo a
factor that is polynomial in the number of vertices, the expected extinction time for
T is larger than the product of the expected extinction times for T1 and T2. The
polynomially growing error term can be washed away using the lower bound ecnα

mentioned in the previous paragraph. We thus obtain part (1.3) of Theorem 1.1,
from which we deduce part (1.2) using attractiveness.

In Section 5, we re-state some of the results explained above for a discrete-time
version of the contact process. Finally, we prove Theorem 1.3 in Section 6.
Notations. For x ∈ R, we write bxc for the integer part of x. When talking about
the size of a graph, we always mean its number of vertices.
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2. A reminder on the contact process

Graphical construction. We start this section by presenting the graphical con-
struction of the contact process. Fix a graph G = (V,E) and λ > 0. We take the
following family of independent Poisson point processes on [0,∞):

(Rx) : x ∈ V with rate 1;
(Ne) : e ∈ E with rate λ.

Let H denote a realization of all these processes. Given x, y ∈ V, s ≤ t, we say that
x and y are connected by an infection path in H (and write (x, s)↔ (y, t) in H) if
there exist times t0 = s < t1 < · · · < tk = t and vertices x0 = x, x1, . . . , xk−1 = y
such that

• Rxi ∩ (ti, ti+1) = ∅ for i = 0, . . . , k − 1;
• {xi, xi+1} ∈ E for i = 0, . . . , k − 2;
• ti ∈ N{xi−1,xi} for i = 1, . . . , k − 1.

Points of the processes (Rx) are called recovery marks and points of (Ne) are links;
infection paths are thus paths that traverse links and do not touch recovery marks.
H is called a Harris system; we often omit dependence on H. For A,B ⊆ V , we
write A × {s} ↔ B × {t} if (x, s) ↔ (y, t) for some x ∈ A, y ∈ B. We also write
A× {s} ↔ (y, t) and (x, s)↔ B × {t}. Finally, given another set C ⊆ V , we write
A× {s} ↔ B × {t} inside C if there is an infection path from a point in A× {s} to
a point in B × {t} and the vertices of this path are entirely contained in C.

Given A ⊆ V , put

(2.1) ξAt (x) = 1{A×{0}↔(x,t)} for x ∈ V, t ≥ 0

(here and in the rest of the paper, 1 denotes the indicator function). It is well-known
that the process (ξAt )t≥0 = (ξAt (H))t≥0 thus obtained has the same distribution as
that defined by the infinitesimal generator (1.1). The advantage of (2.1) is that it
allows us to construct in the same probability space versions of the contact processes
with all possible initial distributions.

From now on, we always assume that the contact process is constructed from a
Harris system, and will write PG,λ to refer to a probability measure under which
such a system (on graph G and with rate λ) is defined; we usually omit G,λ.

Time-shifted process. Given s ≥ 0, B ⊆ V and a Harris system H, define
(ξB,st )t≥s by

(2.2) ξB,st (x) = 1{B×{s}↔(x,t)} for x ∈ V, t ≥ s.

It can then be readily checked that

(2.3) for all A ⊆ V and 0 ≤ s ≤ t, ξAt = ξ
ξAs ,s
t .

From this it follows that

(2.4) for all A,B ⊆ V and 0 ≤ s ≤ t, if ξAs = ξBs , then ξAt = ξBt .

Attractiveness. An immediate consequence of (2.1) is that for all A ⊆ V and
t ≥ 0, we have ξAt = ∪x∈Aξxt . From this we obtain the attractiveness property of
the contact process:

(2.5) for all A ⊆ B ⊆ V and t ≥ 0, ξAt ⊆ ξBt .

Using (2.4) and (2.5), we see that, if for some x ∈ V and s ≥ 0 we have ξxs = ξ
1
s ,

then for any A ⊆ V that contains x and t ≥ s, we must have ξAt = ξ
1
t . Together
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with a union bound, this yields

(2.6) P
[
ξAt 6= 0, ξAt 6= ξ

1
t

]
≤
∑
x∈A

P
[
ξxt 6= 0, ξxt 6= ξ

1
t

]
.

Duality. Fix A ⊆ V, t > 0 and a Harris system H. Let us define the dual process
(ξ̂A,ts )0≤s≤t by

ξ̂A,ts (y) = 1{(y,t−s)↔A×{t} in H}.

If A = {x}, we write (ξ̂x,ts ). This process satisfies two important properties. First,
its distribution (from time 0 to t) is the same as that of a contact process with same
initial configuration. Second, it satisfies the duality equation

(2.7) ξAt ∩B 6= ∅ if and only if A ∩ ξ̂B,tt 6= ∅.

In particular, ξ1
t (x) = 1 if and only if ξ̂x,tt 6= 0. We will also need the fact that

(2.8) if ξAt = ξ
1
t and ξ̂B,tt 6= 0, then ξAt ∩B 6= ∅.

Contact process on an interval. We now gather some classical results about
the contact process on the graph with vertex set {0, . . . , N} (where N ∈ Z+) and
nearest-neighbour edges. We start defining, for x, y ∈ {0, . . . , N} and the contact
process on {0, . . . , N},

σNx→y = inf{t : ξxt (y) = 1}.

Proposition 2.1. For any λ > λc(Z), there exist c1 > 0 such that the following
holds. For any N and any x ∈ {0, . . . , N},

(2.9) P

[
max

(
σNx→0, σ

N
x→N

)
<
N

c1

]
> c1

and

(2.10) P

[
max

(
σNx→0, σ

N
x→N

)
≥ N

c1
, ξxN/c1

6= 0
]
≤ e−N .

Additionally, for any N and any t ≥ 0,

(2.11) P
[
τ

1
{0,...,N} ≤ t

]
≤ te−c1N .

This follows from the classical renormalization argument that compares the
contact process with supercritical oriented percolation, see for instance the proof of
[Li1, Corollary VI.3.22].

Remark 2.2. A crucial aspect of the contact process on an interval is the observation
that for every starting point x ∈ {0, . . . , N}, we have ξxt = ξ

1
t for every t ≥

max
(
σNx→0, σ

N
x→n

)
. In other words, when the contact process started from x has

reached the extremal points of the interval, it is coupled with the contact process
that was started from the fully occupied configuration. To see this, assume that
there exists an infection path γ1 from (x, 0) to (0, σNx→0) and an infection path γ2
from (x, 0) to (N, σNx→N ) (i.e. assume that the random times are finite). For any
two sites y and z and t ≥ max(σNx→0, σ

N
x→N ), let γ′ be an infection path from (y, 0)

to (z, t). Since the graph is an interval, the infection path γ′ is forced to intersect γ1
or γ2, and in both cases, this implies the existence of an infection path from (x, 0)
to (z, t).
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Corollary 2.3. Assume λ > λc(Z). Then, for any N , any t ≥ N/c1 and any
non-empty A ⊆ {0, . . . , N},

(2.12) P{0,...,N},λ

[
ξAt = ξ

1
t

]
≥ c1, P{0,...,N},λ

[
ξAt = ξ

1
t 6= 0

]
≥ c1 − te−c1N .

Additionally, for any A ⊆ {0, . . . , N} and any t ≥ N/c1,

(2.13) P{0,...,N},λ

[
ξAt 6= 0, ξAt 6= ξ

1
t

]
≤ |A|e−N .

Proof. (2.12) follows from fixing x ∈ A and applying the comment that follows (2.5),
Remark 2.2, (2.9) and (2.11). (2.13) follows from Remark 2.2, (2.6) and (2.10). �

In the course of the proof, we will need a slightly more technical result on contact
processes on intervals. For the sake of clarity, we prefer to derive it now, although
its motivation will become clear only later.

For λ > 0, G = (V,E), A ⊆ V and t > 0, define

p(A, t) = pG(A, t) = PG,λ

[
ξAt = ξ

1
t 6= 0

]
.

Obviously,
(2.14) p(V, t) = P [τG > t] .
Also, as a consequence of (2.8), for any A,B ⊆ V and t > 0,

(2.15) P
[
ξAt ∩B 6= ∅

]
≥ P

[
ξAt = ξ

1
t

]
− P

[
ξ̂Bt = 0

]
≥ p(A, t) + p(B, t)− 1.

Lemma 2.4. For any λ > λc(Z), N ∈ Z+ and t0 ≥ N/c1, the following holds.
(i.) For any A ⊆ {0, . . . , N} satisfying p(A, t0) ≥ 1− ε and any κ > 0,

P{0,...,N},λ
[
p(ξAt0 , t0) > 1− κ

]
≥ 1− ε− 1

κ

(
2t0e−c̄1N +Ne−N

)
.

(ii.) For any non-empty A ⊆ {0, . . . , N} and any κ > 0,

P{0,...,N},λ
[
p(ξAt0 , t0) > 1− κ

]
≥ c1 −

1
κ

(
2t0e−c̄1N +Ne−N

)
.

Proof. Recalling the definition of the time-shifted process (2.2), we observe that

P
[
p(ξ1

t0 , t0) ≤ 1− κ
]

= P
[
1− p(ξ1

t0 , t0) > κ
]
≤ 1
κ
E
[
1− p(ξ1

t0 , t0)
]

= 1
κ

∑
B

P
[
ξ

1
t0 = B

]
· (1− p(B, t0))

= 1
κ

∑
B

P [ξ1
t0 = B] · P

[
ξB,t02t0 = 0 or ξB,t02t0 6= ξ

1,t0
2t0

]
= 1
κ

∑
B

P [ξ1
t0 = B] ·

(
P
[
ξB,t02t0 = 0

]
+ P

[
ξB,t02t0 6= 0, ξB,t02t0 6= ξ

1,t0
2t0

])
≤ 1
κ

(
P
[
ξ

1
2t0 = 0

]
+
∑
B

P
[
ξ

1
t0 = B

]
P
[
ξB,t02t0 6= 0, ξB,t02t0 6= ξ

1,t0
2t0

])
,

where we have used the Markov inequality in the first inequality and (2.3) in the
last inequality. By (2.11) and (2.13) respectively,

P
[
ξ

1
2t0 = 0

]
≤ 2t0e−c̄1N and P

[
ξB,t02t0 6= 0, ξB,t02t0 6= ξ

1,t0
2t0

]
≤ Ne−N ,

so we get
P
[
p(ξ1

t0 , t0) ≤ 1− κ
]
≤ 1
κ

(
2t0e−c̄1N +Ne−N

)
.

Parts (i.) and (ii.) now follow respectively from the definition of p and (2.12). �
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3. Metastability

In this section, we show that for λ > λc(Z), the extinction time of the contact
process is at least ecnα for some α > 0, uniformly over T ∈ Λ(n, d). This is clear by
Proposition 2.1 if the tree has diameter at least nα. Else, we rely on a recursive
decomposition of the tree into many subtrees each of which has size at least

√
n.

We then pick long intervals (of logarithmic size) inside each of these trees, and
study how these can sustain the infection. For a suitable choice of the parameters,
the time it takes for such an interval, isolated from the rest of the graph, to turn
extinct, is much larger than the time it takes for the infection to travel from one
interval to another, since the diameter of the whole graph is assumed small. Over
time, the number of infected intervals can be compared to a random walk on the
integers with a drift to the right. Analyzing this walk gives the desired result. Using
this construction, we also show metastability of the contact process, in the sense
that after time n2, either the contact process is extinct, or it is equal to the contact
process that was started from full occupancy (and thus the initial configuration is
forgotten). Since n2 is much smaller than the extinction time, this is a quantitative
way of presenting the metastability of the contact process, and indeed we will
conclude the section by proving Theorem 1.2.

We begin with the following basic graph-theoretic observation, on which our
recursive decomposition of the tree is based.

Lemma 3.1. For a tree T ∈ Λ(n, d), there exists an edge whose removal separates
T into two subtrees T1 and T2 both of size at least bn/dc.

Proof. Associate to each edge the value of the smallest cardinality of the two subtrees
resulting from the edge’s removal. Let {x, y} be an edge having maximal value. We
suppose that the subgraph Ty containing vertex y is the smaller and that the value
of its subtree is no more than bn/dc − 1. Let the remaining edges of vertex x be
{x, x1}, {x, x2}, · · · {x, xr}, where r ≤ d− 1. Let Tj be the subtree containing xj
obtained by removing the edge {x, xj}, and let nj be its cardinality. By maximality,
all the nj must be no more than bn/dc − 1, but we also have
|Ty| = |T \ ({x} ∪ T1 ∪ · · · ∪ Tr)| = n− (1 + n1 + n2 + · · ·+ nr) ≤ bn/dc − 1.

That is, n ≤ (d − 1)(bn/dc − 1) + bn/dc ≤ n − (d − 1), a contradiction (the case
d = 1 being trivial). �

Proposition 3.2. For any d > 0 and λ > λc(Z), there exists α > 0 and c2 > 0
such that the following holds.

(1) For any n large enough, any T ∈ Λ(n, d), any non-empty A ⊆ T , one has

P
[
τA ≥ en

α
]
≥ c2.

In particular, E[τA] ≥ c2en
α .

(2) Moreover,
P
[
τ ≥ en

α
]
≥ 1− e−n

α

,

where we recall that we write τ as a shorthand for τ1.
(3) For n large enough, any G = (V,E) ∈ G(n, d) and any A ⊆ V ,

PG,λ

[
ξAn2 6= 0, ξAn2 6= ξ

1
n2

]
≤ e−n

α/2
.

From now on, d is fixed and we consider a tree T of maximal degree d and size
n→∞. Let β > 0 to be determined later, not depending on n. Applying Lemma 3.1
repeatedly β logn times, we obtain Ln = 2β logn disjoint subtrees each of size at
least n

(2d)β logn ≥
√
n, provided β ≤ 1/(2 log(2d)) (for clarity, we simply assume that
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Ln is an integer, without writing that the integer part should be taken). We write
T1, . . . , TLn for the trees thus obtained.

Since the tree T has maximal degree bounded by d, so do the subtrees (Tj). Now,
the size of a tree with maximal degree d is at most

1 + d+ . . .+ ddiam = ddiam+1 − 1
d− 1 ,

where diam denotes its diameter. As a consequence, for n large enough, each Tj
must have a diameter at least logn

4 log d , and thus contain a path of logn
4 log d distinct

vertices. We write Ij to denote such a path, which we identify with an interval of
length logn

4 log d .

In what follows, we will distinguish between the two possibilities:
(A) the diameter of T is at least nβ ,
(B) the diameter of T is less than nβ ,

Proof of parts (1-2) of Proposition 3.2. Assume that the tree T satisfies (A). For
part (1), by attractiveness, it suffices to consider initial configurations with a single
occupied site x; we now fix x. Condition (A) ensures that one can find an interval
of length k ≥ nβ on T ; we write [y, z] to denote such an interval, with y and z
its endpoints. We also write [x, y] to denote the shortest path (in graph distance)
starting at x and ending at y. Let σ = inf{t : ξxt (y) = 1}. Then,

(3.1) P
[
ξxexp(c1nβ/2) 6= 0

]
≥ P

[
σ <∞, ξy,σ

σ+exp(c1nβ/2) 6= 0
]
.

Using (2.9) on the contact process on [x, y], we have P [σ <∞] > c1. Using (2.12)
on the contact process on [y, z], we have

P
[
ξy,σ
σ+exp(c1nβ/2) 6= 0

∣∣∣σ <∞] ≥ c1 − ec1n
β/2 · e−c1k.

Thus the right-hand side of (3.1) is larger than c21/2 when n is large enough, proving
part (1). Part (2) follows from applying (2.11) to the restriction of the contact
process on [y, z].

We now assume that the graph satisfies (B), and adapt an approach due to
[CD09]. For any B ⊆ Ii, we write (ξBi,t)t≥0 for the contact process on Ii with initial
configuration B, that is,

ξBi,t(x) = 1{B×{0}↔(x,t) inside Ii}, x ∈ Ii, t ≥ 0.

When we write (ξt) (or (ξ1
t ), or (ξAt ) with A ⊆ T ) with only the subscript corre-

sponding to time, we mean the contact process on the whole graph T . Obviously,
for any A ⊆ T ,
(3.2) ξAt ⊃ ∪i ξ

A∩Ii
i,t and (ξA∩Iii,t )t≥0 for i = 1, . . . , Ln are independent.

In accordance with the previous section, we write

pIi(B, t) = P
[
ξBi,t = ξ

1
i,t 6= 0

]
, B ⊆ Ii, t > 0.

For 1 ≤ i ≤ Ln, we say interval Ii is good at time t if pIi(ξt∩ Ii, 2nβ/c1) > 1−n−2β .
We interpret this as meaning that the set of infected sites ξt ∩ Ii is “large enough”.
Here “large enough” means that, if this set is taken as the initial configuration for a
contact process on Ii, then it gives probability higher than 1− n−2β to the event
that the infection is sustained for time 2nβ/c1 and couples with the comparison
process which evolves in Ii starting from full occupancy.

We put tk = (2nβ/c1)k and define Yi,k as the indicator function that interval Ii is
good at time tk. We finally define Xk =

∑Ln
i=1 Yi,k as the number of good intervals

at time tk.



EXPONENTIAL EXTINCTION TIME OF THE CONTACT PROCESS 11

Lemma 3.3. Assume β < c1
20 log d . Then, if n is large enough, the following holds.

(i.) on {ξtk ⊃ Ii}, Yi,k = 1;

(ii.) for any x ≥ 0, P [Xk+1 ≤ Xk − x | ξtk ] ≤ P
[
Bin(Ln, 2n−2β) ≥ x

]
, where

Bin(m, q) denotes a Binomial random variable with parameters m and q;
(iii.) on {ξtk 6= 0, Xk < Ln}, P [ Xk+1 ≥ Xk + 1 | ξtk ] ≥ c21/2.

Proof. For (i.), from (2.14) we get that, on {ξtk ⊃ Ii},

pIi(Ii, 2nβ/c1) > 1− 2nβ

c1
· e−c1

logn
4 log d > 1− n−2β

when β < c1
20 log d and n is large, so that Yi,k = 1.

(ii.) will follow from (3.2) and the fact, which we now prove, that on {Yi,k =
1}, P [Yi,k+1 = 1 | ξtk ] > 1 − 2n−2β . This is a consequence of attractiveness and
applying Lemma 2.4(i.) with the choice of variables:

A = ξtk ∩ Ii, N = |Ii| =
logn

4 log d , t0 = 2nβ

c1
, ε = κ = n−2β .

The first requirement that t0 > N
c1

is satisfied since 2nβ
c1

> logn
4c1 log d when n is large.

The second requirement that pIi(A, t0) ≥ 1− ε holds since we restrict our attention
to the event {Yi,k = 1}. The conclusion of the lemma then reads

P [Yi,k+1 = 0 | ξtk ] ≤ n−2β + n2β
(

4nβ

c1
· e−c1

logn
4 log d + logn

4 log d · e
− logn

4 log d

)
and the right-hand side is smaller than 2n−2β if β < c1

20 log d and n is large enough.
(ii.) is now proved.

Let us prove (iii.). On the event {ξtk 6= 0, Xk < Ln}, we can find x and i such
that ξtk(x) = 1 and Yi,k = 0. Fix y ∈ Ii and let σ = inf{t > tk : ξx,tkt (y) = 1}. Note
that, since it is assumed that the diameter of the graph is less than nβ , we can use
Proposition 2.1(i.) to get P [σ < tk + nβ/c1] > c1. Then,

P [Yi,k+1 = 1 | ξtk ] ≥ c1 · P
[
pIi

(
ξy,σi,tk+1

,
2nβ

c1

)
> 1− n−2β

∣∣∣∣ ξtk , σ < tk + nβ

c1

]
.

Now, if σ < tk + nβ/c1, then 2nβ/c1 > tk+1 − σ > nβ/c1 > |Ii|/c1, so we can use
Lemma 2.4(ii.) to conclude that the right-hand side is larger than

c1 ·
(
c1 − n2β

(
4nβ

c1
e−c1

logn
4 log d + logn

4 log de
− logn

4 log d

))
>

3
4c

2
1

when n is large enough. We can now end the proof as follows:
P [Xk+1 > Xk | ξtk ] ≥ P [Yi,k+1 = 1 | ξtk ]− P [Xk+1 < Xk | ξtk ] ≥ c21/2

since, by part (ii.) and a union bound, P [Xk+1 < Xk | ξtk ] ≤ Ln · 2n−2β = nβ log 2 ·
2n−2β → 0 as n→∞. �

The conclusion will now follow from the above lemma by a comparison with a
random walk on Z ∩ (−∞, Ln] with a drift to the right. The necessary information
on this drifted walk is contained in the following lemma.

Lemma 3.4. Let (Zl)l∈N be the random walk on Z ∩ (−∞, Ln] with transition
probabilities

P [Zl+1 = x+ k | Zl = x < Ln] =

∣∣∣∣∣∣
0 if k > 1,
c21/2 if k = 1,
e−n

−β
n−|k|β/|k|! if k ≤ −1
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and
P [Zl+1 = x+ k | Zl = Ln] =

∣∣∣∣ 0 if k ≥ 1,
e−n

−β
n−|k|β/|k|! if k ≤ −1.

Let also H0 be the hitting time of Z− = Z ∩ (−∞, 0], and HL be the hitting time of
Ln. For any n large enough and any x ≤ Ln, we have

P [H0 < HL | Z0 = x] ≤ n−xβ/2.
Let us postpone the proof of this lemma, and see how it enables us to conclude.

From Lemma 3.3(iii.), we learn that whatever the initial non-empty configuration, we
haveX1 ≥ 1 with probability bounded away from 0. On this event, we want to couple
(Xk) with the random walk of Lemma 3.4 started at X1, so that Xk+1 ≥ Zk for every
0 ≤ k ≤ H0. In the r.h.s. of the inequality in Lemma 3.3(ii.), a Binomial random
variable appears, while jumps to the left for (Zl) follow a Poisson random variable.
Since a Bernoulli random variable of parameter p is stochastically dominated by a
Poisson random variable of parameter − log(1− p), it follows that Bin(Ln, 2n−2β)
is stochastically dominated by a Poisson random variable of parameter

−Ln log(1− 2n−2β) = −nβ log 2 log(1− 2n−2β) ≤ n−β .
This and Lemma 3.3(iii.) guarantee the existence of the coupling. With probability
at least 1− n−β/2 ≥ 1/2, the random walk hits Ln before entering Z−.

Let α = log 2
4 β. The proof of part (1) will be complete if we can argue that

starting from Ln, with probability close to 1, the walk needs to hit and exit
Ln at least enα times before reaching Z−. Let us consider a sequence of enα

excursions from Ln, and show that with high probability, none of them visits Z−.
Each jump out of Ln is distributed according to a Poisson random variable of
parameter n−β . By the exponential Chebyshev inequality, for n large enough we
have P

[
Poi(n−β) > x

]
< 2e−x for any x > 0. Thus, with probability tending to 1,

the maximum over enα such random variables does not exceed n2α ≤ Ln/4. In view
of Lemma 3.4, given an excursion whose first step has size smaller than Ln/4, the
excursion will visit Z− with probability smaller than n−3Lnβ/8 ≤ e−2nα , and this
finishes the proof of part (1).

As for part (2), the argument is similar, except that in this case X0 = Ln,
and we couple with the random walk of Lemma 3.4 started from Z0 = X0 = Ln.
Consider enα excursions from Ln. None of these excursions has first jump larger
than n3α ≤ Ln/4 with probability at least 1− enα · 2e−n3α

> 1− 1
2e
−nα . As noted

above, given an excursion from Ln whose first step has size smaller than Ln/4,
the excursion will visit Z− with probability smaller than n−3Lnβ/8 ≤ 1

2e
−2nα , thus

finishing the proof of part (2). �

Proof of Lemma 3.4. Let h(x) = P [H0 < HL | Z0 = x], h̃(x) = n−xβ/2, and let L
be the generator of the random walk:

Lf(x) = c21
2 (f(x+ 1)− f(x)) + e−n

−β
+∞∑
k=1

n−kβ

k! (f(x− k)− f(x)) (x < Ln).

For x ∈ Z ∩ (0, Ln), we have Lh(x) = 0. On the other hand, for such x, we have

Lh̃(x) = c21
2

(
n−β/2 − 1

)
h̃(x) + e−n

−β
+∞∑
k=1

n−kβ

k! (nkβ/2 − 1)h̃(x)

≤ c21
2

(
n−β/2 − 1

)
h̃(x) +

+∞∑
k=1

n−kβ

k! nkβ/2h̃(x)

≤
[
c21
2

(
n−β/2 − 1

)
+ en

−β/2
− 1
]
h̃(x),
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so Lh̃(x) ≤ 0 as soon as n is large enough. As a consequence, L(h − h̃) ≥ 0 on
Z ∩ (0, Ln). By the maximum principle,

max
Z∩(0,Ln)

(h− h̃) ≤ max
Z−∪{Ln}

(h− h̃) = 0,

and the lemma is proved. �

Proof of part (3) of Proposition 3.2. We continue with case (B), but considering
that T is the spanning tree of some graph G = (V,E). For an arbitrary non-empty
A ⊆ V , we wish to bound

P
[
ξAn2 6= ξ

1
n2 , ξ

A
n2 6= 0

]
.

The probability above is equal to P [∃y : ξAn2(y) 6= ξ
1
n2(y), ξAn2 6= 0]. For any fixed y,

we will thus bound

(3.3) P
[
ξAn2(y) 6= ξ

1
n2(y), ξAn2 6= 0

]
.

Letting (ξ̂y,n
2

t )0≤t≤n2 be the dual contact process for time n2 started with configu-
ration {y}, we can rewrite this probability as

P
[
ξAn2(y) = 0, ξ̂y,n

2

n2 6= 0, ξAn2 6= 0
]
.

As in the proof of part (1), we consider Xk the number of good intervals at time
tk = (2nβ/c1)k. By attractiveness, if an interval is good for the contact process
on T , then it must be good for the contact process on G. Note that, for HL as in
Lemma 3.4, a classical large deviation estimate on sums of i.i.d. random variables
with an exponential moment gives us that

P [HL > m] ≤ e−
√
m,

and as a consequence,

(3.4) P
[
Ln /∈ {Xk, k ≤ m}, ξAtm 6= 0

]
≤ e−

√
m.

Let E3/4 be the event that starting from A occupied, a proportion at least 3/4 of
all the intervals (Ii)i≤Ln are good in ξAn2/2 (for simplicity, n2/2 is assumed to be a
multiple of 2nβ/c1). Arguing as in part (2), we see that once Xk has reached Ln,
the probability that it reaches a point below 3Ln/4 before time n2/2 is smaller than
e−n

α . Combining this with (3.4), we obtain

P
[
ξAn2 6= 0, Ec3/4

]
≤ 2e−n

α

,

where Ec3/4 denotes the complement of E3/4. Similarly, if we let Ê3/4 denote the
event that for the dual process ξ̂y,n2 , a proportion at least 3/4 of the intervals are
good at time n2/2− 2nα/c1, then

P
[
ξ̂y,n

2

n2 6= 0, Êc3/4
]
≤ 2e−n

α

.

Consider the event Ẽi defined by:

Ẽi =
{
ξAn2/2 × {n

2/2} ↔ ξ̂y,n
2

n2/2−2nβ/c1
× {n2/2 + 2nβ/c1} inside Ii

}
.

(see picture).
Let also I be the set of indices i such that Ii is good both for the contact process

at time n2/2, and for its dual ξ̂y,n2 at time n2/2− 2nβ/c1. We have

P

 ⋂
i≤Ln

(Ẽi)c, E3/4, Ê3/4

 ≤ P [⋂
i∈I

(Ẽi)c, E3/4, Ê3/4

]
.
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Figure 1. Event Ẽi.

Given that E3/4 and Ê3/4 both happen, at least 1/2 of the intervals are good both
for the contact process and its dual, or in other words, |I| ≥ Ln/2. Moreover, the
events E3/4 and Ê3/4, and the set I, are independent of the state of the Harris system
in the time layer [n2/2, n2/2 + 2nβ/c1]. By the definition of being good and (2.15),
we have P [(Ẽi)c | i ∈ I] ≤ 2n−2β . Note also that the events (Ẽi) are independent.
Hence

P

 ⋂
i≤Ln

(Ẽi)c, E3/4, Ê3/4

 ≤ (2n−2β)Ln/2.

Finally, note that when one of the Ẽi happens, it must be that A× {0} ↔ (y, n2),
that is, ξAn2(y) = 1. We have thus proved that

P
[
ξAn2(y) = 0, ξ̂y,n

2

n2 6= 0, ξAn2 6= 0
]
≤ P

[
ξAn2(y) = 0, E3/4, Ê3/4

]
+ 4e−n

α

≤
(
2n−2β)Ln/2 + 4e−n

α

≤ 5e−n
α

.

Recalling that the probability on the l.h.s. above is that appearing in (3.3), we have
thus shown that

P
[
ξAn2 6= ξ

1
n2 , ξ

A
n2 6= 0

]
≤ 5ne−n

α

.

For case (A), the reasoning is similar, only simpler, so we will just outline the
steps involved in the proof. Let I be an interval of length nβ contained in T . We
will say that I is good at time t if

pI

(
ξt ∩ I,

2n
c1

)
> 1− e−n

β/2
.

Define sk = (2n/c1)k and let Xk be the indicator function of the event that I is
good at time sk. Similarly to Lemma 3.3, we can then prove that

• on {ξsk 6= 0}, P [Xk+1 = 1 | ξsk ] ≥ c21/2;
• on {Xk = 1}, P [Xk+1 = 1 | ξsk ] ≥ 1− 2e−nβ/2 .

Using these facts, we can show that, for α small, non-empty A and y,

P
[
ξAn2 6= 0, I is not good for ξAn2/2

]
≤ e−n

α

,

P
[
ξ̂y,n

2

n2 6= 0, I is not good for ξ̂y,n
2

n2/2−2n/c1

]
≤ e−n

α
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and, conditioned on I being good for both ξAn2/2 and ξ̂y,n
2

n2/2−2n/c1
, the probability of{

ξAn2/2 × {n
2/2} ↔ ξ̂y,n

2

n2/2−2n/c1
× {n2/2 + 2n/c1} inside I

}
is larger than 1− 2e−nβ/2 . The proof is then completed by summing over y.

�

Proof of Theorem 1.2. The result follows from Lemma A.1 in the Appendix, using
parts (2) and (3) of Proposition 3.2. �

4. Comparison with Phoenix contact processes

The aim of this section is to prove Theorem 1.1. To this end, we manufacture a
“Phoenix contact process”. This process evolves as a contact process up to extinction,
but has then the ability to recover activity. Separating a tree T into T1 and T2
as in Lemma 3.1, we show that with high probability, the true contact process ξ
dominates the union of two Phoenix contact processes running independently on T1
and T2, as long as these two Phoenix contact processes are not simultaneously in
the empty configuration. From this, we derive a recursive relation between E[τT ]
and the product E[τT1 ]E[τT2 ], which enables us to conclude.

Let T ∈ Λ(n, d). We say that the Harris system is trustworthy on the time
interval [0, n4] if for any (x, s) ∈ T × [0, n4/2], the following two conditions hold:

(C1) if ξx,s survives up to time n4, then ξx,sn4 = ξ
1
n4 ,

(C2) if ξx,s survives up to time s+ 2n2, then it survives up to time n4.
We say that the Harris system H is trustworthy on the time interval [t, t+ n4]

if ΘtH is trustworthy on the time interval [0, n4], where ΘtH is the Harris system
obtained by a time translation of t [i.e. (x, u) ↔ (y, v) in ΘtH if and only if
(x, t+ u)↔ (y, t+ v) in H].

For a given Harris system and for (Yt)t∈R+ a family of independent auxiliary
random variables following a Bernoulli distribution of parameter 1/2, independent
of the Harris system, we define the Phoenix contact process (ζT,t)t≥0 = (ζt)t≥0 on
{0, 1}T as follows.
Step 0. Set ζ0 = 1, and go to Step 1.
Step 1. Evolve as a contact process according to the Harris system, up to reaching
the state 0, and go to Step 2.
Step 2. Let t be the time when Step 2 is reached. Stay at 0 up to time t+ n4 and

• if the Harris system is trustworthy on [t, t + n4] and Yt = 1, then set
ζt+n4 = ξ

1,t
t+n4 (where ξ1,t is the contact process started with full occupancy

at time t and governed by the Harris system), and go to Step 1 ;
• else, go to Step 2.

We say that the process is active when it is running Step 1; is quiescent when
it is running Step 2. Note that after initialization, the process alternates between
active and quiescent phases. If it happens that during Step 2, the Harris system is
trustworthy on [t, t+ n4] and Yt = 1, but ξ1,t

t+n4 = 0, we consider that the process is
active at time t+ n4, and becomes inactive again immediately afterwards.

Remark 4.1. Note that since the time the process spends on state 0 is not expo-
nentially distributed, (ζt) is not Markovian. It would however be easy to make the
process Markovian, by enlarging its state space into

(
{0, 1}T \ {0}

)
∪
(
{0} × [0, n4)

)
,

so that when arriving in Step 2, the process is in the state (0, 0), and subsequently
the second coordinate increases at unit speed.
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Remark 4.2. The auxiliary randomization of ζ provided by the family (Yt) is a
technical convenience, which guarantees that if ζt is quiescent at some time t, then
with probability at least 1/2 it remains so at least up to time t+ n4.

Remark 4.3. Each time the process becomes active again, its distribution at this
time is that of ξ1

n4 conditioned on the event that the Harris system is trustworthy
on the time interval [0, n4]. We write ν to denote this distribution.

Our first goal is to ensure that the Phoenix contact process is quiescent at a given
time t with small probability, of order 1/E[τ], with some polynomial multiplicative
correction. This is achieved in Lemma 4.6. Two intermediate results are written
as lemmas for later reference. Roughly speaking, Lemma 4.6 implies that the
probability for two independent Phoenix contact processes running respectively on
T1 and T2 to be both quiescent at a given time is bounded by (E[τT1 ]E[τT2 ])−1.

Lemma 4.4. Let T ∈ Λ(n, d). For any n large enough and any t, the probability
that the Harris system on T is trustworthy on [t, t+ n4] is larger than 1/2.

Proof. It suffices to show the lemma for t = 0. We first consider condition (C1). By
part (3) of Proposition 3.2, the probability that

(4.1) ∀z ∈ T, ξz,n
4/2

n4 6= 0⇒ ξ
z,n4/2
n4 = ξ

1,n4/2
n4

goes to 1 as n tends to infinity. Let (x, s) ∈ T × [0, n4/2], and assume that ξx,s
survives up to time n4, that is,

(x, s)↔ T × {n4}.
Then there must exist z ∈ T such that

(x, s)↔ (z, n4/2)↔ T × {n4}.

On the event (4.1), we thus have ξx,sn4 ≥ ξ
1,n4/2
n4 . The converse comparison being

clearly satisfied, we have in fact ξx,sn4 = ξ
1,n4/2
n4 . In order to show that condition

(C1) is satisfied for any (x, s) ∈ T × [0, n4/2] with probability tending to 1, it thus
suffices to show that

(4.2) P
[
ξ

1
n4 = ξ

1,n4/2
n4

]
→ 1 as n→∞.

In view of part (2) of Proposition 3.2, with probability tending to one, we have
ξ

1
n4 6= 0. On this event, by part (3) of Proposition 3.2, we also have ξ1,n4/2

n4 = ξ
1
n4

with probability tending to 1, and thus (4.2) is proved.
We now turn to condition (C2). Note that the event ξx,ss+2n2 6= 0 can be rewritten

as
(x, s)↔ T × {s+ 2n2},

and under such a circumstance, there must exist z ∈ T such that
(x, s)↔ (z, ds/n2en2)↔ T × {s+ 2n2}.

It is thus sufficient to show that
(4.3)
P
[
∃z ∈ T, k ∈ {0, . . . , dn2/2e} : ξz,kn

2

(k+1)n2 6= 0 but ξz,kn
2

n4 = 0
]
→ 0 as n→∞.

For a fixed z ∈ T and integer k, we have by part (3) of Proposition 3.2 that

P
[
ξz,kn

2

(k+1)n2 6= 0 but ξz,kn
2

(k+1)n2 6= ξ
1,kn2

(k+1)n2

]
≤ e−n

α/2
,

so the probability of the event

(4.4) ∀z ∈ T, k ∈ {0, . . . , dn2/2e} : ξz,kn
2

(k+1)n2 = 0 or ξz,kn
2

(k+1)n2 = ξ
1,kn2

(k+1)n2
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tends to 1 as n tends to infinity. On the other hand, with probability tending to 1,
ξ1 survives up to time n4, and ξ1

n4 is clearly dominated by ξ1,kn2

n4 , for any k ≤ dn2/2e.
On the conjunction of this event and the one described in (4.4), we thus have

∀z ∈ T, k ∈ {0, . . . , dn2/2e}, either ξz,kn
2

(k+1)n2 = 0 or ξz,kn
2

n4 ≥ ξ1
n4 6= 0,

and this proves (4.3). �

For the next lemma, recall that τ is the extinction time of the contact process
started with full occupancy.

Lemma 4.5. For any s > 0, one has

P [τ ≤ s] ≤ s

E[τ] ,

Moreover, there exists a constant C such that for any T ∈ Λ(n, d), E[τ] ≤ eCn.

Proof. Attractiveness of the contact process implies that for any r ∈ N,
(4.5) P [τ ≥ rs] ≤ (P [τ ≥ s])r .
Since

(4.6) E[τ] ≤ s
+∞∑
r=0

P [τ ≥ rs] ≤ s

1− P [τ ≥ s] ,

it comes that
P [τ ≥ s] ≥ 1− s

E[τ] ,

which proves the first part. For the second part, note that one can find C such that
(4.7) P [τ ≥ 1] ≤ 1− e−Cn

uniformly over T ∈ Λ(n, d). The conclusion thus follows from (4.6). �

Lemma 4.6. For any n large enough, any T ∈ Λ(n, d) and any t ≥ 0, one has

(4.8) P [ζt = 0] ≤ 6n6

E[τ] .

Proof. Using Lemma 4.5 with s = n6, it is clear that (4.8) holds for any n and
any t ≤ n6. Note moreover that, writing τν for the extinction time of the contact
process started from the distribution ν defined in Remark 4.3, we have

(4.9) P
[
τν ≤ n6 − n4] = P

[
τ ≤ n6 | Harris sys. trustworthy on [0, n4]

]
≤ 2n6

E[τ] ,

where we used Lemma 4.4 in the last step.
Suppose now that t > n6, and consider the event E defined by

∃s ∈ (t− n6/2, t− n6/4] such that ζs = 0.
We write τ̃ for the first s ≥ t − n6/2 such that ζs = 0. On the event E , we have
τ̃ ≤ t− n6/4. The event E ′ defined by

∀k ∈ N, k < bn2/4c,
Harris sys. not trustworthy on [τ̃+ kn4, τ̃+ (k + 1)n4] or Yτ̃+kn4 6= 1

has probability smaller than (3/4)bn2/4c by Lemma 4.4. When E and (E ′)c both
hold, the process ζ becomes active at some time tA ∈ [t−n6/2, t], and is distributed
according to ν at this time. Hence,

P [ζt = 0, E ] ≤ P [ζt = 0, E , (E ′)c] + P [E ′]
≤ P

[
τν ≤ n6/2

]
+ P [E ′] .
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Since P [E ′]� 1/E[τ] and in view of (4.9), we have indeed

(4.10) P [ζt = 0, E ] ≤ 3n6

E[τ]

for any large enough n. It thus remains to bound

(4.11) P [ζt = 0, Ec] .

Let k be the first positive integer such that Yt−n6/2+kn4 = 1 and the Harris system
is trustworthy on

[ak, bk] (def)= [t− n6/2 + kn4, t− n6/2 + (k + 1)n4].

For the same reason as above, we may assume that [ak, bk] ⊆ [t− n6/2, t− n6/4].
Since on the event Ec, the process ζ remains active on the time interval [ak, bk], and
considering the definition of trustworthiness and of the Phoenix process, we know
that ζbk = ξ

1,ak
bk

, and moreover, the latter random variable is distributed according
to ν. Hence, up to a negligible event, the probability in (4.11) is bounded by

P
[
τν ≤ n6/2

]
,

and thus, using (4.9) again,

(4.12) P [ζt = 0, Ec] ≤ 3n6

E[τ] .

The conclusion now follows, combining (4.10) and (4.12). �

In order to justify that with high probability, the true contact process on T
dominates the union of two independent Phoenix contact processes on the subtrees
T1 and T2 until extinction, we need to make sure that if the contact process is alive
in T1 but not in T2, it will try to infect T2 many times in a short time interval (so
that with high probability, a large-scale infection happens in T2 before the Phoenix
contact process in T2 becomes active again). The next lemma ensures that any
given vertex x ∈ T1 is infected many times if the contact process remains alive for
some short amount of time (we think of x as being the site bordering the cut of T
into two pieces, so that having x infected gives the immediate opportunity to start
an infection in T2).

Lemma 4.7. Let T be a tree with size at most n and maximal degree at most d,
and let x ∈ T . Define recursively γ0 = 0 and, for any i ∈ N,

γi+1 = inf{t ≥ γi + 2n2 : ξt(x) = 1} (+∞ if empty).

For n large enough, we have

P
[
γn2/8 > n4/2 | ξn4/2 6= 0

]
≤ e−n

2
.

Proof. In view of part (1) of Proposition 2.1, for any non-empty A ⊆ T , we have

P

[
∃s ≤ n

c1
: ξAs (x) = 1

]
≥ c1.

Let Fi be the σ-field generated by {ξt, t ≤ γi}. By induction and the Markov
property, we can thus show that for any k ∈ N,

P

[
γi+1 − (γi + 2n2) ≥ kn

c1
, ξγi+2n2+(k−1)n/c1 6= 0 | Fi

]
≤ (1− c1)k.
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Hence,

P
[
γn2/8 > n4/2, ξn4/2 6= 0

]
= P

n2/8−1∑
i=0

γi+1 − (γi + 2n2) > n4/4, ξn4/2 6= 0


≤ P

n2/8−1∑
i=0

Bin/c1 > n4/4

 ,
where (Bi) are independent geometric random variables of parameter 1− c1. For
λ > 0 small enough, we have

eφ(λ) (def)= E[eλBi ] < +∞,
and we thus obtain

P

n2/8−1∑
i=0

Bi > c1n
3/4

 ≤ exp
(
φ(λ)n2/8− λc1n3/4

)
,

which, together with part (1) of Proposition 3.2, proves the claim. �

We are now ready to prove our coupling result.
Proposition 4.8. For n large enough, let T ∈ Λ(n, d) be split into two subtrees
T1, T2 as described by Lemma 3.1. Define the process (ζ̃t)t≥0 by

ζ̃t = ζT1,t ∪ ζT2,t (t ≥ 0),
where ζT1 and ζT2 are Phoenix processes defined on T1 and T2 respectively, using
the Harris system on T together with two independent families of auxiliary random
variables, independent of the Harris system. One has

P
[
∀t ≤ τ, ξt ≥ ζ̃t

]
≥ 1− e−n

3/2
.

Proof. Let (σi)i≥1 be the sequence of (stopping) times when the process ζT1 becomes
quiescent. We start by showing that, for any i,

(4.13) P
[
ξσi+n4 < ζT1,σi+n4 , ξσi+n4 6= 0

]
≤ e−n

7/4
.

For some arbitrary x ∈ T1, consider the stopping times introduced in Lemma 4.7,
but started with γ0 = σi, and let N be the largest index satisfying γN ≤ σi + n4/2.
By Lemma 4.7, we have

(4.14) P
[
N < n2/8, ξσi+n4 6= 0

]
≤ e−n

2
.

Moreover, part (1) of Proposition 3.2 ensures that, for any j,
(4.15) P

[
ξ
x,γj
T1

survives up to time γj + 2n2 | γj < +∞
]
≥ c2,

where ξx,γjT1
denotes the contact process restricted to T1 started with x occupied at

time γj . We introduce the stopping times γ̃j to deal with the fact that γj may be
infinite. We let γ̃j = γj if j ≤ N , γ̃N+1 = σi + n4/2 + 2n2, and then recursively,
γ̃j+1 − γ̃j = 2n2. We have

(4.16) P
[
∀j ≤ N, ξx,γjT1,γj+2n2 = 0, ξσi+n4 6= 0

]
≤ P

[
N < n2/8, ξσi+n4 6= 0

]
+ P

[
∀j ≤ n2/8, ξx,γ̃jT1,γ̃j+2n2 = 0

]
,

Since for any j, we have γ̃j+1 ≥ γ̃j + 2n2, the events indexed by j appearing in the
second probability on the r.h.s. of (4.16) are independent. Using also (4.14) and
(4.15) (with γj replaced by γ̃j), we thus arrive at

(4.17) P
[
∀j ≤ N, ξx,γjT1,γj+2n2 = 0, , ξσi+n4 6= 0

]
≤ e−n

2
+ (1− c2)n

2/8.
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We now show that
(4.18) ∃j ≤ N, ξx,γjT1,γj+2n2 6= 0 ⇒ ξσi+n4 ≥ ζT1,σi+n4 .

Indeed, in order for ζT1,σi+n4 to be non 0, it must be that the Harris system restricted
to T1 is trustworthy on [σi, σi+n4]. In this case, by the definition of trustworthiness,
if there exists some j ≤ N such that ξx,γjT1,γj+2n2 6= 0, then it must be that

ξ
x,γj
T1,σi+n4 = ξ

1,σi
T1,σi+n4 ≥ ζT1,σi+n4

(the last two being equal when Yσi = 1, otherwise ζT1,σi+n4 = 0). Since ξγj (x) = 1,
it is clear that ξσi+n4 ≥ ξ

x,γj
T1,σi+n4 , thus justifying (4.18). This and (4.17) prove

(4.13).
In order to conclude, we first show that τ cannot be too large. It comes from

(4.5) and (4.7) that

(4.19) P
[
τ ≥ n4eCn

]
≤ e−n

2
,

where C can be chosen uniformly over T ∈ Λ(n, d). If ζT1 is active at time t and
ξ dominates ζT1 at this time, then the domination is preserved during the whole
phase of activity, since ζT1 is driven by a subset of the Harris system driving the
evolution of ξ. When ζT1 becomes quiescent, the domination is obviously preserved.
As a consequence, if the domination of ζT1 by ξ is broken at some time, it must be
when ζT1 turns from quiescent to active. We thus have

P [∃t ≤ τ, ξt < ζT1,t] = P
[
∃i : ξσi+n4 < ζT1,σi+n4 and ξσi+n4 6= 0

]
.

Since σi+1 − σi ≥ n4, on the event τ ≤ n4eCn, there are at most eCn times when
ζT1 turns from quiescent to active. Using (4.13), we thus obtain

P [∃t ≤ τ, ξt < ζT1,t] ≤ P [τ ≥ n4eCn] + eCne−n
7/4
.

The proposition is now proved, using (4.19) together with the fact that

P
[
∃t ≤ τ, ξt < ζ̃t

]
≤ P [∃t ≤ τ, ξt < ζT1,t] + P [∃t ≤ τ, ξt < ζT2,t] .

�

Corollary 4.9. For n large enough, let T ∈ Λ(n, d) be split into two subtrees T1, T2
as described by Lemma 3.1. We have

E[τT ] ≥ n−9 E [τT1 ]E [τT2 ] .

Proof. Let σ̃ be the first time when ζT1 and ζT2 are simultaneously quiescent. By
Proposition 4.8, for any t ≥ 0, we have

(4.20) P [τ ≤ t] ≤ P [σ̃ ≤ t] + e−n
3/2
.

In view of Remark 4.2, at time σ̃, both ζT1 and ζT2 remain quiescent for a time
n4 with probability at least 1/2 (one of them just becomes quiescent at time σ̃,
while the other stays quiescent for a time n4 with probability at least 1/2). As a
consequence, for any t ≥ 0,

P [σ̃ ≤ t] ≤ 2
n4

∫ t+n4

0
P
[
ζ̃s = 0

]
ds.

Since ζT1 and ζT2 are independent, and using Lemma 4.6, we thus obtain

(4.21) P [σ̃ ≤ t] ≤ 2
n4 (t+ n4) (6n6)2

E[τT1 ]E[τT2 ] = 72n8(t+ n4)
E[τT1 ]E[τT2 ] .

Let us now fix
t̃ = 2E[τT1 ]E[τT2 ]

n9 .
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Since we know from part (1) of Proposition 3.2 that t̃ grows faster than any power
of n, (4.21) gives us that for n large enough,

P
[
σ̃ ≤ t̃

]
≤ 1/4.

In view of (4.20), we thus obtain

P
[
τ ≤ t̃

]
≤ 1/4 + e−n

3/2
≤ 1/2,

which implies that E[τ] ≥ t̃/2, and thus the corollary. �

Proof of Theorem 1.1. Let ρ = 1 + 1/d, and consider, for any r ∈ N, the quantity

Vr = inf
n∈(ρr−1/d,ρr]

inf
T∈Λ(n,d)

logE[τ(T )]
|T |

Statement (1.3) of Theorem 1.1 will be proved if we can show that lim infr→∞ Vr > 0.
Let r be a positive integer, and T be a tree of degree bounded by d and whose

size lies in
(
ρr, ρr+1].

Since 1− ρ−1 = 1/(d+ 1) < 1/d and in view of Lemma 3.1, for r large enough,
we can split up T into two subtrees T1, T2 such that

|T1|, |T2| ≥ |T |(1− ρ−1).
As a consequence,

|T1|, |T2| ≥ ρr−1/d,

and also
|T1| ≤ |T | − |T2| ≤ |T |

(
1− (1− ρ−1)

)
≤ ρr,

with the same inequality for T2. Corollary 4.9 tells us that for r large enough,

E[τ(T )] ≥ 1
|T |9

E[τ(T1)] E[τ(T2)],

that is to say,
logE[τ(T )] ≥ logE[τ(T1)] + logE[τ(T2)]− log |T |9.

Observing that
logE[τ(T1)] + logE[τ(T2)] ≥ Vr(|T1|+ |T2|) = Vr|T |,

we arrive at

(4.22) logE[τ(T )]
|T |

≥ Vr −
log |T |9

|T |
.

Part (1) of Proposition 3.2 ensures that for r large enough, one has

(4.23) Vr ≥
c

ρr(1−α)

for some constant c > 0. Recalling that |T | ≤ ρr+1, we thus have
log |T |9

|T |
≤ Vr
ρrα/2

,

and (4.22) turns into
logE[τ(T )]
|T |

≥ Vr
(

1− 1
ρrα/2

)
,

for any large enough r and any tree whose size lies in (ρr, ρr+1]. If the size of the
tree lies in (ρr/d, ρr], then the inequality

logE[τ(T )]
|T |

≥ Vr
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is obvious, so we arrive at

Vr+1 ≥ Vr
(

1− 1
ρrα/2

)
.

Since Vr > 0 for any r large enough by (4.23), and∏
r

(
1− 1

ρrα/2

)
> 0,

we have shown that lim infr→∞ Vr = c > 0. This proves (1.3).
In order to prove (1.2), it suffices to note that, by Lemma 4.5,

sup
T∈Λ(n,d)

P
[
τ ≤ ecn/2

]
≤ ecn/2

inf
T∈Λ(n,d)

E[τ] ≤ e
−cn/4

for n large enough. �

5. Discrete time growth process

For comparison purposes, it is useful to consider a discrete-time analogue of the
contact process; we will need to consider such a process in the next section. Though
many different definitions may be proposed, we have decided on the following.

Fix p ∈ (0, 1) and let {Ir(x,y) : r ∈ {0, 1, . . .}, x, y ∈ Z, |x− y| ≤ 1} be a family of
independent Bernoulli(p) random variables. Fix η0 ∈ {0, 1}Z and, for r ≥ 0, let

(5.1) ηr+1(x) = 1{∃y: |y−x|≤1, ηr(y)=1, Ir(y,x)=1}.

The following is standard.

Proposition 5.1. The above process is attractive and there exists p(1)
c < 1 such

that for p > p
(1)
c the process survives in the sense that, for any η0 6= 0,

P [ηr 6= 0 ∀r] > 0

and, if η0 = 1, then ηr decreases stochastically to a non-zero limit.

This process generalizes to any locally finite graph G = (V,E) just as does the
contact process: we take independent Bernoulli(p) random variables

{Ir(x,y) : x, y ∈ V, dist(x, y) ≤ 1}

(where dist denotes graph distance) and, given η0 ∈ {0, 1}V , let

(5.2) ηr+1(x) = 1{∃y:dist(x,y)≤1, ηr(y)=1, Ir(y,x)=1}, r ≥ 0, x ∈ V.

In particular, {ηr}r≥0 has the self-duality property, and we can follow through the
arguments of the preceding sections to arrive at:

Proposition 5.2. Let d ≥ 2 and p > p
(1)
c . There exists c > 0 such that

inf
T∈Λ(n,d)

P [τT ≥ ecn] −→ 1 as n→∞.

(Here, τT is the extinction time for the discrete-time process on T started from full
occupancy).
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6. Extinction time for the configuration model

Let us briefly recall the definition of the random graph Gn = (Vn, En). We take
Vn = {1, 2, . . . , n} and suppose given a probability p(·) on the positive integers
greater than or equal to 3 with the property that there exist a > 2 and 0 < c0 < C0
such that, if m is large enough,
(6.3) c0 < ma · p(m) < C0.

To generate Gn, we first choose the degrees for the n vertices d1, d2, . . . , dn, according
to i.i.d. random variables of law p(·) (and add 1 to one of the di, if necessary, to
make

∑
di even). Given this realization, we choose the edges by first giving each

vertex x dx half-edges and then matching up the half-edges uniformly among all
possible matchings, so that, say, a half-edge for vertex x matched with a half-edge
of vertex y becomes an edge between x and y. In [vdH, Theorem 10.14], it is shown
that from the assumption that p is supported on integers larger than 2, it follows
that Gn is a connected graph with probability tending to 1 as n→∞.

We consider the contact process with parameter λ > 0 on Gn. In order to do so,
we need to slightly modify the generator given in (1.1) to accomodate the fact that
the random graph obtained from the above distribution may have loops and parallel
edges. We put
(6.4)

for every x ∈ ξt, ξt → ξt \ {x} with rate 1,
for every x /∈ ξt, ξt → ξt ∪ {x} with rate λ

∑
y:y∈ξt |{e ∈ En : x, y ∈ e}|.

By x, y ∈ e we mean simply that the extremities of e are x and y (this may now be
true for more than one edge e). With this definition, loops have no effect on the
dynamics and parallel edges are seen as independent channels for the transmission
of the infection. The graphical construction defined in the beginning of Section 2 is
compatible with (6.4) and requires no modification.

We will prove Theorem 1.3 under the assumption that a > 2, as mentioned in
the Introduction. We will also assume that λ is small; this is not problematic to us
because clearly it is sufficient to prove Theorem 1.3 for λ small enough.

We rely on the idea that the contact process is sustained for a long time in the
vicinity of vertices of high degree (“stars”). Our approach is to exhibit a subgraph
G′n of Gn that has sufficiently many stars arranged so that none of them is very
far from others, and to argue that G′n provides a very fertile environment for the
persistence of the infection.

Let us be a bit more specific in sketching the proof. Depending on λ, we fix
a degree threshold S – stars will be vertices with degree above S/2 –, a distance
threshold D and a time scale κ. Our subgraph G′n is a (connected) tree composed
essentially of O(n) stars and line segments connecting these stars (to be exact, G′n
will end up containing some other vertices which do not fall in either category, but
let us ignore that for the moment). Each star is directly connected by segments to
at most 3 other stars, and the lengths of the segments are all below D. We then
define a tree G′′n as a renormalized version of G′n in a very natural way: stars of G′n
correspond to vertices of G′′n and segments of G′n correspond to edges of G′′n. In
particular, the degrees in G′′n are bounded by 3. The contact process on G′n then
induces a discrete-time growth process (ηr) on G′′n; roughly speaking, for a vertex
x of G′′n we say that ηr(x) = 1 if the star of G′n that corresponds to x has many
infected vertices (or is infested, as we will write) at time κ · r. The parameters
S, D and κ can be chosen so that, if a star is infested at time κr, then with high
probability it keeps being infested until time κ(r + 1), and this in turn is long
enough that, with high probability, the infection reaches nearby stars, which also
become infested. For the growth process (ηr), this translates into saying that the
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closure parameter p is very close to 1. We then apply Proposition 5.2 to (ηr), thus
concluding that it stays active for an amount of time that is exponential in the
number of vertices of G′′n, which as mentioned is O(n). The desired conclusion for
the contact process on Gn is then immediate.

This section is organized as follows. We will first list the formal properties that we
want for the subgraph G′n endowed with a set of distinguished vertices J ′n. We state
in Proposition 6.1 that with high probability, large enough G′n, J ′n satisfying these
properties indeed exist. Next, we will show how this proposition implies Theorem
1.3. Finally, we will prove the proposition, showing how G′n, J

′
n can be constructed.

The first property on our list is
Property 1: G′n is a (connected) tree (with no loops or multiple edges).

Before listing the other properties, we need some notation. Let deg′ denote the
degree of a vertex in G′n, that is, deg′(x) = |{y ∈ V ′n : {x, y} ∈ E′n}|, and dist′
denote the graph distance in G′n, that is, dist′(x, y) is the length of the minimal
path from x to y contained in G′n. For x, y ∈ J ′n, write x

∗∼ y if the unique path
contained in G′n from x to y contains no vertices of J ′n other than x and y. Let S
be a large constant to be chosen later and D = λ4S.
Property 2: deg′(x) ≥ S

2 for all x ∈ J ′n.

Property 3: dist′(x, y) ≤ D for all x, y ∈ J ′n with x ∗∼ y.
Property 4: The graph G′′n = (V ′′n , E′′n) given by

V ′′n = J ′n; E′′n = {{x, y} : x, y ∈ J ′n, x
∗∼ y}

is a (connected) tree with degree bounded by 3.

Proposition 6.1. For small enough λ > 0, if S is large enough (depending on λ),
there exists δ > 0 such that, with probability tending to 1 as n → ∞, Gn has a
subgraph G′n with a set of vertices J ′n ⊆ V ′n such that Properties 1-4 are satisfied
and |J ′n| > δn.

Proof of Theorem 1.3. Assume G′n, J ′n are as in the above proposition and G′′n is as
in Property 4. G′′n is thus a tree with more than δn vertices and degree bounded by 3.
We will couple the contact process (ξ′t)t≥0 on G′n (starting from full occupancy) and
a discrete time growth process (ηr)r≥0 on G′′n (again starting from full occupancy);
this comes down to a coupling between the Harris system on G′n and the Bernoulli
random variables used to define the growth process. (ηr) is to be thought of as
a coarse-grained version of (ξ′t). We define κ = eλ

3S ; one time unit for (ηr) will
correspond to a period of length κ for (ξt). Our choice of parameters and Proposition
5.2 will guarantee that the extinction time for (ηr) is exponential in n, and the
corresponding fact for (ξ′t) will be immediate.

Given a vertex x ∈ V ′′n , we define the neighbourhoods
N ′(x) = {y ∈ V ′n : dist′(x, y) ≤ 1},

N ′′(x) = {x} ∪ {y ∈ V ′′n : x ∗∼ y}.

For x, y ∈ V ′′n with x ∗∼ y, let b(x, y) be the set of vertices of G′n in the unique path
from x to y (notice that this path has length less than D). Define

Λ(x) = N ′(x) ∪

 ⋃
y∈N ′′(x), y 6=x

N ′(y) ∪ b(x, y)

 .

Assume given a Harris systemH for the contact process (ξ′t). For fixed x ∈ V ′′n and
r ∈ {0, 1, . . .}, we will now define an auxiliary process (Γ [x, r]t : rκ ≤ t ≤ (r + 1)κ)
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on {0, 1}Λ(x). For rκ ≤ t ≤ (r + 1)κ and y ∈ Λ(x), we put
Γ [x, r]t(y) = 1 {∃z ∈ N ′(x) : ξ′rκ(z) = 1, (z, κr)↔ (y, t) inside Λ(x) in H} .

In particular, note that Γ [x, r]κr ≡ ξ′κr on N ′(x) and Γ [x, r]κr ≡ 0 on Λ(x)\N ′(x)
and (Γ [x, r]t : rκ ≤ t ≤ (r + 1)κ) evolves as the contact process on Λ(x).

Given a set of vertices U and ω ∈ {0, 1}U , we will say that U is infested in ω if
|{x ∈ U : ω(x) = 1}| ≥ λ

50 |U |.

Lemma 6.2. If λ > 0 is small enough, the following holds. For any σ > 0, there
exists S0 such that, if S > S0,

P

[
∀y ∈ N ′′(x), N ′(y) is
infested in Γ [x, r](r+1)κ

∣∣∣∣∣ N ′(x) is infested in Γ [x, r]rκ

]
> 1− σ.

Proof. Lemma 3.1(ii.) and Lemma 3.2 in [MVY13] respectively imply
∃c > 0 : if S is large enough, then(6.5)

N ′(x) infested in ξ0 =⇒ P [N ′(x) infested in ξκ] > 1− e−cλ
2S ;

∃c > 0 : if S is large enough,(6.6)
N ′(x) infested in ξ0 =⇒ P [N ′(y) infested in ξκ] > 1− e−cλ

2S

(in fact, (6.5) and (6.6) are slightly different from the mentioned results in [MVY13],
but are readily seen to follow from their proof. We spare the reader the details.)
(6.5), (6.6) and a union bound then give the desired result. �

We now define the Bernoulli random variables
{Ir(x,y) : x, y ∈ V ′′n , y ∈ N ′′(x), r = 0, 1, . . .}

from which the growth process will be defined. They will not be independent, but we
will be able to argue that the parameter S may be chosen so that they stochastically
dominate a family of independent Bernoulli variables. Set Ir(x,y) = 1 if one of the
following condition holds:
(C1) N ′(x) is infested in ξ′rκ and N ′(y) is infested in Γ [x, r](r+1)κ;
(C2) N ′(x) is not infested in ξ′rκ.
Set Irx = 0 otherwise. (Condition (C2) is only present to guarantee that the
parameters of the Bernoulli random variables are all close to 1).

Now define (ηr) starting from η0 ≡ 1 and as prescribed in (5.2). Assume that
ηr(x) = 1. Then, there exist a sequence x0, x1, . . . , xr−1, xr = x of vertices of
V ′′n such that xi+1 ∈ N ′′(xi) and Ir(xi,xi+1) = 1 for each i. Since ξ′0 ≡ 1, N ′(x0) is
infested in ξ′0, so I0

(x0,x1) = 1 can only hold if condition (C1) holds, and thus N ′(x1)
is necessarily infested in ξ′κ. Arguing recursively, this implies that N ′(xi) is infested
in ξ′κi for each i and, in particular, N ′(x) is infested in ξ′κr. This shows that, if
ηr 6= 0, then ξ′κr 6= 0.

Also note that, for fixed σ > 0, if we choose S corresponding to λ and σ in
Lemma 6.2, and if x1, . . . , xm ∈ V ′′n are vertices such that the sets Λ(x1), . . . ,Λ(xm)
are disjoint, we have

P [ηr(xj) = 0, 1 ≤ j ≤ m | (ηs)0≤s<r] ≤ σm.
Now, using a result of Liggett, Schonmann and Stacey [LSS97] (see also Theorem
B26 in [Li2]), given p ∈ (0, 1) we can choose S large enough so that the measure of
the field {Irx : r ≥ 0, x ∈ V ′′n } stochastically dominates i.i.d. Bernoulli(p) random
variables. We then have

Corollary 6.3. For any p > pc(1), if S is large enough, then {ηr} dominates a
growth process on G′′n defined from i.i.d. Bernoulli(p) random variables.
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This, the fact that |V ′′n | ≥ δn and Proposition 5.2 give Theorem 1.3. �

The rest of the section is devoted to the proof of Proposition 6.1. We start with
some remarks concerning the random degree sequence d1, . . . , dn. Recall that S is
the constant in the construction of G′n; we will assume that S is large enough in
the sense of Corollary 6.3, and will often need to increase its value. Define

Jn = {x ∈ Vn : deg(x) ≥ S}.

Let µ =
∑∞
m=1m · p(m). Let us remark that, if the degrees are given by d1, . . . , dn

and we choose a half-edge uniformly at random, then the probability that the
corresponding vertex has degree m is

m · |x : dx = m|∑
x dx

→ m · p(m)
µ

as n→∞.

The probability q(m) = m · p(m)/µ is called the size biased distribution. Recall that
c0 and C0 are the constants of (6.3); by reducing c0 and increasing C0 if necessary,
a comparison with an integral gives us, for m large enough,

c0 < ma−1 · p([m,∞)) < C0,(6.7)
c0 < ma−2 · q([m,∞)) < C0.(6.8)

We will also need the following facts.

Lemma 6.4. For large enough S, there exists ε > 0 such that, with probability
tending to 1 as n→∞,

(i.) |{x ∈ Vn : dx > S}| > εn

and, for any A ⊆ Vn with |A| ≤ εn,

(ii.)
∑
x∈A dx∑

x∈Vn∩Ac dx
< S−a; (iii.)

∑
x∈Jn∩Ac dx∑
x∈Vn dx

>
1
2c0S

−(a−2).

Proof. Assume that S is large enough that

(6.9) S−a <
c0µ

8 S−(a−2), C0µ S
−2a <

S−a

2 ,

where c0, C0 are as in (6.3). Let K = S
2a
a−2 and ε < 1

2 p([K,∞)). Define the events

B1 = {|{x ∈ Vn : dx ≥ K}| > εn} ; B2 =
{
µ

2 n <
∑
x∈Vn

dx <
3µ
2 n

}
;

B3 =
{∑
x∈Jn

dx >
7c0µ

8 nS−(a−2)

}
; B4 =

 ∑
x:dx≥K

dx < nS−a

 .

Since, for all x ∈ {1, . . . , n},
E(dx) = µ, P(dx ≥ K) = p([K,∞)),

E
(
dx · 1{dx≥K}

)
= µq([K,∞) < µC0 K

−(a−2) = µC0 S
−2a <

S−a

2 ,

E
(
dx · 1{dx≥S}

)
= µq([S,∞)) > µc0 S

−(a−2),

we have P(B1 ∩B2 ∩B3 ∩B4)→ 1 as n→∞. If B1 occurs, since S < K, the event
of (i.) is satisfied. If B1 and B4 occur, we have

(6.10)
∑
x∈A

dx <
∑

x:dx≥K
dx < nS−a.
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Now, if B1, B2 and B4 occur, we have∑
x∈A dx∑

x∈Vn∩Ac dx
=

∑
x∈A dx∑

x∈Vn dx −
∑
x∈A dx

(6.10),B2
<

S−an
1
2 µn− S−an

< S−a,

since µ ≥ 3 and S−a << 1/2. If B1, B2, B3 and B4 occur, we also have∑
x∈Jn∩Ac dx∑
x∈Vn dx

(6.10),B2,B3
>

7
8c0µnS

−(a−2) − nS−a
3
2µn

(6.9)
>

3
4c0µnS

−(a−2)

3
2µn

= 1
2c0S

−(a−2).

�

In what follows, ε is taken corresponding to S as in the lemma. Let us say that
a degree sequence d = (d1, . . . , dn) is robust if it satisfies (i.), (ii.) and (iii.). We
will henceforth fix a robust sequence d. We will write Pd to denote a probability
measure under which the random graph Gn is constructed as follows: the degrees of
the n vertices are deterministic, given by d, and the half-edges are then matched in
a manner that is chosen uniformly at random among all possibilities, as prescribed
in the definition of the configuration model.

We now describe an alternative matching procedure that produces the same
random graph. This procedure consists of matching the half-edges sequentially, pair
by pair, so that, in each step, we are free to choose one of the half-edges involved
in the matching, and the other is chosen at random. To be more precise, let us
introduce some terminology. A semi-graph g = (Vn,H, E) is a triple consisting of
the set of vertices Vn, a set of half-edges H and a set of edges E (of course, if H = ∅,
then g is a graph). The degree of a vertex in a semi-graph is the number of its
half-edges plus the number of edges that are incident to it. Given two half-edges
h, h′ ∈ H, we will denote by h+ h′ a new edge produced by “attaching” h and h′.
We will now show how to define a finite sequence of semi-graphs g0, g1, . . . , gk so
that gk is a graph with the desired distribution. g0 = (Vn,H0, E0) is defined with
E0 = ∅ and such that each vertex x has dx half-edges. Assume gi = (Vn,Hi, Ei) is
defined and has half-edges. Fix an arbitrary half-edge h ∈ Hi (call this an elected
half-edge) and randomly choose another half-edge h′ uniformly in Hi\{h}. Then
put gi+1 = (Vn,Hi+1, Ei+1), where Hi+1 = Hi\{h, h′} and Ei+1 = Ei ∪ {h + h′}.
When no half-edges are left, we are done, and the graph thus obtained is distributed
as Gn. Often, instead of updating the sets each time, say from Hi, Ei to Hi+1, Ei+1
as above, we will hold the notation g = (Vn,H, E) and say (for example) that h, h′
are deleted from H and h+ h′ is added to E .

In each step of the above construction, we are free to indicate the elected half-
edge. A full description of how to elect a half-edge given all previous steps in
the construction (and thus the present state of the semi-graph) is an algorithm to
construct the graph (or a subgraph of it, if we stop before exhausting all half-edges
– this will be the case for us, since our objective is to construct the subgraph G′n).
We will present an algorithm that will help us find G′n with high probability. The
robustness property will come into play because we will have to deal with the set of
half-edges after some matchings have been made.

Other than doing matchings, our algorithm writes labels on edges and vertices.
Labels will serve both to guide the order of the matchings and to define G′n once the
algorithm stops running. At any given point while the algorithm is running, each
edge may have no label at all or one of the labels: included or excluded. Vertices
may have no label at all or one of the labels: included, excluded or queued. The
label queued will only be associated to vertices of Jn. In the semi-graph g0, from
which the algorithm starts, there are no edges (as mentioned above) and vertices
have no labels. Once the algorithm finishes running, included vertices and edges will
be the ones which will constitute G′n.
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A labelled semi-graph g = (Vn,H, E , {`x}, {`e},≺) is a semi-graph with labels `x
attached to some of the vertices x, labels `e associated to some of the edges e and
a total order ≺ on the set of queued vertices. It is worth remarking that since the
algorithm only does matchings and labelling, it does not change the degree of any
vertex. In particular, the definition of the set Jn does not change.

The algorithm repeatedly follows a subroutine called a pass, which is just a
sequence of matchings of half-edges and labellings. When a new pass starts, it
typically takes a queued vertex x̄ ∈ Jn and successively explores the graph around
it by performing matchings. A successful pass is one in which, in fewer than Sa−1

matchings, at least S/2 neighbours of x̄ and two new vertices of Jn are found. We
interrupt the pass if any of the matchings it produces reveals a vertex that had been
previously “seen” by the algorithm. This has to do with the requirement that G′n
be a tree.

We first define the pass, and later define the full algorithm. We will need the
following values:

N = Sa−1, ε′ = ε

2N , δ = ε

4N .
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The pass
Input: g = (Vn,H, E , {`x}, {`e},≺) with at least one queued vertex.

(P1)
Let x̄ be the queued vertex of highest order. Change the label of x̄ to included.
IF x̄ has less than S

2 half-edges remaining:
The pass is stopped in status B1.

ELSE :
Define the sets V ∗, E∗ and H∗ as the sets of relevant vertices, edges
and half-edges of the pass, respectively. Set V ∗ = E∗ = ∅ and H∗ =
{half-edges attached to x̄}. Endow H∗ with a total order ≺∗ chosen arbi-
trarily. Proceed to (P2).

(P2)
Let h be the half-edge of highest order in H∗. Choose another half-edge h′ uniformly
at random in H\{h} and let v′ be the vertex of h′. Delete h, h′ from all sets that
contain them (h from H and H∗, h′ from H and possibly H∗) and add h+ h′ to E∗
and E .
IF v′ has been placed in V ∗ earlier in this pass:

Give the label excluded to all vertices contained in V ∗ (this of course includes
v′) and all edges contained in E∗. The pass is stopped in status B2.

ELSEIF v′ has been given a label by some earlier pass:
Give the label excluded to all vertices contained in V ∗ (this does not include
v′; the label of v′ is left unchanged) and all edges contained in E∗. The pass
is stopped in status B2.

ELSE :
Add v′ to V ∗.
IF v′ is not in Jn:

Add the half-edges of v′ toH∗ (note that at this point h′ is no longer
a half-edge of v′) so that, in the order ≺∗, they have arbitrary order
among themselves but lower order than all half-edges previously
in H∗.

Proceed to (P3).

(P3)
IF |V ∗| ≥ N :

Give the label excluded to all vertices of V ∗ and all edges of E∗. Stop the
pass in status B3.

ELSE IF V ∗ contains more than S/2 neighbours of x̄ and |V ∗ ∩ Jn| ≥ 2:
Give the label queued to the two vertices of Jn that were first included in V ∗;
in the order ≺, assign them lower order than all previously existing queued
vertices and arbitrary order among themselves. Give the label included to
all other vertices of V ∗ and all edges of E∗. Stop the pass in status G.

ELSE :
Repeat (P2).

Output: updated labeled semi-graph.
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Algorithm to find G′n
Input: g0 = (Vn,H0, E0), the initial semi-graph with n vertices, no edges, no labels
and robust degree sequence d = (d1, . . . , dn).

(A1)
IF there are no queued vertices:

Replace the label of all vertices that have been labelled so far and all edges
that have been constructed so far by the algorithm with the label excluded
(this re-labelling will be called a clearing).
Choose an arbitrary unlabelled vertex of Jn and label it queued.

Proceed to (A2).

(A2)
Run the pass. Proceed to (A3).

(A3)
IF there are more than δn+ 2 queued vertices:

The algorithm succeeds and stops.
ELSE IF the pass has been run more than ε′n times:

The algorithm fails and stops.
ELSE :

Proceed to (A1).

We remark that, in step (A1), if the algorithm requires the choice of an unlabelled
vertex of Jn, it is always possible to find one such vertex. This follows from the fact
that each pass labels at most N vertices and the algorithm runs at most ε′n = ε

2N n
passes; by the definition of robustness, N · ε

2N n = ε
2n < |Jn|.

Let us introduce some more notation. Let i∞ be the total number of passes the
algorithm runs. For 1 ≤ i ≤ i∞, let x̄(i) be the vertex of Jn whose label is changed
from queued to included in pass i. If pass i ends in status G, then it gives the label
queued to two new vertices y1, y2; we then write D(x̄(i)) = {y1, y2}; if the pass ends
in any other status, we write D(x̄(i)) = ∅. Also define

QG = {x̄(i) : Pass i ends in status G}.

Let W0 = 0 and, for i ≥ 1,
Wi = Number of queued vertices at the time pass i is complete,

Xi =
{

1 if pass i ends in status G;
−1 otherwise. .

Assume that, at the time pass i− 1 ends, there are no queued vertices (so that
Wi−1 = 0). The algorithm then goes to step (A3). Assume that the pass has been
run for less than ε′n times; then the algorithm proceeds to (A1). At this point, the
algorithm performs a clearing, gives the label queued to an arbitrary vertex x̄ of Jn
and starts performing pass i; this pass first re-labels x̄ as included, then performs its
matchings and either ends in status G (in which case two new vertices are labelled
queued, so that Wi = 2) or status B1,B2 or B3 (in which case no new queued vertices
are created and Wi = 0). Thus, when Wi−1 = 0, Wi = 1 +Xi.

Now assume that, at the time pass i− 1 ends, Wi−1 > 0 and assume once more
that the algorithm does not terminate in (A3), so that (A1) is reached. Then pass i
is immediately started, the queued vertex of highest order is re-labelled as included
and again, either zero or two new queued vertices appear. Thus, when Wi−1 > 0,
Wi = Wi−1 +Xi.
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These considerations show that, for 1 ≤ i ≤ i∞, Wi ≥
∑i
j=1Xj .

We define our subgraph G′n only on the event that the algorithm is successful.
Define V ′n and E′n as the set of vertices and edges that, at the moment the algorithm
stops running, have the label included. Also define

J ′n = V ′n ∩QG.

We are now ready to prove

Lemma 6.5. G′n satisfies properties 1, 2, 3 and 4 and |J ′n| > δn.

Proof. Let i0 = 1 + max{i : Wi = 0}. Note that V ′n and E′n are the sets of vertices
and edges that are labelled as included in passes i0, i0 + 1, . . . , i∞, since no clearing
occurs between these passes.
• Property 1: Fix x ∈ V ′n and let i be the pass in which x was labelled. We can then
find vertices y1, . . . , yk ∈ J ′n such that y1 ∈ D(x̄(i0)), y2 ∈ D(y1), . . . , yk ∈ D(yk−1)
and x̄(i) ∈ D(yk). Then, there is a path of included edges connecting x̄(i0) to y1,
y1 to y2, . . ., yk−1 to yk, yk to x̄(i) and finally, x̄(i) to x. This shows that G′n is
connected. The fact that it is a tree is guaranteed by the IF statement in (P2) in
the definition of the pass: any edge that would produce a loop forces the pass to
stop and is labelled excluded.
• Property 2: Fix z ∈ J ′n. There exists i ≥ i0 such that z = x̄(i) and pass i
ends in status G. This implies that at least S/2 neighbours of z are in V ′n, that is,
deg′(z) ≥ S/2.
• Property 3: If y, z ∈ J ′n and y ∗∼ z, we must either have z ∈ D(y) or y ∈ D(z);
assume the former is the case and fix i such that y = x̄(i). Then, pass i ends in
status G, so that at most N edges are constructed in this pass and they form no
cycles. Since each vertex has degree larger than 2, we have

dist′(y, z) ≤ dlog2Ne = d(a− 1) log2 Se < λ4S = D

when S is large enough.
• Property 4: This follows immediately from the fact that G′n is a tree and each
pass labels either zero or two vertices as queued.
• |J ′n| > δn. By the definition of i0, pass i0 ends in status G, Wi0 = 2 and Wi > 0
for all i ∈ {i0, . . . , i∞}. Since the algorithm ends successfully, Wi∞ > δn + 2, so
there must be more than δn+ 2− 2 = δn values of i in {i0 + 1, . . . , i∞} such that
Xi = 1, and hence, x̄(i) ∈ J ′n. �

In order to complete the proof of Proposition 6.1, we now need to prove that the
probability that the algorithm ends successfully tends to 1 as n→∞. To this end,
let us first treat individual passes.

Lemma 6.6. For S large enough and n large enough (depending on S), the following
holds. Assume that, when the pass defines x̄, this vertex has more than S

2 half-edges.
Then, the pass ends in status G with probability larger than 9

10 .

Proof. Let L be the set of labelled vertices at the moment the pass starts. Since the
whole algorithm runs at most ε′n passes and each pass labels at most N vertices, we
have |L| < ε′n ·N = εn/2. Assume the current pass has already made k matchings,
with 0 ≤ k < N , and has not yet terminated, and consider the set V ∗ of vertices the
pass has found in its exploration. We have |L ∪ V ∗| < εn/2 +N and this is much
smaller than εn when n is large. We take the set A in the definition of robustness
as L ∪ V ∗.

The half-edge chosen for the (k + 1)-th matching then has probability:

(1) smaller than
∑
x∈A dx∑

x∈Vn∩Ac dx
< S−a of belonging to a vertex of A;
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(2) larger than
∑
x∈Jn∩Ac dx∑
x∈Vn dx

>
1
2c0 S

−(a−2) of belonging to a vertex of Jn ∩Ac.

Using (1), the probability that the pass ends in status B2 is less than N ·S−a = S−1,
which is less than 1/20 when S is large. Using (2), the probability that the pass
ends in status B3 is less than

P

[
Bin

(
N,

1
2c0 S

−(a−2)
)
< 2
]
,

which is also less than 1/20 when S is large, since the expectation of the Binomial
is 1

2c0 S.
�

Now define Yi = 1{Pass i ends in status B1}. If Yi = 1, then Xi = −1. By the
previous lemma, for any x1, . . . , xi−1, y1, . . . , yi−1 we have
(6.11) Pd

[
Xi = 1 | {Xj}i−1

j=1 = {xj}i−1
j=1, {Yj}

i−1
j=1 = {yj}i−1

j=1, Yi = 0
]
> 9/10.

Let us now exclude the possibility that many passes end in status B1.

Lemma 6.7. For S large enough, Pd

bε′nc∑
i=1

Yi >
1
10bε

′nc

 n→∞−−−−→ 0.

Proof. We start remarking that, for {Yi = 1} to occur, there must exist a vertex
x ∈ Jn such that
• the first time a half-edge of x is chosen for a matching occurs before pass i;
• from this time to the beginning of pass i, more than S/2 half-edges of x are
chosen for matchings;
• x is the queued vertex of highest order when pass i starts.

Let h1, . . . , hL be the sequence of half-edges chosen at random by the algorithm
since the beginning of the first pass. We have L ≤ εn. By (ii.) of Lemma 6.4, at the
moment hj is chosen, the probability that it belongs to a vertex that has previously
been “seen” by the algorithm (that is, a vertex that either has been labelled by an
earlier pass or is in the set V ∗ of the current pass) is less than S−a. If this occurs,
call it a wasted matching. For {

∑
Yi > (1/10)bε′nc} to occur, more than 1

10bε
′ncS2

wasted matchings must occur. The probability of this is less than

P

[
Bin

(
bεnc, S−a

)
>

1
10bε

′ncS2

]
.

If S is large, this probability vanishes as n → ∞ since ε S−a
1

10 ε
′ S

2
= 10 ε

ε′
1

Sa+1 =
20 1

S2 . �

Proposition 6.8. Pd
[
Wbε′nc > δn

] n→∞−−−−→ 1.

Proof. We start constructing auxiliary random variablesX ′1, . . . , X ′bε′nc, Y ′1 , . . . , Y ′bε′nc
whose joint distribution is the same as that of X1, . . . , Xbε′nc, Y1, . . . , Ybε′nc. Given
sequences {xj}i−1

j=1, {yj}ij=1 and s ∈ (0, 1), let

φ
(
s, {xj}i−1

j=1, {yj}
i
j=1
)

=
∣∣∣∣ −1 if s ≤ Pd

[
Xi = −1 | {Xj}i−1

j=1 = {xj}i−1
j=1, {Yj}ij=1 = {yj}ij=1

]
1 otherwise.

Likewise, let
ψ
(
s, {xj}i−1

j=1, {yj}
i−1
j=1
)

=
∣∣∣∣ 0 if s ≤ Pd

[
Yi = 0 | {Xj}i−1

j=1 = {xj}i−1
j=1, {Yj}

i−1
j=1 = {yj}i−1

j=1
]

1 otherwise.
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(when we write only φ(s), ψ(s), we mean the functions above for X1 and Y1, with
no conditioning in the probabilities that define them). Let U1, U2, . . . , V1, V2, . . .
be independent random variables with the uniform distribution on (0, 1). Set
X ′1 = φ(U1), Y ′1 = ψ(V1) and recursively define, for 1 < i < ε′n,

Y ′i+1 = ψ
(
Vi+1, {X ′j}ij=1, {Y ′j }ij=1

)
, X ′i+1 = φ

(
Ui+1, {X ′j}ij=1, {Y ′j }i+1

j=1
)
.

Now, clearly {X ′i, Y ′i }
bε′nc
i=1 has the same distribution as {Xi, Yi}bε

′nc
i=1 . By (6.11), we

have {Y ′i = 0, X ′i 6= 1} ⊆ {Ui ≤ 1
10}. We can now estimate

Pd

[
Wbε′nc <

ε′

2 n
]
≤ Pd

[∑
i

Yi >
1
10ε
′n

]
+ P

[
|{i : Yi = 0, Xi 6= 1}| > 1

5ε
′n

]

≤ Pd

[∑
i

Yi >
1
10ε
′n

]
+ P

[∣∣∣∣{i ≤ ε′n : Ui ≤
1
10

}∣∣∣∣ > 1
5ε
′n

]
.

The first of these probabilities vanishes by Lemma 6.7, and the second by the Law
of Large Numbers. �

Appendix A. Metastability and limit exponential distributions

Here we state and prove a result that is required for the proof of Theorem 1.2.
The contents of this appendix are very similar to Proposition 1.2 in [Mo93]; we have
simply adapted that proposition to our setting and notation.

Lemma A.1. Let (Gn) = ((Vn, En)) be a sequence of graphs and assume that, in
each graph of the sequence, a graphical construction for the contact process with
parameter λ is defined. Assume that there exist sequences of positive numbers
(an), (bn) satisfying

(1) lim
n→∞

an = lim
n→∞

bn =∞, lim
n→∞

an
bn

= 0;

(2) lim
n→∞

sup
A⊆Gn

PGn,λ

[
ξAan 6= 0, ξAan 6= ξ

1
an

]
= 0;

(3) lim
n→∞

PGn,λ [τGn < bn] = 0.

Then, τGn/E[τGn ] converges in distribution, as n→∞, to the exponential distribu-
tion of parameter 1.

Proof. Fix ε > 0. For each n, there exists a unique number wn such that P [τGn ≤
wn] = ε. This follows from the fact that the distribution function of τGn is continuous,
which in turn is a consequence of the fact that τGn is the hitting time of state 0 for
the continuous-time Markov chain (ξVnt ). Note that, by (3), we have

(A.12) wn ≥ bn for n large enough.

We will now establish upper and lower bouds for E[τGn ]. Let us start with the
upper bound, which is easier. Since for any m,

(A.13) P [τGn > m · wn] ≤ (1− ε)m,

we have

(A.14) E[τGn ] ≤ wn ·
∞∑
m=0

P [τGn > m · wn] ≤ wn ·
∞∑
m=0

(1− ε)m ≤ wn
ε
.

For the lower bound, for each n,m ≥ 1, define

rn,m = (m−1)(wn−an), sn,m = (m−1)(wn−an)+wn, Jn,m = [rn,m, sn,m],
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so that |Jn,m| = wn and |Jn,m ∩ Jn,m+1| = an. For the contact process on Gn and
A ⊆ Gn, recall the notation

ξA,st = {x : A× {s} ↔ (x, t)} , ξ
1,s
t = {x ∈ Vn : Vn × {s} ↔ (x, t)} s ≤ t.

Define the events
En,m =

{
ξ

1,rn,m
sn,m 6= 0

}
,

Fn,m =
{
ξ

1,rn,m
sn,m = ξ

1,rn,m+1
sn,m

}
.

By the definition of wn, we have P [En,m] = 1 − ε. Also, (2) implies that the
probability P [En,m ∩ (Fn,m)c] (which does not depend on m) tends to 0 as n→∞.

Now also fix δ < 1. By (1) and (A.12), if n is large enough we have an/wn < δ
and P [En,m ∩ (Fn,m)c] < δ for any m. Then,

P [τGn > m(1− δ) · wn] ≥ P [τGn > m(wn − an)]
≥ P [τGn > sn,m]
≥ P [ ∩mi=1(En,i ∩ Fn,i) ]

≥ P [∩mi=1En,i]−
m∑
i=1

P [En,i ∩ (Fn,i)c] .

The first probability on the right-hand side is larger than (1 − ε)m by the FKG
inequality (the events (En,i)i≥1 are increasing). We thus get

(A.15) P [τGn > m(1− δ) · wn] ≥ (1− ε)m − δm.

Then, for any integer K > 0,

E[τGn ] ≥ (1− δ)wn ·
∞∑
m=1

P [τGn > m(1− δ) · wn]

≥ (1− δ)wn ·
K∑
m=1

P [τGn > m(1− δ) · wn]

≥ (1− δ)wn ·
K∑
m=1

[(1− ε)m − δm].

Now, if K is large enough and δ is small enough (depending on the earlier choice
of ε), the above finally gives our lower bound

(A.16) E[τGn ] ≥ (1− 2ε)wn
ε
.

We are now ready to conclude. Fix t > 0. On the one hand, (A.16) and (A.13) give

(A.17) P [τGn > t · E[τGn ]] ≤ P
[
τGn >

⌊
t(1− 2ε)

ε

⌋
· wn

]
≤ (1− ε)

⌊
t(1−2ε)

ε

⌋
.

On the other hand, (A.14) and (A.15) give

P [τGn > t · E[τGn ]] ≥ P
[
τGn >

⌈
t

ε(1− δ)

⌉
(1− δ) · wn

]
≥ (1− ε)

⌈
t

ε(1−δ)

⌉
− δ ·

⌈
t

ε(1− δ)

⌉
.(A.18)

With proper choices of ε and δ, both the right-hand sides of (A.17) and (A.18) can
be made arbitrarily close to e−t. This completes the proof. �
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