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ANCHORED NASH INEQUALITIES AND HEAT KERNEL
BOUNDS FOR STATIC AND DYNAMIC DEGENERATE

ENVIRONMENTS

JEAN-CHRISTOPHE MOURRAT, FELIX OTTO

Abstract. We introduce anchored versions of the Nash inequality. They allow
to control the L2 norm of a function by Dirichlet forms that are not uniformly
elliptic. We then use them to provide heat kernel upper bounds for diffusions
in degenerate static and dynamic random environments. As an example, we
apply our results to the case of a random walk with degenerate jump rates that
depend on an underlying exclusion process at equilibrium.

MSC 2010: 26D10, 35K65, 35B65, 60K37.
Keywords: Nash inequality, heat kernel, diffusion in dynamic random medium.

1. Introduction

In the study of reversible random walks in degenerate static random environments,
heat kernel estimates have played a key role. Consider a random walk evolving
on a super-critical (infinite) percolation cluster. As was pointed out in [39], the
problem of showing that the walk satisfies a central limit theorem for almost every
realisation of the environment (i.e. a “quenched” CLT) is reduced to showing a
spatially averaged (instead of uniform) sublinear control of the corrector if the heat
kernel is known to satisfy a diffusive upper bound. For the case of percolation,
such a bound was obtained in [33, 7]. This bound indeed became a primary
ingredient in the subsequent proofs that the random walk on percolation clusters
and other degenerate i.i.d. environments satisfies a quenched central limit theorem
[39, 9, 32, 15, 31, 2]. (A notable exception is a geometric argument introduced in
[9], which in two dimensions does not use any a priori heat kernel bounds.) We
refer to [12] (in particular, Section 4.3 therein) and [28] for reviews. Related ideas
of regularity theory lead to a proof of the local central limit theorem in [8].

The approach to heat kernel bounds in [33] is based on studying isoperimetric
inequalities on boxes, with an effective dimension that is slowly tuned up to d as
the size of the box increases. In [7], upper and lower bounds are proved (including
optimal off-diagonal control) using a fine decomposition of the space into good
and bad boxes, where a box is said to be good if the Poincaré inequality (with
the standard scaling) holds in that box. The case of i.i.d. conductances with a
polynomial tail near zero is investigated in [17] using a combination of probabilistic
arguments and Harnack inequalities.

One can also consider environments that do not possess strong decorrelation
properties at large distances. Assuming a certain moment condition (from above
and below) on the conductances, it was shown in [3] that the random walk satisfies
a quenched central limit theorem. The proof relies on weighted Sobolev inequalities,
and on Moser’s iteration scheme. Harnack inequalities and a local CLT were then
established in [4], and Gaussian heat kernel bounds in [5]. Related ideas were
developped in [22] to prove a quenched invariance principle for Brownian motion
subject to an incompressible drift. In a different direction, diffusions on clusters of
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correlated percolation models such as random interlacements are studied in [37] via
isoperimetric inequalities.

Some assumptions on the law of the conductivities are necessary for diffusive
heat kernel bounds to hold. Indeed, even in the setting of i.i.d. conductances, where
the quenched CLT is known to hold in full generality [15, 31, 2], diffusive heat
kernel upper bounds will not hold if the conductivities are allowed to take very
small values [10]. The basic mechanism is that a portion of space surrounded by a
region of low conductivity acts as a trap for the random walk. This phenomenon
was analysed with precision in [16, 13, 14].

The aim of this work is to introduce a new method to prove diffusive heat kernel
bounds for degenerate environments. In a celebrated work [35], Nash introduced the
inequality that now bears his name for this purpose, for uniformly elliptic differential
operators. This was then extended to the setting of Markov chains in [19]. Our first
main result, obtained in Section 2, is an anchored version of the Nash inequality.
The standard Nash inequality gives a control of the L2 norm of a function f in
terms of ‖∇f‖2 and ‖f‖1. We show that one can control the L2 norm of f in terms
of ‖w∇f‖2, ‖f‖1 and ‖|x|p/2f‖2, where w is a weight function that can for instance
be taken to be the square root of the conductance field (in particular, it is not
bounded away from 0 in cases of interest). Note that the translation invariance of
the standard Nash inequality is broken by the term ‖|x|p/2f‖2.

We then show in Section 3 that despite this extra term ‖|x|p/2f‖2, one can obtain
diffusive heat kernel upper bounds for static degenerate environments satisfying a
certain flexible assumption. In particular, this assumption covers bounded stationary
conductances with inverse having a moment of order p > d. When the conductances
are independent, a moment of order p > 1/4 suffices. We thus recover certain results
of [4, 17]. We can also cover cases with vanishing conductances, see Remark 3.8. As
a by-product of our method, we also obtain an estimate on the behaviour of the
heat kernel away from the diagonal. Stronger information can be obtained from the
on-diagonal bounds we prove using the result of [24] recalled here in Theorem 3.5,
which is itself inspired by [26] (see also [21, 20]).

Our main motivation is to derive heat kernel bounds for dynamic degenerate
random environments. We are not aware of previous results in this context, although
quenched central limit theorems have been proved in some cases (see in particu-
lar [23]). The dynamics of the environment can facilitate anomalous behaviour of
the heat kernel [18]. As a simple example, one can construct a dynamic environment
such that the probability of return to the origin decays from 1 to almost zero, and
then climb back up to almost 1/4. Indeed, take z a neighbour of the origin, and
consider that initially, the edge connecting the origin to z is open, and these two
sites are disconnected from the rest of the graph. The probability for the walk to
be on z goes to 1/2 as time passes. Then change the environment so that the site z
is isolated from the rest, and otherwise every edge is open. The probability for the
walk to be at the origin decays to 0. Then move back to the initial situation with
the origin and z connected, and disconnected from the rest: the probability for the
walk to be at the origin moves back to being almost 1/4.

Let us denote by ps,t(x, y) the probability for the walk started at x at time s to
be at y at time t > s. It is more convenient to aim first for bounds on

Et :=
∑
x∈Zd

(p0,t(0, x))2,

in particular because, as opposed to p0,t(0, 0), this quantity is monotone in t. In
Section 4, we provide a general criterion that allows to prove diffusive bounds of
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the form

(1.1) Et 6
X
td/2

,

where X is a random variable. In order to illustrate the relevance of our criterion,
we study in Section 5 an example of a random walk whose (symmetric) jump rates
(at(e)) are a local function of an underlying simple exclusion process at equilibrium.
We show that in this case, (1.1) holds with a random variable X that has finite
moments of every order, regardless of the density of particles in the exclusion process,
or of the specific definition of the jump rates. (In particular, it may be that at any
given time, the set of sites that are reachable by the random walk is finite.) We also
show that for every r > 1, supt E[(td/2p0,t(0, 0))r] is finite, and that for every ε > 0,
E[(supt td/2−εp0,t(0, 0))r] is also finite. In order for these results to hold, we need
only little information on the underlying dynamics. Roughly speaking, we only use
the fact that the jump rates are very unlikely to vanish over an extended period of
time. In particular, we do not use the fact that the simple exclusion process has a
polynomial mixing rate of order t−d/2 (as was shown in [11, 27]).

An immediate consequence of the diffusive heat kernel bound is the transience
of the random walk in dimension d > 3. This extends [36, Theorem 1.1 (ii)] to
conservative (and therefore much less mixing) environments.

1.1. Notation. Throughout this paper, we focus on the discrete space Zd, d > 1.
We say that x, y ∈ Zd are neighbours, and write x ∼ y, if |x − y| = 1, where | · |
is the Euclidean distance. This turns Zd into a graph, and we denote by B the
associated set of (unoriented) edges. For any positive integer r, we denote by Br
the box {−r, . . . , r}d, and Br the set of edges with both end-points in Br. For any
p ∈ [1,∞], we denote by ‖ · ‖Lpr the norm of the space Lp(Br) or Lp(Br) (which of
the two will be clear from the context), i.e.

‖f‖Lpr =
(∑
x∈Br

|f(x)|p
)1/p

or ‖f‖Lpr =
(∑
e∈Br

|f(e)|p
)1/p

,

with the usual interpretation as a supremum if p =∞. We also write

‖f‖p =

∑
x∈Zd

|f(x)|p
1/p

or ‖f‖p =
(∑
e∈B
|f(e)|p

)1/p

.

Finally, we introduce the shorthand notation | · |∗ := | · | ∨ 1.

2. Anchored Nash inequality

The aim of this section is to prove the following theorem.

Theorem 2.1 (Anchored Nash inequality). Let p ∈ (d,+∞), q ∈ (d,+∞], and
θ ∈ [θc, 1], where θc ∈ [0, 1) is defined by

(2.1) 1
θc

= 1 + dp+ 2p
dp+ 2d

( q
d
− 1
)
.

Define α, β, γ ∈ [0, 1) by

(2.2) α = (1− θ) d

d+ 2 + θ
p

p+ 2 , β = (1− θ) 2
d+ 2 , γ = θ

2
p+ 2 .

There exists C <∞ such that for any functions f : Zd → R and w : B→ R+,

(2.3) ‖f‖2 6 C (Mq ‖w∇f‖2)α ‖f‖β1 ‖|x|
p/2
∗ f‖γ2 ,
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where

(2.4) Mq
q =Mq

q(w) = sup
r∈N

1
|Br|

∑
e∈Br

w−q(e).

Remark 2.2. By setting q = +∞ and θ = 0, we recover the usual Nash inequality,
provided thatM∞ is finite (i.e. that w−1 is bounded). For θ > 0 (and thus γ > 0),
the inequality is no longer translation invariant. Indeed, a crucial aspect of the
inequality is that in the definition ofMq, the supremum is taken only over boxes that
are centred around the origin. The price one has to pay for this is the appearance
of the extra term ‖|x|p/2∗ u‖γ2 , which is of course not translation invariant either.

Remark 2.3. Clearly, α+ β + γ = 1, as must be the case by homogeneity.

Remark 2.4. Our proof applies as well to the setting of continuous space. Consider-
ations of scale invariance then show that the exponents α, β and γ have to be of
the form (2.2) for some θ.

Remark 2.5. As far as our applications are concerned, the precise value of θc is
unimportant, the only crucial point being that θc < 1.

Before we turn to the proof of Theorem 2.1, we recall some classical functional
inequalities for the reader’s convenience.

Theorem 2.6 (Poincaré-Sobolev inequalities). Let 1 < p < d and let p? be such
that d/p? = d/p − 1. There exists a constant C < ∞ such that for every r and
f : Br → R,

(2.5) ‖f − fr‖Lp?r 6 C‖∇f‖Lpr ,

where we write
fr = 1

|Br|
∑
x∈Br

f(x).

Proof. For every x, y ∈ Br, we give ourselves a path γx,y of nearest-neighbour points
of Zd from x to y that stays as close as possible to the segment joining x and y. To
be precise, by symmetry we may assume that y > x (i.e. each coordinate of y is
larger than the corresponding coordinate of x). In this case, we construct a path
x0 = x, x1, . . . , xl = y as follows. We write Ix,y for the line segment joining x and y
in Rd. Assuming that x0, . . . , xj are already built, we define

i = arg min{dist(xj + ei′ , Ix,y), 1 6 i′ 6 d},

(take the smallest one in case of ties), and put xj+1 = xj + ei. Such a path stays at
distance at most

√
d from Ix,y, and has no self-intersections. We have

|f(y)− f(x)| 6
∑
e∈γx,y

|∇f |(e),

with obvious notation. Since

(2.6) f(x)− fr = 1
|Br|

∑
y∈Br

(f(x)− f(y)),

the triangle inequality yields∣∣f(x)− fr
∣∣ 6 1
|Br|

∑
y∈Br
e∈γx,y

|∇f |(e).
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One can check that there exists a constant C (independent of r) such that for every
x ∈ Br and e ∈ B,

|{y ∈ Br : e ∈ γx,y}| 6 Cr
(

r

1 + |x− e|

)d−1
.

As a consequence,

(2.7)
∣∣f(x)− fr

∣∣ . ∑
e∈Br

(1 + |x− e|)−(d−1)|∇f |(e).

The desired result now follows from the Hardy-Littlewood-Sobolev inequality, see
e.g. [6, Theorems 1.5 and 1.7]. �

Remark 2.7. Theorem 2.6 can be generalised in the following way. Under the same
conditions, if g : Br → R is such that gr = 1, then

‖f − (fg)r‖Lp?r 6 C‖g‖L∞r ‖∇f‖Lpr .

Indeed, it suffices to observe that∣∣∣(fg)r − fr
∣∣∣ =

∣∣∣∣∣ 1
|Br|

∑
x∈Br

g(x)
(
f(x)− fr

)∣∣∣∣∣ 6 ‖g‖L∞r 1
|Br|1/p?

‖f − fr‖Lp?r ,

and to use the triangle inequality and Theorem 2.6 (with ‖g‖L∞r > 1).

In dimension 2, we will also need to use inequality (2.5) in the critical case p? = 2,
p = 1. The following theorem gives the result in any dimension.

Theorem 2.8 (Isoperimetric inequality). Let p? = d/(d− 1). There exists C <∞
such that for every r and f : Br → R,

‖f − fr‖Lp?r 6 C‖∇f‖L1
r
.

Proof. Let m be a median of f . It suffices to show that

(2.8) ‖f −m‖
Lp
?
r
6 C‖∇f‖L1

r
.

Indeed, if m > fr, then by the defining property of the median,
|Br|

2 6 |{x ∈ Br : f(x) > m}| 6 1
(m− fr)p

?
‖f − fr‖

p?

Lp
?
r

.

If m < fr, the symmetric argument shows that in every case,

|m− fr| 6
2

|Br|1/p?
‖f − fr‖Lp?r .

By the triangle inequality, it thus suffices to show (2.8). Without loss of generality,
we may assume that m = 0. Let g = f ∨ 0. Since |∇g| 6 |∇f |, it suffices to show
that

(2.9) ‖g‖
Lp
?
r
6 C‖∇g‖L1

r
(g s.t. |{x ∈ Br : g(x) = 0}| > |Br|/2).

For t > 0, let Lt = {x ∈ Br : g(x) > t}. Since g =
∫∞

0 1Lt
dt, we have by

Minkowski’s inequality

‖g‖
Lp
?
r
6
∫ ∞

0
|Lt|1/p

?

dt.

The isoperimetric inequality [38, Theorem 3.3.15] ensures that there exists C <∞
such that for every A ⊆ Br with |A| 6 |Br|/2, we have |A|(d−1)/d 6 C|∂A|, where

∂A = {e = {x, y} ∈ Br : x ∈ A and y /∈ A}.
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Hence,

‖g‖
Lp
?
r
6 C

∫ ∞
0
|∂Lt|dt

= C

∫ ∞
0

∑
x∼y:g(x)<t6g(y)

1 dt

= C
∑

x∼y:g(x)<g(y)

(g(y)− g(x)) = C‖∇g‖L1
r
,

which concludes the proof. �

Remark 2.9. Under the conditions of Theorem 2.8, if g : Br → R is such that gr = 1,
then

‖f − (fg)r‖Lp?r 6 C‖g‖L∞r ‖∇f‖L1
r
.

Indeed, the proof is identical to that of Remark 2.7.

Proof of Theorem 2.1. The proof will be divided into two steps. We show the result
for θ = 1 in the first step, and for θ = θc in the second step. The full result then
follows by interpolation: it suffices to take ν ∈ [0, 1], write ‖f‖2 = ‖f‖ν2 ‖f‖1−ν2 and
apply the result with θ = 1 and θ = θc on each of the two terms.
Step 1. We show that the theorem holds for θ = 1. Let p′ be such that

(2.10) 1
p′

= 1
d

+ 1
2 .

Let R be an even positive integer. We define a function g : BR → R+ that is 0
in BR/2, and is constant on the complementary “annulus” AR := BR \BR/2. The
constant is specified by imposing gR = 1. We use the Poincaré-Sobolev inequality in
the form given by Remark 2.7 in dimension d > 3, and the isoperimetric inequality
in the form given by Remark 2.9 when d = 2, to derive

‖f − (fg)R‖L2
R
. ‖∇f‖

Lp
′
R

.

In view of the definition of g, we have

‖(fg)R‖L2
R
. |BR|−1/2 ‖f‖L1(AR) 6 ‖f‖L2(AR) 6 R

−p/2 ‖|x|p/2∗ f‖L2
R
,

where we used Jensen’s inequality for the second inequality. By Hölder’s inequality
(and recalling (2.10)), we also have

‖∇f‖
Lp
′
R

6 ‖w−1‖Ld
R
‖w∇f‖L2

R
.

By Jensen’s inequality (and since q > d),

‖w−1‖Ld
R
6 |BR|1/d−1/q ‖w−1‖Lq

R
6 |BR|1/dMq,

withMq as in (2.4). We thus get

‖f‖L2
R
. |BR|1/dMq ‖w∇f‖L2

R
+R−p/2 ‖|x|p/2∗ f‖L2

R
.

Clearly,

(2.11) ‖f‖L2(Zd\BR) 6 R
−p/2‖|x|p/2∗ f‖L2 ,

so we established
(2.12) ‖f‖L2 . |BR|1/dMq ‖w∇f‖L2 +R−p/2 ‖|x|p/2∗ f‖L2 ,

uniformly over R even positive integer. It suffices to change the implicit multiplicative
constant in (2.12) to ensure that the inequality

(2.13) ‖f‖L2 . RMq ‖w∇f‖L2 +R−p/2 ‖|x|p/2∗ f‖L2
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remains valid for every real R > 1. Since ‖f‖L2 6 ‖|x|p/2∗ f‖L2 , the inequality
extends to all R > 0. Optimizing over R, we obtain

‖f‖L2 . (Mq ‖w∇f‖L2)p/(p+2) ‖|x|p/2∗ f‖2/(p+2)
L2 ,

as desired.
Step 2. We now show that Theorem 2.1 holds for θ = θc.

Let Q be a box of size r ∈ N, We use again p′ as in (2.10). By the Poincaré-Sobolev
(or isoperimetric) inequality,

‖f − fQ‖L2(Q) . ‖∇f‖Lp′ (Q),

where we denote by fQ the average of f over the box Q. By (2.10) and Hölder’s
inequality, we have

‖∇f‖Lp′ (Q) 6 ‖w
−1‖Ld(Q) ‖w∇f‖L2(Q),

while
‖fQ‖L2(Q) 6 |Q|−1/2 ‖f‖L1(Q),

so that
‖f‖L2(Q) . ‖w−1‖Ld(Q) ‖w∇f‖L2(Q) + |Q|−1/2 ‖f‖L1(Q),

and thus
(2.14) ‖f‖2L2(Q) . ‖w

−1‖2Ld(Q) ‖w∇f‖
2
L2(Q) + |Q|−1 ‖f‖2L1(Q).

Let R ∈ N, R > r. By Jensen’s inequality,
|Q|−1/d ‖w−1‖Ld(Q) 6 |Q|−1/q ‖w−1‖Lq(Q).

For Q ⊆ BR, ‖w−1‖Lq(Q) 6 ‖w−1‖Lq
R
6 |BR|1/qMq, and we have

(2.15) ‖w−1‖Ld(Q) 6 |Q|1/d−1/q |BR|1/qMq.

If (Q′i) is a finite collection of pairwise disjoint boxes, then∑
i

‖f‖2L1(Q′
i
) 6 ‖f‖L1(∪Q′

i
)
∑
i

‖f‖L1(Q′
i
) = ‖f‖2L1(∪Q′

i
).

We cover the box BR by sub-boxes (Qi) of size r. We can do so in such a way that
no point of BR is covered by more than 2d sub-boxes, so that∑

i

‖f‖2L1(Qi) . ‖f‖
2
L1
R
.

Combining this and (2.15) into (2.14) thus yields

‖f‖2L2
R
6
∑
i

‖f‖2L2(Qi) . |Q|
2/d−2/q |BR|2/qM2

q ‖w∇f‖2L2
R

+ |Q|−1 ‖f‖2L1
R
,

where we now simply use |Q| to denote the cardinality of a box of size r, without
reference to a specific box. Using (2.11) (and |Q| > r), we obtain

‖f‖2L2 . |Q|2/d−2/q |BR|2/qM2
q ‖w∇f‖2L2 + r−d ‖f‖2L1 +R−p‖|x|p/2∗ f‖2L2 .

By changing the implicit multiplicative constant in this inequality, we can ensure
that
(2.16) ‖f‖L2 . r1− dq R

d
q Mq ‖w∇f‖L2 + r−d/2 ‖f‖L1 +R−p/2 ‖|x|p/2∗ f‖L2

holds uniformly over R > r > 1. In view of (2.13), we can extend this to all
R > 1, r > 1. Since we clearly have ‖f‖L2 6 ‖f‖L1 and ‖f‖L2 6 ‖|x|p/2∗ f‖L2 , the
inequality in fact holds for every R > 0 and r > 0. The conclusion will now follow
by optimizing over R and r. We summarize this optimization into the following
lemma, whose proof is postponed to the end of this section.
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Lemma 2.10. Let a, a′, b, c > 0, and define σ = ab+a′c+bc. For every A,B,D > 0,

inf
r,R>0

(
Ra ra

′
A+ r−bB +R−cD

)
6 3Abc/σBa

′c/σDab/σ.

In our context, we let

a = d

q
, a′ = 1− d

q
, b = d

2 , c = p

2 ,

then σ = ab+ a′c+ bc, and finally

α = bc

σ
, β = a′c

σ
, γ = ab

σ
.

Applying Lemma 2.10 to (2.16) leads to (2.3). In order to check that α, β and γ
can be rewritten as in (2.2) for some θ, we observe that

(d+ 2)a′c+ (p+ 2)ab = 2a′c+ 2ab+ d

(
1− d

q

)
p

2 + p
d

q

d

2 = 2σ,

so that

(2.17) d+ 2
2 β + p+ 2

2 γ = 1.

This, together with the fact that α+β+ γ = 1, ensures a representation of the form
(2.2) for some θ. The value of θ can be recovered from

1
θ

= 2
p+ 2

1
γ

= 2
p+ 2

σ

ab
= 2
p+ 2

[
1 + 2q

d2

((
1− d

q

)
p

2 + dp

4

)]
= 2
p+ 2

[
1 + p

2 +
(p
d

+ p

2

)( q
d
− 1
)]
,

and we recognize that θ = θc as defined by (2.1). �

Proof of Lemma 2.10. It suffices to consider the case when none of A, B and D are
zero. We simply choose r and R so that the contributions of the three terms in the
sum to be minimized are equal, that is,

(2.18) Ra ra
′
A = r−bB = R−cD.

The second equality gives

R =
(
D

B

)1/c
rb/c,

while by the first equality, (
D

B

)a/c
rab/c+a

′+b = B

A
.

This leads to
rσ = A−cBc+aD−a,

and thus
r−bB = Abc/σ B1− ab+bc

σ Dab/σ,

and the lemma follows by (2.18). �
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3. Static environments

We now show how to use the anchored Nash inequality derived in the previous
section to deduce heat kernel bounds for static, degenerate environments. We begin
by defining the notion of w-moderate static environment.

Definition 3.1. Let w : B→ R+. For a static environment a : B→ [0, 1], we define
pt(x, ·) to be the unique bounded function such that p0(x, y) = 1x=y and

∂tpt(x, y) =
∑
z∼y

a({y, z}) (pt(x, z)− pt(x, y)) .

In probabilistic terms, pt(x, y) is the probability for the random walk in the envi-
ronment a started at x to be at y at time t. We write ut = pt(0, ·) and

Dt = ‖
√
a∇ut‖22.

We say that the static environment a is w-moderate if for every t > 0,
(3.1) ‖w∇ut‖22 6 Dt.

Theorem 3.2 (Upper bound for static environments). For every q > d and every
α, β, γ ∈ (0, 1) as in Theorem 2.1, there exists C < ∞ such that if the static
environment a is w-moderate, then for every t > 1,

pt(0, 0) 6 C M
2α/β
q

td/2
,

where we recall thatMq =Mq(w) was defined in (2.4).

Before proving the theorem, we introduce some notation, and then prove an
important preliminary result. For f : Zd → R and x ∈ Zd, we define ∇if(x) =
f(x + ei) − f(x). We observe that the following discrete Leibniz rule holds, for
f, g : Zd → R:

∇i(fg) = (∇if)g + f(·+ ei)∇ig.
We write ai(x) = a(x, x+ ei).

Proposition 3.3. There exists C <∞ such that

(3.2) d

dt
‖|x|p/2∗ ut‖22 6 C ‖|x|

p/2
∗ ut‖2(p−2)/p

2 ‖ut‖4/p2 .

Proof. The proof is similar to that of [25, (81)], with some extra care required by
the fact that we do not assume uniform ellipticity here. We write ρ(x) = |x|∗, and
observe that

1
2
d

dt
‖|x|p/2∗ ut‖22 = 1

2
d

dt

∑
x∈Zd

ρpu2
t (x)

= −
∑
e∈B
∇(ρput)a∇ut(e)

= −
∑
x∈Zd

16i6d

∇i(ρput)ai∇iut(x).

By the discrete Leibniz rule, we have
∇i(ρput) = ∇i(ρp)ut + ρp(·+ ei)∇iut,

and moreover, ∇i(ρp)(x) . ρp−1(x). As a consequence, the left-hand side of (3.2)
is bounded by ∑

x∈Zd
16i6d

[
−ρp(·+ ei)ai|∇iut|2 + Cρp−1utai|∇iut|

]
(x)
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for some constant C. Since a 6 1, we have a > a2, so that by the Cauchy-Schwarz
inequality,

∑
x∈Zd

16i6d

ρp−1utai|∇iut|(x) 6
( ∑

x∈Zd
16i6d

ρpai|∇iut|2(x)
)1/2( ∑

x∈Zd
16i6d

ρp−2|ut|2(x)
)1/2

.

Up to a multiplicative constant, we may replace ρp by ρp(·+ ei) in the middle sum
above. By Young’s inequality, the resulting expression is bounded by

1
2C

( ∑
x∈Zd

16i6d

ρp(·+ ei)ai|∇iut|2(x)
)

+ C

2

( ∑
x∈Zd

16i6d

ρp−2|ut|2(x)
)
,

for arbitrary C > 0. By choosing C sufficiently large, we obtain that the left-hand
side of (3.2) is bounded by a constant times

∑
x∈Zd

ρp−2|ut|2(x)
(Hölder)
6

∑
x∈Zd

ρp|ut|2(x)


p−2
p
∑
x∈Zd

|ut|2(x)

 2
p

,

and this completes the proof. �

Proof of Theorem 3.2. Let Et = ‖ut‖22 and Nt = ‖|x|p/2∗ ut‖22. We write E ′t for the
time derivative of E at time t, and similarly for other quantities. Note that
(3.3) E ′t = −2Dt,
while by Proposition 3.3,

(3.4) N ′t . N
(p−2)/p
t E2/p

t .

Let us define
Λt = 1 ∨ sup

s6t
sd/2 Es.

Integrating (3.4) (and since N0 = 1), we obtain, for every t > 1/2,

(3.5) Nt . Λt t(p−d)/2.

For α, β, γ ∈ (0, 1) as in Theorem 2.1, we have

Et .
(
M2

q ‖w∇ut‖22
)α N γ

t ,

where we used the fact that ‖ut‖1 = 1. In view of (3.1) and (3.3), it follows that

Et . (−M2
q E ′t)α N

γ
t ,

and by (3.5), for every t > 1/2,

(−M2
q E ′t)α & Et Λ−γt t−γ(p−d)/2.

Integrating this relation (and recalling that Λt is increasing), we get

(3.6) E1− 1
α

t &M−2
q Λ−

γ
α

t t1−
γ(p−d)

2α ,

provided that 1− γ(p−d)
2α > 0. In order to check this and to simplify this expression,

we recall from (2.17) that
d

2 β + p

2 γ = 1− β − γ = α,

so that

(3.7) α− γ(p− d)
2 = d

2 β + d

2 γ = d

2(1− α).
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Since α < 1, the inequality (3.6) is justified, and can be rewritten as

Et .M
2α

1−α
q Λ

γ
1−α
t t−

d
2 .

Since Λt is increasing, we get that for every s 6 t,

sd/2Es .M
2α

1−α
q Λ

γ
1−α
t ,

that is,
Λt .M

2α
1−α
q Λ

γ
1−α
t .

Since γ
1−α = γ

β+γ < 1, this shows that

Λt .M2α/β
q ,

and in particular,

(3.8) Et .
M2α/β

q

td/2
.

By the semi-group property,

pt(0, 0) =
∑
x∈Zd

pt/2(0, x)pt/2(x, 0).

The symmetry of pt(·, ·) thus leads to pt(0, 0) 6 Et/2, and in view of (3.8), this
concludes the proof. �

As a by-product of the above proof, we also obtain the following off-diagonal
information.

Proposition 3.4 (Off-diagonal decay). For every p > d, q > d and α, β, γ ∈ (0, 1)
as in Theorem 2.1, there exists C < ∞ such that if the static environment a is
w-moderate, then for every t > 1,

‖|x|p/2∗ ut‖22 6 CM2α/β
q t(p−d)/2.

Proof. This follows directly from (3.5) and (3.8). �

Much more precise information on the off-diagonal behaviour of the heat kernel
can be obtained as an application of [24, Theorem 1.1] (see also [26, 21, 20]). We
state here a particular case of this result which is most relevant to our context.

Theorem 3.5 (Improved off-diagonal decay [24]). There exists a constant C <∞
such that the following holds. Let x, y ∈ Zd and c(x), c(y) <∞. If

pt(x, x) 6 c(x)
td/2

and pt(y, y) 6 c(y)
td/2

,

then for all t > 1 ∨ |x− y|,

pt(x, y) 6 C
√
c(x)c(y)
td/2

exp
(
−|y − x|

2

Ct

)
.

We conclude this section by giving some examples of applications of Theorem 3.2.
To begin with, we show a heat kernel upper bound assuming stationarity and a
moment condition. We refer to [4, Theorem 5.4] for an example (due to Noam
Berger) showing that the condition is essentially sharp for a local CLT.

Proposition 3.6 (Moment condition). Let q > d and α, β, γ be as in Theorem 2.1.
Assume that under the probability measure P, the family of random variables a =
(a(e))e∈B is stationary with respect to translations, takes values in (0, 1], and satisfies

E
[
a(e)−q/2

]
<∞.
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There exists a random variable X > 0 such that

∀r < qβ

2α, E [X r] <∞

and

(3.9) pt(0, 0) 6 X
td/2

.

Proof. Clearly, the environment a is
√
a-moderate. Hence, it suffices to check that

for every r < 1, we have E[Mqr
q (
√
a)] <∞. This follows from Proposition A.1. �

If we also assume that the conductances are independent, then we can weaken
the integrability condition to E[a(e)−γ ] < ∞ for some γ > 1/4, and thus recover
some of the results of [4, Theorem 1.13], [17, Theorem 1.8].

Proposition 3.7 (Moment condition under independence). Let q > d and α, β, γ
be as in Theorem 2.1. Assume that under the probability measure P, the family of
random variables a = (a(e))e∈B is i.i.d., takes values in (0, 1], and satisfies

E
[
a(e)−

q
4d

]
<∞.

There exists a random variable X > 0 such that

∀r < qβ

2α, E [X r] <∞

and

(3.10) pt(0, 0) 6 X
td/2

.

Proof. For an edge e, we denote by e, e the endpoints of e, conventionally chosen so
that e− e is a canonical basis vector. One can find 2d paths `1(e), . . . , `2d(e) linking
e to e such that no two paths have an edge in common; moreover, we can make sure
that each path contains at most 9 edges (see [34, Lemma 2.1]). We define w by

(3.11) 1
w(e)2 = inf

16i62d

∑
b∈`i(e)

1
a(b) .

We denote by `(e) a path (among `1(e), . . . , `2d(e)) that realises the infimum above.
By the Cauchy-Schwarz inequality,

|∇u(e)| 6
∑
b∈`(e)

|∇u(b)|

6

 ∑
b∈`(e)

1
a(b)

1/2 ∑
b∈`(e)

a(b)|∇u(b)|2
1/2

6 w(e)−1

 ∑
b∈`(e)

a(b)|∇u(b)|2
1/2

,

so that ∑
e

w(e)2|∇u(e)|2 6
∑

e,b:b∈`(e)

a(b)|∇u(b)|2.

Clearly, one can find C <∞ such that for each b, the number of edges e such that
b ∈ `(e) is bounded by C. Hence, the environment a is w/C-moderate. We now
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choose q′ ∈ (d, q) and check that w(e)−1 has finite q′-th moment. By independence,
for x > 0,

P[w(e)−q
′
> x] =

2d∏
i=1

P

 ∑
b∈`i(e)

1
a(b) > x

2/q′

 .
Since each path has length at most 9, and by stationarity,

P

 ∑
b∈`i(e)

1
a(b) > x

2/q′

 6 9P
[

1
a(b) >

x2/q′

9

]

6 91+ q
4d E[a(b)−

q
4d ]x−

q

2dq′ .

We obtain that E[w(e)−q′ ] < ∞ by combining the previous two displays and the
fact that E[w(e)−q′ ] =

∫∞
0 P[w(e)−q′ > x] dx. For every r < 1, we thus have

E[Mq′r
q′ (w)] <∞ by Proposition A.1, so the result follows by Theorem 3.2. �

Remark 3.8. The case of percolation corresponds to assuming that (a(e))e∈B are i.i.d.
Bernoulli random variables. Obtaining heat-kernel upper bounds for super-critical
percolation would require more work, which we will not pursue here (see [33, 7] for
previous work on this). In [29], the following simpler situation is considered: all
edges e pointing in a given direction satisfy a(e) = 1, while (a(e)) are i.i.d. Bernoulli
for the other edges. In this case, one can show that the environment is w-moderate
for some w such that all moments of w(e)−1 are finite (see [29, Lemma 4]). We thus
obtain (3.9) for a random variable X with finite moments of every order.

4. Dynamic environments

We now turn our attention to dynamic degenerate environments. We first define
the notion of (w,K)-moderate dynamic environment.

Definition 4.1. For every e ∈ B, we give ourselves a piecewise continuous function{
R → [0, 1]
t 7→ at(e),

and we call a = (at(e))e∈B,t∈R a dynamic environment. (It is convenient, although
inessential, to consider environments defined over the whole time line.) For every
x ∈ Zd and s ∈ R, we define (ps,t(x, y))y∈Zd,t>s as the unique bounded function
such that ps,s(x, y) = 1x=y and, for every t > s,

∂tps,t(x, y) =
∑
z∼y

at({y, z}) (ps,t(x, z)− ps,t(x, y)) .

In probabilistic terms, ps,t(x, y) is the probability that the random walk evolving
in the dynamic environment a and started at time s and position x reaches y at
time t. We write ut = p0,t(0, ·) and

Et = ‖ut‖22, Dt = ‖
√
at∇ut‖22, Dt =

∫ +∞

t

Ks−tDs ds.

Let K : R+ → R+ and, for each e ∈ B, let t ∈ R+ 7→ wt(e) ∈ [0, 1] be a measurable
function. We say that the dynamic environment a is (w,K)-moderate if for every
t > 0,

(4.1) ‖wt∇ut‖22 6 Dt.
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Theorem 4.2 (Energy upper bound for dynamic environments). Let q > d and
α, β, γ ∈ (0, 1) be as in Theorem 2.1. There exists C <∞ such that if the dynamic
environment a is (w,K)-moderate, then

(4.2) Et 6 C C(K) M
2α/β
q (w)
td/2

,

where

(4.3) M−2
q (w) = inf

t>1

1
t

∫ t

0
M−2

q (ws) ds

and

(4.4) C(K) = 1 ∨ ‖K‖α/β1

‖K‖(1−α)/β
L1([0,1])

.

Proof. We define

Et =
∫ +∞

t

Ks−t Es ds, Nt = ‖|x|p/2∗ ut‖22.

Proposition 3.3 remains valid for dynamic random environments, and gives us

(4.5) N ′t . N
(p−2)/p
t E2/p

t .

Defining Λt = 1∨ sups6t sd/2 Es, we obtain as for the static case that for every t > 1,

(4.6) Nt . Λt t(p−d)/2.

By Theorem 2.1,
Et .

(
M2

q(wt) ‖wt∇ut‖22
)α N γ

t ,

which by assumption (4.1) and (4.6) leads to

Et .
(
M2

q(wt)Dt
)α Λγt tγ(p−d)/2.

Since Et is decreasing, we have Et . ‖K‖1 Et, and moreover, E ′t = −2Dt. As a
consequence,

Et . ‖K‖1
(
−M2

q(wt) E
′
t

)α
Λγt tγ(p−d)/2,

which can be rewritten as

(4.7) − E ′t E
− 1
α

t & ‖K‖−
1
α

1 M−2
q (wt) Λ−

γ
α

t t−
γ(p−d)

2α .

Since Γt is increasing and p > d, we obtain

E1− 1
α

t & ‖K‖−
1
α

1 Λ−
γ
α

t t−
γ(p−d)

2α

∫ t

0
M−2

q (ws) ds.

Recalling (3.7) and the definition of Mq = Mq(w) in (4.3), we obtain that for every
t > 1,

td/2 Et . ‖K‖
α

1−α
1 M

2α
1−α
q Λ

γ
1−α
t .

We now observe that, since Et is decreasing,

Et > E2t
∫ t

0
Ks ds,

and in particular, for t > 1, Et > ‖K‖L1([0,1]) E2t. Since moreover, Λ2 6 2d/2, we get

Λt . 1 + ‖K‖
α

1−α
1

‖K‖L1([0,1])
M

2α
1−α
q Λ

γ
1−α
t ,

and this proves the theorem since C(K) > 1 and Mq > 1 (recall that w 6 1). �
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As before, the proof above reveals more detailed information about off-diagonal
decay of the heat kernel.

Proposition 4.3 (Off-diagonal decay). Let p > d, q > d and α, β, γ ∈ (0, 1) be as
in Theorem 2.1. There exists C < ∞ such that if the dynamic environment a is
(w,K)-moderate, then for every t > 1,

‖|x|p/2∗ ut‖22 6 C C(K) M 2α/β
q (w) t(p−d)/2.

Proof. This follows from (4.6) and (4.2). �

For a dynamic environment a, we let a(t) be the dynamic environment defined,
for all s ∈ R, by a(t)

s = at−s.

Corollary 4.4 (Heat kernel upper bound for dynamic environments). In the setting
of Theorem 4.2, there exists C < ∞ such that if a is (w,K)-moderate and a(t) is
(w(t),K(t))-moderate, then

(4.8) p0,t(0, 0) 6 C
√
C(K)C(K(t))

(
Mq(w)Mq(w(t))

)α/β
td/2

Corollary 4.4 will be obtained from the following lemma.

Lemma 4.5 (Space-time reversal). For every u 6 v ∈ R, t ∈ R and x, y ∈ Zd,

pu,v(x, y) = p
(t)
t−v,t−u(y, x).

Proof. For f : Zd → R of compact support, we write

fu,v(x) =
∑
y∈Zd

pu,v(x, y)f(y),

f (t)
u,v(x) =

∑
y∈Zd

p(t)
u,v(x, y)f(y).

The lemma is equivalent to the claim that for every f , g of compact support,

(fu,v , g) = (f , g(t)
t−v,t−u),

where (·, ·) denotes the scalar product on L2(Zd). That this relation is correct is
clear if t 7→ at is piecewise constant. Otherwise, one can proceed via finite-volume
approximations. �

Proof of Corollary 4.4. From the lemma,

pt/2,t(x, 0) = p
(t)
0,t/2(0, x).

Hence, a Cauchy-Schwarz inequality gives

p0,t(0, 0) =
∑
x∈Zd

p0,t/2(0, x) pt/2,t(x, 0) 6
√
Et/2 E

(t)
t/2

(with obvious notation), and the result thus follows from Theorem 4.2. �

We conclude this section by providing a method to build (w,K) out of a dynamic
environment a, so that a is (w,K)-moderate.

Proposition 4.6 (A criterion for moderation). There exists c <∞ such that the
following holds. Let k : R+ → R+ be such that

∫
(1 + t2)kt dt <∞, let

Kt = kt +
∫ +∞

t

s ks ds,
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and for a dynamic environment a, let

(4.9) w2
t =

∫ +∞

t

ks−t as ds.

Then the dynamic environment a is (w, cK)-moderate.

Remark 4.7. Recall that in order to get non-trivial bounds from Theorem 4.2, we
still need to make sure that w−q is integrable for some q > d (the fact that K ∈ L1

is automatic from the assumption on k). This can be obtained if one knows that it
is unlikely for as to remain close to 0 during a long time interval.

Proof. The condition
∫

(1 + t2)kt dt <∞ ensures that K is integrable. We need to
estimate

‖wt∇ut‖22 =
∑
e∈B

w2
t (∇ut)2(e) =

∫ +∞

t

ks−tas(∇ut)2(e) ds.

This quantity is bounded by∫ +∞

t

ks−t
∑
e∈B

as(∇us)2(e)︸ ︷︷ ︸
=Ds

ds+
∫ +∞

t

ks−t
∑
e∈B

as(∇us −∇ut)2(e) ds.

Up to a constant (and since as 6 1), the second sum above is bounded by∑
x∈Zd

(us − ut)2(x) =
∑
e∈B

(∫ s

t

∇∗as′∇us′(e) ds′
)2

(Jensen)
6 (s− t)

∑
e∈B

∫ s

t

(∇∗as′∇us′(e))2 ds′,

which, up to a constant, is bounded by

(s− t)
∫ s

t

∑
e∈B

as′(∇us′(e))2 ds′ = (s− t)
∫ s

t

Ds′ ds′.

We have thus shown that

‖wt∇ut‖22 .
∫ +∞

t

ks−tDs ds+
∫ +∞

t

(s− t)ks−t
∫ s

t

Ds′ ds′ ds

.
∫ +∞

t

ks−tDs ds+
∫ +∞

t

ds′Ds′
∫ +∞

s′
(s− t)ks−t ds,

which is the desired result. �

5. The exclusion process as dynamic random environment

As an example of the results of the previous section, we study a random walk
evolving in an environment that is a local function of the symmetric simple exclusion
process on Zd, d > 2. Recall that the infinitesimal generator L of the symmetric
simple exclusion process is given by

(5.1) Lf(η) =
∑
e∈B

(f(ηe)− f(η)),

where η = (η(x))x∈Zd ∈ {0, 1}Z
d , f is a function that depends on a finite number of

coordinates of η, and

(ηe)(x) =
∣∣∣∣ η(y) if {x, y} = e,
η(x) otherwise.
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This process is also called the Kawasaki dynamics. (Strictly speaking, the exclusion
process is thought of as particles performing independent random walks, but with
any jump of one particle onto another being suppressed; since the particles are
indistinguishable here, this is equivalent to the process defined by (5.1).) We refer
to [30, Part III] for a thorough study of this process.

For every ρ ∈ [0, 1], let µρ =
⊗

Zd Bernoulli(ρ). The measures µρ are the only
extremal invariant (and in fact, reversible) measures of the process [30, Corol-
lary III.1.11]. From now on, we fix ρ ∈ (0, 1). By stationarity, we can build the
probability measure P such that under this measure, the process (ηt)t∈R (defined
over the whole time line) evolves as an exclusion process, and ηt is distributed
according to µρ for every t ∈ R.

For concreteness, we define our dynamic environment by

at(e) =
∣∣∣∣ 1 if ηt(e) = ηt(e) = 0,

0 otherwise,

where e and e are the end-points of e. The specific form of a is not important, as
long as it is a function of the unoriented edge e, and depends only locally on the
configuration η. We let (ps,t(x, y))s6t∈R,x,y∈Zd be as in Definition 4.1.

Theorem 5.1 (Heat kernel estimates). There exists a random variable X with
finite moments of every order and such that

(5.2)
∑
x∈Zd

(p0,t(0, x))2 6
X
td/2

.

Moreover, there exists a stationary process (Yt)t∈R satisfying

(5.3) p0,t(0, 0) 6 Yt
td/2

,

and such that for every r > 0 and ε > 0,

(5.4) E [(Yt)r] <∞,

(5.5) E
[(

sup
t>1

Yt
tε

)r]
<∞.

Remark 5.2. We believe that supt td/2p0,t(0, 0) should have finite moments of every
order, but proving this would require more work, so we do not pursue this question
further here.

We begin by showing that at(e) is unlikely to remain equal to 0 for a long period
of time.

Lemma 5.3. For every κ < 1, there exists C <∞ such that

P
[∫ t

0
as(e) ds 6 1

]
6 C exp (−tκ) .

Proof. Throughout the proof, the value of the constants c > 0 and C < ∞ may
vary in each occurence. Let δ ∈ (1/d, 1), and denote by As,t the event

there exist x 6= y ∈ Blogδ t s.t. ηs(x) = ηs(y) = 0.

Recall that under P and for every time s, the configuration ηs is distributed accoring
to the invariant measure µρ. In other words, for any fixed s, the random variables
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(ηs(x))x∈Zd are independent Bernoulli random variables of parameter ρ ∈ (0, 1). As
a consequence, for every s ∈ R and t > 2,

1− P [As,t] 6
∑

x∈Blogδ t

P
[
ηs ≡ 1 on Blogδ t \ {x}

]
= |Blogδ t| exp

[(
|Blogδ t| − 1

)
log(ρ)

]
6 C exp

(
−c logδd t

)
.

By a union bound (and since δ > 1/d), we obtain

1− P
[
∀k integer, 0 6 k 6 t

logδ t
− 1, Ak logδ t,t holds

]
6 C exp

(
−c logδd t

)
.

Let e be an edge adjacent to the origin. Conditionally on A0,t, we can estimate the
probability that as(e) becomes 1 by considering a particular choice of moves that
bring the two holes in Blogδ t onto the two endpoints of e, and then asking that they
stay put for one unit of time. More precisely, for every t > 2,

P

[∫ logδ t

0
as(e) ds > 1

∣∣ A0,t

]
> exp

(
−C logδ t

)
(the bound being very crude). By the Markov property,

P
[∫ t

0
as(e) ds 6 1

]
6 C exp

(
−c logδd t

)
+
[
1− exp

(
−C logδ t

)]⌊ t

logδ t

⌋
6 C exp

(
−c logδd t

)
+ exp

(⌊
t

logδ t

⌋
log
[
1− exp

(
−C logδ t

)])
.

The first term in the sum above is controlled since δ > 1/d. For the second term,
the fact that δ < 1 ensures that the logarithmic term decays to 0 slower than any
negative power of t, so the proof is complete. �

Proof of Theorem 5.1. We let kt = (1 + t)−4, and K, w be defined as in Propo-
sition 4.6, so that the dynamic environment a is (w, cK)-moderate. For every
u ∈ (0, 1),

P[wt(e) 6 u] = P
[∫ ∞

0
ksas(e) ds 6

√
u

]
6 P

[
(1 + t)−4

∫ t

0
as(e) ds 6

√
u

]
,

for arbitrary t > 0. We choose t such that (1 + t)−4 =
√
u, and apply Lemma 5.3 to

obtain

(5.6) P[wt(e) 6 u] 6 C exp(−u−1/9).

In particular, wt(e)−1 has finite moments of every order. By Corollary A.2, the
maximal functionMq(wt) has finite moments of every order. The same property
holds for Mq(w) itself by Remark A.3. (Strictly speaking, Remark A.3 applies only
to processes indexed by a discrete time, but it is not difficult to check that this is
sufficient for our purpose.) By Theorem 4.2, we thus obtain (5.2) (the choice of
q ∈ (d,∞) and of α, β, γ as in Theorem 2.1 is arbitrary). Recall that we denote the
time reversals around time t of a and w by a(t) and w(t) respectively. Clearly, a(t)

is (w(t), cK)-moderate, so Corollary 4.4 yields that

p0,t(0, 0) 6 Yt
td/2

,
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with
Yt = C

(
Mq(w)Mq(w(t))

)α/β
for some constant C < ∞. Since w(t) and w have the same law, every moment
of Mq(w(t)) is finite, and (5.4) is proved. In order to obtain (5.5), it suffices
to consider a supremum over integer times, since for any u ∈ [t − 1, t], we have
Mq(w(u)) 6 2Mq(w(t)). We then note that for any r > 1/ε and y > 0,

P

[
sup

n∈N\{0}
n−εYn > y

]
6

+∞∑
n=1

E [(Yn)r]
(ynε)r 6

C

yr
,

so that (5.5) follows. �

Appendix A. Maximal inequalities

In this appendix, we recall classical properties of maximal functions in a multi-
dimensional setting. Let (Ω,F ,P) be a probability space, and (θx)x∈Zd be a measure-
preserving action of Zd on this space. For every measurable function f : Ω→ R, we
define the maximal function

Mf(ω) = sup
r∈N

1
|Br|

∑
x∈Br

f(θxω).

The following result is [1, Theorem 3.2].

Proposition A.1 (Weak type (1,1) estimate). For every f ∈ L1(Ω) and λ > 0,

P [Mf > λ] 6
3d ‖f‖L1(Ω)

λ
.

Obviously, the maximal function defines a bounded operator from L∞ to L∞.
By the Marcinkiewicz interpolation theorem (see e.g. [40, Appendix D]), we thus
have the following.

Corollary A.2 (Lp estimate). For every p ∈ (1,∞], there exists Cp <∞ such that
‖Mf‖Lp(Ω) 6 Cp‖f‖Lp(Ω).

Remark A.3. If we let

m g(ω) = inf
r∈N

1
|Br|

∑
x∈Br

g(θxω),

then for every p ∈ (1,∞] and g > 0, we also have

‖ (m g)−1 ‖Lp(Ω) 6 Cp‖g−1‖Lp(Ω),

since by Jensen’s inequality, (m g)−1 6 M(g−1).
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