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SCALING LIMIT OF FLUCTUATIONS IN STOCHASTIC

HOMOGENIZATION

YU GU, JEAN-CHRISTOPHE MOURRAT

Abstract. We investigate the global fluctuations of solutions to elliptic equa-
tions with random coefficients in the discrete setting. In dimension d ⩾ 3 and
for i.i.d. coefficients, we show that after a suitable scaling, these fluctuations
converge to a Gaussian field that locally resembles a (generalized) Gaussian
free field. The paper begins with a heuristic derivation of the result, which
can be read independently and was obtained jointly with Scott Armstrong.

MSC 2010: 35B27, 35J15, 35R60, 60G60.

Keywords: quantitative homogenization, central limit theorem, Helffer-Sjöstrand
representation, Stein’s method.

1. Heuristics

The goal of this paper is to give a precise description of the fluctuations of
solutions of elliptic equations with random coefficients, in the large scale limit.
Before stating our precise assumptions and results, we present powerful heuristics
that enable to guess the results and give a better comprehension of the phenomena1.
These heuristics were obtained in collaboration with Scott Armstrong, whom we
warmly thank for letting us include this material here.

1.1. The (generalized) Gaussian free field. We start by introducing white
noise and (generalized) Gaussian free fields. These will be the fundamental ob-
jects used in the heuristic derivation of the large-scale behavior of the first-order
correction to stochastic homogenization below.

The random distribution w is a (one-dimensional) white noise with variance σ2

if for every φ ∈ C∞c (R), w(φ) is a centered Gaussian random variable with variance
σ2 ∫ φ2. (We can in fact define w(φ) for any φ ∈ L2(Rd) by density.) Informally,

E[w(x)w(y)] = σ2 δ(x − y),
where δ is a Dirac mass at the origin. More generally, the random, d-dimensional
distribution W = (W1, . . . ,Wd) is a white noise with covariance matrix Q if for every
φ = (φ1, . . . , φd) ∈ C∞c (Rd),

W (φ) ∶=W1(φ1) +⋯+Wd(φd)
is a centered Gaussian random variable with variance ∫ φ ⋅Qφ. Informally,

E[Wi(x)Wj(y)] = Qij δ(x − y).
In dimension d = 1, one way to define a Brownian motion B is to ask it to satisfy

(1.1) B′ = w,

where w is a one-dimensional white noise, and B′ denotes the derivative of B. The
Gaussian free field is a high-dimensional version of Brownian motion. By analogy
with (1.1), we may want to ask a Gaussian free field Φ to satisfy ∇Φ = W , where
W is a d-dimensional white noise. However, this does not make sense because W

1The recording of a talk presenting this is also available at http://goo.gl/5bgfpR.
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is not a gradient field; so we will instead define ∇Φ as the L2 projection of W onto
the space of gradient fields. In view of the Helmholtz-Hodge decomposition of any
vector field into a potential part and a solenoidal part:

(1.2) L2
= {∇u} ⊥⊕ {g ∶ ∇ ⋅ g = 0},

this leads us to the equation

(1.3) −∆Φ = ∇ ⋅W.

A minor variant of the construction above is to consider the Helmholtz-Hodge pro-
jection with respect to a uniform background metric given by a symmetric matrix
ah. In this case, equation (1.3) becomes

(1.4) − ∇ ⋅ ah∇Φ = ∇ ⋅W.

Since the equation is linear, one can give a mathematically precise sense of ∇Φ using
classical arguments of the theory of distributions. (In dimension one, this also gives
a sensible way to define a “Brownian motion” on the circle, i.e. a Brownian bridge,
as opposed to (1.1) which does not satisfy the compatibility condition ∫ w = 0.) We
take (1.4) as the definition of the Gaussian free field associated with ah and Q.

On the full space R
d with d ⩾ 3, one can also define Φ itself (and not only ∇Φ),

e.g. as the limit as µ tends to 0 of Φµ such that

(µ −∇ ⋅ ah∇)Φµ = ∇ ⋅W.

In this case, one can express the two-point correlation function of Φ in terms of the
Green function Gh of −∇ ⋅ ah∇ and the covariance matrix Q of W :

(1.5) E[Φ(0)Φ(x)] = ∫ ∇Gh(y) ⋅Q∇Gh(y − x)dy.
If Q happens to be a multiple of ah, then an integration by parts enables to replace
the integral above by a constant times Gh(x), and we recover the more common
definition of the Gaussian free field as a Gaussian field whose covariance kernel is
a Green function. However, for generic ah and Q, the correlation in (1.5) cannot
be expressed as a Green function. In other words, our definition of (generalized)
Gaussian free field is wider than the standard one.

It is important for the remainder of the discussion to be familiar with the scaling
and regularity properties of white noise and Gaussian free fields. As for white noise,

W (r ⋅ ) has the same law as r−
d
2 W . In particular, thinking of r → 0, we see that

zooming in on W at scale r produces a blow-up of r−
d
2 (and conversely if we think of

r → +∞). This is an indication of the fact that W has (negative) Hölder regularity
α for every α < −d

2
, and no more. In view of (1.4), the Gaussian free field Φ is

such that Φ(r ⋅ ) has the same law as r−
d
2
+1Φ, and has Hölder regularity α for

every α < −d
2
+ 1. In dimension d = 1, we recover the fact that Brownian motion

trajectories have Hölder regularity α for every α < 1
2
. In higher dimensions, the

Gaussian free field fails to have regularity 0; it only makes sense as a distribution,
but not as a function.

1.2. Homogenization and random fluctuations. We now turn to the homoge-
nization of the operator −∇⋅a∇, where a ∶ Rd → R

d×d is a random field of symmetric
matrices. We assume that the law of a is stationary and posesses very strong mix-
ing properties (e.g. finite range of dependence), and that Id ⩽ a ⩽ CId for some
constant C <∞. In this case, it is well-known that the large scale properties of the
operator −∇ ⋅ a∇ resemble those of the homogeneous operator −∇ ⋅ ah∇, for some
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constant, deterministic matrix ah. Our goal is to describe the next-order correction.
For p ∈ Rd and ◻r ∶= (− r

2
, r
2
)d ⊆ Rd, we introduce

(1.6) ν(◻r, p) ∶= inf
v∈H1

0
(◻r)
⨏◻r

1

2
(p +∇v) ⋅ a(p +∇v)

(where ⨏◻r
= ∣◻r ∣−1 ∫◻r

). This quantity is subadditive: if ◻r is partitioned into

subcubes (y +◻s)y, then ν(◻r, p) is smaller than the average over y of ν(y +◻s, p).
Indeed we can glue the minimizers of ν(y+◻s, p) and create a minimizer candidate
for ν(◻r, p). Roughly speaking, it was shown in [6] that homogenization follows
from the fact that

(1.7) ν(◻r, p) ÐÐÐ→
r→∞

1

2
p ⋅ ahp

(which itself is a consequence of the subadditve ergodic theorem). It is natural to
expect the next-order correction to homogenization to follow from the understand-
ing of the next-order correction to (1.7). However, the next-order correction to (1.7)
is driven by a boundary layer, which is of order r−1 (see [2]), and is not relevant
to the understanding of the interior behavior of solutions. We thus assume that ν

has been suitably modified into ν̃ in order to get rid of the boundary layer. After
performing this modification, we expect ν̃( ⋅ , p) to be “almost additive” [2], and
therefore that ∣◻r ∣1/2 (ν̃(◻r, p) − 1

2
p ⋅ ahp)

converges to a Gaussian random variable as r tends to infinity (as a consequence of
the strong mixing assumption on the coefficients). Closely related statements were
proved in [24, 4, 27, 25, 11]. We want to encode this information in a way that is
consistent with respect to changing the vector p, the scale r and translations of the
cube. For this purpose, we let W be a matrix-valued white noise field such that as
r becomes large,

(1.8) ν̃(x +◻r, p) ≃ 1

2
p ⋅ (ah +Wr(x)) p,

where Wr is the spatial average of W on scale r:

(1.9) Wr(x) ∶= ⨏
x+◻r

W.

(We may also think of Wr as the convolution of W with a rescaled bump function:

Wr ∶=W ⋆χ
(r), with χ ∈ C∞c (Rd,R+) such that ∫ χ = 1 and χ(r) ∶= r−dχ(⋅/r).) This

encodes in particular the fact that ν(x +◻r, p) and ν(y +◻r, q) are asymptotically
independent if x+◻r and y+◻r are disjoint. Recall that each coordinate of Wr(x)
is of order ∣◻r ∣−1/2 = r−d/2 ≪ 1. We interpret (1.8) as indicating that if a function
locally minimizes the energy over x+◻r and has average gradient p, then its energy
over x +◻r is approximately 1

2
p ⋅ (ah +Wr(x))p.

The corrector for −∇ ⋅ a∇ in the direction p is usually defined as the sublinear
function solving

−∇ ⋅ a(p +∇φ) = 0
in the whole space. We think of φ as the minimizer in the definition of ν(◻R, p),
for R extremely large (in fact, infinite), and focus our attention on understanding
the spatial average φr of φ on scale r, 1 ≪ r ≪ R. The discussion above suggests
that φr minimizes the coarsened energy function

v ↦ ⨏◻R

1

2
(p +∇v) ⋅ (ah +Wr)(p +∇v),

whose Euler-Lagrange equation is

−∇ ⋅ (ah +Wr)(p +∇φr) = 0.
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Rearranging, we obtain

−∇ ⋅ (ah +Wr)∇φr = ∇ ⋅ (Wrp).
Since Wr ≪ 1, we have ∇φr ≪ 1. Therefore, the term Wr on the left-hand side can
be neglected, and we obtain the Gaussian-free-field equation

(1.10) −∇ ⋅ ah∇φr = ∇ ⋅ (Wrp).
We summarize this heuristic computation as follows.

● We let W be the matrix-valued white noise field whose covariance is related
to the fluctuations of the energy via (1.8);
● we let Φ be the random distribution defined by

(1.11) −∇ ⋅ ah∇Φ = ∇ ⋅ (Wp) ;
● then the large-scale spatial averages of the corrector φ have about the same

law as those of Φ. In other words (and by the scale invariance of Φ), the

random distribution r
d
2
−1φ(r ⋅ ) converges in law to Φ in a suitably weak

topology, as r tends to infinity.

A similar analysis can be performed for, say, solutions of equations of the form

(1.12) −∇ ⋅ a∇u = f in R
d, d ⩾ 3,

where f ∈ C∞c (Rd) varies on scale ε−1 ≫ 1. (The function f should be of order ε2 in
order for u to be of order 1.) We consider the spatial average ur of u over scale r,
1≪ r≪ ε−1. By the same reasoning as above, we expect ur to satisfy the coarsened
equation

−∇ ⋅ (ah +Wr)∇ur = f.

We write ur = uh + ũr, where uh solves

−∇ ⋅ ah∇uh = f,

so that

−∇ ⋅ (ah +Wr)∇ũr = ∇ ⋅ (Wr∇uh).
As before, we expect the term Wr on the left-hand side to be negligible, so we
obtain

(1.13) −∇ ⋅ ah∇ũr = ∇ ⋅ (Wr∇uh).
We stress that if instead we use the formal two-scale expansion u ≃ uh +∑i φ

(i)∂iuh

and the large-scale description of the corrector in (1.10), we are led to a different
and incorrect result.

We can again summarize our conclusions as follows.

(1) We define the matrix-valued white noise field as above, according to (1.8);
(2) we let U be the random distribution defined by the equation

(1.14) −∇ ⋅ ah∇U = ∇ ⋅ (W∇uh) ;
(3) Then the large-scale averages of u − uh have about the same law as those

of U .

The random distribution U is not a (generalized) Gaussian free field per se because
the term ∇uh appearing in its defining equation varies over large scales. However,
it will have similar small-scale features. If we normalize f so that uh is of order 1,
then ∇uh is of order ε, over a length scale of order ε−1. Hence, we can think of
ε−1U as locally like a (generalized) Gaussian free field (of order 1), and being close
to 0 outside of a domain of diameter of order ε−1. Incidentally, if we make the
(unjustified) ansatz that u − uh is approximately a regularization of U on the unit
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scale (that is, if we pretend that the conclusion (3) above actually holds on the unit
scale), then we recover the (correct) error estimate

(εd ∫ ∣u − uh∣2)1/2 ≲ ∣ ε log1/2(ε−1) if d = 2,
ε if d ⩾ 3.

Mathematically speaking, a version of the statement that r
d
2
−1φ(r ⋅ ) converges

to a (generalized) Gaussian free field was proved in [23, 22]. The aim of the present
work is to prove a version of the conclusion (3) above.

Before turning to this, we want to emphasize why we believe these results to be
of practical interest. Homogenization itself is interesting since it enables to describe
approximations of solutions of equations with rapidly oscillating coefficients by solu-
tions of simple equations described by a few effective parameters. What the above
arguments show is that the same is true of the next-order correction: in order to
describe it, it suffices to know the few parameters describing the covariance of the
white noise W . The white noise W takes values in symmetric matrices, so its co-
variance matrix is fully described by N(N + 1)/2 parameters, where N = d(d+ 1)/2
(6 parameters in dimension 2, 21 parameters in dimension 3). Naturally, fewer
parameters are necessary for problems with additional symmetries.

2. Introduction

2.1. Main result. We focus on dimension 3 and higher and on a discrete setting.
Our main assumption is that the random coefficients are i.i.d. and bounded away
from 0 and infinity. Our goal is to justify the points (1-3) listed above in this
context.

In order to state our assumptions and results more precisely, we introduce some
notations. We work on the graph (Zd,B) with d ⩾ 3, where B is the set of nearest-
neighbor edges. Let e1, . . . , ed be the canonical basis in Z

d. For every edge e ∈ B,
there exists a unique pair (e, i) ∈ Zd

× {1, . . . , d} such that e links e to e + ei. We
will write ē = e + ei and e = (e, ē).

We give ourselves a family of i.i.d. random variables indexed by the edges of the
graph. For convenience, we will assume that these random variables can be built
from a family of i.i.d. standard Gaussians. More precisely, we let ζ = (ζe)e∈B ∈ Ω ∶=
R

B be i.i.d. standard Gaussian random variables, and η be a smooth function that
is bounded away from zero and infinity with bounded first and second derivatives.
The conductance associated with the edge e is then defined to be η(ζe). The space
Ω is equipped with the product Borel σ-algebra, and we denote the law of ζ by P,
with associated expectation E.

Let ã ∶ Zd
×Ω → R

d×d be the matrix-valued function such that ã(x, ζ) = diag(ã1(x, ζ), . . . , ãd(x, ζ))
with ãi(x, ζ) = η(ζ(x,x+ei)). In what follows, we will most of the time keep the de-
pendence on ζ implicit in the notation.

For any f ∶ Zd → R we define the discrete gradient ∇f ∶= (∇1f, . . . ,∇df) by
∇if(x) = f(x + ei) − f(x). For any g ∶ Zd → R

d we define the discrete divergence

∇
∗g ∶= ∑d

i=1∇
∗
i gi by ∇∗i gi(x) = gi(x − ei) − gi(x). We define ∇ε,∇

∗
ε similarly for

functions defined on εZd, i.e., ∇ε,ih(x) = ε−1(h(x + εei) − h(x)) and ∇∗ε,ih(x) =
ε−1(h(x − εei) − h(x)) for h ∶ εZd → R.

For any ε > 0, we consider the following elliptic equation with a slowly varying
source term:

(2.1) ∇
∗ã(x)∇u(x) = f(εx) (x ∈ Zd),
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where f ∈ Cc(Rd) is compactly supported and continuous. The unique solution to
(2.1) that decays to zero at infinity is given by

u(x) = ∑
y∈Zd

G(x, y)f(εy),
with G(x, y) the Green function of ∇∗ã(x)∇ (recall that the dependence on ζ is
kept implicit, so u and G are random).

We define uε(x) = ε2u(xε ), which solves

∇
∗
ε ã(x

ε
)∇εuε(x) = f(x) (x ∈ εZd),

and its limit uh, the solution of the homogenized equation in continuous space:

−∇ ⋅ ah∇uh(x) = f(x) (x ∈ Rd),
where the homogenized matrix ah is deterministic and constant in space.

We are interested in the random fluctuations of uε after a spatial average. In

other words, we think of uε as a (random) distribution U
(f)
ε , which acts on a test

function g ∈ Cc(Rd) as

(2.2) U
(f)
ε (g) ∶= εd ∑

x∈εZd

uε(x)g(x) = εd+2 ∑
x,y∈Zd

G(x, y)g(εx)f(εy).
Following [21], for any α < 0, we denote by Cαloc = C

α
loc(Rd) the (separable) local

Hölder space of regularity α. Here is our main result.

Theorem 2.1. Recall that d ⩾ 3. We define the random distribution U
(f)
ε by

U
(f)
ε (g) = ε− d

2 (U(f)ε (g) −E{U(f)ε (g)}).
For every α < −d, the distribution U

(f)
ε converges in law to U

(f) as ε → 0 for the

topology of Cαloc, where U
(f) is the Gaussian random field such that for g ∈ Cc(Rd),

U
(f)(g) is a centered Gaussian with variance

(2.3) σ2
g = ∫

R2d
Kf(x, z)g(x)g(z)dxdz

with Kf given explicitly by (3.7).

Remark 2.2. We can write the solution to (1.14) formally as

U (x) = ∫
Rd
Gh(x − y)∇ ⋅ (W (y)∇uh(y))dy

= ∫
R2d
∇Gh(x − y) ⋅W (y)∇Gh(y − z)f(z)dzdy,

where Gh is the Green function associated with −∇ ⋅ ah∇. By a straightforward
calculation, this random distribution tested with g has a Gaussian distribution
with mean zero and variance given by

E{∣∫
Rd

U (x)g(x)dx∣2} = ∫
R2d

Kf(x, z)g(x)g(z)dxdz,
provided the covariance of the white noise W is given by {K̃ijkl} that appears in

the definition of Kf(x, z). In other words, the limiting distribution U
(f) obtained

in Theorem 2.1 can be represented as the solution of (1.14).

Remark 2.3. Theorem 2.1 implies the joint convergence in law of (U (f1)
ε , . . . ,U

(fk)
ε )

to a Gaussian vector field whose covariance structure is obtained by polarization of
f ↦Kf . Indeed, this follows from the fact that Theorem 2.1 gives the scaling limit

of any linear combination of U
(f1)
ε , . . . ,U

(fk)
ε , by linearity of f ↦ U

(f)
ε .
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Remark 2.4. A similar result is proved in [15] when d = 1, using a different method.
In this case, U in (1.14) has Hölder regularity α for every α < 1

2
, so it makes sense

as a function. We expect the result to hold for d = 2 as well, but our method would
have to be modified to handle the fact that only the gradient of u is really defined
by (2.1) in this case.

Theorem 2.1 is a consequence of the following two propositions.

Proposition 2.5. For every g ∈ Cc(Rd), U
(f)
ε (g) converges in law to U

(f)(g) as

ε→ 0.

Remark 2.6. In fact, when σ2
g ≠ 0, our proof gives a rate of convergence of U

(f)
ε (g)

to U
(f)(g), see Remark 4.8 below.

Proposition 2.7. For every α < −d, the family (U (f)
ε )ε∈(0,1] is tight in Cαloc.

2.2. Context. Stochastic homogenization of divergence form operators started from
the work of Kozlov [17] and Papanicolaou-Varadhan [26], where a qualitative con-
vergence of heterogeneous random operators to homogeneous deterministic ones
is proved. Quantitative aspects were explored as early as in [28]. However, opti-
mal bounds on the size of errors were obtained only recently in a series of papers
[12, 13, 20, 8, 9, 14, 7]. Regularity estimates that are optimal in terms of stochastic
integrability have been worked out in [1, 3, 9].

Our focus in this paper is to go beyond estimating the size of the errors, and un-
derstand the probability law of the rescaled random fluctuations. In this direction,
central limit theorems for approximations of homogenized coefficients are obtained
in [24, 4, 27, 25, 11]. The scaling limit of the corrector is investigated in [23, 22]. In
the continuous setting, [16] indicates that when d ⩾ 3, the corrector should capture
the first order fluctuation of the heterogeneous solution in a pointwise sense, but
it is not clear whether it captures the fluctuations of the solution after a spatial
average. A surprising feature of our result is that the limiting fluctuations are not

those induced by the corrector alone.

Our approach is based on that of [23, 22]. The fact that U
(f)
ε (g) divided by

its standard deviation converges to a standard Gaussian is derived using a second
order Poincaré inequality developed by Chatterjee [5], in the spirit of Stein’s method.
(We will in fact use a slightly more convenient form of this result derived in [22].)

The main difficulty lies in the proof of the convergence of the variance of U
(f)
ε (g).

A Helffer-Sjöstrand formula enables to rewrite this variance in terms of gradients
of the Green function. A quantitative two-scale expansion for the gradient of the
Green function was worked out in [23]. Here, we follow the idea of [10] of introducing
a stationary skew-symmetric tensor, which is denoted by {σijk}di,j,k=1 and relates

to the flux (see Lemma 4.5). In the language of differential forms, the flux in the
i-th direction is a co-closed 1-form, and we represent it as the co-differential of the
2-form σi. This object enables us to represent the error in the two-scale expansion
in divergence form, and thus significantly improve the two-scale expansion and
simplify the subsequent analysis.

2.3. Organization of the paper. The rest of the paper is organized as follows.
We introduce basic notation and recall key estimates on correctors and Green func-
tions in Section 3. Then we present some key ingredients in proving Theorem 2.1 in
Section 4, including the Helffer-Sjöstrand covariance representation, a quantitative
two-scale expansion of the Green function and a second order Poincaré inequal-
ity. The proofs of Propositions 2.5 and 2.7 are contained in Sections 5, 6 and 7.
Technical lemmas are left in the appendix.
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3. Setup

3.1. Asymptotic variance. For x ∈ Zd, we define the shift operator τx on Ω by(τxζ)e = ζx+e, where x + e ∶= (x + e, x + ē) is the edge obtained by shifting e by x.
Since {ζe}e∈B are i.i.d., {τx}x∈Zd is a group of measure-preserving transformations.
With any measurable function f ∶ Ω → R, we can associate a stationary random
field f̃(x, ζ) defined by

(3.1) f̃(x, ζ) = (Txf)(ζ) = f(τxζ).
The generators of Tx, denoted by {Di}di=1, are defined by Dif ∶= Teif − f . The
adjoint D∗i is defined by D∗i f ∶= T−eif − f . We denote the gradient on Ω by D =(D1, . . . ,Dd) and the divergence D∗g ∶= ∑d

i=1D
∗
i gi for g ∶ Ω → R

d. The inner
product in L2(Ω) and norm in Lp(Ω) are denoted by ⟨⋅, ⋅⟩ and ∥ ⋅ ∥p respectively.

Most of the time, we keep the dependence on ζ implicit and write f̃(x) = f̃(x, ζ) =
f(τxζ). For any e ∈ B, the discrete derivative on e is defined by ∇f̃(e) ∶= f̃(ē)− f̃(e).
If e is in the i−th direction, we define ξ(e) ∶= ξi for any ξ ∈ Rd, as the projection of
ξ onto e.

For the random coefficients appearing in (2.1), we can define

a(ζ) = diag(a1(ζ), . . . , ad(ζ)) ∶= diag(η(ζe1), . . . , η(ζed))
so that ã(x, ζ) = a(τxζ) = diag(η(ζx+e1), . . . , η(ζx+ed)). Note that we also used
e1, . . . , ed to denote the corresponding edges (0, e1), . . . , (0, ed). Recall that we
assume that C−1 < η < C and ∣η′∣, ∣η′′∣ < C for some C <∞. For simplicity we will
henceforth write ae = η(ζe).

Under the above assumptions, it is well-known that there exists a constant matrix
ah such that the operator ∇∗ã∇ homogenizes over large scale to the continuous
operator −∇ ⋅ ah∇, the Green function of which we denote as Gh.

One of the main ingredients in the analysis of stochastic homogenization is the
so-called corrector. For any fixed ξ ∈ Rd and λ > 0, the regularized corrector φλ,ξ is
defined through the following equation on probability space:

(3.2) λφλ,ξ +D
∗a(Dφλ,ξ + ξ) = 0.

It is proved in [12] that as λ → 0, φλ,ξ → φξ in L2(Ω), i.e., a stationary corrector
φξ exists such that

(3.3) D∗a(Dφξ + ξ) = 0.
For i = 1, . . . , d, we will write φi = φei and φλ,i = φλ,ei . The homogenized matrix ah
is given by

(3.4) ξTahξ = E{(ξ +Dφξ)Ta(ξ +Dφξ)}.
In the context of i.i.d. randomness, we have ah = āId for some constant ā, where Id
is the identity matrix.

For a random variable F ∈ L2(Ω), we say that U = ∂eF ∈ L
2(Ω) is the weak

derivative of F with respect to ζe if the following holds: for any finite subset Λ ∈ B

and any smooth, compactly supported function G ∶ R∣Λ∣ → R, we have

(3.5) E{UG(ζ)} = E{FζeG(ζ)} −E{F ∂G

∂ζe
(ζ)},

where G(ζ) depends only on {ζe′}e′∈Λ. We also call ∂e the vertical derivative, and
by (3.5), its adjoint (under the Gaussian measure) is

∂∗e = −∂e + ζe.
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We define ∂f ∶= (∂ef)e∈B and for F = (Fe)e∈B, ∂∗F ∶= ∑e∈B ∂
∗
eFe. The vertical

Laplacian on the probability space is then defined by

L ∶= ∂∗∂.

For i, j, k, l = 1, . . . , d, define

Kijkl(e) ∶= ⟨∂eae(ei+∇φ̃i)(e)(ej+∇φ̃j)(e), (1+L )−1∂eae(ek+∇φ̃k)(e)(el+∇φ̃l)(e)⟩,
and

(3.6) K̃ijkl ∶=

d∑
n=1

Kijkl(en).
The kernel Kf(x, z) appearing in Theorem 2.1 is given by
(3.7)

Kf(x, z) = d∑
i,j,k,l=1

K̃ijkl ∫
R3d

∂xi
Gh(v − x)∂xj

Gh(v − y)∂xk
Gh(v − z)∂xl

Gh(v −w)
f(y)f(w)dydwdv.

3.2. A comparison with the two-scale expansion. Let us see that the global
fluctuations of uε are not those suggested by its two-scale expansion. Recall that
uε and uh satisfy

∇
∗
ε ã(x

ε
)∇εuε(x) = f(x) (x ∈ εZd),

and

−∇ ⋅ ah∇uh(x) = f(x) (x ∈ Rd).
A formal two-scale expansion gives

(3.8) uε(x) = uh(x) + ε∇uh(x) ⋅ φ(x
ε
) + o(ε),

where φ = (φ1, . . . , φd). In the continuous setting, (3.8) is proved rigorously with
o(ε)/ε→ 0 in L1(Ω) for fixed x [16, Theorem 2.3], i.e., the first order correction is
indeed given by the corrector in a pointwise sense. Since φ is centered, we have a
similar expansion for the random fluctuation, i.e.,

uε(x) = E{uε(x)} + ε∇uh(x) ⋅ φ(x
ε
) + o(ε).

Concerning global fluctuations, we need to compare the random field uε(x) −
E{uε(x)} with ε∇uh(x) ⋅ φ(xε ). For a test function g ∈ Cc(Rd), Theorem 2.1 shows

(3.9) ε
d
2 ∑
x∈εZd

(uε(x) − E{uε(x)})g(x) ⇒ N(0, σ2
g),

with σ2
g = ∫R2d Kf(x, z)g(x)g(z)dxdz. By [22, Theorem 1.1], we have

ε
d
2 ∑
x∈εZd

ε∇uh(x) ⋅ φ(x
ε
)g(x) ⇒N(0, σ̃2

g),
with σ̃2

g = ∫R2d K̃f(x, z)g(x)g(z)dxdz and
(3.10)

K̃f(x, z) = d∑
i,j,k,l=1

K̃ijkl ∫
R3d

∂xi
Gh(v − x)∂xj

Gh(x − y)∂xk
Gh(v − z)∂xl

Gh(z −w)
f(y)f(w)dydwdv.

If σ2
g and σ̃2

g were equal for every admissible f and g, then

d∑
i,j,k,l=1

K̃ijkl ∫
Rd

∂xi
Gh(v − x)∂xj

Gh(v − y)∂xk
Gh(v − z)∂xl

Gh(v −w)dv
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and
d∑

i,j,k,l=1

K̃ijkl ∫
Rd

∂xi
Gh(v − x)∂xj

Gh(x − y)∂xk
Gh(v − z)∂xl

Gh(z −w)dv
would have to be equal almost everywhere (as functions of x, y, z and w). However,
the first quantity diverges when y gets close to w since d ⩾ 3, while this is not so for
the second quantity. This shows that the fluctuations of uε are not those suggested
by the two-scale expansion.

The heuristics in Section 1 provide a clear picture of the above phenomenon

(other than the explanation that o(ε) may contribute on the level of ε
d
2 when

d ⩾ 3). If we write the solution to (1.11) as Φ(x) = ∫Rd ∇Gh(x − y) ⋅W (y)pdy, the
rescaled limit of the corrector ε∇uh(x) ⋅ φ(xε ) is

(3.11) ε−
d
2
+1
∇uh(x) ⋅ φ(x

ε
) → ∫

Rd
∇Gh(x − y) ⋅W (y)∇uh(x)dy,

and we already know from Remark 2.2 that the rescaled limit of uε(x) −E{uε(x)}
is

(3.12) ε−
d
2 (uε(x) −E{uε(x)}) → ∫

Rd
∇Gh(x − y) ⋅W (y)∇uh(y)dy.

Comparing the r.h.s. of (3.11) and (3.12), it is clear that they are two different
Gaussian random fields. We further observe that they are linked through a Taylor
expansion of ∇uh(y) around x. By writing

∇uh(y) = ∇uh(x) +∇2uh(x)(y − x) + . . . ,
with ∇2uh(x) the Hessian of uh, we have

(3.13)

∫
Rd
∇Gh(x − y) ⋅W (y)∇uh(y)dy

=∫
Rd
∇Gh(x − y) ⋅W (y)∇uh(x)dy

+ ∫
Rd
∇Gh(x − y) ⋅W (y)∇2uh(x)(y − x)dy + . . . .

The term ∫Rd ∇Gh(x − y) ⋅W (y)∇2uh(x)(y − x)dy should correspond to the second
order corrector obtained by the two-scale expansion, and we also expect those higher
order terms appearing in (3.13) to correspond to the rescaled limit of the higher
order correctors (provided that they are stationary). It does not seem possible
to simply add a finite number of terms in the two-scale expansion to recover the
correct limiting field.

3.3. Properties of correctors and Green functions. We summarize here sev-
eral results obtained in [12, 18] which will be used frequently throughout the paper.
Let ∣x∣ be the norm of x ∈ Zd, and ∣x∣∗ = 2 + ∣x∣.
Proposition 3.1 (Existence of stationary corrector and moment bounds [12]). Re-

call that we assume d ⩾ 3. For every λ > 0, there exists a unique stationary solution

φλ,ξ to equation (3.2). Moreover, for every p ⩾ 1, E{∣φλ,ξ ∣p} and E{∣Dφλ,ξ ∣p} are

uniformly bounded in λ > 0. The limit φξ = limλ→0 φλ,ξ is well-defined in Lp(Ω)
and is the unique centered stationary solution to (3.3).

Denote by Gλ(x, y) the Green function of λ + ∇∗ã(x)∇ (the dependence on the
randomness ζ is kept implicit) and recall that G(x, y) = G0(x, y). The following
pointwise bound holds:

Gλ(x, y) ⩽ C∣x∣d−2∗ e−c
√
λ∣x∣

for some c,C > 0. The following result controls the derivatives in the annealed
sense.
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Proposition 3.2 (annealed estimates on the gradients of the Green function [18]).
For every 1 ⩽ p < ∞, there exists Cp < ∞ such that for every λ ⩾ 0 and every

e, e′ ∈ B,

∥∇Gλ(0, e)∥p ⩽ Cp∣e∣d−1∗ ,

∥∇∇Gλ(e, e′)∥p ⩽ Cp∣e′ − e∣d∗ .

Remark 3.3. Notice that ∇G(x, e) (for x ∈ Z
d and e ∈ B) denotes the gradient

of G(x, ⋅) evaluated at the edge e. Similarly, ∇∇G(e, e′) denotes the gradient of
∇G(⋅, e′) evaluated at the edge e.

3.4. Notation. We summarize and introduce some more notations used through-
out the paper.

● For i = 1, . . . , d, e ∈ B and f̃ , ∇if̃(e) ∶= ∇if̃(e). Recall that without any

subscript, ∇f̃(e) = f̃(ē) − f̃(e), and for x ∈ Zd, ∇if̃(x) = f(x + ei) − f(x)
and ∇∗i f̃(x) = f(x − ei) − f(x).
● We write a ≲ b when a ⩽ Cb for some constant C independent of ε, e, x.
● For a, b, c > 0, we write a ≲ 1

bc−
if for any δ > 0, there exists Cδ > 0 such that

a ⩽ Cδ
1

bc−δ
. In this way we have

log ∣x∣∗∣x∣c∗ ≲
1∣x∣c−∗ .

● The Laplacian on Z
d and the horizontal Laplacian on the probability space

are both denoted by ∆ = −∇∗∇ and ∆ = −D∗D.
● For a random environment ζ and edge e ∈ B, we obtain the environment

perturbed at e by replacing ζe with an independent copy ζ′e without chang-
ing other components (ζe′)e′≠e. The resulting new environment is denoted
by ζe.
● For a random variable f and an edge e ∈ B, the variable perturbed at e is

denoted by fe(ζ) ∶= f(ζe). For a stationary random field f̃(x) = f(τxζ),
the field perturbed at e is denoted by f̃e(x) ∶= f(τxζe).
● The discrete homogenized Green function of λ+∇∗ah∇ is denoted by Gh,λ(x, y)

for λ ⩾ 0, and Gh(x, y) = Gh,0(x, y). Recall that the heterogeneous Green
function of λ + ∇∗ã∇ is denoted by Gλ(x, y), and that G(x, y) = G0(x, y).
The continuous homogenized Green function of −∇ ⋅ ah∇ is Gh(x, y).
● {ei, i = 1, . . . , d} represents the canonical basis of Z

d, the corresponding
edges, and the column vectors so that the identity matrix Id = [e1, . . . , ed].
● For functions of two variables, e.g., G(x, y) with x, y ∈ Zd, we use ∇x,i,∇y,i

to denote the derivative with respect to xi, yi respectively.
● The arrow ⇒ stands for convergence in law, and N(0, σ2) is the Gaussian

law with mean 0 and variance σ2.
● a ∨ b =max(a, b) and a ∧ b =min(a, b).

4. Helffer-Sjöstrand representation, two-scale expansion of the

Green function, and second order Poincaré inequality

We divide the proof of Proposition 2.5 into two steps. First, we show that

(4.1) ε−dVar{U(f)ε (g)}→ σ2
g ,
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with σ2
g defined in (2.3). If σ2

g = 0, we conclude U
(f)
ε (g) → 0 in L2(Ω). Next we

assume σ2
g > 0 and show

(4.2)
U
(f)
ε (g) −E{U(f)ε (g)}√

Var{U(f)ε (g)} ⇒ N(0,1).
Once this is done, we can write

U
(f)
ε (g) = U(f)ε (g) −E{U(f)ε (g)}√

Var{U(f)ε (g)} ×

√
ε−dVar{U(f)ε (g)}

to conclude that U
(f)
ε (g)⇒ N(0, σ2

g).
The proof of (4.1) uses the Helffer-Sjöstrand representation and a two-scale ex-

pansion of the Green function, while the proof of (4.2) relies the second order
Poincaré inequality developed by Chatterjee [5] and revisited in [22]. Both of them

require taking vertical derivatives of U
(f)
ε (g) with respect to the underlying Gauss-

ian variables ζe. Recall that U
(f)
ε (g) = εd+2∑x,y∈Zd G(x, y)g(εx)f(εy) is a finite

linear combination of G(x, y). By Lemma A.1, we have

∂eU
(f)
ε (g) = −εd+2 ∑

x,y∈Zd

∂eae∇G(x, e)∇G(y, e)g(εx)f(εy).
We introduce the key elements in proving (4.1) and (4.2) in the following section.

4.1. Helffer-Sjöstrand representation and a two-scale expansion of the
Green function.

Proposition 4.1 (Helffer-Sjöstrand representation [23]). Let f, g ∶ Ω → R be cen-

tered square-integrable functions such that for every e ∈ B, ∂ef, ∂eg ∈ L
2(Ω). We

have ⟨f, g⟩ =∑
e∈B

⟨∂ef, (1 +L )−1∂eg⟩.
Moreover, for every p ⩾ 2, (1 +L )−1 is a contraction from Lp(Ω) to Lp(Ω).

Since

U
(f)
ε (g) = εd+2 ∑

x,y∈Zd

G(x, y)g(εx)f(εy),
the proof of (4.1) is reduced to asymptotics of Cov{G(x, y),G(z,w)} when the
mutual distances between x, y, z and w are large. By applying Proposition 4.1 and
Lemma A.1, the covariance is given by

Cov{G(x, y),G(z,w)} =∑
e∈B

⟨∂eG(x, y), (1 +L )−1∂eG(z,w)⟩
=∑
e∈B

⟨∂eae∇G(x, e)∇G(y, e), (1 +L )−1∂eae∇G(z, e)∇G(w, e)⟩.
To prove the asymptotics, we need an expansion of ∇G(x, e). The following proposi-
tion is our main result in this section and one of the main ingredients to prove (4.1).

Proposition 4.2. Recall that G and Gh are the Green functions of ∇∗ã∇ and

∇
∗ah∇ respectively. For any e ∈ B, we have

∥∇G(0, e) −∇Gh(e) − d∑
k=1

∇kGh(e)∇φ̃k(e)∥2 ≲ log ∣e∣∗∣e∣d∗ .
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An immediate consequence is that for any X ∈ L2(Ω),
(4.3) ∣⟨X,∇G(0, e)⟩ − d∑

k=1

∇kGh(e)⟨X, (ek +∇φ̃k)(e)⟩∣ ≲ ∥X∥2 log ∣e∣∗∣e∣d∗ .

By translation invariance of the environment, we further obtain for any x ∈ Zd

(4.4) ∣⟨X,∇G(x, e)⟩ − d∑
k=1

∇kGh(e − x)⟨X, (ek +∇φ̃k)(e)⟩∣ ≲ ∥X∥2 log ∣e − x∣∗∣e − x∣d∗ .

Remark 4.3. (4.3) is an improvement of [23, Theorem 5.1].

To prove Proposition 4.2, we introduce the flux corrector, following [10]. For
every i = 1, . . . , d, define qi = a(ei +Dφi) − ahei, which describes the current correc-
tion, and qij to be its j−th component. By the corrector equation (3.3), we have
D∗qi = 0, and by the expression of ah in (3.4), E{qij} = 0.

We need the following integrability property.

Lemma 4.4. Fix any i, j, k = 1, . . . , d. For λ > 0, let σλ solve

(λ −∆)σλ =Dkqij ,

then σλ is bounded in L4(Ω) uniformly in λ, i, j, k. Furthermore, σλ converges in

L2(Ω) with the limit σ ∈ L4(Ω) and solving

−∆σ =Dkqij .

Proof. We first apply the spectral gap inequality in the form given by Lemma A.2
to σλ and obtain

E{σ4
λ} ≲ (∑

e∈B

√
E{∣σλ − σ

e
λ
∣4})2 .

Then we compute σλ −σ
e
λ for fixed e ∈ B. Let G∆,λ be the Green function of λ−∆,

we have

σλ = σ̃λ(0) = ∑
y∈Zd

G∆,λ(0, y)∇kq̃ij(y),
σe
λ = σ̃

e
λ(0) = ∑

y∈Zd

G∆,λ(0, y)∇kq̃
e
ij(y).

Since qij is the j-th component of a(ei +Dφi) − ahei and ah = āId, we have qij =

aj1i=j + ajDjφi − ā1i=j , which implies

∣q̃ij(y) − q̃eij(y)∣ ≲ 1y=e(1 + ∣∇j φ̃i(y)∣) + ∣∇j φ̃i(y) −∇j φ̃
e
i (y)∣.

Now we have

∣σλ − σ
e
λ∣ ≲ ∑

y∈Zd

∣∇∗kG∆,λ(0, y)∣ (1y=e(1 + ∣∇j φ̃i(y)∣) + ∣∇j φ̃i(y) −∇j φ̃
e
i (y)∣)

=∣∇∗kG∆,λ(0, e)∣(1 + ∣∇j φ̃i(e)∣) + ∑
y∈Zd

∣∇∗kG∆,λ(0, y)∣∣∇j φ̃i(y) −∇j φ̃
e
i (y)∣

∶=I1 + I2,

so
√
E{∣σλ − σ

e
λ
∣4} ≲√E{∣I1∣4} +√E{∣I2∣4}. The homogeneous Green function sat-

isfies ∣∇∗kG∆,λ(0, x)∣ ≲ ∣x∣1−d∗ , thus
√
E{∣I1∣4} ≲ ∣e∣2−2d∗ by Proposition 3.1. For I2,

we write

∣I2∣4 = ∑
y1,y2,y3,y4∈Z

d

4∏
n=1

∣∇∗kG∆,λ(0, yn)∣∣∇j φ̃i(yn) − ∇j φ̃
e
i (yn)∣,
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and by Lemmas A.3 and A.6 we have

E{∣I2∣4} ≲ ⎛⎝∑y∈Zd

1∣y∣d−1∗
1∣y − e∣d∗
⎞⎠
4

≲
1

∣e∣(4d−4)−∗
,

so
√
E{∣I2∣4} ≲ 1/∣e∣(2d−2)−∗ . In summary, we have

E{σ4
λ} ≲ ⎛⎝∑e∈B

1

∣e∣(2d−2)−∗

⎞⎠
2

,

and since d ⩾ 3, we conclude E{σ4
λ} ≲ 1.

To show the convergence of σλ in L2(Ω), we only need to prove that ⟨σλ1
, σλ2
⟩

converges as λ1, λ2 → 0. By the Green function representation, we have

⟨σλ1
, σλ2
⟩ = ∑

y1,y2∈Z
d

∇
∗
kG∆,λ1

(0, y1)∇∗kG∆,λ2
(0, y2)E{q̃ij(y1)q̃ij(y2)}.

By Lemma A.4, ∣E{q̃ij(y1)q̃ij(y2)}∣ ≲ 1

∣y1−y2∣d−∗
. Furthermore ∣∇∗kG∆,λ(0, y)∣ ≲ ∣y∣1−d∗ ,

by the dominated convergence theorem, we have

⟨σλ1
, σλ2
⟩ → ∑

y1,y2∈Z
d

∇
∗
kG∆,0(0, y1)∇∗kG∆,0(0, y2)E{q̃ij(y1)q̃ij(y2)}.

Therefore, σλ converges in L2(Ω). Its limit σ is in L4(Ω) by Fatou’s lemma. By
sending λ → 0 in (λ − ∆)σλ = Dkqij , we obtain −∆σ = Dkqij , and the proof is
complete. �

We can now define the flux corrector {σijk, i, j, k = 1, . . . , d}:
Lemma 4.5. There exists a tensor field {σijk, i, j, k = 1, . . . , d} such that

● σijk = −σikj ,

● σijk ∈ L
4(Ω),

● −∆σijk =Dkqij −Djqik and ∑d
k=1 D

∗
kσijk = qij.

Proof. For every i, j, k = 1, . . . , d and λ > 0, we consider the equation

(4.5) (λ −∆)σλ
ijk =Dkqij −Djqik.

Lemma 4.4 ensures that E{∣σλ
ijk ∣4} ≲ 1, that σλ

ijk converges in L2(Ω), and denoting

the limit by σijk , we have σijk ∈ L
4(Ω) with −∆σijk =Dkqij −Djqik.

The skew symmetry σijk = −σikj is clear by (4.5).

To show ∑d
k=1D

∗
kσijk = qij , it suffices to prove ∆(∑d

k=1 D
∗
kσijk − qij) = 0. Indeed,

D(∑d
k=1D

∗
kσijk − qij) = 0 implies ∑d

k=1 D
∗
kσijk − qij = const by ergodicity, and since

E{∑d
k=1D

∗
kσijk} = E{qij} = 0, we have ∑d

k=1D
∗
kσijk = qij . Now we consider

∆( d∑
k=1

D∗kσijk − qij) = lim
λ→0

∆( d∑
k=1

D∗kσ
λ
ijk − qij)

= lim
λ→0

d∑
k=1

D∗k(Djqik −Dkqij + λσ
λ
ijk) −∆qij .

Since∑d
k=1D

∗
kqik = 0 and σλ

ijk is uniformly bounded in L4(Ω), we have∆(∑d
k=1D

∗
kσijk−

qij) = 0, and this completes the proof. �

Proof of Proposition 4.2. We follow the proof of [23, Theorem 5.1], but use the flux
corrector as in [10] to simplify calculations. Define

z(x) ∶= G(0, x) −Gh(x) − d∑
k=1

∇kGh(x)φ̃k(x),
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as the remainder in the two-scale expansion of the Green function, the matrix
function R ∶= −[q1, . . . , qd] by

R̃ij(x) = −q̃ji(x) = ā1i=j − ãi(x)(1i=j +∇iφ̃j(x)),
and h̃ ∶ Zd → R by

h̃(x) = − d∑
i=1

∇
∗
i

⎛⎝ãi(x)
d∑

j=1

φ̃j(x + ei)∇i∇jGh(x)⎞⎠ .
By [23, Proposition 5.6], we have

(4.6) z(x) = ∑
y∈Zd

G(x, y) d∑
i,j=1

R̃ij(y − ei)∇∗i∇jGh(y) + ∑
y∈Zd

G(x, y)h̃(y).
Consider the first term on the right-hand side of (4.6). Since Rij = −qji = −∑d

k=1D
∗
kσjik

by Lemma 4.5, we can write

d∑
i,j=1

R̃ij(y − ei)∇∗i∇jGh(y) = − d∑
i,j,k=1

∇
∗
kσ̃jik(y − ei)∇∗i∇jGh(y)

= −

d∑
i,j,k=1

∇
∗
k(σ̃jik(y − ei)∇∗i∇jGh(y)),

where the last equality uses the fact ∇∗k(f(x)g(x)) = ∇∗kf(x)g(x)+f(x−ek)∇∗kg(x)
and σjik+σjki = 0. Therefore, by using the flux corrector σ, we can write∑d

i,j=1 R̃ij(y−
ei)∇∗i∇jGh(y) in divergence form. Note that h̃ is in divergence form. An integra-
tion by parts leads to

z(x) = − ∑
y∈Zd

d∑
k=1

∇y,kG(x, y) d∑
i,j=1

σ̃jik(y − ei)∇∗i∇jGh(y)
− ∑

y∈Zd

d∑
i=1

∇y,iG(x, y)ãi(y) d∑
j=1

φ̃j(y + ei)∇i∇jGh(y),
so for e ∈ B, we have

∇z(e) = − ∑
y∈Zd

d∑
k=1

∇∇y,kG(e, y) d∑
i,j=1

σ̃jik(y − ei)∇∗i∇jGh(y)
− ∑

y∈Zd

d∑
i=1

∇∇y,iG(e, y)ãi(y) d∑
j=1

φ̃j(y + ei)∇i∇jGh(y).
Note that

∇iz(x) =∇iG(0, x) −∇iGh(x) − d∑
k=1

(∇iφ̃k(x)∇kGh(x) + φ̃k(x + ei)∇i∇kGh(x))
=(∇iG(0, x) −∇iGh(x) − d∑

k=1

∇iφ̃k(x)∇kGh(x)) − d∑
k=1

φ̃k(x + ei)∇i∇kGh(x),
and moreover, by the moments bounds on φk provided by Proposition 3.1 and the
fact that ∣∇i∇jGh(x)∣ ≲ ∣x∣−d∗ , we have

∥φ̃k(x + ei)∇i∇kGh(x)∥2 ≲ 1∣x∣d∗ ≲
log ∣x∣∗∣x∣d∗ .

As a consequence, in order to prove Proposition 4.2, it is enough to show that

(4.7) ∥∇z(e)∥2 ≲ log ∣e∣∗∣e∣d∗ .
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In order to prove (4.7), we note that ∇z(e) is a finite linear combination of terms
in the form∑y∈Zd ∇∇y,kG(e, y)f(y)∇∗i∇jGh(y) or∑y∈Zd ∇∇y,kG(e, y)f(y)∇i∇jGh(y)
for some i, j, k and f . Clearly, they can be bounded by∑y∈Zd ∣∇∇y,kG(e, y)f(y)∣∣y∣−d∗ ,
so we have

∥∇z(e)∥2 ≲∥ ∑
y∈Zd

∣∇∇y,kG(e, y)f(y)∣∣y∣−d∗ ∥2
⩽ ∑
y∈Zd

∣y∣−d∗ ∥∇∇y,kG(e, y)f(y)∥2
⩽ ∑
y∈Zd

∣y∣−d∗ ∥∇∇y,kG(e, y)∥4∥f(y)∥4.
When f = σ̃jik or ãiφ̃j , ∥f(y)∥4 is uniformly bounded by Lemma 4.5 and Proposi-
tion 3.1, thus by applying Proposition 3.2 and Lemma A.6, we obtain

∥∇z(e)∥2 ≲ ∑
y∈Zd

1∣y∣d∗
1∣y − e∣d∗ ≲

log ∣e∣∗∣e∣d∗ .

The proof of Proposition 4.2 is complete. �

4.2. Second-order Poincaré inequality. Let dK be the Kantorovich-Wasserstein
distance

dK(X,Y ) = sup{E{h(X)}−E{h(Y )} ∶ ∥h′∥∞ ⩽ 1}.
In order to show that the rescaled fluctuations are asymptotically Gaussian, we will
use the following result.

Proposition 4.6. [22, Proposition 2.1] Let F ∈ L2(Ω) be such that E{F} = 0 and

E{F 2} = 1. Assume also that F has weak derivatives satisfying ∑eE{∣∂eF ∣4} 1

2 <∞

and E{∣∂e∂e′F ∣4} <∞ for all e, e′ ∈ B. Let Y ∼ N(0,1). Then

(4.8) dK(F,Y ) ⩽
√

5

π

¿ÁÁÁÀ∑
e′∈B

(∑
e∈B

∥∂eF ∥4∥∂e∂e′F ∥4)2.
Using the above result, we only need to show the following lemma to prove (4.2).

Lemma 4.7. Let

(4.9) κ2
∶= ∑

e′∈B

(∥∂eU(f)ε (g)∥4∑
e∈B

∥∂e∂e′U(f)ε (g)∥4)
2

.

If σ2
g defined in (2.3) is not zero, then

κ2

Var2{U(f)ε (g)} ≲ εd∣ log ε∣2.

Remark 4.8. By Proposition 4.6 and Lemma 4.7, if σ2
g ≠ 0, then we actually obtain

the convergence rate

dK
⎛⎜⎝
U
(f)
ε (g) −E{U(f)ε (g)}√

Var{U(f)ε (g)} ,N(0,1)⎞⎟⎠ ≲ ε
d
2 ∣ log ε∣.
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5. Convergence of the variance

The aim of this section is to prove (4.1).

Recall that U
(f)
ε (g) = εd+2∑x,y∈Zd G(x, y)g(εx)f(εy), so

Var{U(f)ε (g)} =ε2d+4 ∑
x,y,z,w∈Zd

Cov{G(x, y),G(z,w)}g(εx)f(εy)g(εz)f(εw)
=ε2d+4 ∑

x,y,z,w∈εZd

Cov{G(x
ε
,
y

ε
),G(z

ε
,
w

ε
)}g(x)f(y)g(z)f(w).

The covariance is given explicitly by the Helffer-Sjöstrand representation

(5.1) Cov{G(x, y),G(z,w)} =∑
e∈B

⟨∂eG(x, y), (1 +L )−1∂eG(z,w)⟩,
and since ∂eG(x, y) = −∂eae∇G(x, e)∇G(y, e) by Lemma A.1, (5.1) is rewritten as

(5.2)

Cov{G(x, y),G(z,w)}
=∑
e∈B

⟨∂eae∇G(x, e)∇G(y, e), (1 +L )−1∂eae∇G(z, e)∇G(w, e)⟩.
To prove the convergence of ε−dVar{U(f)ε (g)}, we use the two-scale expansion of the
Green function obtained in Proposition 4.2. For e ∈ B, xi ∈ Z

d, i = 1,2,3,4, define

(5.3) E(x1, x2, x3, x4) ∶=∑
e∈B

4∑
i=1

log ∣e − xi∣∗∣e − xi∣d∗
4∏

j=1,j≠i

1∣e − xj ∣d−1∗
and

K(x, y, z,w) ∶= d∑
i,j,k,l=1

K̃ijkl ∑
v∈Zd

∇iGh(v − x)∇jGh(v − y)∇kGh(v − z)∇lGh(v −w)
with K̃ijkl given by (3.6).

Proposition 5.1. ∣Cov{G(x, y),G(z,w)} −K(x, y, z,w)∣ ≲ E(x, y, z,w).
Proof. Each term in (5.2) contains four factors of gradient of the Green function.
We first consider ∇G(x, e) and let

X = ∂eae∇G(y, e)(1 +L )−1∂eae∇G(z, e)∇G(w, e).
By (4.4), we have

∣⟨X,∇G(x, e)⟩∣ − d∑
k=1

∇kGh(e − x)⟨X, (ek +∇φ̃k)(e)⟩∣ ≲ ∥X∥2 log ∣e − x∣∗∣e − x∣d∗ .

By Proposition 3.2 and the fact that (1 +L )−1 is a contraction from Lp(Ω) to
Lp(Ω) for any p ⩾ 2, we have ∥X∥2 ≲ ∣e − y∣1−d∗ ∣e − z∣1−d∗ ∣e −w∣1−d∗ , so

∣Cov{G(x, y),G(z,w)} −∑
e∈B

d∑
k=1

∇kGh(e − x)⟨X, (ek +∇φ̃k)(e)⟩∣ ≲ E(x, y, z,w).
Now we carry out the same argument for ∇G(y, e),∇G(z, e),∇G(w, e), and in the
end obtain

∣Cov{G(x, y),G(z,w)} −K(x, y, z,w)∣ ≲ E(x, y, z,w).
The proof is complete. �

Proposition 5.1 leads to

∣ε−dVar{U(f)ε (g)} − εd+4 ∑
x,y,z,w∈εZd

K(x
ε
,
y

ε
,
z

ε
,
w

ε
)g(x)f(y)g(z)f(w)∣

≲εd+4 ∑
x,y,z,w∈εZd

E(x
ε
,
y

ε
,
z

ε
,
w

ε
)∣g(x)f(y)g(z)f(w)∣.
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Hence, the proof of (4.1) will be complete once we have proved the following two
lemmas.

Lemma 5.2. εd+4∑x,y,z,w∈εZd E(x
ε
, y
ε
, z
ε
, w
ε
)∣g(x)f(y)g(z)f(w)∣ → 0 as ε→ 0.

Lemma 5.3. εd+4∑x,y,z,w∈εZd K(x
ε
, y
ε
, z
ε
, w
ε
)g(x)f(y)g(z)f(w) → σ2

g as ε→ 0.

In the following, we assume ∣g∣, ∣f ∣ ⩽ h for some h ∈ Cc(Rd).
Proof of Lemma 5.2. By denoting the number of different elements in {x, y, z,w}
by s, we decompose ∑x,y,z,w∈εZd = ∑ 1s=1 +∑1s=2 +∑ 1s=3 +∑1s=4. The following
estimates are obtained with an application of Lemma A.10.

When s = 1,

εd+4∑1s=1E(x
ε
,
y

ε
,
z

ε
,
w

ε
)∣g(x)f(y)g(z)f(w)∣ ≲ εd+4 ∑

x∈εZd

h(x)4.
Since h ∈ Cc(Rd), εd∑x∈εZd h(x)4 → ∫Rd h(x)4dx which is bounded, so we have the
r.h.s. of the above display goes to zero as ε→ 0.

When s = 2,

εd+4∑1s=2E(x
ε
,
y

ε
,
z

ε
,
w

ε
)∣g(x)f(y)g(z)f(w)∣

≲εd+4 ∑
x≠y∈εZd

h(x)2h(y)2∣x
ε
−
y

ε
∣2−2d∗ + h(x)3h(y)∣x

ε
−
y

ε
∣1−d∗ .

For x ≠ 0 ∈ Zd, we have ∣x∣∗ > ∣x∣ ⩾ 1, so the r.h.s. of the above display is bounded
by

εd+4 ∑
x≠y∈εZd

(h(x)2h(y)2 + h(x)3h(y))∣x
ε
−
y

ε
∣1−d∗

⩽ε2d+3 ∑
x≠y∈εZd

(h(x)2h(y)2 + h(x)3h(y))∣x − y∣1−d.
Similarly, ε2d∑x≠y∈εZd(h(x)2h(y)2 + h(x)3h(y))∣x − y∣1−d converges as a Riemann
sum, which implies

ε2d+3 ∑
x≠y∈εZd

(h(x)2h(y)2 + h(x)3h(y))∣x − y∣1−d ∼ ε3 → 0

as ε→ 0.
The discussion for s = 3,4 is similar to s = 2, so we omit the details.
When s = 3,

εd+4∑1s=3E(x
ε
,
y

ε
,
z

ε
,
w

ε
)∣g(x)f(y)g(z)f(w)∣

≲ε3d+2 ∑
x,y,z∈εZd

∣{x,y,z}∣=3

h(x)2h(y)h(z) 1∣x− y∣d−1 ( 1∣x − z∣d−1 + 1∣y − z∣d−1) ∼ ε2.
When s = 4,

εd+4∑1s=4E(x
ε
,
y

ε
,
z

ε
,
w

ε
)∣g(x)f(y)g(z)f(w)∣

≲ε(4d+1)−∑1s=4h(x)h(y)h(z)h(w) 1∣x − y∣(d−1)− 1∣x − z∣(d−1)− 1∣x −w∣(d−1)− ∼ ε1−.
The proof is complete. �

Proof of Lemma 5.3. Recall that

K(x, y, z,w) = d∑
i,j,k,l=1

K̃ijkl ∑
v∈Zd

∇iGh(v − x)∇jGh(v − y)∇kGh(v − z)∇lGh(v −w).
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By defining Fijkl(v, x, y, z,w) ∶= ∇iGh(v − x)∇jGh(v − y)∇kGh(v − z)∇lGh(v − w),
we only need to show the convergence of

Iijkl = ε
d+4 ∑

x,y,z,w∈εZd

∑
v∈Zd

Fijkl(v, x
ε
,
y

ε
,
z

ε
,
w

ε
)g(x)f(y)g(z)f(w)

for fixed i, j, k, l.
We claim that ∇iGh(v− x

ε
) can be replaced by ∂xi

Gh(v− x
ε
) in Fijkl(v, xε , yε , zε , wε )

of the above expression with the sum over v ≠ x/ε. Indeed, by [23, Proposition A.3],
for x ≠ 0, ∣∇iGh(x) − ∂xi

Gh(x)∣ ≲ ∣x∣−d.
If we define F i

jkl(v, x, y, z,w) ∶= ∂xi
Gh(v − x)∇jGh(v − y)∇kGh(v − z)∇lGh(v − w),

the error induced by the replacement can be estimated as

∣Iijkl − εd+4 ∑
x,y,z,w∈εZd

∑
v≠ x

ε

F i
jkl(v, x

ε
,
y

ε
,
z

ε
,
w

ε
)g(x)f(y)g(z)f(w)∣ ≲ J1 + J2,

with

J1 = ε
d+4 ∑

x,y,z,w∈εZd

∣Fijkl(x
ε
,
x

ε
,
y

ε
,
z

ε
,
w

ε
)∣h(x)h(y)h(z)h(w).

and

J2 = ε
d+4 ∑

x,y,z,w∈εZd

∑
v≠ x

ε

∣v − x

ε
∣−d∣v − y

ε
∣1−d∗ ∣v − z

ε
∣1−d∗ ∣v − w

ε
∣1−d∗ h(x)h(y)h(z)h(w).

For J1, by using ∣∇iGh(x)∣ ≲ ∣x∣1−d∗ and considering different cases according to
whether y, z,w = x as in the proof of Lemma 5.2, we obtain

J1 ≲ ε
d+4 ∑

x,y,z,w∈εZd

∣x − y
ε
∣1−d∗ ∣x − zε

∣1−d∗ ∣x −wε ∣1−d∗ h(x)h(y)h(z)h(w) → 0.

For J2, we note that ∑v≠ x
ε
∣v − x

ε
∣−d∣v − y

ε
∣1−d∗ ∣v − z

ε
∣1−d∗ ∣v − w

ε
∣1−d∗ ≲ E(x

ε
,
y

ε
, z
ε
, w
ε
) withE(x, y, z,w) defined in (5.3), so we can apply Lemma 5.2 to show J2 → 0. The claim

is proved.
By following the same argument for ∇jGh(v − y

ε
),∇kGh(v − z

ε
),∇lGh(v − w

ε
), we

derive

∣Iijkl − εd+4 ∑
x,y,z,w∈εZd

∑
v≠ x

ε
,
y

ε
, z
ε
,w
ε

F ijkl(v, x
ε
,
y

ε
,
z

ε
,
w

ε
)g(x)f(y)g(z)f(w)∣ → 0,

with F ijkl(v, x, y, z,w) ∶= ∂xi
Gh(v − x)∂xj

Gh(v − y)∂xk
Gh(v − z)∂xl

Gh(v −w). Since

d ⩾ 3, Gh(x) = ch∣x∣2−d for some constant ch, and ∂xi
Gh(x) = ch(2 − d)xi/∣x∣d, so we

have

εd+4 ∑
x,y,z,w∈εZd

∑
v≠ x

ε
,
y

ε
, z
ε
,w
ε

F ijkl(v, x
ε
,
y

ε
,
z

ε
,
w

ε
)g(x)f(y)g(z)f(w)

=ε5d ∑
x,y,z,w,v∈εZd

1v≠x,y,z,wF ijkl(v, x, y, z,w)g(x)f(y)g(z)f(w)
→∫

R5d
F ijkl(v, x, y, z,w)g(x)f(y)g(z)f(w)dxdydzdwdv.

The proof is complete. �

6. Convergence to a Gaussian when σ2
g > 0

Recall that in order to prove (4.2), that is,

U(f)ε (g) −E{U(f)ε (g)}√
Var{U(f)ε (g)} ⇒ N(0,1),

we only need to show Lemma 4.7.
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Proof of Lemma 4.7. We first prepare the ground by estimating the terms appear-
ing in the definition of κ2. By a direct calculation, we have

∂eU(f)ε (g) = −εd+2 ∑
x,y∈Zd

∂eae∇G(x, e)∇G(y, e)f(εy)g(εx),
and

∂e′∂eU(f)ε (g) = − εd+2 ∑
x,y∈Zd

∂2
eae∇G(x, e)∇G(y, e)f(εy)g(εx)1e′=e

+ εd+2 ∑
x,y∈Zd

∂eae∂e′ae′∇G(x, e′)∇∇G(e, e′)∇G(y, e)f(εy)g(εx)
+ εd+2 ∑

x,y∈Zd

∂eae∂e′ae′∇G(x, e)∇G(y, e′)∇∇G(e, e′)f(εy)g(εx).
By Proposition 3.2 and the fact that ae = η(ζe) with ∣η′∣, ∣η′′∣ uniformly bounded,
we have for any p ⩾ 1 (with the multiplicative constant depending on p):

∥∂eU(f)ε (g)∥p ≲ εd+2 ∑
x,y∈Zd

1∣x − e∣d−1∗
1∣y − e∣d−1∗ ∣f(εy)g(εx)∣,

and

∥∂e′∂eU(f)ε (g)∥p ≲εd+2 ∑
x,y∈Zd

1∣x − e∣d−1∗
1∣y − e∣d−1∗ ∣f(εy)g(εx)∣1e′=e

+ εd+2 ∑
x,y∈Zd

1∣x − e′∣d−1∗
1∣e − e′∣d∗

1∣y − e∣d−1∗ ∣f(εy)g(εx)∣
+ εd+2 ∑

x,y∈Zd

1∣x − e∣d−1∗
1∣e − e′∣d∗

1∣y − e′∣d−1∗ ∣f(εy)g(εx)∣.
Since f, g are both bounded and compactly supported, we apply Lemma A.11 to
obtain

(6.1) ∥∂eU(f)ε (g)∥p ≲ εd+2 (∑
x∈Zd

1∣x − e∣d−1∗ 1∣x∣≲ε−1)2 ≲ εd∣εe∣2d−2∗
,

and

(6.2)

∥∂e′∂eU(f)ε (g)∥p ≲εd+2 (∑
x∈Zd

1∣x − e∣d−1∗ 1∣x∣≲ε−1)2 (1e′=e + 1∣e − e′∣d∗ )
≲

εd∣εe∣2d−2∗

1∣e − e′∣d∗ .
We are now ready to estimate κ2. By (6.1) and (6.2), we have

κ2
= ∑

e′∈B

(∑
e∈B

∥∂e′∂eU(f)ε (g)∥4∥∂eU(f)ε (g)∥4)
2

≲ ∑
e′∈B

(∑
e∈B

εd∣εe∣2d−2∗

1∣e − e′∣d∗
εd∣εe∣2d−2∗

)2 .
Applying Lemma A.11, we get

∑
e′∈B

(∑
e∈B

ε2d∣εe∣4d−4∗

1∣e − e′∣d∗ )
2

≲∑
e′∈B

ε4d∣ log ε∣2 1∣εe′∣2d∗
≲ε4d∣ log ε∣2 ∑

x∈Zd

1(2 + ∣εx∣)2d
≲ε3d∣ log ε∣2.
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To sum up, κ2
≲ ε3d∣ log ε∣2. By (4.1), Var{U(f)ε (g)} ≳ εd if σ2

g ≠ 0, which leads to

κ2

Var2{U(f)ε (g)} ≲
ε3d∣ log ε∣2

ε2d
≲ εd∣ log ε∣2 → 0,

and the proof is complete. �

7. Tightness in Cαloc
Roughly speaking, for α < 0, a distribution F is α-Hölder regular around the

point x ∈ Rd if for every smooth, compactly supported test function χ, we have

(7.1) F [ε−d χ(ε−1( ⋅ − x))] ≲ ε−α (ε→ 0).
By [21, Theorem 2.25], in order to prove that U

(f)
ε is tight in Cαloc for every α < −d,

we only need to prove the following proposition.

Proposition 7.1. For any g ∈ Cc(Rd), let gλ(x) = λ−dg(x/λ). For all p ⩾ 1, there

exists a constant C = C(p, g) such that for every ε, λ ∈ (0,1],
∥U (f)

ε (gλ)∥p ⩽ Cλ−d.

Proof. We follow the proof of [22, Proposition 3.1]. Since

U
(f)
ε (g) = ε− d

2 (U(f)ε (g) −E{U(f)ε (g)}),
we have

U
(f)
ε (gλ)λ d

2
−1
=
ε

d
2
+2

λ
d
2
+1 ∑

x∈Zd

∑
y∈Zd

(G(x, y) −E{G(x, y)})f(εy)g(εx
λ
) =∶ Xε,λ.

For λ < ε ∈ (0,1], the sum over x above contains only a finite number of non-zero
terms. In this case, standard Green function upper bounds ensure that

U
(f)
ε (gλ) ⩽ Cλ−d almost surely,

uniformly over λ < ε ∈ (0,1]. We may therefore restrict our attention to the case
ε ⩽ λ ∈ (0,1]. Showing more than necessary, we prove that Xε,λ is bounded in
Lp(Ω), uniformly in ε ⩽ λ ∈ (0,1]. Since E{Xε,λ} = 0, in particular

(7.2) (E{Xp
ε,λ})2 ≲ 1

holds for p = 1. We argue inductively, assuming that (7.2) holds for some p = n,
and showing that it also holds for p = 2n, which would complete the proof.

Since E{X2n
ε,λ} = E{Xn

ε,λ}2 + Var{Xn
ε,λ} ≲ 1 + Var{Xn

ε,λ}, it suffices to show

Var{Xn
ε,λ} ≲ E{X2n

ε,λ}1− 1

n . By the spectral gap inequality (see [23, Corollary 3.3]),
we have

Var{Xn
ε,λ} ⩽∑

e∈B

E{∣∂eXn
ε,λ∣2} =∑

e∈B

E{∣nXn−1
ε,λ ∂eXε,λ∣2}

≲E{∣Xε,λ∣2n}1− 1

n ∑
e∈B

E{∣∂eXε,λ∣2n} 1

n .

So we are left to prove ∑e∈BE{∣∂eXε,λ∣2n} 1

n ≲ 1. Since

∂eXε,λ = −
ε

d
2
+2

λ
d
2
+1 ∑

x,y∈Zd

∂eae∇G(x, e)∇G(y, e)f(εy)g(εx
λ
)
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and f, g ∈ Cc(Rd), by applying Proposition 3.2 and Lemma A.11 we obtain

∥∂eXε,λ∥2n ≲ ε d
2
+2

λ
d
2
+1 ∑

x∈Zd

1∣x − e∣d−1∗ 1∣x∣≲λ
ε
∑
y∈Zd

1∣y − e∣d−1∗ 1∣y∣≲ 1

ε

≲
ε

d
2
+2

λ
d
2
+1

λ

ε

1∣ ε
λ
e∣d−1∗

1

ε

1∣εe∣d−1∗ = ( ε
λ
) d

2 1∣ ε
λ
e∣d−1∗

1∣εe∣d−1∗ ,

which implies

∑
e∈B

E{∣∂eXε,λ∣2n} 1

n ≲∑
e∈B

( ε
λ
)d 1∣ ε

λ
e∣2d−2∗

1∣εe∣2d−2∗
≲∑

e∈B

( ε
λ
)d 1∣ ε

λ
e∣2d−2∗

≲ 1.

The proof is complete. �

Appendix A. Technical lemmas

Lemma A.1 (vertical derivative of G(x, y) with respect to ζe). For e ∈ B, x, y ∈

Z
d, ω ∈ Ω, we have

(A.1) ∂eG(x, y) = −∂eae∇G(x, e)∇G(y, e).
Proof. Fix e, x, y, ζ. By definition, the Green function G(x, y) = ∫ ∞0 qt(x, y)dt with
the heat kernel qt(z, y) solving the following parabolic problem

∂tqt(z, y) = −∇∗ã(z)∇qt(z, y), z ∈ Zd,

with initial condition q0(z, y) = 1z=y. We take ∂e on both sides of the above equation
to obtain

∂t∂eqt(z, y) = −∇∗ã(z)∇∂eqt(z, y)+ ∂eae∇qt(e, y)(1z=e − 1z=ē),
with initial condition ∂eq0(z, y) = 0. So ∂eqt(x, y) is given by

∂eqt(x, y) =∫ t

0
∑
z∈Zd

qt−s(x, z)∂eae∇qs(e, y)(1z=e − 1z=ē)ds
= − ∂eae ∫ t

0
∇qt−s(x, e)∇qs(e, y)ds.

This leads to

∂eG(x, y) = ∫ ∞

0
∂eqt(x, y)dt = − ∂eae ∫ ∞

0
∫ t

0
∇qt−s(x, e)∇qs(e, y)dsdt

= − ∂eae∇G(x, e)∇G(y, e),
where we used the symmetry qt(x, y) = qt(y, x) in the last step. The proof is
complete. �

Lemma A.2 (Spectral Gap Inequality to control fourth moment). For any f with

E{f} = 0,
(A.2) E{f4} ≲ (∑

e∈B

√
E{∣f − fe∣4})2 .

Proof. By [8, Lemma 2], if we define Ee{f} ∶= E{f ∣{ζe′}e′≠e}, then

E{f4} ≲ E{(∑
e∈B

∣f − Ee{f}∣2)2}.
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By expanding the right-hand side, we obtain

E{f4} ≲ ∑
e,e′∈B

E{∣f −Ee{f}∣2∣f −Ee′{f}∣2}
⩽ ∑
e,e′∈B

√
E{∣f −Ee{f}∣4}E{∣f − Ee′{f}∣4}

=(∑
e∈B

√
E{∣f −Ee{f}∣4})2 .

It thus suffices to show that E{∣f −Ee{f}∣4} ⩽ 1
2
E{∣f − fe∣4}. In order to do so, we

write

f − fe
= f −Ee{f} +Ee{f} − fe,

and observe that

E{∣f − fe∣4} =E{∣f −Ee{f}∣4} + E{∣Ee{f} − fe∣4} + 6E{∣f −Ee{f}∣2∣Ee{f} − fe∣2}
+ 4E{(f −Ee{f})(Ee{f} − fe)3} + 4E{(f − Ee{f})3(Ee{f} − fe)}.

By first averaging over ζe (resp. ζ′e), we see that the third (resp. fourth) term on
the right-hand side is equal to zero, so the proof is complete. �

Lemma A.3 (Sensitivity of gradient of correctors with respect to ζe). For e ∈ B, x ∈

Z
d, i, j = 1, . . . , d and p ⩾ 1, we have

(A.3) E{∣∇j φ̃i(x) −∇j φ̃
e
i (x)∣p} ≲ ∣x − e∣−pd∗ .

Proof. By the convergence of ∇j φ̃λ,i(x) → ∇j φ̃i(x) in Lp(Ω), we only need to show

E{∣∇j φ̃λ,i(x) −∇j φ̃
e
λ,i(x)∣p} ≲ ∣x − e∣−pd∗ ,

where the implicit multiplicative constant is independent of λ.
We write the equation satisfied by φ̃λ,i and φ̃e

λ,i as

λφ̃λ,i(x) +∇∗ã(x)∇φ̃λ,i(x) = −∇
∗ã(x)ei,

λφ̃e
λ,i(x) + ∇∗ãe(x)∇φ̃e

λ,i(x) = −∇
∗ãe(x)ei.

A straightforward calculation leads to

φ̃λ,i(x) − φ̃e
λ,i(x) = ∑

y∈Zd

Gλ(x, y)∇∗(ãe(y) − ã(y))(∇φ̃e
λ,i(y)+ ei),

so we have

∇j φ̃λ,i(x) − ∇j φ̃
e
λ,i(x) = ∑

y∈Zd

∇x,j∇yGλ(x, y)(ãe(y) − ã(y))(∇φ̃e
λ,i(y) + ei).

Since ãe(y) − ã(y) = 0 when y ≠ e, we conclude

∣∇j φ̃λ,i(x) −∇j φ̃
e
λ,i(x)∣ ≲ ∣∇x,j∇yGλ(x, e)∣∣∇φ̃e

λ,i(e) + ei∣.
By Propositions 3.1 and 3.2, the proof is complete. �

Lemma A.4 (Covariance estimate of qij). For i, j = 1, . . . , d and x ∈ Zd, we have

(A.4) ∣E{q̃ij(0)q̃ij(x)}∣ ≲ log ∣x∣∗∣x∣d∗ .

Remark A.5. Similar results in continuous setting are given in [16, Proposition 4.7].
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Proof. By [16, (4.4)], we have

∣E{q̃ij(0)q̃ij(x)}∣ =∣Cov{q̃ij(0), q̃ij(x)}∣
≲∑
e∈B

√
E{∣q̃ij(0)− q̃eij(0)∣2}√E{∣q̃ij(x) − q̃eij(x)∣2}.

Recall that qij = aj1i=j + ajDjφi − ā1i=j , so for e ∈ B, x ∈ Zd, we have

∣q̃ij(x) − q̃eij(x)∣ ≲ ∣ãj(x) − ãej(x)∣(1 + ∣∇j φ̃i(x)∣) + ∣∇j φ̃i(x) − ∇j φ̃
e
i (x)∣.

By Proposition 3.1 and Lemma A.3, we have

E{∣q̃ij(x) − q̃eij(x)∣2} ≲ 1x=e + ∣x − e∣−2d∗ ,

which implies

∣E{q̃ij(0)q̃ij(x)}∣ ≲∑
e∈B

1∣e∣d∗
1∣x − e∣d∗ ≲

log ∣x∣∗∣x∣d∗ ,

where the last inequality comes from Lemma A.6. The proof is complete. �

Lemma A.6 (Estimates on discrete convolutions). For α,β > 0 with α+β > d, we

have

(A.5) ∑
y∈Zd

1∣y∣α∗
1

∣x − y∣β∗ ⩽ Cα,βFα,β(x)
for some constant Cα,β > 0 and

(A.6) Fα,β(x) = 1

∣x∣α+β−d∗
1α∨β<d +

1

∣x∣α∧β∗
1α∨β>d +

log ∣x∣∗∣x∣α∧β∗
1α∨β=d.

Remark A.7. We will usually replace
log ∣x∣∗
∣x∣α∧β∗

by 1

∣x∣(α∧β)−∗

.

Proof. The proof is standard. Since α + β > d, we only need to consider the region∣x∣ > 100.
For fixed x, let I1 = {y ∶ ∣y∣ ⩽ ∣x∣/2}, I2 = {y ∶ ∣y−x∣ ⩽ ∣x∣/2}, and I3 = Z

d
∖(I1∪I2).

We control the sum in each region separately. The proof for each case is similar
and we only use the following two facts:

● ∣x∣∗ ≲ ∣y − x∣∗ in I1, ∣x∣∗ ≲ ∣y∣∗ in I2 and ∣y − x∣∗ ∼ ∣y∣∗ in I3,

● for any γ > 0, ∑∣y∣⩽∣x∣ ∣y∣−γ∗ ≲ ∣x∣d−γ∗ 1γ<d + log ∣x∣∗1γ=d + 1γ>d.
In I3, we have

∑
I3

1∣y∣α∗
1∣x − y∣β∗ ≲ ∑

∣y∣⩾∣x∣/2

1∣y∣α+β∗
≲

1∣x∣α+β−d∗
.

If α ∨ β < d, the discussion for I1 and I2 are the same. Take I1 for example, we
have ∑

I1

1∣y∣α∗
1

∣x − y∣β∗ ≲
1

∣x∣β∗ ∑
∣y∣⩽∣x∣/2

1∣y∣α∗ ≲
1

∣x∣α+β−d∗
.

If α ∨ β > d, we assume α ⩾ β, so α > d. By similar discussion, in I2 we get the
estimate

∑
I2

1∣y∣α∗
1

∣x − y∣β∗ ≲
1

∣x∣α+β−d∗
1β<d +

log ∣x∣∗∣x∣α∗ 1β=d +
1∣x∣α∗ 1β>d.

In I1, we have ∑∣y∣⩽∣x∣/2 ∣y∣−α∗ ∣x − y∣−β∗ ≲ ∣x∣−β∗ . So an overall bound is given by∣x∣−β∗ = ∣x∣−α∧β∗ .
If α∨β = d, we assume α = d. If β = d, in both I1, I2 we get the bound ∣x∣−d∗ log ∣x∣∗.

If β < d, in I1 we get a bound ∣x∣−β∗ log ∣x∣∗ and in I2 we get the bound ∣x∣d−α−β∗ = ∣x∣−β∗ .

Therefore, an overall bound is ∣x∣−β∗ log ∣x∣∗ = ∣x∣−α∧β∗ log ∣x∣∗.
The proof is complete. �
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Lemma A.8. Let x1, . . . , xk ∈ Z
d be mutually different, and for each i, let ī be such

that ∣xī − xi∣ = minj≠i ∣xj − xi∣. Assume α1, . . . , αk ∈ (0, d) and αi + αj > d for i ≠ j,

then

(A.7) ∑
y∈Zd

∏
i

1∣y − xi∣αi∗
≲

k∑
i=1

∏
j≠i,̄i

1∣xj − xi∣αj

∗

1

∣xi − xī∣αi+αī−d
∗

.

Proof. For each i, we define the region Ii = {y ∶ ∣y − xi∣ ⩽ minj ∣y − xj ∣}, i.e., the set
of points that are closest to xi. If y ∈ Ii, we have ∣y − xj ∣ ⩾ ∣xi − xj ∣/2 for any j ≠ i.
Therefore,

∑
y∈Ii

∏
j

1∣y − xj ∣αj

∗
≲ ∏

j≠i,̄i

1∣xj − xi∣αj

∗
∑
y∈Zd

1∣y − xi∣αi∗

1∣y − xī∣αī∗
.

Since αi + αī > d, the sum over y can be bounded using Lemma A.6, e.g., when
αi < d for all i, we have

∑
y∈Ii

∏
j

1∣y − xj ∣αj

∗
≲ ∏

j≠i,̄i

1∣xj − xi∣αj

∗

1

∣xi − xī∣αi+αī−d
∗

.

The proof is complete. �

Remark A.9. From the proof of Lemma A.8, we see that the condition αi + αj > d

for all i ≠ j is not necessary to obtain similar estimates. For example, for each i, as
long as we can find j ≠ i such that αi + αj > d, the integral in Ii can be controlled
by a similar bound.

Recall that the error function E in Proposition 5.1 is given by

(A.8)

E(x1, x2, x3, x4) =∑
e∈B

4∑
i=1

log ∣e − xi∣∗∣e − xi∣d∗
4∏

j=1,j≠i

1∣e − xj ∣d−1∗
≲ ∑

v∈Zd

4∑
i=1

1∣v − xi∣d−∗
4∏

j=1,j≠i

1∣v − xj ∣d−1∗ .

By using Lemmas A.6 and A.8, we have the following control on the error function:

Lemma A.10 (Estimation of E(x, y, z,w)). Let x, y, z,w ∈ Zd,

● if x = y = z = w, E(x, y, z,w) ≲ 1.
● if x = y = z ≠ w, E(x, y, z,w) ≲ ∣x −w∣1−d∗ .

● if x = y ≠ z = w, E(x, y, z,w) ≲ ∣x −w∣2−2d∗ .

● if x = y and y, z,w are mutually different, let S = {x, z,w},
E(x, y, z,w) ≲ ∑

v∈S

∏
u∈S∖{v}

1∣u − v∣d−1∗ .

● if x, y, z,w are mutually different, let S = {x, y, z,w},
E(x, y, z,w) ≲ ∑

v∈S

∏
u∈S∖{v}

1

∣u − v∣(d−1)−∗
.

Proof. The proofs of different cases are similar. We only discuss the case when
x, y, z,w are mutually different. By (A.8), we consider a term of the form:

∑
v∈Zd

1∣v − x∣d−∗
1∣v − y∣d−1∗

1∣v − z∣d−1∗
1∣v −w∣d−1∗ .

Recall that S = {x, y, z,w}. For u ∈ S, let Iu = {v ∈ Zd
∶ ∣v −u∣ =minq∈S ∣v − q∣}. The

proof is the same as in Lemma A.8, so we do not provide all details.
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For Ix, we have

∑
v∈Ix

1∣v − x∣d−∗
1∣v − y∣d−1∗

1∣v − z∣d−1∗
1∣v −w∣d−1∗

≲
1∣x − z∣d−1∗

1∣x −w∣d−1∗ ∑
v∈Zd

1∣v − x∣d−∗
1∣v − y∣d−1∗

≲ ∏
u∈S∖{x}

1

∣x − u∣(d−1)−∗
.

Note that we replaced 1

∣x−z∣d−1∗

1

∣x−w∣d−1∗
by 1

∣x−z∣(d−1)−∗

1

∣x−w∣(d−1)−∗

.

For Iy , we have

∑
v∈Iy

1∣v − x∣d−∗
1∣v − y∣d−1∗

1∣v − z∣d−1∗
1∣v −w∣d−1∗

≲
1∣y − z∣d−1∗

1∣y −w∣d−1∗ ∑
v∈Zd

1∣v − x∣d−∗
1∣v − y∣d−1∗

≲ ∏
u∈S∖{y}

1

∣y − u∣(d−1)−∗
.

The sums in Iz , Iw are discussed in the same way. The proof is complete. �

Lemma A.11. For x ∈ Zd, p > 0 and ε ∈ (0,1),
(A.9) ∑

y∈Zd

1∣x − y∣d−1∗ 1∣y∣≲ε−1 ≲
ε−1∣εx∣d−1∗ ,

and

(A.10) ∑
y∈Zd

1∣x − y∣d∗
1∣εy∣p∗ ≲

∣ log ε∣
∣εx∣d∧p∗ .

We refer to [22, Lemmas 2.2 and 2.3] for a proof.
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