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We investigate the global fluctuations of solutions to elliptic equations with random coefficients in the discrete setting. In dimension d ⩾ 3 and for i.i.d. coefficients, we show that after a suitable scaling, these fluctuations converge to a Gaussian field that locally resembles a (generalized) Gaussian free field. The paper begins with a heuristic derivation of the result, which can be read independently and was obtained jointly with Scott Armstrong.

Heuristics

The goal of this paper is to give a precise description of the fluctuations of solutions of elliptic equations with random coefficients, in the large scale limit. Before stating our precise assumptions and results, we present powerful heuristics that enable to guess the results and give a better comprehension of the phenomena 1 . These heuristics were obtained in collaboration with Scott Armstrong, whom we warmly thank for letting us include this material here.

1.1. The (generalized) Gaussian free field. We start by introducing white noise and (generalized) Gaussian free fields. These will be the fundamental objects used in the heuristic derivation of the large-scale behavior of the first-order correction to stochastic homogenization below.

The random distribution w is a (one-dimensional) white noise with variance σ 2 if for every φ ∈ C ∞ c (R), w(φ) is a centered Gaussian random variable with variance σ 2 ∫ φ 2 . (We can in fact define w(φ) for any φ ∈ L 2 (R d ) by density.) Informally,

E[w(x) w(y)] = σ 2 δ(x -y),
where δ is a Dirac mass at the origin. More generally, the random, d-dimensional distribution W = (W 1 , . . . , W d ) is a white noise with covariance matrix Q if for every

φ = (φ 1 , . . . , φ d ) ∈ C ∞ c (R d ), W (φ) ∶= W 1 (φ 1 ) + ⋯ + W d (φ d )
is a centered Gaussian random variable with variance ∫ φ ⋅ Qφ. Informally,

E[W i (x) W j (y)] = Q ij δ(x -y).
In dimension d = 1, one way to define a Brownian motion B is to ask it to satisfy (1.1)

B ′ = w,
where w is a one-dimensional white noise, and B ′ denotes the derivative of B. The Gaussian free field is a high-dimensional version of Brownian motion. By analogy with (1.1), we may want to ask a Gaussian free field Φ to satisfy ∇Φ = W , where W is a d-dimensional white noise. However, this does not make sense because W
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is not a gradient field; so we will instead define ∇Φ as the L 2 projection of W onto the space of gradient fields. In view of the Helmholtz-Hodge decomposition of any vector field into a potential part and a solenoidal part:

(1.2)

L 2 = {∇u} ⊥ ⊕ {g ∶ ∇ ⋅ g = 0},
this leads us to the equation

(1.3) -∆Φ = ∇ ⋅ W.
A minor variant of the construction above is to consider the Helmholtz-Hodge projection with respect to a uniform background metric given by a symmetric matrix a h . In this case, equation (1.3) becomes

(1.4) -∇ ⋅ a h ∇Φ = ∇ ⋅ W.
Since the equation is linear, one can give a mathematically precise sense of ∇Φ using classical arguments of the theory of distributions. (In dimension one, this also gives a sensible way to define a "Brownian motion" on the circle, i.e. a Brownian bridge, as opposed to (1.1) which does not satisfy the compatibility condition ∫ w = 0.) We take (1.4) as the definition of the Gaussian free field associated with a h and Q.

On the full space R d with d ⩾ 3, one can also define Φ itself (and not only ∇Φ), e.g. as the limit as µ tends to 0 of Φ µ such that (µ -∇ ⋅ a h ∇)Φ µ = ∇ ⋅ W.

In this case, one can express the two-point correlation function of Φ in terms of the Green function G h of -∇ ⋅ a h ∇ and the covariance matrix Q of W :

(1.5) E[Φ(0) Φ(x)] = ∇G h (y) ⋅ Q∇G h (yx) dy.

If Q happens to be a multiple of a h , then an integration by parts enables to replace the integral above by a constant times G h (x), and we recover the more common definition of the Gaussian free field as a Gaussian field whose covariance kernel is a Green function. However, for generic a h and Q, the correlation in (1.5) cannot be expressed as a Green function. In other words, our definition of (generalized) Gaussian free field is wider than the standard one.

It is important for the remainder of the discussion to be familiar with the scaling and regularity properties of white noise and Gaussian free fields. As for white noise, W (r ⋅ ) has the same law as r -d 2 W . In particular, thinking of r → 0, we see that zooming in on W at scale r produces a blow-up of r -d 2 (and conversely if we think of r → +∞). This is an indication of the fact that W has (negative) Hölder regularity α for every α < -d 2 , and no more. In view of (1.4), the Gaussian free field Φ is such that Φ(r ⋅ ) has the same law as r -d 2 +1 Φ, and has Hölder regularity α for every α < -d 2 + 1. In dimension d = 1, we recover the fact that Brownian motion trajectories have Hölder regularity α for every α < 1 2 . In higher dimensions, the Gaussian free field fails to have regularity 0; it only makes sense as a distribution, but not as a function.

1.2. Homogenization and random fluctuations. We now turn to the homogenization of the operator -∇⋅a∇, where a ∶ R d → R d×d is a random field of symmetric matrices. We assume that the law of a is stationary and posesses very strong mixing properties (e.g. finite range of dependence), and that I d ⩽ a ⩽ CI d for some constant C < ∞. In this case, it is well-known that the large scale properties of the operator -∇ ⋅ a∇ resemble those of the homogeneous operator -∇ ⋅ a h ∇, for some constant, deterministic matrix a h . Our goal is to describe the next-order correction.

For p ∈ R d and ◻ r ∶= (-r 2 , r 2 ) d ⊆ R d , we introduce (1.6) ν(◻ r , p) ∶= inf v∈H 1 0 (◻r) ⨏ ◻r 1 2 (p + ∇v) ⋅ a(p + ∇v) (where ⨏ ◻ r = ◻ r -1 ∫ ◻ r
). This quantity is subadditive: if ◻ r is partitioned into subcubes (y + ◻ s ) y , then ν(◻ r , p) is smaller than the average over y of ν(y + ◻ s , p). Indeed we can glue the minimizers of ν(y + ◻ s , p) and create a minimizer candidate for ν(◻ r , p). Roughly speaking, it was shown in [START_REF] Maso | Nonlinear stochastic homogenization[END_REF] that homogenization follows from the fact that

(1.7) ν(◻ r , p) → r→∞ 1 2 p ⋅ a h p
(which itself is a consequence of the subadditve ergodic theorem). It is natural to expect the next-order correction to homogenization to follow from the understanding of the next-order correction to (1.7). However, the next-order correction to (1.7) is driven by a boundary layer, which is of order r -1 (see [START_REF] Armstrong | Mesoscopic higher regularity and subadditivity in elliptic homogenization[END_REF]), and is not relevant to the understanding of the interior behavior of solutions. We thus assume that ν has been suitably modified into ν in order to get rid of the boundary layer. After performing this modification, we expect ν( ⋅ , p) to be "almost additive" [START_REF] Armstrong | Mesoscopic higher regularity and subadditivity in elliptic homogenization[END_REF], and therefore that

◻ r 1 2 ν(◻ r , p) - 1 2 p ⋅ a h p
converges to a Gaussian random variable as r tends to infinity (as a consequence of the strong mixing assumption on the coefficients). Closely related statements were proved in [START_REF] Nolen | Normal approximation for a random elliptic equation[END_REF][START_REF] Biskup | A central limit theorem for the effective conductance: Linear boundary data and small ellipticity contrasts[END_REF][START_REF] Rossignol | Noise-stability and central limit theorems for effective resistance of random electric networks[END_REF][START_REF]Normal approximation for the net flux through a random conductor[END_REF][START_REF] Gloria | A quantitative central limit theorem for the effective conductance on the discrete torus[END_REF]. We want to encode this information in a way that is consistent with respect to changing the vector p, the scale r and translations of the cube. For this purpose, we let W be a matrix-valued white noise field such that as r becomes large,

(1.8)

ν(x + ◻ r , p) ≃ 1 2 p ⋅ (a h + W r (x)) p,
where W r is the spatial average of W on scale r:

(1.9) W r (x) ∶= ⨏ x+◻r W.
(We may also think of W r as the convolution of W with a rescaled bump function:

W r ∶= W ⋆ χ (r) , with χ ∈ C ∞ c (R d , R + ) such that ∫ χ = 1 and χ (r) ∶= r -d χ(⋅ r).) This
encodes in particular the fact that ν(x + ◻ r , p) and ν(y + ◻ r , q) are asymptotically independent if x + ◻ r and y + ◻ r are disjoint. Recall that each coordinate of W r (x) is of order ◻ r -1 2 = r -d 2 ≪ 1. We interpret (1.8) as indicating that if a function locally minimizes the energy over x + ◻ r and has average gradient p, then its energy over x + ◻ r is approximately 1 2 p ⋅ (a h + W r (x))p. The corrector for -∇ ⋅ a∇ in the direction p is usually defined as the sublinear function solving -∇ ⋅ a(p + ∇φ) = 0 in the whole space. We think of φ as the minimizer in the definition of ν(◻ R , p), for R extremely large (in fact, infinite), and focus our attention on understanding the spatial average φ r of φ on scale r, 1 ≪ r ≪ R. The discussion above suggests that φ r minimizes the coarsened energy function

v ↦ ⨏ ◻ R 1 2 (p + ∇v) ⋅ (a h + W r )(p + ∇v),
whose Euler-Lagrange equation is

-∇ ⋅ (a h + W r )(p + ∇φ r ) = 0.
Rearranging, we obtain

-∇ ⋅ (a h + W r )∇φ r = ∇ ⋅ (W r p).
Since W r ≪ 1, we have ∇φ r ≪ 1. Therefore, the term W r on the left-hand side can be neglected, and we obtain the Gaussian-free-field equation

(1.10) -∇ ⋅ a h ∇φ r = ∇ ⋅ (W r p).
We summarize this heuristic computation as follows.

• We let W be the matrix-valued white noise field whose covariance is related to the fluctuations of the energy via (1.8); • we let Φ be the random distribution defined by (1.11) -∇ ⋅ a h ∇Φ = ∇ ⋅ (W p) ;

• then the large-scale spatial averages of the corrector φ have about the same law as those of Φ. In other words (and by the scale invariance of Φ), the random distribution r d 2 -1 φ(r ⋅ ) converges in law to Φ in a suitably weak topology, as r tends to infinity. A similar analysis can be performed for, say, solutions of equations of the form (1.12)

-∇ ⋅ a∇u = f in R d , d ⩾ 3, where f ∈ C ∞ c (R d ) varies on scale ε -1 ≫ 1.
(The function f should be of order ε 2 in order for u to be of order 1.) We consider the spatial average u r of u over scale r, 1 ≪ r ≪ ε -1 . By the same reasoning as above, we expect u r to satisfy the coarsened equation -∇ ⋅ (a h + W r )∇u r = f. We write u r = u h + ũr , where u h solves

-∇ ⋅ a h ∇u h = f, so that -∇ ⋅ (a h + W r )∇ũ r = ∇ ⋅ (W r ∇u h ).
As before, we expect the term W r on the left-hand side to be negligible, so we obtain

(1.13) -∇ ⋅ a h ∇ũ r = ∇ ⋅ (W r ∇u h ).
We stress that if instead we use the formal two-scale expansion u ≃ u h + ∑ i φ (i) ∂ i u h and the large-scale description of the corrector in (1.10), we are led to a different and incorrect result. We can again summarize our conclusions as follows.

(1) We define the matrix-valued white noise field as above, according to (1.8);

(2) we let U be the random distribution defined by the equation

(1.14) -∇ ⋅ a h ∇U = ∇ ⋅ (W ∇u h ) ;
(3) Then the large-scale averages of uu h have about the same law as those of U . The random distribution U is not a (generalized) Gaussian free field per se because the term ∇u h appearing in its defining equation varies over large scales. However, it will have similar small-scale features. If we normalize f so that u h is of order 1, then ∇u h is of order ε, over a length scale of order ε -1 . Hence, we can think of ε -1 U as locally like a (generalized) Gaussian free field (of order 1), and being close to 0 outside of a domain of diameter of order ε -1 . Incidentally, if we make the (unjustified) ansatz that uu h is approximately a regularization of U on the unit scale (that is, if we pretend that the conclusion (3) above actually holds on the unit scale), then we recover the (correct) error estimate

ε d u -u h 2 1 2 ≲ ε log 1 2 (ε -1 ) if d = 2, ε if d ⩾ 3.
Mathematically speaking, a version of the statement that r d 2 -1 φ(r ⋅ ) converges to a (generalized) Gaussian free field was proved in [START_REF] Mourrat | Correlation structure of the corrector in stochastic homogenization[END_REF][START_REF] Mourrat | A Scaling limit of the corrector in stochastic homogenization[END_REF]. The aim of the present work is to prove a version of the conclusion (3) above.

Before turning to this, we want to emphasize why we believe these results to be of practical interest. Homogenization itself is interesting since it enables to describe approximations of solutions of equations with rapidly oscillating coefficients by solutions of simple equations described by a few effective parameters. What the above arguments show is that the same is true of the next-order correction: in order to describe it, it suffices to know the few parameters describing the covariance of the white noise W . The white noise W takes values in symmetric matrices, so its covariance matrix is fully described by N (N + 1) 2 parameters, where N = d(d + 1) 2 (6 parameters in dimension 2, 21 parameters in dimension 3). Naturally, fewer parameters are necessary for problems with additional symmetries.

Introduction

2.1. Main result. We focus on dimension 3 and higher and on a discrete setting. Our main assumption is that the random coefficients are i.i.d. and bounded away from 0 and infinity. Our goal is to justify the points (1-3) listed above in this context.

In order to state our assumptions and results more precisely, we introduce some notations. We work on the graph (Z d , B) with d ⩾ 3, where B is the set of nearestneighbor edges. Let e 1 , . . . , e d be the canonical basis in Z d . For every edge e ∈ B, there exists a unique pair (e, i) ∈ Z d × {1, . . . , d} such that e links e to e + e i . We will write ē = e + e i and e = (e, ē).

We give ourselves a family of i.i.d. random variables indexed by the edges of the graph. For convenience, we will assume that these random variables can be built from a family of i.i.d. standard Gaussians. More precisely, we let ζ = (ζ e ) e∈B ∈ Ω ∶= R B be i.i.d. standard Gaussian random variables, and η be a smooth function that is bounded away from zero and infinity with bounded first and second derivatives. The conductance associated with the edge e is then defined to be η(ζ e ). The space Ω is equipped with the product Borel σ-algebra, and we denote the law of ζ by P, with associated expectation E.

Let ã ∶ Z d ×Ω → R d×d be the matrix-valued function such that ã(x, ζ) = diag(ã 1 (x, ζ), . . . , ãd (x, ζ)) with ãi (x, ζ) = η(ζ (x,x+ei) ).
In what follows, we will most of the time keep the dependence on ζ implicit in the notation.

For any f ∶ Z d → R we define the discrete gradient ∇f ∶= (∇ 1 f, . . . ,

∇ d f ) by ∇ i f (x) = f (x + e i ) -f (x). For any g ∶ Z d → R d we define the discrete divergence ∇ * g ∶= ∑ d i=1 ∇ * i g i by ∇ * i g i (x) = g i (x -e i ) -g i (x). We define ∇ ε , ∇ * ε similarly for functions defined on εZ d , i.e., ∇ ε,i h(x) = ε -1 (h(x + εe i ) -h(x)) and ∇ * ε,i h(x) = ε -1 (h(x -εe i ) -h(x)) for h ∶ εZ d → R.
For any ε > 0, we consider the following elliptic equation with a slowly varying source term:

(2.1)

∇ * ã(x)∇u(x) = f (εx) (x ∈ Z d ),
where f ∈ C c (R d ) is compactly supported and continuous. The unique solution to (2.1) that decays to zero at infinity is given by

u(x) = y∈Z d G(x, y)f (εy),
with G(x, y) the Green function of ∇ * ã(x)∇ (recall that the dependence on ζ is kept implicit, so u and G are random). We define u ε (x) = ε 2 u( x ε ), which solves

∇ * ε ã( x ε )∇ ε u ε (x) = f (x) (x ∈ εZ d ),
and its limit u h , the solution of the homogenized equation in continuous space:

-∇ ⋅ a h ∇u h (x) = f (x) (x ∈ R d ),
where the homogenized matrix a h is deterministic and constant in space. We are interested in the random fluctuations of u ε after a spatial average. In other words, we think of u ε as a (random) distribution

U (f ) ε , which acts on a test function g ∈ C c (R d ) as (2.2) U (f ) ε (g) ∶= ε d x∈εZ d u ε (x)g(x) = ε d+2 x,y∈Z d G(x, y)g(εx)f (εy).
Following [START_REF] Mourrat | A tightness criterion in local Hölder spaces of negative regularity[END_REF], for any α < 0, we denote by C α loc = C α loc (R d ) the (separable) local Hölder space of regularity α. Here is our main result.

Theorem 2.1. Recall that d ⩾ 3. We define the random distribution

U (f ) ε by U (f ) ε (g) = ε -d 2 (U (f ) ε (g) -E{U (f ) ε (g)}).
For every α < -d, the distribution U

(f ) ε converges in law to U (f ) as ε → 0 for the topology of C α loc , where U (f ) is the Gaussian random field such that for g ∈ C c (R d ), U (f ) (g) is a centered Gaussian with variance (2.3) σ 2 g = R 2d K f (x, z)g(x)g(z)dxdz
with K f given explicitly by (3.7).

Remark 2.2. We can write the solution to (1.14) formally as

U (x) = R d G h (x -y)∇ ⋅ (W (y)∇u h (y))dy = R 2d ∇G h (x -y) ⋅ W (y)∇G h (y -z)f (z)dzdy,
where G h is the Green function associated with -∇ ⋅ a h ∇. By a straightforward calculation, this random distribution tested with g has a Gaussian distribution with mean zero and variance given by

E{ R d U (x)g(x)dx 2 } = R 2d K f (x, z)g(x)g(z)dxdz,
provided the covariance of the white noise W is given by { Kijkl } that appears in the definition of K f (x, z). In other words, the limiting distribution U (f ) obtained in Theorem 2.1 can be represented as the solution of (1.14).

Remark 2.3. Theorem 2.1 implies the joint convergence in law of (U

(f1) ε , . . . , U (f k ) ε )
to a Gaussian vector field whose covariance structure is obtained by polarization of f ↦ K f . Indeed, this follows from the fact that Theorem 2.1 gives the scaling limit of any linear combination of

U (f1) ε , . . . , U (f k ) ε , by linearity of f ↦ U (f ) ε .
Remark 2.4. A similar result is proved in [START_REF] Gu | A central limit theorem for fluctuations in one dimensional stochastic homogenization[END_REF] when d = 1, using a different method.

In this case, U in (1.14) has Hölder regularity α for every α < 1 2 , so it makes sense as a function. We expect the result to hold for d = 2 as well, but our method would have to be modified to handle the fact that only the gradient of u is really defined by (2.1) in this case. Theorem 2.1 is a consequence of the following two propositions.

Proposition 2.5. For every g ∈ C c (R d ), U (f ) ε (g) converges in law to U (f ) (g) as ε → 0.
Remark 2.6. In fact, when σ 2 g ≠ 0, our proof gives a rate of convergence of

U (f ) ε (g) to U (f ) (g), see Remark 4.8 below.
Proposition 2.7. For every α < -d, the family (U

(f ) ε ) ε∈(0,1] is tight in C α loc . 2.2.
Context. Stochastic homogenization of divergence form operators started from the work of Kozlov [START_REF] Kozlov | Averaging of random operators[END_REF] and Papanicolaou-Varadhan [START_REF] Papanicolaou | Boundary value problems with rapidly oscillating random coefficients[END_REF], where a qualitative convergence of heterogeneous random operators to homogeneous deterministic ones is proved. Quantitative aspects were explored as early as in [START_REF] Yurinskii | Averaging of symmetric diffusion in random medium[END_REF]. However, optimal bounds on the size of errors were obtained only recently in a series of papers [START_REF] Gloria | An optimal variance estimate in stochastic homogenization of discrete elliptic equations[END_REF][START_REF]An optimal error estimate in stochastic homogenization of discrete elliptic equations[END_REF][START_REF]Kantorovich distance in the martingale clt and quantitative homogenization of parabolic equations with random coefficients[END_REF][START_REF] Gloria | Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on glauber dynamics[END_REF][START_REF]An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations[END_REF][START_REF]Quantitative results on the corrector equation in stochastic homogenization[END_REF][START_REF] Gloria | Annealed estimates on the Green functions and uncertainty quantification[END_REF]. Regularity estimates that are optimal in terms of stochastic integrability have been worked out in [START_REF] Armstrong | Quantitative stochastic homogenization of convex integral functionals[END_REF][START_REF] Armstrong | Lipschitz regularity for elliptic equations with random coefficients[END_REF][START_REF]An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations[END_REF].

Our focus in this paper is to go beyond estimating the size of the errors, and understand the probability law of the rescaled random fluctuations. In this direction, central limit theorems for approximations of homogenized coefficients are obtained in [START_REF] Nolen | Normal approximation for a random elliptic equation[END_REF][START_REF] Biskup | A central limit theorem for the effective conductance: Linear boundary data and small ellipticity contrasts[END_REF][START_REF] Rossignol | Noise-stability and central limit theorems for effective resistance of random electric networks[END_REF][START_REF]Normal approximation for the net flux through a random conductor[END_REF][START_REF] Gloria | A quantitative central limit theorem for the effective conductance on the discrete torus[END_REF]. The scaling limit of the corrector is investigated in [START_REF] Mourrat | Correlation structure of the corrector in stochastic homogenization[END_REF][START_REF] Mourrat | A Scaling limit of the corrector in stochastic homogenization[END_REF]. In the continuous setting, [START_REF] Gu | Pointwise two-scale expansion for parabolic equations with random coefficients[END_REF] indicates that when d ⩾ 3, the corrector should capture the first order fluctuation of the heterogeneous solution in a pointwise sense, but it is not clear whether it captures the fluctuations of the solution after a spatial average. A surprising feature of our result is that the limiting fluctuations are not those induced by the corrector alone.

Our approach is based on that of [START_REF] Mourrat | Correlation structure of the corrector in stochastic homogenization[END_REF][START_REF] Mourrat | A Scaling limit of the corrector in stochastic homogenization[END_REF]. The fact that U (f ) ε (g) divided by its standard deviation converges to a standard Gaussian is derived using a second order Poincaré inequality developed by Chatterjee [START_REF] Chatterjee | Fluctuations of eigenvalues and second order poincaré inequalities[END_REF], in the spirit of Stein's method. (We will in fact use a slightly more convenient form of this result derived in [START_REF] Mourrat | A Scaling limit of the corrector in stochastic homogenization[END_REF].)

The main difficulty lies in the proof of the convergence of the variance of U (f ) ε

(g).

A Helffer-Sjöstrand formula enables to rewrite this variance in terms of gradients of the Green function. A quantitative two-scale expansion for the gradient of the Green function was worked out in [START_REF] Mourrat | Correlation structure of the corrector in stochastic homogenization[END_REF]. Here, we follow the idea of [START_REF]A regularity theory for random elliptic operators[END_REF] of introducing a stationary skew-symmetric tensor, which is denoted by {σ ijk } d i,j,k=1 and relates to the flux (see Lemma 4.5). In the language of differential forms, the flux in the i-th direction is a co-closed 1-form, and we represent it as the co-differential of the 2-form σ i . This object enables us to represent the error in the two-scale expansion in divergence form, and thus significantly improve the two-scale expansion and simplify the subsequent analysis.

2.3.

Organization of the paper. The rest of the paper is organized as follows. We introduce basic notation and recall key estimates on correctors and Green functions in Section 3. Then we present some key ingredients in proving Theorem 2.1 in Section 4, including the Helffer-Sjöstrand covariance representation, a quantitative two-scale expansion of the Green function and a second order Poincaré inequality. The proofs of Propositions 2.5 and 2.7 are contained in Sections 5, 6 and 7. Technical lemmas are left in the appendix. Since {ζ e } e∈B are i.i.d., {τ x } x∈Z d is a group of measure-preserving transformations. With any measurable function f ∶ Ω → R, we can associate a stationary random field f (x, ζ) defined by

(3.1) f (x, ζ) = (T x f )(ζ) = f (τ x ζ).
The generators of T x , denoted by {D i } d i=1 , are defined by

D i f ∶= T ei f -f . The adjoint D * i is defined by D * i f ∶= T -ei f -f . We denote the gradient on Ω by D = (D 1 , . . . , D d ) and the divergence D * g ∶= ∑ d i=1 D * i g i for g ∶ Ω → R d .
The inner product in L 2 (Ω) and norm in L p (Ω) are denoted by ⟨⋅, ⋅⟩ and ⋅ p respectively.

Most of the time, we keep the dependence on ζ implicit and write

f (x) = f (x, ζ) = f (τ x ζ).
For any e ∈ B, the discrete derivative on e is defined by ∇ f (e) ∶= f (ē)f (e). If e is in the i-th direction, we define ξ(e) ∶= ξ i for any ξ ∈ R d , as the projection of ξ onto e.

For the random coefficients appearing in (2.1), we can define

a(ζ) = diag(a 1 (ζ), . . . , a d (ζ)) ∶= diag(η(ζ e1 ), . . . , η(ζ e d )) so that ã(x, ζ) = a(τ x ζ) = diag(η(ζ x+e1 ), . . . , η(ζ x+e d ))
. Note that we also used e 1 , . . . , e d to denote the corresponding edges (0, e 1 ), . . . , (0, e d ). Recall that we assume that C -1 < η < C and η ′ , η ′′ < C for some C < ∞. For simplicity we will henceforth write a e = η(ζ e ).

Under the above assumptions, it is well-known that there exists a constant matrix a h such that the operator ∇ * ã∇ homogenizes over large scale to the continuous operator -∇ ⋅ a h ∇, the Green function of which we denote as G h .

One of the main ingredients in the analysis of stochastic homogenization is the so-called corrector. For any fixed ξ ∈ R d and λ > 0, the regularized corrector φ λ,ξ is defined through the following equation on probability space:

(3.2) λφ λ,ξ + D * a(Dφ λ,ξ + ξ) = 0.
It is proved in [START_REF] Gloria | An optimal variance estimate in stochastic homogenization of discrete elliptic equations[END_REF] that as λ → 0, φ λ,ξ → φ ξ in L 2 (Ω), i.e., a stationary corrector φ ξ exists such that

(3.3) D * a(Dφ ξ + ξ) = 0.
For i = 1, . . . , d, we will write φ i = φ ei and φ λ,i = φ λ,ei . The homogenized matrix a h is given by

(3.4) ξ T a h ξ = E{(ξ + Dφ ξ ) T a(ξ + Dφ ξ )}.
In the context of i.i.d. randomness, we have a h = āI d for some constant ā, where I d is the identity matrix. For a random variable F ∈ L 2 (Ω), we say that U = ∂ e F ∈ L 2 (Ω) is the weak derivative of F with respect to ζ e if the following holds: for any finite subset Λ ∈ B and any smooth, compactly supported function G ∶ R Λ → R, we have

(3.5) E{U G(ζ)} = E{F ζ e G(ζ)} -E{F ∂G ∂ζ e (ζ)},
where G(ζ) depends only on {ζ e ′ } e ′ ∈Λ . We also call ∂ e the vertical derivative, and by (3.5), its adjoint (under the Gaussian measure) is

∂ * e = -∂ e + ζ e .
We define ∂f ∶= (∂ e f ) e∈B and for F = (F e ) e∈B , ∂ * F ∶= ∑ e∈B ∂ * e F e . The vertical Laplacian on the probability space is then defined by 

L ∶= ∂ * ∂.
K ijkl (e n ).
The kernel K f (x, z) appearing in Theorem 2.1 is given by (3.7)

K f (x, z) = d i,j,k,l=1 Kijkl R 3d ∂ xi G h (v -x)∂ xj G h (v -y)∂ x k G h (v -z)∂ x l G h (v -w) f (y)f (w)dydwdv.

3.2.

A comparison with the two-scale expansion. Let us see that the global fluctuations of u ε are not those suggested by its two-scale expansion. Recall that u ε and u h satisfy

∇ * ε ã( x ε )∇ ε u ε (x) = f (x) (x ∈ εZ d ),
and

-∇ ⋅ a h ∇u h (x) = f (x) (x ∈ R d ).
A formal two-scale expansion gives

(3.8) u ε (x) = u h (x) + ε∇u h (x) ⋅ φ( x ε ) + o(ε),
where φ = (φ 1 , . . . , φ d ). In the continuous setting, (3.8) is proved rigorously with o(ε) ε → 0 in L 1 (Ω) for fixed x [16, Theorem 2.3], i.e., the first order correction is indeed given by the corrector in a pointwise sense. Since φ is centered, we have a similar expansion for the random fluctuation, i.e.,

u ε (x) = E{u ε (x)} + ε∇u h (x) ⋅ φ( x ε ) + o(ε).
Concerning global fluctuations, we need to compare the random field

u ε (x) - E{u ε (x)} with ε∇u h (x) ⋅ φ( x ε ). For a test function g ∈ C c (R d ), Theorem 2.1 shows (3.9) ε d 2 x∈εZ d (u ε (x) -E{u ε (x)})g(x) ⇒ N (0, σ 2 g ), with σ 2 g = ∫ R 2d K f (x, z)g(x)g(z)dxdz. By [22, Theorem 1.1], we have ε d 2 x∈εZ d ε∇u h (x) ⋅ φ( x ε )g(x) ⇒ N (0, σ2 g ), with σ2 g = ∫ R 2d Kf (x, z)g(x)g(z)dxdz and (3.10) Kf (x, z) = d i,j,k,l=1 Kijkl R 3d ∂ xi G h (v -x)∂ xj G h (x -y)∂ x k G h (v -z)∂ x l G h (z -w) f (y)f (w)dydwdv.

If σ 2

g and σ2 g were equal for every admissible f and g, then

d i,j,k,l=1 Kijkl R d ∂ xi G h (v -x)∂ xj G h (v -y)∂ x k G h (v -z)∂ x l G h (v -w)dv and d i,j,k,l=1 Kijkl R d ∂ xi G h (v -x)∂ xj G h (x -y)∂ x k G h (v -z)∂ x l G h (z -w)dv
would have to be equal almost everywhere (as functions of x, y, z and w). However, the first quantity diverges when y gets close to w since d ⩾ 3, while this is not so for the second quantity. This shows that the fluctuations of u ε are not those suggested by the two-scale expansion.

The heuristics in Section 1 provide a clear picture of the above phenomenon (other than the explanation that o(ε) may contribute on the level of ε 

(x) = ∫ R d ∇G h (x -y) ⋅ W (y)pdy, the rescaled limit of the corrector ε∇u h (x) ⋅ φ( x ε ) is (3.11) ε -d 2 +1 ∇u h (x) ⋅ φ( x ε ) → R d ∇G h (x -y) ⋅ W (y)∇u h (x)dy,
and we already know from Remark 2.2 that the rescaled limit of

u ε (x) -E{u ε (x)} is (3.12) ε -d 2 (u ε (x) -E{u ε (x)}) → R d ∇G h (x -y) ⋅ W (y)∇u h (y)dy.
Comparing the r.h.s. of (3.11) and (3.12), it is clear that they are two different Gaussian random fields. We further observe that they are linked through a Taylor expansion of ∇u h (y) around x. By writing

∇u h (y) = ∇u h (x) + ∇ 2 u h (x)(y -x) + . . . , with ∇ 2 u h (x) the Hessian of u h , we have (3.13) R d ∇G h (x -y) ⋅ W (y)∇u h (y)dy = R d ∇G h (x -y) ⋅ W (y)∇u h (x)dy + R d ∇G h (x -y) ⋅ W (y)∇ 2 u h (x)(y -x)dy + . . . . The term ∫ R d ∇G h (x -y) ⋅ W (y)∇ 2 u h (x)(y -x)
dy should correspond to the second order corrector obtained by the two-scale expansion, and we also expect those higher order terms appearing in (3.13) to correspond to the rescaled limit of the higher order correctors (provided that they are stationary). It does not seem possible to simply add a finite number of terms in the two-scale expansion to recover the correct limiting field.

3.3.

Properties of correctors and Green functions. We summarize here several results obtained in [START_REF] Gloria | An optimal variance estimate in stochastic homogenization of discrete elliptic equations[END_REF][START_REF] Marahrens | Annealed estimates on the green's function, Probability Theory and Related Fields[END_REF] which will be used frequently throughout the paper. Let x be the norm of x ∈ Z d , and x * = 2 + x . Proposition 3.1 (Existence of stationary corrector and moment bounds [START_REF] Gloria | An optimal variance estimate in stochastic homogenization of discrete elliptic equations[END_REF]). Recall that we assume d ⩾ 3. For every λ > 0, there exists a unique stationary solution φ λ,ξ to equation (3.2). Moreover, for every p ⩾ 1, E{ φ λ,ξ p } and E{ Dφ λ,ξ p } are uniformly bounded in λ > 0. The limit φ ξ = lim λ→0 φ λ,ξ is well-defined in L p (Ω) and is the unique centered stationary solution to (3.3).

Denote by G λ (x, y) the Green function of λ + ∇ * ã(x)∇ (the dependence on the randomness ζ is kept implicit) and recall that G(x, y) = G 0 (x, y). The following pointwise bound holds:

G λ (x, y) ⩽ C x d-2 * e -c √ λ x
for some c, C > 0. The following result controls the derivatives in the annealed sense.

Proposition 3.2 (annealed estimates on the gradients of the Green function [START_REF] Marahrens | Annealed estimates on the green's function, Probability Theory and Related Fields[END_REF]).

For every 1 ⩽ p < ∞, there exists C p < ∞ such that for every λ ⩾ 0 and every e, e ′ ∈ B, 3.4. Notation. We summarize and introduce some more notations used throughout the paper.

• For i = 1, . . . , d, e ∈ B and f , ∇ i f (e) ∶= ∇ i f (e). Recall that without any subscript, ∇ f (e) = f (ē) -f (e), and for for λ ⩾ 0, and G h (x, y) = G h,0 (x, y). Recall that the heterogeneous Green function of λ + ∇ * ã∇ is denoted by G λ (x, y), and that G(x, y) = G 0 (x, y).

x ∈ Z d , ∇ i f (x) = f (x + e i ) -f (x) and ∇ * i f (x) = f (x -e i ) -f (x). • We write a ≲ b when a ⩽ Cb for some constant C independent of ε, e, x. • For a, b, c > 0, we write a ≲ 1 b c-if for any δ > 0, there exists C δ > 0 such that a ⩽ C δ 1 b c-δ .
The continuous homogenized Green function of 

-∇ ⋅ a h ∇ is G h (x, y). • {e i , i = 1, . . . ,

Helffer-Sjöstrand representation, two-scale expansion of the Green function, and second order Poincaré inequality

We divide the proof of Proposition 2.5 into two steps. First, we show that (4.1)

ε -d Var{U (f ) ε (g)} → σ 2 g , with σ 2 g defined in (2.3). If σ 2 g = 0, we conclude U (f ) ε (g) → 0 in L 2 (Ω). Next we assume σ 2 g > 0 and show (4.2) U (f ) ε (g) -E{U (f ) ε (g)} Var{U (f ) ε (g)} ⇒ N (0, 1).
Once this is done, we can write

U (f ) ε (g) = U (f ) ε (g) -E{U (f ) ε (g)} Var{U (f ) ε (g)} × ε -d Var{U (f ) ε (g)} to conclude that U (f ) ε (g) ⇒ N (0, σ 2 g
). The proof of (4.1) uses the Helffer-Sjöstrand representation and a two-scale expansion of the Green function, while the proof of (4.2) relies the second order Poincaré inequality developed by Chatterjee [START_REF] Chatterjee | Fluctuations of eigenvalues and second order poincaré inequalities[END_REF] and revisited in [START_REF] Mourrat | A Scaling limit of the corrector in stochastic homogenization[END_REF]. Both of them require taking vertical derivatives of U (f ) ε (g) with respect to the underlying Gaussian variables ζ e . Recall that U (f )

ε (g) = ε d+2 ∑ x,y∈Z d G(x, y)g(εx)f (εy) is a finite linear combination of G(x, y). By Lemma A.1, we have ∂ e U (f ) ε (g) = -ε d+2 x,y∈Z d
∂ e a e ∇G(x, e)∇G(y, e)g(εx)f (εy).

We introduce the key elements in proving (4.1) and (4.2) in the following section. Moreover, for every p ⩾ 2, (1 + L ) -1 is a contraction from L p (Ω) to L p (Ω).

Since

U (f ) ε (g) = ε d+2
x,y∈Z d G(x, y)g(εx)f (εy), the proof of (4.1) is reduced to asymptotics of Cov{G(x, y), G(z, w)} when the mutual distances between x, y, z and w are large. By applying Proposition 4.1 and Lemma A.1, the covariance is given by

Cov{G(x, y), G(z, w)} = e∈B ⟨∂ e G(x, y), (1 + L ) -1 ∂ e G(z, w)⟩ = e∈B
⟨∂ e a e ∇G(x, e)∇G(y, e), (1 + L ) -1 ∂ e a e ∇G(z, e)∇G(w, e)⟩.

To prove the asymptotics, we need an expansion of ∇G(x, e). The following proposition is our main result in this section and one of the main ingredients to prove (4.1). To prove Proposition 4.2, we introduce the flux corrector, following [START_REF]A regularity theory for random elliptic operators[END_REF]. For every i = 1, . . . , d, define q i = a(e i + Dφ i ) -a h e i , which describes the current correction, and q ij to be its j-th component. By the corrector equation (3.3), we have D * q i = 0, and by the expression of a h in (3.4), E{q ij } = 0.

We need the following integrability property.

Lemma 4.4. Fix any i, j, k = 1, . . . , d.

For λ > 0, let σ λ solve (λ -∆)σ λ = D k q ij ,
then σ λ is bounded in L 4 (Ω) uniformly in λ, i, j, k. Furthermore, σ λ converges in L 2 (Ω) with the limit σ ∈ L 4 (Ω) and solving

-∆σ = D k q ij .
Proof. We first apply the spectral gap inequality in the form given by Lemma A.2 to σ λ and obtain

E{σ 4 λ } ≲ e∈B E{ σ λ -σ e λ 4 } 2 .
Then we compute σ λ -σ e λ for fixed e ∈ B. Let G ∆,λ be the Green function of λ -∆, we have

σ λ = σλ (0) = y∈Z d G ∆,λ (0, y)∇ k qij (y), σ e λ = σe λ (0) = y∈Z d G ∆,λ (0, y)∇ k qe ij (y).
Since q ij is the j-th component of a(e i + Dφ i ) -a h e i and a h = āI d , we have q ij = a j 1 i=j + a j D j φ i -ā1 i=j , which implies

qij (y) -qe ij (y) ≲ 1 y=e (1 + ∇ j φi (y) ) + ∇ j φi (y) -∇ j φe i (y) . Now we have σ λ -σ e λ ≲ y∈Z d ∇ * k G ∆,λ (0, y) 1 y=e (1 + ∇ j φi (y) ) + ∇ j φi (y) -∇ j φe i (y) = ∇ * k G ∆,λ (0, e) (1 + ∇ j φi (e) ) + y∈Z d ∇ * k G ∆,λ (0, y) ∇ j φi (y) -∇ j φe i (y) ∶=I 1 + I 2 , so E{ σ λ -σ e λ 4 } ≲ E{ I 1 4 } + E{ I 2 4 }. The homogeneous Green function sat- isfies ∇ * k G ∆,λ (0, x) ≲ x 1-d * , thus E{ I 1 4
} ≲ e 2-2d * by Proposition 3.1. For I 2 , we write

I 2 4 = y1,y2,y3,y4∈Z d 4 n=1 ∇ * k G ∆,λ (0, y n ) ∇ j φi (y n ) -∇ j φe i (y n ) ,
and by Lemmas A.3 and A.6 we have . In summary, we have

E{ I 2 4 } ≲ ⎛ ⎝ y∈Z d 1 y d-1 * 1 y -e d * ⎞ ⎠
E{σ 4 λ } ≲ ⎛ ⎝ e∈B 1 e (2d-2)- * ⎞ ⎠ 2 ,
and since d ⩾ 3, we conclude E{σ 4 λ } ≲ 1. To show the convergence of σ λ in L 2 (Ω), we only need to prove that ⟨σ λ1 , σ λ2 ⟩ converges as λ 1 , λ 2 → 0. By the Green function representation, we have

⟨σ λ1 , σ λ2 ⟩ = y1,y2∈Z d ∇ * k G ∆,λ1 (0, y 1 )∇ * k G ∆,λ2 (0, y 2 )E{q ij (y 1 )q ij (y 2 )}. By Lemma A.4, E{q ij (y 1 )q ij (y 2 )} ≲ 1 y1-y2 d- * . Furthermore ∇ * k G ∆,λ (0, y) ≲ y 1-d * , by the dominated convergence theorem, we have ⟨σ λ1 , σ λ2 ⟩ → y1,y2∈Z d ∇ * k G ∆,0 (0, y 1 )∇ * k G ∆,0 (0, y 2 ij (y 1 )q ij (y 2 )}.
Therefore, σ λ converges in L 2 (Ω). Its limit σ is in L 4 (Ω) by Fatou's lemma. By sending λ → 0 in (λ -∆)σ λ = D k q ij , we obtain -∆σ = D k q ij , and the proof is complete.

We can now define the flux corrector {σ ijk , i, j, k = 1, . . . , d}:

Lemma 4.5. There exists a tensor field {σ ijk , i, j, k = 1, . . . , d} such that

• σ ijk = -σ ikj , • σ ijk ∈ L 4 (Ω), • -∆σ ijk = D k q ij -D j q ik and ∑ d k=1 D * k σ ijk = q ij .
Proof. For every i, j, k = 1, . . . , d and λ > 0, we consider the equation

(4.5) (λ -∆)σ λ ijk = D k q ij -D j q ik . Lemma 4.4 ensures that E{ σ λ ijk 4 } ≲ 1, that σ λ
ijk converges in L 2 (Ω), and denoting the limit by σ ijk , we have

σ ijk ∈ L 4 (Ω) with -∆σ ijk = D k q ij -D j q ik .
The skew symmetry σ ijk = -σ ikj is clear by (4.5).

To show

∑ d k=1 D * k σ ijk = q ij , it suffices to prove ∆(∑ d k=1 D * k σ ijk -q ij ) = 0. Indeed, D(∑ d k=1 D * k σ ijk -q ij ) = 0 implies ∑ d k=1 D * k σ ijk -q ij =
const by ergodicity, and since

E{∑ d k=1 D * k σ ijk } = E{q ij } = 0, we have ∑ d k=1 D * k σ ijk = q ij . Now we consider ∆( d k=1 D * k σ ijk -q ij ) = lim λ→0 ∆( d k=1 D * k σ λ ijk -q ij ) = lim λ→0 d k=1 D * k (D j q ik -D k q ij + λσ λ ijk ) -∆q ij . Since ∑ d k=1 D * k q ik = 0 and σ λ ijk is uniformly bounded in L 4 (Ω), we have ∆(∑ d k=1 D * k σ ijk - q ij )
= 0, and this completes the proof.

Proof of Proposition 4.2. We follow the proof of [START_REF] Mourrat | Correlation structure of the corrector in stochastic homogenization[END_REF]Theorem 5.1], but use the flux corrector as in [START_REF]A regularity theory for random elliptic operators[END_REF] to simplify calculations. Define

z(x) ∶= G(0, x) -G h (x) - d k=1 ∇ k G h (x) φk (x),
as the remainder in the two-scale expansion of the Green function, the matrix function R ∶= -[q 1 , . . . , q d ] by

Rij (x) = -q ji (x) = ā1 i=j -ãi (x)(1 i=j + ∇ i φj (x)),
and h ∶ Z d → R by h(x) = - d i=1 ∇ * i ⎛ ⎝ ãi (x) d j=1 φj (x + e i )∇ i ∇ j G h (x) ⎞ ⎠ .
By [23, Proposition 5.6], we have

(4.6) z(x) = y∈Z d G(x, y) d i,j=1 Rij (y -e i )∇ * i ∇ j G h (y) + y∈Z d G(x, y) h(y).
Consider the first term on the right-hand side of (4.6). Since

R ij = -q ji = -∑ d k=1 D * k σ jik by Lemma 4.5, we can write d i,j=1 Rij (y -e i )∇ * i ∇ j G h (y) = - d i,j,k=1 ∇ * k σjik (y -e i )∇ * i ∇ j G h (y) = - d i,j,k=1 ∇ * k (σ jik (y -e i )∇ * i ∇ j G h (y)),
where the last equality uses the fact

∇ * k (f (x)g(x)) = ∇ * k f (x)g(x)+f (x-e k )∇ * k g(x)
and σ jik +σ jki = 0. Therefore, by using the flux corrector σ, we can write ∇∇ y,k G(e, y)

∑ d i,j=1 Rij (y- e i )∇ * i ∇ j G h (y) in divergence form. Note that h is in divergence form.
d i,j=1 σjik (y -e i )∇ * i ∇ j G h (y) - y∈Z d d i=1
∇∇ y,i G(e, y)ã i (y)

d j=1 φj (y + e i )∇ i ∇ j G h (y).
Note that

∇ i z(x) =∇ i G(0, x) -∇ i G h (x) - d k=1 (∇ i φk (x)∇ k G h (x) + φk (x + e i )∇ i ∇ k G h (x)) = ∇ i G(0, x) -∇ i G h (x) - d k=1 ∇ i φk (x)∇ k G h (x) - d k=1 φk (x + e i )∇ i ∇ k G h (x),
and moreover, by the moments bounds on φ k provided by Proposition 3.1 and the fact that

∇ i ∇ j G h (x) ≲ x -d * , we have φk (x + e i )∇ i ∇ k G h (x) 2 ≲ 1 x d * ≲ log x * x d * .
As a consequence, in order to prove Proposition 4. 

d K (X, Y ) = sup{E{h(X)} -E{h(Y )} ∶ h ′ ∞ ⩽ 1}.
In order to show that the rescaled fluctuations are asymptotically Gaussian, we will use the following result. 

4.8) d K (F, Y ) ⩽ 5 π e ′ ∈B e∈B ∂ e F 4 ∂ e ∂ e ′ F 4 2 .
Using the above result, we only need to show the following lemma to prove (4.2).

Lemma 4.7. Let (4.9)

κ 2 ∶= e ′ ∈B ∂ e U (f ) ε (g) 4 e∈B ∂ e ∂ e ′ U (f ) ε (g) 4 2 . If σ 2 g defined in (2.3) is not zero, then κ 2 Var 2 {U (f ) ε (g)} ≲ ε d log ε 2 .
Remark 4.8. By Proposition 4.6 and Lemma 4.7, if σ 2 g ≠ 0, then we actually obtain the convergence rate

d K ⎛ ⎜ ⎝ U (f ) ε (g) -E{U (f ) ε (g)} Var{U (f ) ε (g)} , N (0, 1) ⎞ ⎟ ⎠ ≲ ε d 2 log ε .

Convergence of the variance

The aim of this section is to prove (4.1).

Recall that

U (f ) ε (g) = ε d+2 ∑ x,y∈Z d G(x, y)g(εx)f (εy), so Var{U (f ) ε (g)} =ε 2d+4
x,y,z,w∈Z d

Cov{G(x, y), G(z, w)}g(εx)f (εy)g(εz)f (εw)

=ε 2d+4 x,y,z,w∈εZ d Cov{G( x ε , y ε ), G( z ε , w ε )}g(x)f (y)g(z)f (w).
The covariance is given explicitly by the Helffer-Sjöstrand representation To prove the convergence of ε -d Var{U (f ) ε (g)}, we use the two-scale expansion of the Green function obtained in Proposition 4.2. For e ∈ B,

x i ∈ Z d , i = 1, 2, 3, 4, define (5.3) E(x 1 , x 2 , x 3 , x 4 ) ∶= e∈B 4 i=1 log e -x i * e -x i d * 4 j=1,j≠i 1 e -x j d-1 * and K(x, y, z, w) ∶= d i,j,k,l=1 Kijkl v∈Z d ∇ i G h (v -x)∇ j G h (v -y)∇ k G h (v -z)∇ l G h (v -w)
with Kijkl given by (3.6).

Proposition 5.1. Cov{G(x, y), G(z, w)} -K(x, y, z, w) ≲ E(x, y, z, w).

Proof. Each term in (5.2) contains four factors of gradient of the Green function. We first consider ∇G(x, e) and let X = ∂ e a e ∇G(y, e)(1 + L ) -1 ∂ e a e ∇G(z, e)∇G(w, e). By (4.4), we have

⟨X, ∇G(x, e)⟩ - d k=1 ∇ k G h (e -x)⟨X, (e k + ∇ φk )(e)⟩ ≲ X 2 log e -x * e -x d * .
By Proposition 3.2 and the fact that

(1 + L ) -1 is a contraction from L p (Ω) to L p (Ω) for any p ⩾ 2, we have X 2 ≲ e -y 1-d * e -z 1-d * e -w 1-d * , so Cov{G(x, y), G(z, w)} - e∈B d k=1 ∇ k G h (e -x)⟨X, (e k + ∇ φk )(e)⟩ ≲ E(x, y, z, w).
Now we carry out the same argument for ∇G(y, e), ∇G(z, e), ∇G(w, e), and in the end obtain

Cov{G(x, y), G(z, w)} -K(x, y, z, w) ≲ E(x, y, z, w).

The proof is complete.

Proposition 5.1 leads to

ε -d Var{U (f ) ε (g)} -ε d+4 x,y,z,w∈εZ d K( x ε , y ε , z ε , w ε )g(x)f (y)g(z)f (w) ≲ε d+4 x,y,z,w∈εZ d E( x ε , y ε , z ε , w ε ) g(x)f (y)g(z)f (w) .
Hence, the proof of (4.1) will be complete once we have proved the following two lemmas.

Lemma 5.2.

ε d+4 ∑ x,y,z,w∈εZ d E( x ε , y ε , z ε , w ε ) g(x)f (y)g(z)f (w) → 0 as ε → 0. Lemma 5.3. ε d+4 ∑ x,y,z,w∈εZ d K( x ε , y ε , z ε , w ε )g(x)f (y)g(z)f (w) → σ 2 g as ε → 0.
In the following, we assume g , f ⩽ h for some h ∈ C c (R d ).

Proof of Lemma 5.2. By denoting the number of different elements in {x, y, z, w} by s, we decompose ∑ x,y,z,w∈εZ

d = ∑ 1 s=1 + ∑ 1 s=2 + ∑ 1 s=3 + ∑ 1 s=4 .
The following estimates are obtained with an application of Lemma A.10. When s = 1, 4 dx which is bounded, so we have the r.h.s. of the above display goes to zero as ε → 0. When s = 2,

ε d+4 1 s=1 E( x ε , y ε , z ε , w ε ) g(x)f (y)g(z)f (w) ≲ ε d+4 x∈εZ d h(x) 4 . Since h ∈ C c (R d ), ε d ∑ x∈εZ d h(x) 4 → ∫ R d h(x)
ε d+4 1 s=2 E( x ε , y ε , z ε , w ε ) g(x)f (y)g(z)f (w) ≲ε d+4 x≠y∈εZ d h(x) 2 h(y) 2 x ε - y ε 2-2d * + h(x) 3 h(y) x ε - y ε 1-d * .
For x ≠ 0 ∈ Z d , we have x * > x ⩾ 1, so the r.h.s. of the above display is bounded by

ε d+4 x≠y∈εZ d (h(x) 2 h(y) 2 + h(x) 3 h(y)) x ε - y ε 1-d * ⩽ε 2d+3 x≠y∈εZ d (h(x) 2 h(y) 2 + h(x) 3 h(y)) x -y 1-d .
Similarly, ε 2d ∑ x≠y∈εZ d (h(x) 2 h(y) 2 + h(x) 3 h(y)) xy 1-d converges as a Riemann sum, which implies

ε 2d+3 x≠y∈εZ d (h(x) 2 h(y) 2 + h(x) 3 h(y)) x -y 1-d ∼ ε 3 → 0 as ε → 0.
The discussion for s = 3, 4 is similar to s = 2, so we omit the details. When s = 3,

ε d+4 1 s=3 E( x ε , y ε , z ε , w ε ) g(x)f (y)g(z)f (w) ≲ε 3d+2 x,y,z∈εZ d {x,y,z} =3 h(x) 2 h(y)h(z) 1 x -y d-1 1 x -z d-1 + 1 y -z d-1 ∼ ε 2 . When s = 4, ε d+4 1 s=4 E( x ε , y ε , z ε , w ε ) g(x)f (y)g(z)f (w) ≲ε (4d+1)-1 s=4 h(x)h(y)h(z)h(w) 1 x -y (d-1)- 1 x -z (d-1)- 1 x -w (d-1)-∼ ε 1-.
The proof is complete.

Proof of Lemma 5.3. Recall that

K(x, y, z, w) = d i,j,k,l=1 Kijkl v∈Z d ∇ i G h (v -x)∇ j G h (v -y)∇ k G h (v -z)∇ l G h (v -w). By defining F ijkl (v, x, y, z, w) ∶= ∇ i G h (v -x)∇ j G h (v -y)∇ k G h (v -z)∇ l G h (v -w),
we only need to show the convergence of

I ijkl = ε d+4 x,y,z,w∈εZ d v∈Z d F ijkl (v, x ε , y ε , z ε , w ε )g(x)f (y)g(z)f (w)
for fixed i, j, k, l.

We claim that

∇ i G h (v -x ε ) can be replaced by ∂ xi G h (v -x ε ) in F ijkl (v, x ε , y ε , z ε , w ε )
of the above expression with the sum over v ≠ x ε. Indeed, by [START_REF] Mourrat | Correlation structure of the corrector in stochastic homogenization[END_REF]Proposition A.3], for x ≠ 0,

∇ i G h (x) -∂ xi G h (x) ≲ x -d . If we define F i jkl (v, x, y, z, w) ∶= ∂ xi G h (v -x)∇ j G h (v -y)∇ k G h (v -z)∇ l G h (v -w)
, the error induced by the replacement can be estimated as

I ijkl -ε d+4 x,y,z,w∈εZ d v≠ x ε F i jkl (v, x ε , y ε , z ε , w ε )g(x)f (y)g(z)f (w) ≲ J 1 + J 2 , with J 1 = ε d+4 x,y,z,w∈εZ d F ijkl ( x ε , x ε , y ε , z ε , w ε ) h(x)h(y)h(z)h(w).
and

J 2 = ε d+4 x,y,z,w∈εZ d v≠ x ε v - x ε -d v - y ε 1-d * v - z ε 1-d * v - w ε 1-d * h(x)h(y)h(z)h(w).
For J 1 , by using

∇ i G h (x) ≲ x 1-d *
and considering different cases according to whether y, z, w = x as in the proof of Lemma 5.2, we obtain

J 1 ≲ ε d+4 x,y,z,w∈εZ d x -y ε 1-d * x -z ε 1-d * x -w ε 1-d * h(x)h(y)h(z)h(w) → 0.
For J 2 , we note that

∑ v≠ x ε v -x ε -d v -y ε 1-d * v -z ε 1-d * v -w ε 1-d * ≲ E( x ε , y ε , z ε , w ε
) with E(x, y, z, w) defined in (5.3), so we can apply Lemma 5.2 to show J 2 → 0. The claim is proved.

By following the same argument for

∇ j G h (v -y ε ), ∇ k G h (v -z ε ), ∇ l G h (v -w ε ), we derive I ijkl -ε d+4 x,y,z,w∈εZ d v≠ x ε , y ε , z ε , w ε F ijkl (v, x ε , y ε , z ε , w ε )g(x)f (y)g(z)f (w) → 0, with F ijkl (v, x, y, z, w) ∶= ∂ xi G h (v -x)∂ xj G h (v -y)∂ x k G h (v -z)∂ x l G h (v -w). Since d ⩾ 3, G h (x) = c h x 2-d for some constant c h , and ∂ xi G h (x) = c h (2 -d)x i x d , so we have ε d+4 x,y,z,w∈εZ d v≠ x ε , y ε , z ε , w ε F ijkl (v, x ε , y ε , z ε , w ε )g(x)f (y)g(z)f (w) =ε 5d
x,y,z,w,v∈εZ d

1 v≠x,y,z,w F ijkl (v, x, y, z, w)g(x)f (y)g(z)f (w) → R 5d F ijkl (v, x, y, z, w)g(x)f (y)g(z)f (w)dxdydzdwdv.
The proof is complete.

6. Convergence to a Gaussian when σ 2 g > 0 Recall that in order to prove (4.2), that is,

U (f ) ε (g) -E{U (f ) ε (g)} Var{U (f ) ε (g)} ⇒ N (0, 1),
we only need to show Lemma 4.7.

Proof of Lemma 4.7. We first prepare the ground by estimating the terms appearing in the definition of κ 2 . By a direct calculation, we have

∂ e U (f ) ε (g) = -ε d+2
x,y∈Z d ∂ e a e ∇G(x, e)∇G(y, e)f (εy)g(εx),

and 

∂ e ′ ∂ e U (f ) ε (g) = -ε d+2 x,
∂ e U (f ) ε (g) p ≲ ε d+2 x,y∈Z d 1 x -e d-1 * 1 y -e d-1 * f (εy)g(εx) ,
and

∂ e ′ ∂ e U (f ) ε (g) p ≲ε d+2 x,y∈Z d 1 x -e d-1 * 1 y -e d-1 * f (εy)g(εx) 1 e ′ =e + ε d+2 x,y∈Z d 1 x -e ′ d-1 * 1 e -e ′ d * 1 y -e d-1 * f (εy)g(εx) + ε d+2 x,y∈Z d 1 x -e d-1 * 1 e -e ′ d * 1 y -e ′ d-1 * f (εy)g(εx) .
Since f, g are both bounded and compactly supported, we apply Lemma A.11 to obtain (6.1)

∂ e U (f ) ε (g) p ≲ ε d+2 x∈Z d 1 x -e d-1 * 1 x ≲ε -1 2 ≲ ε d εe 2d-2 *
, and (6.2)

∂ e ′ ∂ e U (f ) ε (g) p ≲ε d+2 x∈Z d 1 x -e d-1 * 1 x ≲ε -1 2 (1 e ′ =e + 1 e -e ′ d * ) ≲ ε d εe 2d-2 * 1 e -e ′ d * .
We are now ready to estimate κ 2 . By (6.1) and (6.2), we have

κ 2 = e ′ ∈B e∈B ∂ e ′ ∂ e U (f ) ε (g) 4 ∂ e U (f ) ε (g) 4 2 ≲ e ′ ∈B e∈B ε d εe 2d-2 * 1 e -e ′ d * ε d εe 2d-2 * 2 .
Applying Lemma A.11, we get

e ′ ∈B e∈B ε 2d εe 4d-4 * 1 e -e ′ d * 2 ≲ e ′ ∈B ε 4d log ε 2 1 εe ′ 2d * ≲ε 4d log ε 2 x∈Z d 1 (2 + εx ) 2d ≲ε 3d log ε 2 .
To sum up, κ 2 ≲ ε 3d log ε 2 . By (4.1), Var{U

(f ) ε (g)} ≳ ε d if σ 2 g ≠ 0, which leads to κ 2 Var 2 {U (f ) ε (g)} ≲ ε 3d log ε 2 ε 2d ≲ ε d log ε 2 → 0,
and the proof is complete. 

F [ε -d χ(ε -1 ( ⋅ -x))] ≲ ε -α (ε → 0).
By [START_REF] Mourrat | A tightness criterion in local Hölder spaces of negative regularity[END_REF]Theorem 2.25], in order to prove that U (f ) ε is tight in C α loc for every α < -d, we only need to prove the following proposition. Proposition 7.1. For any g ∈ C c (R d ), let g λ (x) = λ -d g(x λ). For all p ⩾ 1, there exists a constant C = C(p, g) such that for every ε, λ ∈ (0, 1],

U (f ) ε (g λ ) p ⩽ Cλ -d .
Proof. We follow the proof of [START_REF] Mourrat | A Scaling limit of the corrector in stochastic homogenization[END_REF]Proposition 3.1]. Since

U (f ) ε (g) = ε -d 2 (U (f ) ε (g) -E{U (f ) ε (g)}),
we have

U (f ) ε (g λ )λ d 2 -1 = ε d 2 +2 λ d 2 +1 x∈Z d y∈Z d (G(x, y) -E{G(x, y)})f (εy)g( εx λ ) =∶ X ε,λ .
For λ < ε ∈ (0, 1], the sum over x above contains only a finite number of non-zero terms. In this case, standard Green function upper bounds ensure that

U (f ) ε (g λ ) ⩽ Cλ -d almost surely,
uniformly over λ < ε ∈ (0, 1]. We may therefore restrict our attention to the case ε ⩽ λ ∈ (0, 1]. Showing more than necessary, we prove that X ε,λ is bounded in

L p (Ω), uniformly in ε ⩽ λ ∈ (0, 1]. Since E{X ε,λ } = 0, in particular (7.2) E{X p ε,λ } 2 ≲ 1 
holds for p = 1. We argue inductively, assuming that (7.2) holds for some p = n, and showing that it also holds for p = 2n, which would complete the proof.

Since E{X 2n ε,λ } = E{X n ε,λ } 2 + Var{X n ε,λ } ≲ 1 + Var{X n ε,λ }, it suffices to show Var{X n ε,λ } ≲ E{X 2n ε,λ } 1-1 n . By the spectral gap inequality (see [23, Corollary 3.3]), we have Var{X n ε,λ } ⩽ e∈B E{ ∂ e X n ε,λ 2 } = e∈B E{ nX n-1 ε,λ ∂ e X ε,λ 2 } ≲E{ X ε,λ 2n } 1-1 n e∈B E{ ∂ e X ε,λ 2n } 1 n . So we are left to prove ∑ e∈B E{ ∂ e X ε,λ 2n } 1 n ≲ 1. Since ∂ e X ε,λ = - ε d 2 +2 λ d 2 +1
x,y∈Z d ∂ e a e ∇G(x, e)∇G(y, e)f (εy)g( εx λ )

and f, g ∈ C c (R d ), by applying Proposition 3.2 and Lemma A.11 we obtain

∂ e X ε,λ 2n ≲ ε d 2 +2 λ d 2 +1 x∈Z d 1 x -e d-1 * 1 x ≲ λ ε y∈Z d 1 y -e d-1 * 1 y ≲ 1 ε ≲ ε d 2 +2 λ d 2 +1
λ ε

1 ε λ e d-1 * 1 ε 1 εe d-1 * = ε λ d 2 1 ε λ e d-1 * 1 εe d-1 * , which implies e∈B E{ ∂ e X ε,λ 2n } 1 n ≲ e∈B ε λ d 1 ε λ e 2d-2 * 1 εe 2d-2 * ≲ e∈B ε λ d 1 ε λ e 2d-2 * ≲ 1.
The proof is complete. Proof. Fix e, x, y, ζ. By definition, the Green function G(x, y) = ∫ ∞ 0 q t (x, y) dt with the heat kernel q t (z, y) solving the following parabolic problem

∂ t q t (z, y) = -∇ * ã(z)∇q t (z, y), z ∈ Z d ,
with initial condition q 0 (z, y) = 1 z=y . We take ∂ e on both sides of the above equation to obtain ∂ t ∂ e q t (z, y) = -∇ * ã(z)∇∂ e q t (z, y) + ∂ e a e ∇q t (e, y)(1 z=e -1 z=ē ), with initial condition ∂ e q 0 (z, y) = 0. So ∂ e q t (x, y) is given by ∂ e q t (x, y) = where we used the symmetry q t (x, y) = q t (y, x) in the last step. The proof is complete.

Lemma A.2 (Spectral Gap Inequality to control fourth moment). For any f with E{f } = 0,

(A.2) E{f 4 } ≲ e∈B E{ f -f e 4 } 2 .
Proof. By [8, Lemma 2], if we define E e {f } ∶= E{f {ζ e ′ } e ′ ≠e }, then

E{f 4 } ≲ E{( e∈B f -E e {f } 2 ) 2 }.
By expanding the right-hand side, we obtain

E{f 4 } ≲ e,e ′ ∈B E{ f -E e {f } 2 f -E e ′ {f } 2 } ⩽ e,e ′ ∈B E{ f -E e {f } 4 }E{ f -E e ′ {f } 4 } = e∈B E{ f -E e {f } 4 } 2 . It thus suffices to show that E{ f -E e {f } 4 } ⩽ 1 2 E{ f -f e 4 }.
In order to do so, we write

f -f e = f -E e {f } + E e {f } -f e ,
and observe that

E{ f -f e 4 } =E{ f -E e {f } 4 } + E{ E e {f } -f e 4 } + 6E{ f -E e {f } 2 E e {f } -f e 2 } + 4E{(f -E e {f })(E e {f } -f e ) 3 } + 4E{(f -E e {f }) 3 (E e {f } -f e )}.
By first averaging over ζ e (resp. ζ ′ e ), we see the third (resp. fourth) term on the right-hand side is equal to zero, so the proof is complete.

Lemma A.3 (Sensitivity of gradient of correctors with respect to ζ e ). For e ∈ B, x ∈ Z d , i, j = 1, . . . , d and p ⩾ 1, we have

(A.3) E{ ∇ j φi (x) -∇ j φe i (x) p } ≲ x -e -pd * .
Proof. By the convergence of ∇ j φλ,i (x) → ∇ j φi (x) in L p (Ω), we only need to show E{ ∇ j φλ,i (x) -∇ j φe λ,i (x) p } ≲ xe -pd * , where the implicit multiplicative constant is independent of λ.

We write the equation satisfied by φλ,i and φe λ,i as

λ φλ,i (x) + ∇ * ã(x)∇ φλ,i (x) = -∇ * ã(x)e i , λ φe λ,i (x) + ∇ * ãe (x)∇ φe λ,i (x) = -∇ * ãe (x)e i . A straightforward calculation leads to φλ,i (x) -φe λ,i (x) = y∈Z d G λ (x, y)∇ * (ã e (y) -ã(y))(∇ φe λ,i (y) + e i ),
so we have

∇ j φλ,i (x) -∇ j φe λ,i (x) = y∈Z d ∇ x,j ∇ y G λ (x, y)(ã e (y) -ã(y))(∇ φe λ,i (y) + e i ).
Since ãe (y) -ã(y) = 0 when y ≠ e, we conclude

∇ j φλ,i (x) -∇ j φe λ,i (x) ≲ ∇ x,j ∇ y G λ (
x, e) ∇ φe λ,i (e) + e i . By Propositions 3.1 and 3.2, the proof is complete. Recall that q ij = a j 1 i=j + a j D j φ i -ā1 i=j , so for e ∈ B, x ∈ Z d , we have qij (x) -qe ij (x) ≲ ãj (x) -ãe j (x) (1 + ∇ j φi (x) ) + ∇ j φi (x) -∇ j φe i (x) . By Proposition 3.1 and Lemma A. Lemma A.8. Let x 1 , . . . , x k ∈ Z d be mutually different, and for each i, let ī be such that xīx i = min j≠i x j -x i . Assume α 1 , . . . , α k ∈ (0, d) and α i + α j > d for i ≠ j, then (A.7)

y∈Z d i 1 y -x i αi * ≲ k i=1 j≠i, ī 1 x j -x i αj * 1 x i -xī αi+αī-d * .
Proof. For each i, we define the region I i = {y ∶ yx i ⩽ min j yx j }, i.e., the set of points that are closest to x i . If y ∈ I i , we have yx j ⩾ x i -x j 2 for any j ≠ i. Therefore, .

Since α i + αī > d, the sum over y can be bounded using Lemma A.6, e.g., when α i < d for all i, we have The proof is complete.

Remark A.9. From the proof of Lemma A.8, we see that the condition α i + α j > d for all i ≠ j is not necessary to obtain similar estimates. For example, for each i, as long as we can find j ≠ i such that α i + α j > d, the integral in I i can be controlled by a similar bound.

Recall that the error function E in Proposition 5.1 is given by .

Proof. The proofs of different cases are similar. We only discuss the case when x, y, z, w are mutually different. By (A.8), we consider a term of the form:

v∈Z d 1 v -x d- * 1 v -y d-1 * 1 v -z d-1 * 1 v -w d-1 * .
Recall that S = {x, y, z, w}. For u ∈ S, let I u = {v ∈ Z d ∶ vu = min q∈S vq }. The proof is the same as in Lemma A.8, so we do not provide all details. .

The sums in I z , I w are discussed in the same way. The proof is complete.

Lemma A.11. For x ∈ Z d , p > 0 and ε ∈ (0, 1), (A.9) 

y∈Z d 1 x -y d-1 * 1 y ≲ε -1 ≲ ε -1 εx d-

3 . Setup 3 . 1 .

 331 Asymptotic variance. For x ∈ Z d , we define the shift operator τ x on Ω by (τ x ζ) e = ζ x+e , where x + e ∶= (x + e, x + ē) is the edge obtained by shifting e by x.

  For i, j, k, l = 1, . . . , d, define K ijkl (e) ∶= ⟨∂ e a e (e i +∇ φi )(e)(e j +∇ φj )(e), (1+L ) -1 ∂ e a e (e k +∇ φk )(e)(e l +∇ φl )(e)⟩, and (3.6) Kijkl ∶= d n=1

d 2

 2 when d ⩾ 3). If we write the solution to(1.11) as Φ

  ∇G λ (0, e) p ⩽ C p e d-1 * , ∇∇G λ (e, e ′ ) p ⩽ C p e ′ -e d * . Remark 3.3. Notice that ∇G(x, e) (for x ∈ Z d and e ∈ B) denotes the gradient of G(x, ⋅) evaluated at the edge e. Similarly, ∇∇G(e, e ′ ) denotes the gradient of ∇G(⋅, e ′ ) evaluated at the edge e.

•

  In this way we have log x * x c * The Laplacian on Z d and the horizontal Laplacian on the probability space are both denoted by ∆ = -∇ * ∇ and ∆ = -D * D. • For a random environment ζ and edge e ∈ B, we obtain the environment perturbed at e by replacing ζ e with an independent copy ζ ′ e without changing other components (ζ e ′ ) e ′ ≠e . The resulting new environment is denoted by ζ e . • For a random variable f and an edge e ∈ B, the variable perturbed at e is denoted by f e (ζ) ∶= f (ζ e ). For a stationary random field f (x) = f (τ x ζ), the field perturbed at e is denoted by f e (x) ∶= f (τ x ζ e ). • The discrete homogenized Green function of λ+∇ * a h ∇ is denoted by G h,λ (x, y)

  d} represents the canonical basis of Z d , the corresponding edges, and the column vectors so that the identity matrixI d = [e 1 , . . . , e d ].• For functions of two variables, e.g., G(x, y) with x, y ∈ Z d , we use ∇ x,i , ∇ y,i to denote the derivative with respect to x i , y i respectively. • The arrow ⇒ stands for convergence in law, and N (0, σ 2 ) is the Gaussian law with mean 0 and variance σ 2 . • a ∨ b = max(a, b) and a ∧ b = min(a, b).

4. 1 .

 1 Helffer-Sjöstrand representation and a two-scale expansion of the Green function. Proposition 4.1 (Helffer-Sjöstrand representation[START_REF] Mourrat | Correlation structure of the corrector in stochastic homogenization[END_REF]). Let f, g ∶ Ω → R be centered square-integrable functions such that for every e ∈ B, ∂ e f, ∂ e g ∈ L 2 (Ω). We have ⟨f, g⟩ = e∈B ⟨∂ e f, (1 + L ) -1 ∂ e g⟩.

(4. 4 )

 4 ⟨X, ∇G(x, e)⟩ -d k=1 ∇ k G h (ex)⟨X, (e k + ∇ φk )(e)⟩ ≲ X 2 log ex * ex d * . Remark 4.3. (4.3) is an improvement of [23, Theorem 5.1].

∇

  σjik (ye i )∇ * i ∇ j G h (y) y,i G(x, y)ã i (y) d j=1 φj (y + e i )∇ i ∇ j G h (y),so for e ∈ B, we have∇z(e) = -y∈Z d d k=1

Proposition 4 . 6 . 2 } = 1 .

 4621 [22, Proposition 2.1] Let F ∈ L 2 (Ω) be such that E{F } = 0 and E{F Assume also that F has weak derivatives satisfying ∑ e E{ ∂ e F 4 } 1 2 < ∞ and E{ ∂ e ∂ e ′ F 4 } < ∞ for all e, e ′ ∈ B. Let Y ∼ N (0, 1). Then

(

  

(5. 1 )

 1 Cov{G(x, y), G(z, w)} = e∈B ⟨∂ e G(x, y), (1 + L ) -1 ∂ e G(z, w)⟩, and since ∂ e G(x, y) = -∂ e a e ∇G(x, e)∇G(y, e) by Lemma A.1, (5.1) is rewritten as (5.2) Cov{G(x, y), G(z, w)} = e∈B ⟨∂ e a e ∇G(x, e)∇G(y, e), (1 + L ) -1 ∂ e a e ∇G(z, e)∇G(w, e)⟩.

7 .

 7 Tightness in C α loc Roughly speaking, for α < 0, a distribution F is α-Hölder regular around the point x ∈ R d if for every smooth, compactly supported test function χ, we have(7.1) 

  Appendix A. Technical lemmas Lemma A.1 (vertical derivative of G(x, y) with respect to ζ e ). For e ∈ B, x, y ∈ Z d , ω ∈ Ω, we have (A.1) ∂ e G(x, y) = -∂ e a e ∇G(x, e)∇G(y, e).

t 0 0 ∂

 00 z∈Z d q t-s (x, z)∂ e a e ∇q s (e, y)(1 z=e -1 z=ē )ds = -∂ e a e t 0 ∇q t-s (x, e)∇q s (e, y)ds. This leads to ∂ e G(x, y) = ∞ e q t (x, y)dt = -∂ e a e ∞ 0 t 0 ∇q t-s (x, e)∇q s (e, y)dsdt = -∂ e a e ∇G(x, e)∇G(y, e),

Lemma A. 4 (

 4 Covariance estimate of q ij ). For i, j = 1, . . . , d and x ∈ Z d , we have(A.4) E{q ij (0)q ij (x)} ≲ log x * x d * .Remark A.5. Similar results in continuous setting are given in[START_REF] Gu | Pointwise two-scale expansion for parabolic equations with random coefficients[END_REF] Proposition 4.7].Proof. By[16, (4.4)], we haveE{q ij (0)q ij (x)} = Cov{q ij (0), qij (x)} ≲ e∈B E{ qij (0) -qe ij (0) 2 } E{ qij (x) -qe ij (x) 2 }.

1 y α * 1 x 1 x1 y α * 1 xy ⩾ x 2 1 y α+β * ≲ 1 x1 y α * 1 x -y β * ≲ 1 x β * y ⩽ x 2 1 y α * ≲ 1 x

 111211121 3, we haveE{ qij (x) -qe ij (x) 2 } ≲ 1 x=e + xe -2d * , which implies E{q ij (0)q ij (x)} ≲ e∈B 1 e d * 1 xe d * ≲ log x * x d * ,where the last inequality comes from Lemma A.6. The proof is complete.Lemma A.6 (Estimates on discrete convolutions). For α, β > 0 with α + β > d, we have(A.5) y∈Z d -y β * ⩽ C α,β F α,β (x)for some constant C α,β > 0 and(A.6) F α,β (x) =The proof is standard. Since α + β > d, we only need to consider the region x > 100.For fixed x, let I 1 = {y ∶ y ⩽ x 2}, I 2 = {y ∶ yx ⩽ x 2}, and I 3 = Z d ∖ (I 1 ∪ I 2 ). We control the sum in each region separately. The proof for each case is similar and we only use the following two facts:• x * ≲ yx * in I 1 , x * ≲ y * in I 2 and yx * ∼ y * in I 3 , • for any γ > 0, ∑ y ⩽ x y -γ * ≲ x d-γ * 1 γ<d + log x * 1 γ=d + 1 γ>d . In I 3 , we have I3 -y β * ≲ α+β-d * .If α ∨ β < d, the discussion for I 1 and I 2 are the same. Take I 1 for example, we have I1 α+β-d * . If α ∨ β > d, we assume α ⩾ β, so α > d. By similar discussion, in I 2 we get the estimate

(A. 8 )E(x 1 , x 2 , x 3 , x 4 ) = e∈B 4 i=1 log e -x i * e -x i d * 4 .

 812344 By using Lemmas A.6 and A.8, we have the following control on the error function:Lemma A.10 (Estimation of E(x, y, z, w)). Let x, y, z, w ∈ Z d , • if x = y = z = w, E(x, y, z, w) ≲ 1. • if x = y = z ≠ w, E(x, y, z, w) ≲ xw 1-d * . • if x = y ≠ z = w, E(x, y, z, w) ≲ xw 2-2d * . • if x = y and y, z, w are mutually different, let S = {x, z, w}, E(x, y, z, w) ≲ v∈S u∈S∖{v} 1 uv d-1 * .• if x, y, z, w are mutually different, let S = {x, y, z, w}, E(x, y, z, w) ≲

  Proposition 4.2. Recall that G and G h are the Green functions of ∇ * ã∇ and ∇

	(4.3)	⟨X, ∇G(0, e)⟩ -	d k=1	∇ k G h (e)⟨X, (e k + ∇ φk )(e)⟩ ≲ X 2	log e * * e d	.
	By translation invariance of the environment, we further obtain for any x ∈ Z d

* a h ∇ respectively. For any e ∈ B, we have

∇G(0, e) -∇G h (e) -d k=1 ∇ k G h (e)∇ φk (e) 2 ≲ log e * e d * .

An immediate consequence is that for any X ∈ L 2 (Ω),

  In order to prove (4.7), we note that ∇z(e) is a finite linear combination of terms in the form∑ y∈Z d ∇∇ y,k G(e, y)f (y)∇ * i ∇ j G h (y) or ∑ y∈Z d ∇∇ y,k G(e, y)f (y)∇ i ∇ j G h (y) for some i, j, k and f . Clearly, they can be bounded by ∑ y∈Z d ∇∇ y,k G(e, y)f (y) y When f = σjik or ãi φj , f (y) 4 is uniformly bounded by Lemma 4.5 and Proposition 3.1, thus by applying Proposition 3.2 and Lemma A.6, we obtain ∇z(e) 2 ≲

	so we have	∇z(e) 2 ≲ ⩽ ⩽	∇∇ y,k G(e, y)f (y) y -d * 2 y -d y∈Z d * ∇∇ y,k G(e, y)f (y) 2 y∈Z d y∈Z d y -d * ∇∇ y,k G(e, y) 4 f (y) 4 .	-d * ,
			y∈Z d	1 y d *	1 y -e d *	≲	log e * e d *

2, it is enough to show that (4.7) ∇z(e) 2 ≲ log e * e d * . . The proof of Proposition 4.2 is complete. 4.2. Second-order Poincaré inequality. Let d K be the Kantorovich-Wasserstein distance

  y∈Z d ∂ e a e ∂ e ′ a e ′ ∇G(x, e ′ )∇∇G(e, e ′ )∇G(y, e)f (εy)g(εx) ∂ e a e ∂ e ′ a e ′ ∇G(x, e)∇G(y, e ′ )∇∇G(e, e ′ )f (εy)g(εx). By Proposition 3.2 and the fact that a e = η(ζ e ) with η ′ , η ′′ uniformly bounded, we have for any p ⩾ 1 (with the multiplicative constant depending on p):

	∂ 2 e a e ∇G(x, e)∇G(y, e)f (εy)g(εx)1 e ′ =e
	+ ε d+2
	x,y∈Z d
	+ ε d+2
	x,y∈Z d

  1 *

						,
	and					
	(A.10)	y∈Z d	1 x -y d *	1 εy p *	≲	log ε εx d∧p *

.

We refer to [22, Lemmas 2.2 and 2.3] for a proof.
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