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MESOSCOPIC HIGHER REGULARITY AND

SUBADDITIVITY IN ELLIPTIC HOMOGENIZATION

SCOTT ARMSTRONG, TUOMO KUUSI, AND JEAN-CHRISTOPHE MOURRAT

Abstract. We introduce a new method for obtaining quantitative results
in stochastic homogenization for linear elliptic equations in divergence form.
Unlike previous works on the topic, our method does not use concentration
inequalities (such as Poincaré or logarithmic Sobolev inequalities in the prob-
ability space) and relies instead on a higher (Ck, k ≥ 1) regularity theory for
solutions of the heterogeneous equation, which is valid on length scales larger
than a certain specified mesoscopic scale. This regularity theory, which is of
independent interest, allows us to, in effect, localize the dependence of the
solutions on the coefficients and thereby accelerate the rate of convergence
of the expected energy of the cell problem by a bootstrap argument. The
fluctuations of the energy are then tightly controlled using subadditivity.
The convergence of the energy gives control of the scaling of the spatial
averages of gradients and fluxes (that is, it quantifies the weak convergence
of these quantities) which yields, by a new “multiscale” Poincaré inequality,
quantitative estimates on the sublinearity of the corrector.

1. Introduction

In this paper, we introduce a new method for obtaining quantitative results
in elliptic homogenization. It is based on a new regularity theory for higher
derivatives of solutions which is valid on mesoscopic scales. The regularity es-
timates essentially localize the dependence of the solutions on the coefficients,
allowing for the mixing assumptions to dictate the rate of homogenization.
This idea is formalized by a novel bootstrap argument which uses the regu-
larity estimates to accelerate the convergence of the natural subadditive and
superadditive quantities associated to the variational formulation of the equa-
tion. As an application, we give explicit estimates on the sublinearity of the
correctors and the weak convergence of their rescaled gradients.

1.1. Motivation and informal summary of results. We consider the linear
elliptic equation

(1.1) −∇ ⋅ (a(x)∇u) = 0
in bounded open subsets of Rd. The coefficient a(⋅) is a random field valued
in the set of d-by-d symmetric matrices with eigenvalues belonging to the in-
terval [1,Λ] for a fixed ellipticity constant Λ ≥ 1. The law of a(⋅) is given
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by a probability measure P which is assumed to satisfy a quantitative mixing
condition.

We are interested in obtaining quantitative information on the statistical
properties of solutions of (1.1) on very large scales, a concern which lies within
the realm of homogenization. The qualitative theory of homogenization for
such equations was developed by [21, 18, 23, 17] and the first quantitative
results are due Yurinskii [24]. Developing a quantitative theory of stochastic
homogenization for linear elliptic equations has received a lot of attention since
the groundbreaking work of Gloria and Otto [13, 14, 15] and Gloria, Neukamm
and Otto [10, 11], who proved an array of optimal estimates under certain very
strong mixing assumptions on the coefficients (in particular, that P satisfies
some form of a spectral gap inequality). At the core of their results are the
use of sensitivity estimates and the spectral gap assumption to derive moment
bounds on the gradient of the corrector and the Green’s functions, which cul-
minated in the work of Marahrens and Otto [19]. These gradient estimates,
following Naddaf and Spencer [20], give control of the sensitivity of the correc-
tors themselves to changes in the coefficient field, and thereby yield optimal
estimates after another application of the spectral gap inequality.

A regularity theory for stochastic homogenization was recently introduced by
Armstrong and Smart [4]. In particular, [4, Theorem 1.2] provides a gradient
bound, of exactly the sort required for the quantitative theory of homogeniza-
tion, which applies to arbitrary solutions of (1.1) and with much stronger (and
essentially optimal) stochastic integrability. The techniques of [4] were further
developed by Armstrong and Mourrat [2], for general (nonlinear) divergence-
form equations and systems, and, in a similar spirit by Gloria, Neukamm and
Otto [12] for linear equations and systems. These works were inspired by the
celebrated papers of Avellaneda and Lin [5, 6], who proved in particular uni-
form Lipschitz estimates for equations with periodic coefficients. As in [5, 6],
the philosophy is to show that solutions of the heterogeneous equation (1.1) in-
herit the regularity of the limiting constant-coefficient equation due to homog-
enization. The method of [4] is however different from these previous works,
which were based on compactness arguments and used strong bounds on the
correctors. Instead, the idea is to mimic more closely the proof of the classical
Schauder estimates, using quantitative methods to replace compactness: one
shows that, at each scale, a solution of (1.1) may be approximated by the solu-
tion of the homogenized equation and then iterates the resulting estimate over
dyadic scales. If the error in the approximation is small enough (an algebraic
or Dini rate of homogenization is needed), then the argument yields a uniform
Lipschitz estimate. This argument is more robust than the compactness argu-
ment of [5, 6], since it separates the approximation step from the iteration step.
Indeed, in addition to its applicability in the stochastic setting, it has yielded
new results even in the periodic and almost periodic settings (cf. [3, 22]).

Another idea from [4, 2] is that subadditive arguments are the way to prove
quantitative homogenization results that are optimal in stochastic integrability
(under essentially any mixing assumption). This leads to a regularity theory
which is optimal in terms stochastic integrability. Subadditive arguments are
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so effective for this purpose because they reduce questions of stochastic inte-
grability for random variables with complicated dependence on the random
environment (such as solutions of the PDE) to estimates of a finite sum of
bounded random variables which satisfy the same mixing properties as the
coefficients. Under assumptions on the coefficient field which provide a spec-
tral gap inequality, the regularity theory (specifically the Lipschitz estimate) is
strong enough to quickly recover the optimal quantitative estimates on the cor-
rector proved by Gloria and Otto. Thus an important consequence of these new
regularity estimates on the quantitative theory was to separate the gradient es-
timates, which can now be proved under very general mixing assumptions, from
the rest of the quantitative theory, which until now requires spectral gap-type
assumptions.

In the present paper, we propose to take this program one step further by de-
riving quantitative bounds for the correctors (with explicit exponents) without
using the spectral gap or other Poincaré-type concentration inequalities. This
is the first step in obtaining a quantitative theory of stochastic homogenization
applicable to general coefficient fields. Instead of relying on concentration of
measure, we show by a bootstrap argument that the regularity theory itself
can be used to improve the rate of homogenization. In addition to providing a
new point of view in the quantitative theory of stochastic homogenization and
allowing for more general mixing assumptions, our arguments yield estimates
which are much stronger in stochastic integrability (under strong mixing as-
sumptions, we get exponential moments rather than just pth moments). This
is because, as in [4, 2], our method allows us to use subadditivity to control the
stochastic fluctuations. So far, the estimates we can obtain (see Theorem 1.2,
below) are unfortunately suboptimal in their scalings compared to what can be
proved under spectral gap assumptions. This is due to the presence of bound-
ary layers encountered in the analysis which eventually force the bootstrap to
halt before desired. We hope to address this issue in the near future.

In addition to the uniform Lipschitz estimate, our approach requires higher
Ck,1 estimates for k ≥ 1, which were left essentially implicit in [4, 2]. Of course,
unlike the Lipschitz estimate, such higher derivative estimates for k ≥ 1 cannot
hold uniformly on the unit scale, but they are valid on mesoscopic scales: the
assertion, which is stated precisely in Theorem 2.1 below, is roughly that a
solution of (1.1) on the ball BR, with R ≫ 1, can be well-appoximated by
a kth degree polynomial on any mesoscopic ball Br(x) ⊆ BR/2 with radius
r ≥ R1−ε, for a specified exponent ε > 0 which depends in particular on k. By
“well-approximated”, we mean that the quality of the approximation of the
solution by the polynomial is, up to a constant, as good as one would have for
a harmonic function with the same oscillation. This result is presented below
in Theorem 2.1. Fischer and Otto [9] have very recently developed a higher
regularity theory along somewhat different lines (see also Remark 2.3).

While we state and prove our results for scalar equations with symmetric
coefficients under the assumption of finite range of dependence, we emphasize
that these choices are not imposed on us by any limitation of our method.
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Indeed, the arguments work verbatim for systems with just changes to the no-
tation, the techniques of [2] can be used to get rid of the symmetry assumption,
and it is precisely under weaker mixing conditions that our estimates would
be optimal, since the weak mixing stops the bootstrap before it sees boundary
layers. Our choice to make these additional assumptions rather reflects a de-
sire to maintain the readability of the paper by presenting the ideas in their
simplest setting.

1.2. Assumptions. We work in the Euclidean space Rd in dimension d ≥ 2
and with a fixed ellipticity constant Λ ≥ 1. We consider the space of coefficient
fields a(⋅) valued in the symmetric d-by-d matrices satisfying, for all ξ ∈ Rd,

(1.2) ∣ξ∣2 ≤ ξ ⋅ a(x)ξ ≤ Λ ∣ξ∣2 .
We define Ω to be the set of all such coefficient fields:

Ω ∶= {a(⋅) ∶ a ∶ Rd → R
d×d is Lebesgue measurable, satisfies (1.2) and at = a} .

We endow Ω with the translation group {Ty}y∈Rd, which acts on Ω via

(Tya)(x) ∶= a(x + y),
and the family {F(U)} of σ–algebras on Ω, with F(U) defined for each Borel
subset U ⊆ Rd by

F(U) ∶= σ–algebra on Ω generated by the family of maps

a↦ ∫
U
q ⋅ a(x)pϕ(x)dx, p, q ∈ Rd, ϕ ∈ C∞c (Rd).

Roughly, F(U) contains the information about the coefficients restricted to U .
We denote the largest of these σ–algebras by F ∶= F(Rd). The translation
group may be naturally extended to F itself by defining

TyA ∶= {Tya ∶ a ∈ A} , A ∈ F
and to any random element X by setting (TzX)(a) ∶=X(Tza).
Throughout the paper, we consider a probability measure P on (Ω,F) which

is assumed to satisfy the following two conditions:

(P1) P is stationary with respect to Zd–translations: for every z ∈ Zd and
A ∈ F ,

P [A] = P [TzA] .
(P2) P has a unit range of dependence: for every pair of Borel subsets U,V ⊆

Rd with dist(U,V ) ≥ 1,
F(U) and F(V ) are P–independent.

The expectation of an F -measurable random variable X with respect to P

is denoted by E [X].
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1.3. Notation. We continue with some notation used throughout the paper.
For a measurable set E ⊆ Rd, we denote the Lebesgue measure of E by ∣E∣
unless E is a finite set, in which case ∣E∣ denotes the cardinality of E. For a
bounded Lipschitz domain U ⊆ Rd with ∣U ∣ <∞ and p ∈ [1,∞), we denote the
normalized Lp(U) norm of a function f ∈ Lp(U) by
(1.3) ∥f∥Lp(U) ∶= (⨏

U
∣f(x)∣p dx)

1

p

.

It is also convenient to denote ∥f∥L∞(U) ∶= ∥f∥L∞(U). For a vector-valued F ∈
Lp(U ;Rd), we write ∥F ∥Lp(U) ∶= ∥∣F ∣∥Lp(U). The average of a function f ∈ L1(U)
on U is denoted by

(f)U ∶= ⨏
U
f(x)dx.

For U ⊆ Rd with ∣U ∣ <∞ and vector fields F,G ∈ L2(U ;Rd), we denote

(1.4) ⟨F,G⟩U ∶= ⨏
U
F (x) ⋅G(x)dx.

Since we also wish to quantify the convergence of various functions in the
weak Lp topology, it is natural to work with W −1,p norms. For this purpose we
introduce the normalized W −1,p norm of F ∈ Lp(U ;Rd) by
∥F ∥W −1,p(U) ∶= sup {∣⟨F, η⟩U ∣ ∶ η ∈W 1,p′(U ;Rd), (η)U = 0, ∥∇η(x)∥Lp′(U) = 1} .

As usual, p′ denotes the Hölder conjugate of an exponent p ∈ [1,∞]. We also
use the shorthand notation

(1.5) ∥F ∥H−1(U) ∶= ∥F ∥W−1,2(U).

Note thatW −1,p′ and H−1 are (somewhat unconventionally) used to denote the
duals of W 1,p/R and H1/R, rather than W 1,p

0
and H1

0
. We denote cubes of side

length R > 0 by

◻R = ◻R(0) ∶= (−1
2
R,

1

2
R)d , ◻R(x) ∶= x +◻R.

The family of cubes of side length at least one is

(1.6) C ∶= {◻R(x) ∶ x ∈ Rd, R ≥ 1} .
The set of (real-valued) polynomials on Rd with degree at most k ∈ N is denoted
by Pk. The (random) vector space of solutions of (1.1) in U ⊆ Rd is

(1.7) A(U) ∶= {u ∈H1

loc
(U) ∶ ∀v ∈H1

0(U), ∫
U
∇v(x) ⋅ a(x)∇u(x)dx = 0} .

Recall that, for each p ∈ Rd, the corrector Φ(⋅, p) is defined for P–almost ev-
ery a ∈ Ω as the unique function (up to a constant) in H1

loc
(Rd) with a Zd–

stationary, mean-zero gradient and which satisfies the equation

−∇ ⋅ (a(x) (p +∇Φ(⋅, p))) = 0 in R
d.

See [17] for details.
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1.4. Subadditive quantities and main results. We now recall some objects
from [4, 2] which play a central role in the paper. Given a bounded Lipschitz
domain U ⊆ Rd and p, q ∈ Rd, we denote the linear function of slope p by
ℓp(x) ∶= p ⋅ x and define

ν(U,p) ∶= inf
v∈ℓp+H1

0
(U)⨏U

1

2
∇v(x) ⋅ a(x)∇v(x)dx,

which is the natural subadditive quantity representing the energy of the solution
of the “cell problem,” introduced (in a more general form) by Dal Maso and
Modica [7, 8] in their proof of qualitative homogenization of convex integral
functionals. We also define

µ(U, q) = inf
u∈H1(U)⨏U (

1

2
∇u(x) ⋅ a(x)∇u(x) − q ⋅ ∇u(x)) dx,

which is the natural superadditive quantity introduced in [4] (also in a more
general form), and is dual to ν(U,p).
The quantity ν( ⋅ , p) is subadditive in the sense that if U,U1, . . . , Uk are

bounded domains satisfying

U1, . . . , Uk are pairwise disjoint and ∣U ∖ (U1 ∪⋯∪Uk)∣ = 0,
then

(1.8) ν(U,p) ≤ k∑
i=1

∣Ui∣∣U ∣ ν(Ui, p).
This is immediate from the fact that a candidate minimizer for ν(U,p) can be
obtained by assembling the minimizers of the quantities ν(Ui, p), as these agree
on the boundaries. (We remark that we are using the term “subadditive” in a
nonconventional way, due to our normalization, as it would be more standard
to say that U ↦ ∣U ∣ν(U,p) is subadditive.) Conversely, the quantity µ( ⋅ , q) is
superadditive (that is, −µ( ⋅ , q) is subadditive), since the minimizer for µ(U, q)
provides with a candidate minimizer for each µ(Ui, q) by restriction.

Note that the minimizer for µ(U, q) will be the solution of a Neumann prob-
lem for (1.1) in U , while of course the minimizer for ν(U,p) is the solution of a
Dirichlet problem. Thus we may think of ν(U,p) as “the subadditive quantity
for gradients” and of µ(U, q) as “the superadditive quantity for fluxes.”

The homogenized matrix a can be defined as the symmetric matrix satisfying

(1.9)
1

2
p ⋅ ap = lim

R→∞
E[ν(◻R, p)].

We view the quantities µ and ν as central to the quantitative theory of homog-
enization. The main step in the quantitative arguments in [4, 2] is to show
roughly that there exists α(d,Λ) > 0 such that, for every ◻ ∈ C,

∣ν(◻, p) − 1

2
p ⋅ ap∣ ≤ C ∣p∣2 ∣◻∣−α with overwhelming probability,

and a similar estimate for µ,

∣µ(◻, q) + 1

2
q ⋅ a−1q∣ ≤ C ∣q∣2 ∣◻∣−α with overwhelming probability.

The first main result of this paper improves the rate of convergence from the
unspecified and tiny α(d,Λ) > 0 in [4] to any exponent α < 1

d
.
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Theorem 1.1 (Rate of convergence of subadditive quantities). Let α < 1

d
.

There exists C(d,Λ, α) <∞ such that for every p, q ∈ Rd, ◻ ∈ C and λ ∈ R,
(1.10)

⎧⎪⎪⎨⎪⎪⎩
logE [exp (λ∣p∣−2∣◻∣α ∣ν(◻, p) − 1

2
p ⋅ ap∣)] ≤ C(1 + λ2), and

logE [exp (λ∣q∣−2∣◻∣α ∣µ(◻, q) + 1

2
q ⋅ a−1q∣)] ≤ C(1 + λ2).

Testing the definition of µ(U, q) with the minimizer of ν(U,p) yields
(1.11) J(U,p, q) ∶= ν(U,p) − µ(U, q) − p ⋅ q ≥ 0.
Moreover, as we will see, J(U,p, q) can be expressed in a variational form, and
the optimizer is precisely the difference of the minimizers of µ(U, q) and ν(U,p).
In other words, the difference of the subadditive energies is an energy of the
differences of the minimizers. The proof of Theorem 1.1 is based on a bootstrap
argument, using the higher regularity estimates, applied to this difference, to
accelerate the convergence of J(◻, p,ap) to zero. See Section 4.1 for a sketch
of the bootstrap argument.

The estimate (1.10) is optimal in the sense that it is false for any α > 1

d
. To see

this, we note that minimizers for µ satisfy (oscillating) Neumann conditions
while those of ν satisfy Dirichlet conditions. Therefore, the gradient of the
difference of the minimizers of µ(◻,ap) and ν(◻, p) will in general be O(1) in
a boundary layer of at least unit thickness. The proportion of volume of such
a boundary layer relative to the whole cube ◻ is of order ∣◻∣−1/d. Therefore
J(◻, p,ap) should be at least c∣◻∣−1/d in general.

It is the presence of this boundary layer that so far limits our quantitative
results to consequences of (1.10). On the other hand, one expects the mini-
mizers of ν(U,p) and µ(U,ap) to be much closer in the interior of U than near
the boundary, and so if the boundary layer could be neglected, there is hope
to prove much more precise results.

Theorem 1.1 can be used to prove an array of quantitative estimates in ho-
mogenization with exponents which, under the strongest mixing assumptions,
will typically differ from the optimal one by a square root. For example, one
can show that the L2 error in homogenization is O(ε1/2−), where the micro-
scopic length scale is ε, or that the H1 norm of the two-scale expansion is
O(ε1/4−). The application we present here is an estimate of the sublinearity of
the corrector and of the H−1 norm of its gradient (recall that the H−1 norm
measures weak convergence in L2). It roughly states that

∥Φ(⋅, p) − (Φ(⋅, p))BR
∥
L2(BR)

+ ∥∇Φ(⋅, p)∥H−1(BR) ≲ R 1

2
+,

with very strong stochastic integrability. Note that estimates on the sublin-
earity of the corrector are intimately connected to estimates for the error in
homogenization.

Theorem 1.2 (Sublinear growth of the corrector). Let β ∈ (0, 1
2
). There exists

a constant C(d,Λ, β) <∞ such that, for every p ∈ Rd, R ≥ 1 and λ ∈ R,
logE [exp (λ∣p∣−2R−2+2β (∥Φ(⋅, p) − (Φ(⋅, p))BR

∥2
L2(BR)

+ ∥∇Φ(⋅, p)∥2
H−1(BR)))]

≤ C(1 + λ2).
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Theorem 1.2 is new, even though it is almost certainly suboptimal and does
not compare favorably with the results of Gloria and Otto [15] under spectral
gap assumptions, who proved that correctors are almost bounded (see also Glo-
ria, Neukamm and Otto [12] for more results under spectral gap assumptions).
Indeed, it seems to be an open question (and there is some doubt) whether
finite range of dependence implies a spectral gap-type inequality in d > 1. The
best previous result for finite range of dependence was for β(d,Λ) > 0 very
small (cf. [4]). Moreover, as mentioned above, our methods are applicable un-
der essentially any mixing condition and we believe yield essentially optimal
estimates under weaker mixing conditions (such as mixing conditions so slow
that spatial averages of the coefficients on scale R converge slower than R−1 to
their mean). This will be explained in more details in future papers.

The novelty of Theorem 1.2 is not however in its statement, but in its proof.

1.5. Outline of the paper. Our results rely crucially on Ck,1 estimates for
solutions of (1.1) onmesoscopic scales. This was essentially proved in [4], where
the higher regularity theory in stochastic homogenization was introduced; the
precise statements we require are proved in Section 2. In Section 3, we make
the fundamental observation that the quantity J in (1.11) can be expressed as
a “modulated energy” of the difference of the minimizers of µ and ν.

We break the proof of Theorem 1.1 into two main steps. First, in Section 4,
we use an induction argument on the exponent α to show that, for every α < 1

d
,

p ∈ Rd and cube ◻ ∈ C,
(1.12) ∣E[ν(◻, p)] − 1

2
p ⋅ ap∣ ≤ C ∣p∣2 ∣◻∣−α,

and a similar estimate with µ in place of ν. This statement is a priori much
weaker than the conclusion of Theorem 1.1, but we show in Section 5 that the
subadditivity of −µ and ν can be used to upgrade the stochastic integrability
from L1 to exponential moments without sacrificing any of the exponent.

Finally, in Section 6, we present a functional inequality, which appears to be
new and which we call multiscale Poincaré inequality. It has a wavelet flavor
and converts control over the spatial averages of the gradient of a function in
triadic subcubes into an estimate on the oscillation of the function itself. This,
together with the regularity theory, reduces Theorem 1.2 to Theorem 1.1.

2. Higher regularity on mesoscopic scales

A cornerstone of the methods in this paper is a quenched Ck,1 estimate for
solutions of (1.1) onmesoscopic scales. This was essentially proved in [4], where
the higher regularity theory in stochastic homogenization was introduced.

The rough statement, which is given precisely in the following theorem, as-
serts that a solution of (1.1) can be approximated, just as well as a harmonic
function, by kth degree harmonic polynomials – on length scales larger than a
fixed mesoscopic scale (or the microscopic scale, if k = 0). We let Ak denote
the set of polynomials of degree at most k which are a-harmonic.
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Theorem 2.1 (Ck,1 regularity on mesoscopic scales). Fix s ∈ (0, d) and k ∈ N.
There exist an exponent δ(s, d,Λ) > 0, a constant C(s, k, d,Λ) < ∞ and anF-measurable random variable X ∶ Ω → [1,∞) satisfying the estimate

(2.1) E [exp (X s)] <∞
and such that, for every R ≥ 2X , v ∈ A(BR) and r ∈ [X ∨R k

k+δ , 1
2
R],

(2.2) inf
w∈Ak

∥v −w∥L2(Br) ≤ C ( rR)
k+1 ∥v∥L2(BR) .

Theorem 2.1 is essentially proved in [4]. That paper only stated the (uni-
form) C0,1 estimate and left (mesoscopic) higher regularity statements for k ≥ 1
implicit in the proof. To prove the proposition, we just need to expound the
argument from [4].

A second ingredient in the proof of Theorem 2.1, which also plays a key role
in the bootstrap argument, is the following quenched error estimate for the
Dirichlet problems proved in [4]. It gives a quenched, deterministic estimate
for the error in homogenization for the Dirichlet problem on length scales larger
than a certain random scale of characteristic size O(1).
Proposition 2.2 ([4, Theorem 1.1]). Fix s ∈ (0, d), ε > 0, and let U ⊆ B1

be a Lipschitz domain. There exists an exponent δ(d,Λ, s, ε) > 0, a constant

C(s, d,Λ, U) <∞ and an F-measurable random variable R ∶ Ω→ [1,∞), which
depends only on (d,Λ, s, ε) and satisfies the estimate

(2.3) E [exp (Rs)] <∞,
such that, for every r ≥ R, f ∈W 1,2+ε(rU) and solutions u,u ∈ f +H1

0
(rU) of

−∇ ⋅ (a∇u) = 0 and −∇ ⋅ (a∇u) = 0 in rU,

we have the estimate

(2.4)
1

r
∥u − u∥L2(rU) ≤ r−δ ∥∇f∥L2+ε(rU) .

Remark 2.3. The mesoscopic regularity estimate in Theorem 2.1 implies Li-
ouville theorems of all orders. These state roughly that, for each k ∈ N, the
subspace of A(Rd) consisting of functions which grow at most like o (∣x∣k+1)
has the same dimension as Ak. The latter functions correspond precisely to
the kth order correctors. Note that, in view of the results of [2], Theorem 2.1
and therefore these Liouville theorems hold in much greater generality than we
present here (e.g., for nonlinear equations and with weaker mixing conditions).
A similar result was recently proved by Fischer and Otto [9], who developed a
similar higher regularity theory in the general stationary ergodic setting. Sim-
ilar to [11], they proceed a bit differently: rather than measure the distance of
an element of A(BR) to Ak, they measure its distance to the kth order correc-
tors. We believe that while both approaches are of interest, the one presented
here is more faithful to what a Ck,1 estimate should be in this context (we
would like, for example, to measure the Ck,1 seminorm of a jth order corrector,
for j ≤ k, and not get zero, otherwise we gain no information on the correctors
themselves). See below Remark 4.5 in [3] for some similar comments.
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That a quantitative estimate for the error in homogenization for the Dirichlet
problem implies higher regularity estimates via a Campanato iteration was an
idea introduced in [4]. Here we formulate a version in the following lemma,
which is a variation of [4, Lemma 5.1].

Lemma 2.4. Fix R ≥ 2, α > 0, p ∈ [1,∞] and u ∈ Lp(BR). For each k ∈ N and

s ∈ (0,R], denote
Dk(s) ∶= inf

w∈Ak

∥u −w∥Lp(Bs)

Assume that h ∈ [1, 1
2
R] and have the property that, for every r ∈ [h, 1

2
R], there

exists an a-harmonic function v ∈ C∞(Br) such that

(2.5) ∥u − v∥Lp(Br) ≤ r−αD0(2r).
Then, for each k ∈ N, there exists a constant C(d,Λ, k,α) < ∞ such that, for

every r ∈ [h, 1
2
R],

(2.6) Dk(r) ≤ C ( r
R
)k+1Dk(R) +Cr−α ( r

R
)D0(R).

Proof. Fix k ∈ N. Throughout, we denote by C and c positive constants de-
pending only on (k,α,Λ) which may vary in each occurrence. In the first few
steps, we make some preliminary observations and introduce the notation we
need in the main part of the argument, which begins in Step 3.

Step 1. We first observe that the triangle inequality and the hypothesis (2.5)
imply that, for every r ∈ [h, 1

2
R] and s ∈ (0, 1

2
r],

(2.7) Dk(s) ≤ C (s
r
)k+1Dk(r) +C (r

s
)

d
p

r−αD0(r).
Selecting a harmonic function v ∈ C∞(Br) to satisfy (2.5), we find that

Dk(s) = inf
w∈Ak

∥u −w∥Lp(Bs)

≤ inf
w∈Ak

∥v −w∥Lp(Bs) + ∥u − v∥Lp(Bs)

≤ C (s
r
)k+1 inf

w∈Ak

∥v −w∥Lp(Br) +Cr−αD0(r)(r
s
)

d
p

.

In the last line, we used the fact that any a-harmonic function v satisfies, for
every 0 < s ≤ 1

2
r,

inf
w∈Ak

∥v −w∥L∞(Bs) ≤ C (sr)
k+1

inf
w∈Ak

∥v −w∥Lp(Br) .

Next we use the triangle inequality and (2.5) a second time to get

inf
w∈Ak

∥v −w∥Lp(Br) ≤ Dk(r) +Cr−αD0(r).
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Substituting into the inequality above, we get

Dk(s) ≤ C (s
r
)k+1 (Dk(r) + r−αD0(r)) +C (r

s
)

d
p

r−αD0(r)
≤ C (s

r
)k+1Dk(r) +C (r

s
)

d
p

r−αD0(r).
Step 2. We set up the rest of the argument. Fix θ = θ(k) ≥ c so small that
Cθ = 1

4
, where C is the constant in (2.7), so that the latter inequality implies

D̃k(θr) ≤ 1

2
D̃k(r) +Cr−k−αD0(r),

where here and in what follows we set D̃k(s) ∶= s−kDk(s). An iteration of the
previous inequality gives

(2.8) D̃k(θmr) ≤ 2−mD̃k(r) +C m−1∑
j=0

2j−m (θjr)−k−αD0 (θjr)
provided θm−1r ≥ h. To shorten the notation, we denote rj ∶= θjR, Bj ∶= Brj

and by wk,j the best kth degree polynomial approximation of u in Bj, that is,
wk,j satisfies ∥u −wk,j∥Lp(Bj) = inf

w∈Pk

∥u −w∥Lp(Bj)

Step 3. We now complete the proof of the proposition in the case k = 0. In
fact, this has been already proved in [4, Lemma 5.1], but we give the argument
for the sake of completeness.

First, since we may add constants to both u and v, we may assume without
loss of generality that w0,0 = 0. It follows that

∥w1,0∥Lp(BR) ≤ 2D0(R),
and hence we easily get

(2.9) ∥w1,0∥L∞(BR) +R ∥∇w1,0∥L∞(BR) ≤ CD0(R).
Using (2.8) we obtain

1

rm+1
∥w1,m+1 −w1,m∥Lp(Bm+1) ≤ D̃1(rm+1) + θ−1− d

p D̃1(rm)
≤ 2−mCD̃1(R) +C m∑

j=0
2j−mr−1−αj D0 (rj) .

We thus deduce that

∣∇w1,m+1 −∇w1,m∣ ≤ 2−mCD̃1(R) +C m∑
j=0

2j−mr−αj
D0 (rj)
rj

,

and it follows by summation that

∣∇w1,n −∇w1,0∣ ≤ CD̃1(R) +C n∑
j=0
r−αj

D0 (rj)
rj
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provided that rn ≥ h. Combining this with (2.8) and (2.9) leads to

D0(rn)
rn

≤ D̃1(rn) + ∣∇w1,n∣ ≤ CD0(R)
R

+C n−1∑
j=0

r−αj
D0 (rj)
rj

.

Taking supremum then gives

sup
m∈{0,...,n}

D0(rm)
rm

≤ CD0(R)
R

+C n∑
j=0
r−αj sup

m∈{0,...,n}

D0(rm)
rm

provided that rn ≥ h. Letting now n∗ = n∗(d,α) be the largest integer such

that C∑n∗

j=0 r
−α
j ≤ 1

2
and rn∗ ≥ h we obtain after straightforward manipulations

that

(2.10) sup
h≤r≤R

D0(r)
r
≤ CD0(R)

R
.

Step 4. We complete the argument in the case of general k ∈ N. Following the
reasoning of the previous step, letting w̃k+1,j stand for the kth order polynomial
part of wk+1,j, we get, by (2.8) and (2.10),

D̃k(rj) ≤ 1

rkj
∥u − w̃k+1,j∥Lp(Bj)(2.11)

≤ rjD̃k+1(rj) + 1

rkj
∥wk+1,j − w̃k+1,j∥Lp(Bj)

≤ rj (2−jD̃k+1(R) +Cr−k−αj

D0(R)
R

+ ∣∇k+1wk+1,j ∣) .
Thus we are left to estimate ∣∇k+1wk+1,j ∣. Since

1

rk+1j+1
∥wk+1,j+1 −wk+1,j+1∥Lp(Bj+1) ≤ C (D̃k+1(rj+1) + D̃k+1(rj))

≤ C2−jD̃k+1(R) +Cr−k−αj

D0(R)
R

,

we deduce that

(2.12) ∣∇k+1wk+1,j+1 −∇k+1wk+1,j ∣ ≤ C2−jD̃k+1(R) +Cr−k−αj

D0(R)
R

.

Indeed, for any n ∈ N and polynomial φ ∈ Pn, we have that

(2.13) (⨏
Br

∣φ(x)∣p dx)
1

p = (⨏
B1

∣φ(rx)∣p dx)
1

p ≥ c sup
x∈B1

∣φ(rx)∣ ≥ crn ∣∇nφ∣
for a constant c = c(d,n) > 0. This is due to scaling and Lemma 2.6, which is
stated and proved below.

Now (2.12) implies after summation that

∣∇k+1wk+1,j −∇k+1wk+1,0∣ ≤ CD̃k+1(R) +Cr−k−αj

D0(R)
R

.

Furthemore, since

∥wk,0 −wk+1,0∥Lp(BR) ≤ Dk+1(R) +Dk(R) ≤ 2Dk(R),
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we obtain ∣∇k+1wk+1,0∣ ≤ CR−k−1Dk(R),
and consequently

∣∇k+1wk+1,j∣ ≤ ∣∇k+1wk+1,j −∇k+1wk+1,0∣ + ∣∇k+1wk+1,0∣
≤ CR−k−1Dk(R) +Cr−k−αj

D0(R)
R

.

Combining this finally with (2.11) allows us to conclude with

Dk(rj) ≤ C (rj
R
)k+1Dk(R) +Cr−αj (rjR)

D0(R)
R

,

from which the statement (2.6) can be easily deduced. �

Remark 2.5. Notice that since Dk(R) ≤ D0(R), the estimate (2.6) implies

Dk(r) ≤ C ( r
R
)k+1D0(R) +Cr−δ ( r

R
)D0(R).

This is a Ck,1 estimate on scales r for which the second term on the right side
is smaller than the first term, that is, for r satisfying

r ≳ R k
k+δ .

In the proof of Lemma 2.4, we used the following fact, which is a simple
consequence of the equivalence of norms in finite-dimensional vector spaces.

Lemma 2.6. Fix k ∈ N. There exists a constant C(d, k) < ∞ such that, for

every m ≤ k and w ∈ Pk,
∥∇mw∥L∞(B1) ≤ C ∥w∥L1(B1) .

Proof of Theorem 2.1. The proof is essentially the same as – indeed, even con-
siderably simpler than (due to homogeneity) – the argument given in the gen-
eral nonlinear case considered in [4, 2]. If we take U = B1 and ε(d,Λ) > 0 to
be the exponent in the interior Meyers estimate (cf. [2, Proposition B.6] for
instance), then the solvability of the Dirichlet problem and the conclusion of
Proposition 2.2, with R given there, ensures that the hypothesis of Lemma 2.4
is satisfied for h =R. The lemma then yields the result for X =R. �

3. Properties of the modulated energy J

We begin this section with the simple but key observation that the difference
between ν and µ can be expressed as a “modulated energy” of the difference
of the minimizers. We define J (⋅, U, p, q) for functions w ∈H1(U) by
J (w,U, p, q) ∶= ⨏

U
(−1

2
∇w(x) ⋅ a(x)∇w(x) − p ⋅ a(x)∇w(x) + q ⋅ ∇w(x)) dx.

We denote the maximum of J (⋅, U, p, q) among solutions of the PDE by

J(U,p, q) ∶= max
w∈A(U)

J (w,U, p, q).
To motivate the definition of J(U,p, q), we show that it is actually a familiar
object: it can be decomposed into the quantities studied in [4], which are the
focus of the analysis in that paper.
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Lemma 3.1. For every bounded Lipschitz domain U ⊆ Rd and p, q ∈ Rd,

(3.1) J(U,p, q) = ν(U,p) − µ(U, q) − p ⋅ q.
Proof. Fix p, q ∈ Rd, u ∈ A(U) and let v ∈ ℓp +H1

0
(U) be the minimizer in the

definition of ν(U,p). Note that v ∈ A(U) and compute

ν(U,p) − ⨏
U

1

2
(∇u(x) ⋅ a(x)∇u(x) − q ⋅ ∇u(x)) dx − p ⋅ q

= ⨏
U
(1
2
∇v(x) ⋅ a(x)∇v(x) − 1

2
∇u(x) ⋅ a(x)∇u(x) + q ⋅ ∇u(x)) dx − p ⋅ q

= ⨏
U
( − 1

2
(∇u(x) −∇v(x)) ⋅ a(x) (∇u(x) −∇v(x))
− p ⋅ a(x) (∇u(x) −∇v(x)) + q ⋅ (∇u(x) −∇v(x)) )dx

= J (u − v,U, p, q).
Here we used integration by parts twice, both taking advantage of the affine
boundary condition for v to get

p = ⨏
U
∇v(x)dx

and another, which also uses that u − v ∈ A(U) to get

⨏
U
p ⋅ a(x) (∇u(x) −∇v(x)) dx = ⨏

U
∇v(x) ⋅ a(x) (∇u(x) −∇v(x)) dx.

We deduce that

J(U,p, q) = max
w∈A(U)

J (w,U, p, q)
= max

u∈A(U)
J (u − v,U, p, q)

= max
u∈A(U)

(ν(U,p) −⨏
U

1

2
(∇u(x) ⋅ a(x)∇u(x) − q ⋅ ∇u(x)) dx − p ⋅ q)

= ν(U,p) − µ(U, q) − p ⋅ q. �

Notice that the proof of Lemma 3.1 gave more than its statement: namely,
the maximizer in the definition of J(U,p, q) is precisely the difference of the
minimizers of µ(U, q) and ν(U,p).
In the rest of this section, we present some basic properties of J which are

needed in the bootstrap argument in the next section, and we fix a bounded
Lipschitz domain U ⊆ Rd throughout. We denote the unique (up to additive
constants) maximizer in the definition of J(U,p, q) by

u(⋅, U, p, q) ∶=maximizer of J (⋅, U, p, q) among functions in A(U).
Notice that u(⋅, U,0, q) is the minimizer for µ(U, q) and −u(⋅, U, p,0) is the
minimizer for ν(U,p).
We next record the first and second variations of the optimization problem

implicit in the definition of J(U,p, q). Henceforth, we make use of the nota-
tion (1.4).
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Lemma 3.2. For every p, q ∈ Rd and v ∈ A(U),
(3.2) ⟨a∇u(⋅, U, p, q),∇v⟩U = ⟨−ap + q,∇v⟩U
and

(3.3) J(U,p, q) −J (u(⋅, U, p, q) + v,U, p, q) = 1

2
⟨∇v,a∇v⟩U .

Proof. For convenience, for t ≥ 0, set ut ∶= u(⋅, U, p, q) + tv. Compute

0 ≤ J (u0, U, p, q) −J (ut, U, p, q)
= t2⨏

U
(1
2
∇v(x) ⋅ a(x)∇v(x)) dx

+ t⨏
U
(a(x)∇u0(x) + a(x)p − q) ⋅ ∇v(x)dx.

Dividing by t and sending t → 0 gives

⨏
U
(a(x)∇u0(x) + a(x)p − q) ⋅ ∇v(x)dx ≥ 0.

Repeating the argument with −v in place of v yields (3.2). Returning to the
previous identity and taking t = 1 gives (3.3). �

For reference, we observe that by taking v = u(⋅, U, p, q) in (3.2) we obtain
the identities

J(U,p, q) =1
2
⟨a∇u(⋅, U, p, q),∇u(⋅, U, p, q)⟩U(3.4)

=1
2
⟨−ap + q,∇u(⋅, U, p, q)⟩U .

It is easy to see from (3.2) that (p, q)↦ u(⋅, U, p, q) is a linear map from Rd×Rd

into A(U); that is, for every p1, p2, q1, q2 ∈ Rd and s, t ∈ R,
(3.5) u(⋅, U, tp1 + sp2, tq1 + sq2) = tu(⋅, U, p1, q1) + su(⋅, U, p2, q2)
Likewise, J is quadratic: for every p, q ∈ Rd and t > 0,
(3.6) J(U, tp, tq) = t2J(U,p, q).
We next show that J (⋅, U, p, q) responds quadratically to perturbations near
its maximum.

Lemma 3.3. For every p, q ∈ Rd and v,w ∈ A(U),
(3.7)

1

4
∥∇v −∇w∥2L2(U) ≤ 2J(U,p, q) −J (w,U, p, q) −J (v,U, p, q)

and

(3.8) 2J (v,U, p, q) −J (w,U, p, q) − J(U,p, q) ≤ Λ

4
∥∇v −∇w∥2L2(U) .

Proof. For any v1, v2 ∈ A(U),
2J (v1 + v2

2
, U, p, q) −J (v1, U, p, q) −J (v2, U, p, q)

= 1
4
⟨a(∇v1 −∇v2),∇v1 −∇v2⟩U .
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Then (3.7) follows by choosing v1 = v and v2 = w and using the maximality of
J(U,p, q), and (3.8) follows similarly by choosing v1 = w and v2 = 2v −w. �

Lemma 3.4. For every p, q, p′, q′ ∈ Rd,

(3.9) J(U,p + p′, q + q′) − J(U,p, q) − J(U,p′, q′) = ⟨−ap′ + q′,∇u(⋅, U, p, q)⟩U .
Proof. By the first variation (3.2),

⟨a∇u(⋅, U, p, q),∇u(⋅, U, p + p′, q + q′)⟩U = ⟨−a(p + p′) + q + q′,∇u(⋅, U, p, q)⟩U
= 2J(U,p, q) + ⟨−ap′ + q′,∇u(⋅, U, p, q)⟩U

and, by (3.5),

⟨a∇u(⋅, U, p, q),∇u(⋅, U, p + p′, q + q′)⟩U
= ⟨−ap + q,∇u(⋅, U, p + p′, q + q′)⟩U
= 2J(U,p + p′, q + q′) − ⟨−ap′ + q′,∇u(⋅, U, p + p′, q + q′)⟩U
= 2J(U,p + p′, q + q′) − 2J(U,p′, q′) − ⟨−ap′ + q′,∇u(⋅, U, p, q)⟩U .

Combining the two displays above gives (3.9). �

We denote by ∇J(U,p, q) the gradient of J(U, ⋅) at (p, q). By (3.6), this is
a linear mapping from Rd ×Rd → R which, in view of the previous lemma, can
be expressed by

(3.10) ∇J(U,p, q)(p′, q′) = ⟨−ap′ + q′,∇u(⋅, U, p, q)⟩U .
This relation between ∇J(U,p, q) and the spatial averages of the gradient and
flux of u(⋅, U, p, q) will play an important role in the proof of Proposition 4.1.
For simplicity, the maps p′ ↦ ∇J(U,p, q)(p′,0) and q′ ↦ ∇J(U,p, q)(0, q′) are
sometimes denoted by ∇pJ(U,p, q) and ∇qJ(U,p, q), respectively.
Lemma 3.4 gives the identity

(3.11)
1

2
J(U,p1, q1) + 1

2
J(U,p2, q2) − J (U, p1 + p2

2
,
q1 + q2

2
)

= 1
4
J(U,p1 − p2, q1 − q2) .

This readily implies the following upper convexity estimate for J in (p, q) and
the lower convexity estimates for J in the variables p and q separately.

Lemma 3.5. For every p, p1, p2, q, q1, q2 ∈ Rd,

(3.12)
1

2
J(U,p1, q1) + 1

2
J(U,p2, q2) − J (U, 1

2
(p1 + p2), 1

2
(q1 + q2))

≤ Λ (∣p1 − p2∣2 + ∣q1 − q2∣2) ,
(3.13)

1

2
J(U,p1, q) + 1

2
J(U,p2, q) − J (U, 1

2
(p1 + p2), q) ≥ 1

2
∣p1 − p2∣2

and

(3.14)
1

2
J(U,p, q1) + 1

2
J(U,p, q2) − J (U,p, 1

2
(q1 + q2)) ≥ 1

2Λ
∣q1 − q2∣2 .
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Proof. We apply (3.11) together with (3.4) to obtain an upper bound for
J(U,p1−p2, q1−q2), and rearrange to obtain (3.12). We obtain (3.13) and (3.14)
in a similar way, using the bounds

J(U,p,0) = ν(U,p) ≥ 1
2
∣p∣2 and J(U,0, q) = −µ(U, q) ≥ 1

2Λ
∣q∣2. �

By subadditivity, stationarity and (1.9), for every ◻ ∈ C, we have

(3.15)
1

2
p ⋅ ap ≤ E[ν(◻, p)].

By (1.11), this implies

(3.16)
1

2
q ⋅ a−1q ≤ −E[µ(◻, q)],

so that

(3.17) E[J(◻, p, q)] ≥ 1
2
p ⋅ ap + 1

2
q ⋅ a−1q − p ⋅ q.

Due to Lemma 3.5, there exists a unique, deterministic matrix Q = Q(U)
such that, for every p ∈ Rd,

p = ∇qE [J(U,0,Qp)] = E [∇qJ(U,0,Qp)] .
Indeed, for each fixed p ∈ Rd, we can consider the minimum of the uniformly
convex, quadratic function

q ↦ E [J(U,0, q)] − p ⋅ q.
This defines a linear map from p to the minimum point q(p). The matrix Q is
defined by q = Qp. It is easy to check that Q is symmetric, and the upper and
lower uniform convexity of J(U,0, ⋅) ensures that Q is positive and in particular
invertible. In fact, we have

(3.18) Id ≤ Q ≤ ΛId.
Notice that, for every ◻ ∈ C, we have

(3.19) Q(◻) ≤ a.
Indeed, by (3.17),

1

2
p ⋅Q(◻)p = 1

2
Q(◻)p ⋅E [∇qJ(U,0,Q(◻)p)]

= E [J(U,0,Q(◻)p)]
≥ 1

2
Q(◻)p ⋅ a−1Q(◻)p.

Putting p ∶= Q(◻)−1q gives Q(◻)−1 ≥ a−1, which is equivalent to the claim. For
future reference, we notice that since u(⋅, U, p,Qp) = u(⋅, U, p,0) + u(⋅, U,0,Qp)
and −u(⋅, U, p,0) is the minimizer of ν(U,p), we have that −u(⋅, U, p,0) ∈ ℓ−p +
H1

0
(U) and

⨏
U
∇u(x,U, p,0)dx = −p

and thus by (3.10) that

∇qE [J(U,p,Qp)] = ∇qE [J(U,0,Qp)] +∇qE [J(U,p,0)] = p − p = 0.
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Similarly, we denote by P = P (U) the deterministic, symmetric matrix de-
fined via the relation

q = ∇pE [J(U,Pq,0)] .
As above, we have the estimates

1

Λ
Id ≤ P (U) ≤ Id,

for every ◻ ∈ C,
P (◻) ≤ a−1

and

(3.20) ∇qE [J(U,Pq, q)] = 0.
We next give an estimate for the difference between Q(◻) and the homoge-

nized coefficients a in terms of the expected size of J(◻, p,Q(◻)p).
Lemma 3.6. There exists C(d,Λ) <∞ such that, for any ◻ ∈ C,

∣a −Q(◻)∣ + ∣a−1 − P (◻)∣ ≤ C sup
p∈Rd

∣p∣−2E [J(◻, p,Q(◻)p)] .
Proof. We prove only the estimate for ∣a −Q(◻)∣. The argument for the bound
on ∣a−1 −P (◻)∣ is similar. We drop the dependence on ◻ and write Q = Q(◻)
and J(p, q) = J(◻, p, q). Set

η ∶= sup
p∈Rd

∣p∣−2E [J(p,Qp)] .
By (3.17), we have, for every p ∈ Rd,

0 ≤ 1
2
p ⋅ ap + 1

2
Qp ⋅ a−1Qp − p ⋅Qp ≤ E [J(p,Qp)] ≤ η∣p∣2.

It follows by uniform convexity that, for every p ∈ Rd,

∣Qp − ap∣2 ≤ Cη∣p∣2
and thus, by upper uniform convexity of q ↦ E [J(p, q)] and the fact that this
map achieves its minimum at q = Qp, we deduce

E [J(p,ap)] ≤ Cη∣p∣2.
Using (3.1), (3.15) and (3.16), we get

p ⋅ ap ≤ E [J(p,0)] +E [J(0,ap)] ≤ p ⋅ ap +Cη∣p∣2.
In view of (3.15) and (3.16), this implies that, for every p, q ∈ Rd,

∣E [J(p,0)] − 1

2
p ⋅ ap∣ ≤ Cη∣p∣2 and ∣E [J(0, q)] − 1

2
q ⋅ a−1q∣ ≤ Cη∣q∣2.

From this, the definition of Q and the fact that J is quadratic, we get

1

2
p ⋅Qp = 1

2
Qp ⋅E [∇qJ(0,Qp)] = E [J(0,Qp)] ≤ 1

2
Qp ⋅ a−1Qp +Cη∣p∣2.

Thus Qa−1Q ≥ Q − CηId, that is, Q(a−1 − Q−1)Q ≥ −CηId. By (3.18), this
implies Q ≥ a −CηId. In view of (3.19), the proof is now complete. �
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4. The bootstrap argument

This section is devoted to the proof of the following estimate for J .

Proposition 4.1. For every α ∈ (0, 1
d
), there exist C(d,Λ, α) < ∞ such that,

for every p ∈ Rd and ◻ ∈ C,
(4.1) E [J (◻, p,ap)] ≤ C ∣p∣2 ∣◻∣−α.
An immediate consequence of Proposition 4.1 is

Corollary 4.2. For every α ∈ (0, 1
d
), there exist C(d,Λ, α) <∞ such that, for

every p, q ∈ Rd and ◻ ∈ C,
(4.2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣E [ν(◻, p)] − 1
2
p ⋅ ap∣ ≤ C ∣p∣2 ∣◻∣−α, and

∣E [µ(◻, q)] + 1
2
q ⋅ a−1q∣ ≤ C ∣q∣2 ∣◻∣−α.

Proof of Corollary 4.2. By (3.1) and Proposition 4.1,

(4.3) E [ν(◻, p)] −E [µ(◻,ap)] − p ⋅ ap ≤ C ∣p∣2 ∣◻∣−α.
Combining this with (3.15) and (3.16) yields the result. �

We begin the proof of Proposition 4.1 with some reductions. First, observe
that it suffices to demonstrate (4.1) for cubes of the form ◻R, R ≥ 1, since
we can then apply the result to translations of the law P (recall that we only
assume Zd-stationarity). Second, in view of Lemma 3.6, in order to prove (4.1),
it suffices to show that, for each α < 1

d
, there exists C(d,Λ, α) < ∞ such that,

for every R ≥ 1 and p ∈ Rd,

(4.4) E [J(◻R, p,Q(◻R)p)] ≤ C ∣p∣2R−dα.
The proof of (4.4) is by induction. For each α ∈ (0,1) and K ≥ 1, we letS(α,K) be the assertion that, for every R ≥ 1 and p ∈ Rd,

E [J(◻R, p,Q(◻R)p)] ≤K ∣p∣2R−dα.
In view of Lemma 3.1, the base case of our bootstrap was proved in [4].

Proposition 4.3 ([4, Theorem 3.1]). There exists α0(d,Λ) > 0 and K0(d,Λ) <∞ such that

(4.5) S(α0,K0) holds.

The previous proposition was proved in [4, Section 3] by showing that min-
imizers of µ(◻n, q) for large n are expected to be flat– that is, close to a
deterministic affine function– and this allows comparison to ν(◻n, p) for an
appropriate p (the slope of the affine function). Note that the result was
proved with a in place of Q(◻R), but since Q(◻R) is the minimum of the map
q ↦ E [J(◻R, p, q)], we can make this replacement.

In view of Proposition 4.3, it therefore suffices to show that there exist
ε(d,Λ) > 0 and C(d,Λ) <∞ such that, for every α ∈ [α0,

1

d
) and K ≥ 1,

(4.6) S(α,K) Ô⇒ S (α + ε(1 − dα),CK 3

2) .
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Indeed, an iteration of (4.6), starting from S(α0,K0), yields (4.4).
The rest of this section is focused on the proof of (4.6). Throughout, we fix

α ∈ [α0,
1

d
) and K ≥ 1, and assume that S(α,K) holds. We fix R ≥ 1 and p ∈ Rd.

By homogeneity, we may assume that ∣p∣ ≤ 1. We set

(4.7) q ∶= Q(◻R)p,
where we recall that Q(◻R) is defined before Lemma 3.6. Throughout,

v ∶= u (⋅,◻R, p, q)
denotes the maximizer of J(◻R, p, q). Notice that Lemma 3.3 gives

(4.8) ∥∇v∥2L2(◻R) ≤ 4J (◻R, p, q) .
In particular, the induction hypothesis yields

(4.9) E [∥∇v∥2L2(◻R)] ≤ 4KR−dα.
4.1. Rough sketch of the argument for (4.6). Before giving the complete
details, we present an informal summary of the proof of (4.6). Choose a meso-
scopic scale r ∈ (1,R) and partition the cube ◻R into smaller cubes of the form◻r(y), y ∈ ◻R. Observe that, using (3.2) in the last step,

J(◻R, p, q) = (R
r
)−d∑

y

J (v,◻r(y), p, q)
≤ (R

r
)−d∑

y

⟨−ap + q,∇v⟩◻r(y)

= (R
r
)−d∑

y

⟨a∇ũy,∇v⟩◻r(y) ,

where ũy ∶= u(◻r(y), p, q). If the induction hypothesis S(α,K) holds, then,
using also (4.9) and the Lipschitz estimate, we have

(4.10) E[∥∇ũy∥2L2(◻r(y))] ≤ Cr−dα and E[∥∇v∥2
L2(◻r(y))] ≤ CR−dα.

No improvement on the estimate of E[J(◻R, p, q)] can be obtained from these
observations alone, as we have not yet used the mixing properties of the coef-
ficients.

If v is sufficiently close (in say L2) to an affine function of slope py in the
mesoscopic cube ◻r(y), then, since ũy is a solution of (1.1), we may integrate
by parts to get

⟨a∇ũy,∇v⟩◻r(y) = ⟨a∇ũy, py⟩◻r(y) + a small error.

Recall that the dual vector q was chosen in (4.7) so that

E [⨏◻R

∇v(x)dx] = 0, that is, ∑
y

E [py] = 0.
Hence, the sum

(4.11) (R
r
)−d∑

y

E[⟨a∇ũy, py⟩◻r(y)] = (Rr )
−d∑

y

E [py ⋅ ⨏◻y(r)
a∇ũy(x)dx]
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can be seen as a measure of the correlations between the (discrete) random

fields (⨏◻r(y) a∇ũy) and (py).
The main insight is that the higher regularity theory guarantees that the

slopes py exist, that the approximation to v has a sufficiently small error, and
that py changes very slowly in y. Meanwhile, the spatial averages of the fluxes

(⨏◻r(y) a∇ũy) are essentially independent as y varies. If we denote by s a

mesoscale with r ≪ s≪ R on which the vectors py are approximately constant,
then we can expect to bound (4.11) by

(4.12) R−dα/2r−dα/2 (s
r
)−d/2 .

Indeed, by (4.10), R−dα/2 is the expected size of each py and r−dα/2 is the ex-
pected size of the spatially averaged flux in a mesocube. The factor of (s/r)−d/2
comes from the CLT scaling, as (s/r)d is the number of smaller mesocubes of
size r in each larger mesocube of size s.

The expression in (4.12) can be made smaller than R−dα by choosing the
mesoscales r and s appropriately, provided that α < 1. This suggests that
the correct estimate for E [J(◻R, p, q)] should be (up to possible logarithmic
factors) R−d. The argument we present below does not perform so well, and
saturates at R−1 due to a boundary layer we have neglected in this sketch.

4.2. Declaration of parameters and mesoscales. We now proceed with
the rigorous argument for (4.6). We take mesoscopic scales r, s, l ≥ 1 such that

(4.13)
R

l
,
l

3s
,
s

r
∈ N

and

(4.14) r = CR1−(m+2)ε , s = CR1−2ε , l = CR1−ε ,

for fixed parameters ε ∈ (0, 1

4m
] and m ≥ max{d,2} to be selected below. Here

the constants C in (4.14) are very close to 1 and are chosen so that the con-
straints (4.13) are satisfied.

The largest mesoscale l denotes the thickness of a boundary layer we remove
from ◻R in the first part of the argument; it also serves as a reference scale for
the regularity estimates we will apply at the smaller scale s, where we apply
Theorem 2.1 to obtain polynomial approximations to v. Finally, r denotes the
size of the smallest mesoscale cells in which we compare v to local solutions
(denoted by vz below) chosen to match the polynomial approximations made
on the larger scale. Each of these mesoscales, even the smallest, will be chosen
to be very close to the macroscale R.

The degree of the polynomials used in the mesoscopic approximation will be
k ∈ N, also to be chosen. We let the exponent δ = δ(d,Λ) > 0 be the minimum of
the exponent given in the statement of Theorem 2.1 for the choice s = 1 and the
one given in the statement of Proposition 2.2 for the choices s = 1, U = ◻

1/
√
d

and ε = 1. We may assume δ ≤ 1. We let X denote the maximum of the random
variables X and R from Theorem 2.1 and Proposition 2.2, respectively, with
the same choices of parameters.
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In order to apply Theorem 2.1 from scale l to scale s, we must have that

(4.15) s ≥ l k
k+δ .

For this, it suffices to impose the restriction

(4.16) ε ≤ δ

2(k + 1) .
In the course of the proof, we will also find it convenient to fix the parameters
m,k, ε as follows:

(4.17) m ∶= 2(1 + α)
1 − α ∨ 2d(1 + α)

2 − dα ∨ d
and

(4.18) k ∶= ⌈10d(1 + θ)m
θ

⌉ and ε ∶= α

2(m + 3) ∧
δ

2(k + 1) ∧
δθ

20d(1 + θ)m.

Here the positive parameter θ(d,Λ) is the exponent related to the local and
global Meyers’ estimates, which in particular give us that, for every ψ ∈W 1,2(1+θ)(◻r(y)),
w ∈ A(◻2r(y)) and w̃ ∈ (ψ +H1

0
(◻r(y))) ∩A(◻r(y)),

(4.19) ∥∇w∥L2(1+θ)(◻r(y)) ≤ C ∥∇w∥L2(◻2r(y))

and

(4.20) ∥∇w̃∥L2(1+θ)(◻r(y)) ≤ C ∥∇ψ∥L2(1+θ)(◻r(y)) .

Notice that, since α ∈ [α0,
1

d
), we have ε ≥ c(d,Λ) > 0. In fact, each of k, m, and

ε are bounded above and below by constants depending only on (d,Λ). This
implies that each of the constants C and c in the estimates below will depend
only on (d,Λ) instead of (d,Λ, k,m, ε).
The improvement in the exponent α will be the result of a CLT scaling

arising due to the fact that the vz’s inside each s sized cell are independent
of each other. This is seen in the proof in Step 3, below. In the final step
of the proof, we will define each of the mesoscales and other parameters in
such a way that the error terms encountered in the argument will be at most
CKR−dα−ε(1−dα).

4.3. Removal of boundary layer. The improvement in the exponent α is
based on the application of regularity estimates to v. Since we do not have a
boundary condition for v, these estimates are inapplicable near the boundary
of the macroscopic cube ◻R. Therefore we must remove a boundary layer,
which is accomplished very simply by subadditivity. It is the error we make
here that forces our bootstrap argument to halt before dα = 1.
As R/l is an integer, the cubes {◻l(y)}y∈lZd∩◻R

form a partition of ◻R (up

to a set of Lebesgue measure zero). We let ◻○R denote the cube obtained from◻R after removing a mesoscopic boundary layer of thickness l:

◻○R ∶= ◻R ∖⋃{◻l(y) ∶ y ∈ lZd, ∂◻l ∩ ∂◻R ≠ ∅} .
Notice that ∣◻R ∖◻○R∣∣◻R∣ ≤ C (R

l
)−1 .
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Then by subadditivity, stationarity, Lemma 3.6 and the induction hypothesis,
we obtain

E [J(◻R, p, q)](4.21)

≤ ∣◻○R∣∣◻R∣E [J(◻○R, p, q)] +
∣◻R ∖◻○R∣∣◻R∣ E [J(◻R ∖◻○R, p, q)]

≤ ∣◻○R∣∣◻R∣E [J(◻○R, p, q)] +CK (Rl )
−1
l−dα.

In the second inequality in the display above, we used the fact that ◻R ∖◻○R is
a union of cubes of the form y +◻l; the induction hypothesis and Lemma 3.6
imply that

(4.22) E [∣Q(◻R) −Q(y +◻l)∣] ≤ CKl−dα,
so that another use of the induction hypothesis gives the desired estimate.

Throughout the rest of the argument we denote

Z ∶= rZd ∩◻○R.
4.4. Local mesoscopic approximations of v. The next step in the argu-
ment is to introduce local approximations of v in each mesoscopic cube ◻3r(y),
with y ∈ Z . These are also solutions of (1.1), that is, members of A(◻3r(y)).
The advantage will be that the approximations, which we denote by vy, serve
to localize the dependence on the environment and allow us to exploit the
independence assumption.

We first introduce polynomial approximations of v in the larger mesoscopic
cubes of the form ◻3s(z), z ∈ sZd ∩◻○R. With k ∈ N to be defined below, we

select wz ∈ Ak such that

(4.23) ∥v −wz∥L2(◻3s(z)) = inf
w∈Ak

∥v −w∥L2(◻3s(z)) .

That is, wz is the best approximation to v in L2(◻3s(z)) among a-harmonic
polynomials of degree at most k.

We next present some basic estimates concerning the expected size of wz

and the quality of the approximation to u. This is where we use the higher
regularity estimates in Theorem 2.1.

Lemma 4.4. Assume that (4.16) holds. Then there exists C(d,Λ, k) <∞ such

that, for each z ∈ sZd ∩◻○R,
(4.24) E [∥v −wz∥2L2(◻3s(z))] ≤ Cl2 (sl )

2k+2
E [∥∇v∥2L2(◻l(z))] +CR−2d−1,

(4.25) E [∥∇wz∥2L∞(◻3s(z))] ≤ CE [∥∇v∥2L2(◻l(z))] +CR−2d−1,
and, for every m ∈ {2, . . . , k},
(4.26) E [s2(m−2) ∥∇mwz∥2L∞(◻3s(z))] ≤ Cl−2E [∥∇v∥2L2(◻l(z))] +Cs−4R−2d−1.
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Proof. We break the argument into three steps.

Step 1. The proof of (4.25). Since wz is an a-harmonic polynomial, we have

∥∇wz∥L∞(◻3s(z)) ≤ Cs ∥wz − (v)◻3s(z)∥L2(◻3s(z))
(4.27)

≤ C
s
∥v − (v)◻3s(z)∥L2(◻3s(z))

≤ C ∥∇v∥L2(◻3s(z)) ,

where, in the above display, we used Lemma 2.6 in the first line, the optimality
of wz in (4.23) tested against the constant function (v)◻3s(z) and the triangle
inequality to get the second line, and finally the Poincaré inequality to get the
last line. Squaring and taking expectations, we get

E [∥∇wz∥2L∞(◻3s(z))]
≤ CE [∥∇v∥2L2(◻3s(z)) 1{TzX≤Cs}] +CE [∥∇v∥2L2(◻3s(z)) 1{TzX>Cs}]
≤ CE [∥∇v∥2L2(◻l(z))] +CE [∥∇v∥2L2(◻3s(z)) 1{TzX>Cs}] .

To bound the second term on the right side, we use (4.8) and the (deterministic)
estimate J(◻R, p, q) ≤ C to very crudely bound

∥∇v∥2L2(◻3s(z)) ≤ Cs−dRd ≤ CRd

and then combine this with strong integrability of X , which give the following
estimate:

(4.28) E [1{TzX>s} ∥∇v∥2L2(◻3s(z))]
≤ CRd+2

P [X > s] ≤ CRd+2 exp (−cs) ≤ CR−2d−1.
In the last line we used s ≥ R 1

2 from (4.14). This completes the proof of (4.25).

Step 2. The proof of (4.24). According to Theorem 2.1 (recall that the assump-
tion (4.16) implies (4.15)), we have

∥v −wz∥L2(◻3s(z)) 1{TzX≤Cs} ≤ C (s
l
)k+1 l ∥∇v∥L2(◻l(z)) 1{TzX≤Cs}.

Recall that {Ty}y∈Rd is the translation group acting on the probability space Ω.
In the event that TzX is too large compared to s, we proceed differently. Ap-
plying (4.23) and the Poincaré inequality, we get

∥v −wz∥L2(◻3s(z)) 1{TzX>Cs} ≤ ∥v − (v)◻l(z)∥L2(◻3s(z))
1{TzX>Cs}

≤ C ( l
s
)

d
2 ∥v − (v)◻l(z)∥L2(◻l(z))

1{TzX>Cs}

≤ Cl ( l
s
)

d
2 ∥∇v∥L2(◻l(z)) 1{TzX>Cs}.
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Combining the previous two displays yields

∥v −wz∥L2(◻3s(z))

≤ C (s
l
)k+1 l ∥∇v∥L2(◻l(z)) 1{TzX≤Cs} +Cl ( l

s
)

d
2 ∥∇v∥L2(◻l(z)) 1{TzX>Cs}.

Squaring and taking expectations, we obtain

(4.29) E [∥v −wz∥2L∞(◻3s(z))] ≤ C (sl )
2k+2

l2E [∥∇v∥2L2(◻l(z))]
+Cl2 ( l

s
)dE [1{TzX>s} ∥∇v∥2L2(◻l(z))] .

To estimate the second term on the right side, we proceed in the same way as
the end of Step 1, above, to get

l2 ( l
s
)dE [1{T[y]X>s} ∥∇v∥2L2(◻l(z))] ≤ CR−2d−1.

This completes the proof of (4.24).

Step 3. The proof of (4.26). We take ℓz ∈ A1 to be the best affine approximation
to v: ∥v − ℓz∥L2(◻3s(z) = inf

ℓ∈A1

∥v − ℓ∥L2(◻3s(z) .

Using the triangle inequality and (4.24) twice, once with k as above and once
with k = 1, we get

E [∥wz − ℓz∥2L2(◻3s(z))] ≤ Cl2 (sl )
4

E [∥∇v∥2
L2(◻l(z))] +CR−2d−1.

Since wz − ℓz is an a-harmonic polynomial, this yields, by Lemma 2.6,

E[ sup
m∈{2,...,k}

s2(m−2) ∥∇mwz∥2L∞(◻3s(z))] ≤ CE [s−4 ∥wz − ℓz∥2L∞(◻3s(z))]
≤ Cl−2E [∥∇v∥2L2(◻l(z))] +Cs−4R−2d−1,

which is (4.26). �

We next introduce the local mesoscopic approximations to v, which are based
on wz. For each y ∈ Z , we denote by [y] the unique element of sZd ∩◻○R such
that y ∈ ◻s([y]). For each y ∈ Z , we let vy denote the solution of the Dirichlet
problem in ◻r(y) with boundary condition w[y]. That is, vy is the unique

element of A(◻r(y)) ∩ (w[y] +H1

0
(◻r(y))). Note that, for every φ ∈ A(◻r(y)),

(4.30) ⟨a (∇vy −∇w[y]) ,∇φ⟩◻r(y) = 0.
We next give the estimate for the expected difference between the gradients
of v and vy, using the previous lemma.

Lemma 4.5. Assume that (4.16) and (4.18) hold. Then there exists a constant

C(d,Λ, k) <∞ such that

(4.31) ∣Z ∣−1∑
y∈Z

E [∥∇v −∇vy∥2L2(◻r(y))] ≤ CKR−dα−4dmε.
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Proof. Set ηy ∶= v − vy and let

(4.32) t ∶= r − r1−ε̃ , ε̃ ∶= 6dmε(1 + θ)
θ

,

where θ(d,Λ) is as in Meyers’ estimates (4.19) and (4.20). Observe that the
choice of ε in (4.18) guarantees that ε̃ ≤ 1

2
. We first split each of the summands

into two pieces as follows:

(4.33) ∫◻r(y)
∣∇ηy(x)∣2 dx = ∫◻t(y)

∣∇ηy(x)∣2 dx + ∫
y+◻r∖◻t

∣∇ηy(x)∣2 dx .
The first term we will estimate with the aid of the Caccioppoli estimate and
Lemma 4.4, and the second one using the Meyers’ estimates. Indeed, we have
by the Caccioppoli estimate that

1

∣◻r∣ ∫◻t(y)
∣∇ηy(x)∣2 dx ≤ C

(r − t)2 ⨏◻r(y)
∣ηy(x)∣2 dx .

To estimate the term on the right, we have by the triangle inequality that

⨏◻r(y)
∣ηy(x)∣2 dx ≤ 2 ∥v −w[y]∥2L2(◻r(y)) + 2 ∥vy −w[y]∥2L2(◻r(y)) .

Now, for the first term we have

∣Z ∣−1∑
y∈Z
∥v −w[y]∥2L2(◻r(y)) = ∣Z ∣−1 ∑

z∈sZd∩◻○
R

(s
r
)d ∥v −wz∥2L2(◻s(z))

≤ C ( s
R
)d ∑

z∈sZd∩◻○
R

∥v −wz∥2L2(◻s(z)) ,

and thus we obtain by (4.24) that

∣Z ∣−1∑
y∈Z
∥v −w[y]∥2L2(◻r(y))

≤ C ( s
R
)d ∑

z∈sZd∩◻○
R

(l2 (s
l
)2k+2E [∥∇v∥2L2(◻l(z))] +CR−2d−1)

≤ C (l2 (s
l
)2k+2E [∥∇v∥2L2(◻R)] +R−2d−1) .

On the other hand, using Proposition 2.2 and (4.25) we get

E [⨏◻r(y)
∣vy(x) −w[y](x)∣2 dx] ≤ Cr2−2δE [∥∇w[y]∥2L∞(◻r(y))]

≤ Cr2−2δ (E [∥∇v∥2L2(◻l(y))] +CR−2d−1) .
Summing this over Z implies

∣Z ∣−1∑
y∈Z

E [⨏◻r(y)
∣vy(x) −w[y](x)∣2 dx] ≤ Cr2−2δ (E [∥∇v∥2L2(◻R)] +R−d−1) .
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Connecting above estimates and using the fact, from (4.18), we have δ ≥ ε̃, we
arrive at

(4.34) ∣Z ∣−1∑
y∈Z

E [⨏◻t(y)
∣∇ηy(x)∣2 dx]

≤ C ⎛⎝(
l

r − t)
2 (s
l
)2k+2 + ( r1−δ

r − t)
2⎞
⎠E [∥∇v∥2L2(◻R)] +CR−d−1 .

By the choice of k and t in (4.18) and (4.32), respectively, we have

( l

r − t)
2 (s
l
)2k+2 = R2(mε+ε̃−kε) = R−2ε(k− 6dm(1+θ)

θ
−m) ≤ R−4dmε ,

and by the condition for ε in (4.18),

( r1−δ
r − t)

2

= R−2(1−ε(m+2))(δ− 6dm(1+θ)ε
θ

) ≤ R−4dmε .

Therefore the induction hypothesis yields by way of (4.9) that

(4.35) ∣Z ∣−1∑
y∈Z

E [⨏◻t(y)
∣∇ηy(x)∣2 dx] ≤ CKR−dα−4dmε .

To treat the second term in (4.33), Meyers’ estimates (4.19) and (4.20) pro-
vide us, via Hölder’s inequality,

1

∣◻r∣ ∫y+◻r∖◻t

∣∇η(x)∣2 dx ≤ (∣◻r ∖◻t∣∣◻r∣ )
θ

1+θ (⨏◻r(y)
∣∇η(x)∣2+2θ dx)

1

1+θ

≤ C (r − t
r
)

θ
1+θ ⨏◻3r(y)

(∣∇v(x)∣ + ∣∇w[y](x)∣)2 dx .
Following Step 1 in the proof of Lemma 4.4 and applying (4.25) once more we
obtain

E[ 1

∣◻r∣ ∫y+◻r∖◻t

∣∇η(x)∣2 dx] ≤ C (r − t
r
)

θ
1+θ (E [∥∇v∥2L2(◻l(y))] +CR−2d−1) .

By the choice of t in (4.32) and ε in (4.18) we have

(r − t
r
)

θ
1+θ = R−(1−ε(m+2)) ε̃θ

1+θ ≤ R−4dmε .

Therefore the summation yields, as before,

(4.36) ∣Z ∣−1∑
y∈Z

E[ 1

∣◻r∣ ∫y+◻r∖◻t

∣∇η(x)∣2 dx] ≤ CKR−dα−4dmε .

Combining (4.33) with (4.35) and (4.36) yields the statement of the lemma. �

Next we show, using the previous lemma and the uniform convexity of J in
p and q separately, that the expected difference between J (v,◻r(y), p, q) andJ (vy,◻r(y), p, q) is small, after averaging over all y ∈ Z .
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Lemma 4.6. Assume (4.16) and (4.18). There exists C(d,Λ, k) <∞ such that

(4.37) ∣Z ∣−1∑
y∈Z

E[ ∣J (v,◻r(y), p, q) −J (vy,◻r(y), p, q)∣ ] ≤ CKR−d(α+ε).
Proof. For convenience, let ũy ∶= u(⋅,◻r(y), p, q) denote the minimizer in the
definition of J(◻r(y), p, q). Using (3.3) twice and summing, we find that

(4.38) J (v,◻r(y), p, q) − J (vy,◻r(y), p, q)
= 1
2
⟨∇v −∇vy,a (2∇ũy −∇v −∇vy)⟩◻r(y) .

Thus

(4.39) ∣J (v,◻r(y), p, q) − J (vy,◻r(y), p, q)∣
≤ C ⨏◻r(y)

∣∇v(x) −∇vy(x)∣ (∣∇ũy(x)∣ + ∣∇v(x)∣ + ∣∇vy(x)∣) dx.
We will estimate the term on the right. By (4.22) (with l replaced by r),

E [∥∇ũy∥2L2(◻r(y))] ≤ CE [J(◻r(y), p, q)]
≤ CE [J(◻r(y), p,Q(◻r)p)] +CKr−dα
≤ CKr−dα.

On the other hand, by the induction hypothesis and (4.25), we have

∣Z ∣−1∑
y∈Z

E [∥∇vy∥2L2(◻r(y))] ≤ C ∣Z ∣−1∑
y∈Z

E [∥∇w[y]∥2L2(◻r(y))]
≤ CKR−dα.

Lemma 4.5 further gives

∣Z ∣−1∑
y∈Z

E [∥∇v −∇vy∥2L2(◻r(y))] ≤ CKR−dα .
Combining above three displays and using the triangle inequality yield

∣Z ∣−1∑
y∈Z

E [∥∇ũy∥2L2(◻r(y)) + ∥∇vy∥2L2(◻r(y)) + ∥∇v∥2L2(◻r(y))] ≤ CKr−dα .
We now use Hölder’s inequality, Lemma 4.5 and the display above to get

∣Z ∣−1∑
y∈Z

E [⨏◻r(y)
∣∇v(x) −∇vy(x)∣ (∣∇ũy(x)∣ + ∣∇v(x)∣ + ∣∇vy(x)∣) dx]

≤ C (E[∣Z ∣−1∑
y∈Z
∥∇v −∇vy∥2L2(◻r(y))])

1

2

CK
1

2 r−dα/2

≤ CKR−dα/2−2dmεr−dα/2.

Now we return to (4.39) and use the previous estimate to obtain

∣Z ∣−1∑
y∈Z

E[ ∣J (v,◻r(y), p, q) − J (vy,◻r(y), p, q)∣ ] ≤ CKr−dα/2R−dα/2R−2dmε.

By the choice of r in (4.14), we have r−dα/2 = CR−dα/2Rdα(m+2)ε/2, and therefore
we get the desired result using α ≤ 1 and m ≥max{d,2}. �
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4.5. Improving the exponent using independence. As in the proof of
Lemma 4.6, we set ũy ∶= u(⋅,◻r(y), p, q). Applying (3.2) and (4.30), we find
that, for every y ∈ Z ,

J (vy,◻r(y), p, q) ≤ ⟨−ap + q,∇vy⟩◻r(y)(4.40)

= ⟨a∇ũy,∇vy⟩◻r(y) = ⟨a∇ũy,∇w[y]⟩◻r(y) .

This together with (4.21) and Lemma 4.6 imply that

(4.41) E [J (◻R, p, q)] ≤ C (R
r
)−dE[∑

y∈Z
⟨a∇ũy,∇w[y]⟩◻r(y)]
+CK (R

l
)−1 l−dα +CKR−d(α+ε).

The sum on the right side of (4.41) allows us to see a CLT-type scaling because
the terms are essentially independent for each y inside a single larger mesoscopic
cube ◻s(z). This is the mechanism which improves the exponent α. The
precise statement we need is formalized in the following lemma. We remark
that this is the only point in the proof that we use the choice q = Q(◻R)p.
Lemma 4.7. Assume (4.16) and (4.18) hold. There exists C(d,Λ, k) <∞ such

that, for every z ∈ sZd ∩◻○R,
(4.42) E

⎡⎢⎢⎢⎢⎣
sup
w∈Pk

⎧⎪⎪⎨⎪⎪⎩(∥∇w∥L∞(◻s(z)) + l ∥∇2w∥
L∞(◻s(z)))

−2

× ⎛⎝ ∑
y∈rZd∩◻s(z)

⟨a∇ũy,∇w⟩◻r(y)
⎞
⎠
2 ⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦

≤ CK (s
r
)2d r−dα ((s

r
)−d + ( l

r
)−2 +Kr−dα) .

Proof. We fix z ∈ sZd ∩◻○R throughout the proof.

We first prove a bound for each particular w ∈ Pk, and then put the supre-
mum over w inside the expectation, using linearity and that Pk is a finite
dimensional vector space. We begin with an estimate of the expectation of
each term in the sum.

Step 1. We show that, for every w ∈ Pk and y ∈ rZd ∩◻s(z),
(4.43) ∣E [⟨a∇ũy,∇w⟩◻r(y)]∣

≤ CKr−dα ∥∇w∥L∞(◻s(z)) +CK 1

2 r1−
dα
2 ∥∇2w∥

L∞(◻s(z)) .

We first observe that

∣⟨a∇ũy,∇w⟩◻r(y) −∇w(y) ⋅⨏◻r(y)
a(x)∇ũy(x)dx∣

≤ C sup
x∈◻r(y)

∣∇w(x) −∇w(y)∣⨏◻r(x)
∣∇ũy(x)∣ dx.
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Thus, by (4.22) and the induction hypothesis,

E [∣⟨a∇ũy,∇w⟩◻r(y) −∇w(y) ⋅ ⨏◻r(y)
a(x)∇ũy(x)dx∣](4.44)

≤ Cr ∥∇2w∥
L∞(◻r(y)) E [⨏◻r(x)

∣∇ũy(x)∣2 dx]
1

2

≤ CK 1

2 r1−
dα
2 ∥∇2w∥L∞(◻r(y)).

On the other hand, using Lemma 3.6 and the induction hypothesis again, we
get, for every ◻ ∈ C,

∣a−1 − P (◻)∣ ≤ CK ∣◻∣−α ,
from which we deduce, using also (4.22), that

∣p − P (◻r(y))q∣ ≤ CKr−dα.
Therefore

∣E [⨏◻r(y)
a(x)∇ũy(x)dx]∣ = ∣E [∇pJ (◻r(y), p, q)]∣

≤ ∣E [∇pJ (◻r(y), P (◻r(y))q, q)]∣ +CKr−dα
= CKr−dα,

as E [∇pJ (◻r(y), P (◻r(y))q, q)] = 0 by (3.20), and hence

(4.45) ∣E [∇w(y) ⋅⨏◻r(y)
a(x)∇ũy(x)dx]∣ ≤ CK ∣∇w(y)∣ r−dα.

We now obtain (4.43) by combining (4.44) and (4.45) and the triangle inequal-
ity.

Step 2. We show using independence that, for every w ∈ Pk,
(4.46) var

⎡⎢⎢⎢⎢⎣ ∑
y∈rZd∩◻s(z)

⟨a∇ũy,∇w⟩◻r(y)

⎤⎥⎥⎥⎥⎦
≤ CKr−dα (s

r
)d ∥∇w∥2L∞(◻s(z)) .

We expand the variance by writing

var

⎡⎢⎢⎢⎢⎣ ∑
y∈rZd∩◻s(z)

⟨a∇ũy,∇w⟩◻r(y)

⎤⎥⎥⎥⎥⎦
= ∑

y,y′∈rZd∩◻s(z)
cov [ ⟨a∇ũy,∇w⟩◻r(y) , ⟨a∇ũy′ ,∇w⟩◻r(y′)] .

Using independence, the fact that ⟨a∇ũy,∇w⟩◻r(y) is F(◻r(y))–measurable

and each cube ◻r+1(y) has nonempty intersection with at most C cubes of the
form ◻r+1(y′) with y′ ∈ rZd ∩◻s(z), we obtain

∑
y,y′∈rZd∩◻s(z)

cov [ ⟨a∇ũy,∇w⟩◻r(y) , ⟨a∇ũy′ ,∇w⟩◻r(y′)]
≤ C ∑

y∈rZd∩◻s(z)
var [⟨a∇ũy,∇w⟩◻r(y)] .
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Finally, we observe that the induction hypothesis gives, for each y ∈ rZd∩◻s(z),
var [⟨a∇ũy,∇w⟩◻r(y)] ≤ CE [∥∇ũy∥2L2(◻r(y))] ∥∇w∥2L∞(◻s(z))

≤ CKr−dα∥∇w∥2L∞(◻s(z)).

This completes the proof of (4.46).

Step 3. We complete the proof. Observe that combining the results of the first
two steps gives, for every w ∈ Pk,

(4.47) E

⎡⎢⎢⎢⎢⎣
⎛
⎝ ∑
y∈rZd∩◻s(z)

⟨a∇ũy,∇w⟩◻r(y)
⎞
⎠
2⎤⎥⎥⎥⎥⎦

≤ CK (s
r
)2d r−dα ((s

r
)−d + ( l

r
)−2 +Kr−dα)

× (∥∇w∥L∞(◻s(z)) + l ∥∇2w∥
L∞(◻s(z)))

2

.

To conclude, it remains to smuggle the supremum over w ∈ Pk inside the expec-
tation. As Pk is a finite dimensional vector space with dimension depending
only on (k, d), there exists an integer N(k, d) ∈ N and w1, . . . ,wN ∈ Pk such
that {w1, . . . ,wN} is a basis for Pk, each wj satisfies

∥∇wj∥L∞(◻s(z)) + l ∥∇2wj∥L∞(◻s(z)) = 1,

and for any w ∈ Pk expressed in the form

w = c1w1 +⋯+ cNwN ,

we have, for some C(k, d) ≥ 1,
∣c1∣ +⋯+ ∣cN ∣ ≤ C (∥∇w∥L∞(◻s(z)) + l ∥∇2w∥

L∞(◻s(z))) .
It follows that

sup
w∈Pk

(∥∇w∥L∞(◻s(z)) + l ∥∇2w∥
L∞(◻s(z)))

−1
RRRRRRRRRRRR
∑

y∈rZd∩◻s(z)
⟨a∇ũy,∇w⟩◻r(y)

RRRRRRRRRRRR
≤ C N∑

j=1

RRRRRRRRRRRR
∑

y∈rZd∩◻s(z)
⟨a∇ũy,∇wj⟩◻r(y)

RRRRRRRRRRRR
.
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Squaring and taking the expectation of the previous inequality, using that
N ≤ C and then applying (4.47), we get

E

⎡⎢⎢⎢⎢⎣
sup
w∈Pk

(∥∇w∥L∞(◻s(z)) + l ∥∇2w∥
L∞(◻s(z)))

−2 ⎛
⎝ ∑
y∈rZd∩◻s(z)

⟨a∇ũy,∇w⟩◻r(y)
⎞
⎠
2⎤⎥⎥⎥⎥⎦

≤ CE
⎡⎢⎢⎢⎢⎣
⎛
⎝

N∑
j=1

RRRRRRRRRRRR
∑

y∈rZd∩◻s(z)
⟨a∇ũy,∇wj⟩◻r(y)

RRRRRRRRRRRR
⎞
⎠
2⎤⎥⎥⎥⎥⎦

≤ C N∑
j=1

E

⎡⎢⎢⎢⎢⎣
⎛
⎝ ∑
y∈rZd∩◻s(z)

⟨a∇ũy,∇wj⟩◻r(y)
⎞
⎠
2⎤⎥⎥⎥⎥⎦

≤ CK (s
r
)2d r−dα ((s

r
)−d + ( l

r
)−2 +Kr−dα) .

This completes the proof. �

Combining (4.40) and Lemma 4.7, we obtain

∑
y∈Z

E [J (vy,◻r(y), p, q)] ≤ CK 1

2 (s
r
)d r− dα

2

⎛
⎝(
s

r
)−

d
2 + ( l

r
)−1 +K 1

2 r−
dα
2

⎞
⎠

× ∑
z∈sZd∩◻○

R

E [(∥∇wz∥2L∞(◻s(z)) + l2 ∥∇2wz∥2L∞(◻s(z)))]
1

2

.

By Lemma 4.4 and (4.9), the sum in the line above is bounded by

C (R
s
)dK 1

2R−
dα
2 ,

so that

∑
y∈Z

E [J (uy,◻r(y), p, q)] ≤ CK (R
r
)dR− dα

2 r−
dα
2

⎛
⎝(
s

r
)−

d
2 + ( l

r
)−1 +K 1

2 r−
dα
2

⎞
⎠ .

Combining this with (4.41) and using K ≥ 1, we obtain

E [J (◻R, p, q)]
≤ CK 3

2

⎛
⎝R−

dα
2 r−

dα
2

⎛
⎝(
s

r
)−

d
2 + ( l

r
)−1⎞⎠ +R−

dα
2 r−dα + (R

l
)−1 l−dα +R−d(α+ε)⎞⎠ .

Using the definitions of the mesoscales,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R−
dα
2 r−

dα
2 (s

r
)−

d
2 = CR−dαR−dε(m2 (1−α)−α)

R−
dα
2 r−

dα
2 ( l

r
)−1 = CR−dαR−ε(m+1−dα(m+2)/2)

R−
dα
2 r−dα = CR−dαRdε(m+2)− dα

2

(R
l
)−1 l−dα = CR−dαRε(dα−1).
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It is easy to check that that the choices made in (4.16), (4.17) and (4.18)
guarantee that the first three terms above are bounded by R−d(α+ε).

In view of these choices of the parameters, it is clear that the third term (the
error in removing the boundary layer) is the limiting one, and we deduce that

E [J (◻R, p, q)] ≤ CK (R−dαRε(dα−1) +R−d(α+ε)) ≤ CKR−dαRε(dα−1).

Thus S(α + ε(1 − dα)/d,CK) holds, for ε ≥ c(d,λ) and C(d,Λ) < ∞ which,
after a redefinition of ε, completes the proof of the claim (4.6) and therefore
the proof of Proposition 4.1.

5. Improvement of stochastic integrability by subadditivity

The aim of this section is to complete the proof of Theorem 1.1, by strength-
ening the stochastic integrability of Proposition 4.1 (or Corollary 4.2) from L1

to exponential moments. The rough argument is as follows. We decompose◻R into subcubes (◻r(y)). By subadditivity, we can bound the upper fluctua-
tions of ν(◻R, p) by the upper fluctuations of the average over y of ν(◻r(y), p),
up to an error controlled by the difference E[ν(◻r, p)] −E[ν(◻R, p)], which is
small by Corollary 4.2. By independence, the average over y of ν(◻r(y), p)
is unlikely to be large. The same argument applied to −µ gives a control of
the lower fluctuations of µ. By duality, we can then control upper and lower
fluctuations of both quantities.
We make this idea precise in the following general statement. (Recall our

slightly non-standard definition of subadditivity in (1.8), and that C is the set
of cubes ◻ such that ∣◻∣ ≥ 1.)
Theorem 5.1. Let δ < 1, R0 <∞, and let µ̃(⋅) ≤ ν̃(⋅) be respectively super- and

subadditive quantities, such that for every R ≥ R0 and x ∈ Rd,

µ̃(◻R(x)) and ν̃(◻R(x)) are F(◻R+Rδ(x))-measurable.

Let α > 0 and β ∈ (0, α)∩ (0,1/2]. Assume that there exists c <∞ such that for

every cube ◻ ∈ C,
(5.1) E[ν̃(◻)] −E[µ̃(◻)] ≤ c

∣◻∣α .
Assume furthermore that there exists c′ < ∞ such that for every cube ◻ satis-

fying 1 ≤ ∣◻∣ ≤ 2d and every λ ∈ R,
(5.2) E[exp(λµ̃(◻))] ∨E[exp(λν̃(◻))] ≤ c′(1 + λ2).
Then there exists C = C(d, δ,R0, α, β, c, c′) <∞ such that for every cube ◻ ∈ C
and every λ ∈ R,
(5.3) logE[exp(λ∣◻∣β(ν̃(◻) −E[ν̃(◻)]))] ≤ Cλ2,
and the same estimate holds with ν̃ replaced by µ̃.

Remark 5.2. The conclusion of Theorem 5.1 can be strengthened in several

directions. First, one can replace λ2 by λ2 ∧ λ 1

1−β in the right side of (5.3).
Moreover, we believe that (5.3) holds with α = β for α < 1

2
(and with a logarith-

mic correction when α = 1

2
), and in fact, the proof given below can be adapted

to show this stronger result when α is sufficiently small. On the other hand,
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even if µ̃ and ν̃ were additive, one could not improve the conclusion to β > 1

2
,

by the central limit theorem.

The proof of Theorem 5.1 makes use of the following lemma.

Lemma 5.3 (parabolicity of log-Laplace). There exists λ0 ∈ (0,1] such that the

following holds. Let a ≥ 0 and X be a random variable such that E[exp (∣X ∣)] <∞ and E[X] = 0. If the inequality

(5.4) logE[exp (λX)] ≤ aλ2
holds for every λ such that ∣λ∣ ∈ [λ0,1], then it holds for every λ ∈ [−1,1].
Proof. Since E[exp(∣X ∣)] < ∞, the function Ψ ∶= λ ↦ logE[exp(λX)] is infin-
itely differentiable on (−1,1). Its value and first derivative at 0 vanish, while
its second derivative at ∣λ∣ < 1 is bounded by E[X2 exp(λX)]. We choose λ0 > 0
sufficiently small that for every λ ∈ [−λ0, λ0],

∀x ∈ R, x2 exp (λx) ≤ exp(x) + exp(−x).
(By symmetry and monotonicity, it suffices to check the inequality for λ = λ0.)
In particular, for every λ ∈ [−λ0, λ0], we have

Ψ′′(λ) ≤ E[exp(X)] +E[exp(−X)] ≤ 2a.
The result then follows by integration. �

Proof of Theorem 5.1. For any positive integer m and C ≥ 0, we denote byAm(C) the assertion that for every cube ◻ satisfying 1 ≤ ∣◻∣ ≤ 3dm and every
λ ∈ R,
(5.5) logE[exp(λ∣◻∣β(ν̃(◻) −E[ν̃(◻)]))] ≤ Cλ2,
and that the same estimate holds with ν̃ replaced by µ̃.

Step 1. We show that for any given m0, there exists C <∞ such that Am0
(C)

holds. Every cube ◻ satisfying 1 ≤ ∣◻∣ ≤ 3dm0 can be decomposed into a finite
number of subcubes of side length between 1 and 2. By subadditivity, the
hypothesis and Hölder’s inequality,

(5.6) logE[exp(λ(ν̃(◻) −E[ν̃(◻)]))] ≲ 1 + λ2,
uniformly over cubes ◻ satisfying 1 ≤ ∣◻∣ ≤ 3dm0 and λ ∈ R. The conclusion for
ν̃ then follows by Lemma 5.3, and the reasoning for µ̃ is identical.

Step 2. We show that there exists ε > 0 such that for every m sufficiently large
and C ≥ 1, Am−1(C) Ô⇒ Am((1 + 3−εm)C).
Since ∏m(1 + 3−εm) <∞, this will complete the proof of the proposition.
Assuming Am−1(C), we give ourselves a cube ◻ of side length R such that

3m−1 < R ≤ 3m. For notational convenience, we assume that ◻ = (0,R)d. We
define a partition of ◻ into 3d subcubes of side length L, each subcube being
surrounded by a layer of smaller cubes of side length ℓ = 3γm for some γ ∈ (δ,1).
(We choose a triadic decomposition of ◻ for coherence with the rest of the
paper, but a dyadic one would be fine too.) In order for the partition to be
well-defined, we ask that L = (R − 2ℓ)/3 be an integer multiple of ℓ. This
requirement can easily be taken care of since ℓ ≪ R, so we will neglect it for
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clarity. We let (zi)1≤i≤3d be the centers of the 3d subcubes of side length L such
that

((0,L) ∪ (ℓ +L, ℓ + 2L) ∪ (2ℓ + 2L,R))d = 3
d

⋃
i=1
◻L(zi),

and (z′j)1≤j≤N be the centers of the disjoint subcubes of side length ℓ such that

◻ ∖ ( 3
d

⋃
i=1
◻L(zi)) = N⋃

j=1
◻ℓ(z′j) up to a set of null measure,

where N = (Rd − (3L)d)/ℓd. By subadditivity,

ν̃(◻) ≤ 3
d

∑
i=1

∣◻L∣∣◻∣ ν̃(◻L(zi)) + N∑
j=1

∣◻ℓ∣∣◻∣ ν̃(◻ℓ(z′j)).
Let r, s ∈ (1,∞) be such that 1/r + 1/s = 1. By Hölder’s inequality, for every
λ ≥ 0,

logE [exp (λ∣◻∣β (ν̃(◻) −E[ν̃(◻)]))]
≤ 1
r
logE

⎡⎢⎢⎢⎢⎣
exp
⎛
⎝rλ∣◻∣β ∣◻L∣∣◻∣

3
d

∑
i=1
(ν̃(◻L(zi)) −E[ν̃(◻)])⎞⎠

⎤⎥⎥⎥⎥⎦
(5.7)

+ 1
s
logE[exp(sλ∣◻∣β ∣◻ℓ∣∣◻∣

N∑
j=1
(ν̃(◻ℓ(z′j)) −E[ν̃(◻)]))] .(5.8)

We decompose the term in (5.7) into

(5.9)
1

r
logE

⎡⎢⎢⎢⎢⎣
exp
⎛
⎝rλ

∣◻L∣∣◻∣1−β
3
d

∑
i=1
(ν̃(◻L(zi)) −E[ν̃(◻L(zi))])⎞⎠

⎤⎥⎥⎥⎥⎦
+ λ ∣◻L∣∣◻∣1−β

3
d

∑
i=1
(E[ν̃(◻L(zi))] −E[ν̃(◻)]),

and likewise, the term in (5.8) into

(5.10)
1

s
logE[exp(sλ ∣◻ℓ∣∣◻∣1−β

N∑
j=1
(ν̃(◻ℓ(z′j)) −E[ν̃(◻ℓ(z′j))]))]

+ λ ∣◻ℓ∣∣◻∣1−β
N∑
j=1
(E[ν̃(◻ℓ(z′j))] −E[ν̃(◻)]).

It follows from sub-/superadditivity and (5.1) that

E[ν̃(◻)] ≥ lim
∣◻̃∣→∞

E[ν̃(◻̃)] = lim
∣◻̃∣→∞

E[µ̃(◻̃)] ≥ E[µ̃(◻L(zi))].
Hence, the second term in (5.9) can be estimated using (5.1):

E[ν̃(◻L(zi))] −E[ν̃(◻)] ≤ c

∣◻L∣α ,
and similarly,

E[ν̃(◻ℓ(z′j))] −E[ν̃(◻)] ≤ c

∣◻ℓ∣α .
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By independence, the first term in (5.9) is equal to

1

r

3
d

∑
i=1

logE[exp(rλ ∣◻L∣∣◻∣1−β (ν̃(◻L(zi)) −E[ν̃(◻L(zi))]))] ,
which by the induction hypothesis is bounded by

(5.11)
3dC

r
(λr ∣◻L∣1−β∣◻∣1−β )

2

≤ Crλ2,
since β ≤ 1/2 and 3d∣◻L∣ ≤ ∣◻∣. In order to estimate the first term in (5.10), we
split the set {z′j, j′ ≤ N} into 3d subsets {z′j , j ∈ Z1}, . . . , {z′j , j ∈ Z3d} in such
a way that if j1 ∈ Zk1 and j2 ∈ Zk2 with k1 ≠ k2, then the cubes ◻ℓ(zj1) and◻ℓ(zj2) are at distance at least ℓ from one another. By Hölder’s inequality and
independence, we get that the first term in (5.10) is bounded by

1

3ds

N∑
j=1

logE[exp(3dsλ ∣◻ℓ∣∣◻∣1−β (ν̃(◻ℓ(z′j)) −E[ν̃(◻ℓ(z′j))]))] ,
which by the induction hypothesis is bounded by

(5.12)
CN

3ds
(3dsλ ∣◻ℓ∣1−β∣◻∣1−β )

2

≤C3ds
N ∣◻ℓ∣∣◻∣ λ2.

To sum up, we have shown that

logE [exp (λ∣◻∣β (ν̃(◻) −E[ν̃(◻)]))] ≤ C(r + 3dsN ∣◻ℓ∣∣◻∣ )λ2 + λc ∣◻∣
β

∣◻ℓ∣α
(recall that 3d∣◻L∣ +N ∣◻ℓ∣ = ∣◻∣), where r, s ∈ (1,∞) such that 1/r + 1/s = 1 are
arbitrary. Recall that ℓ = 3γm with γ ∈ (δ,1). Since β < α, we can choose γ
sufficiently close to 1 that

∣◻∣β
∣◻ℓ∣α = 3−mε

for some ε > 0. Moreover, there exists a constant cd such thatN ≤ cd3m(1−γ)(d−1),
hence

logE [exp (λ∣◻∣β (ν̃(◻) −E[ν̃(◻)]))] ≤C (r + scd3d3−m(1−γ))λ2 + λc3−mε.

We can now choose s = 3m(1−γ)/2 and thus obtain that for every λ ≥ 0,
(5.13) logE [exp (λ∣◻∣β (ν̃(◻) −E[ν̃(◻)]))]

≤C ((1 − 3−m(1−γ)/2)−1 + cd3d−m(1−γ)/2)λ2 + λc3−mε.

The same reasoning applied to −µ̃ shows that for every λ ≤ 0,
(5.14) logE [exp (λ∣◻∣β (µ̃(◻) −E[µ̃(◻)]))]

≤C ((1 − 3−m(1−γ)/2)−1 + cd3d−m(1−γ)/2)λ2 − λc3−mε.

Moreover, by (5.1), we can replace E[µ̃(◻)] by E[ν̃(◻)] in (5.14) provided we
replace c by 2c in the right side of (5.14). Since ν̃ ≥ µ̃, we deduce that for every
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λ ∈ R,
logE [exp (λ∣◻∣β (ν̃(◻) −E[ν̃(◻)]))]

≤C ((1 − 3−m(1−γ)/2)−1 + cd3d−m(1−γ)/2)λ2 + 2∣λ∣c3−mε.

The result for ν̃ follows by Lemma 5.3 and similar reasoning applies to µ̃. �

We now complete the proof of Theorem 1.1 by combining Proposition 4.1
and Theorem 5.1.

Proof of Theorem 1.1. Let α < α′ < 1/d, p ∈ Rd be a unit vector, and q = ap.
By Proposition 4.1, there exists c <∞ such that for every ◻ ∈ C,
(5.15) E[ν(◻, p)] −E[µ(◻, q)] − p ⋅ q ≤ c

∣◻∣α′ .
We apply Theorem 5.1 with ν̃ = ν( ⋅ , p) and µ̃ = µ( ⋅ , q) + p ⋅ q. The mea-
surability assumption on ν̃ and µ̃ and the property that ν̃ ≤ µ̃ clearly hold.
Assumption (5.2) is also satisfied, since ν̃ and µ̃ are bounded. We thus obtain
the existence of a constant C <∞ such that for every cube ◻ ∈ C and λ ∈ R,

logE[exp(λ∣◻∣α(ν(◻, p) −E[ν(◻, p)]))] ≤ Cλ2.
Moreover, the constant C does not depend on the unit vector p (since the same
is true of the constant c in (5.15)). By Corollary 4.2, we obtain, for every λ ∈ R,

logE [exp (λ∣◻∣α ∣ν(◻, p) − 1

2
p ⋅ ap∣)] ≤ C(1 + λ2).

The extension to arbitrary p ∈ Rd then follows by homogeneity. The reasoning
for µ is identical. �

6. Sublinear growth of the correctors

In this section we prove Theorem 1.2. The proof naturally divides into two
main steps: first we introduce a functional inequality, which appears to be
new and which we term the multiscale Poincaré inequality. It converts control
of spatial averages of gradients into control over the function itself. Then we
show, using Theorem 1.1, that estimates of spatial averages of the gradient
of the correctors can be reduced to the convergence of the subadditive energy
quantities.

In this section it is convenient to work with triadic cubes, so we change the
notation from the rest of the paper: for every m ∈ N,

◻m ∶= (−1
2
3m,

1

2
3m)d .

6.1. Multiscale Poincaré inequality. Here we present an inequality which
gives an estimate of the H−1 norm of ∇u in terms of spatial averages of ∇u in
cubes. This can be seen as a generalization of the usual Poincaré inequality
giving the bound, for every u ∈ H1(◻m),
(6.1) ⨏◻m

∣u(x) − (u)◻m
∣2 dx ≤ C(d)32m ⨏◻m

∣∇u(x)∣2 dx.
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The sharpness of the scaling of the constant C32m in the Poincaré inequality
is, of course, realized by considering an affine function. In the following propo-
sition, we show that this scaling can be improved for functions with gradients
having small spatial averages relative to their absolute size: roughly, if the
gradient is canceling itself out, then the function has smaller oscillation.

Proposition 6.1 (Multiscale Poincaré inequality). Fix m ∈ N and, for each

n ∈ N, n ≤ m, define Zn ∶= 3nZd ∩◻m. There exists a constant C(d) <∞ such

that, for every u ∈ H1(◻m),
(6.2) ∥u − (u)◻m

∥
L2(◻m) + ∥∇u∥H−1(◻m)

≤ C ∥∇u∥L2(◻m) +C
m−1∑
n=0

3n (∣Zn∣−1 ∑
y∈Zn

∣(∇u)y+◻n
∣2)

1

2

.

Proof. We first prove the estimate for ∥∇u∥H−1(◻m) and then deduce the esti-

mate for ∥u − (u)◻m
∥
L2(◻m) as a simple consequence. Without loss of generality,

we may suppose (u)◻m
= 0.

Step 1. The estimate for ∥∇u∥H−1(◻m). Fix η ∈H1(◻m;Rd) with
⨏◻m

∣∇η(x)∣2 dx = 1.
We denote by w ∈ H2(◻m) the unique (up to additive constants) solution of
the Neumann problem

{ −∆w = −∇ ⋅ η + b in ◻m,

∂νw = 0 on ∂◻m,

where b ∶= ⨏◻m
∇⋅η(x)dx is chosen to ensure solvability. Then according to [16,

1], we have w ∈H2(◻m) and
(6.3) ⨏◻m

∣∇2w(x)∣2 dx ≤ C ⨏◻m

∣∇η(x)∣2 dx = C.
Testing the equation for w with u and using (u)◻m

= 0 yields

(6.4) ⨏◻m

∇u(x) ⋅ η(x)dx = ⨏◻m

∇u(x) ⋅ ∇w(x)dx.
For every n ∈ {1, . . . ,m} and z ∈ Zn, we have

∫
z+◻n

∇u(x) ⋅ (∇w(x) − (∇w)z+◻n
) dx

= ∑
y∈Zn−1∩(z+◻n)

∫
y+◻n−1

∇u(x) ⋅ (∇w(x) − (∇w)y+◻n−1
) dx

+ ∣◻n−1∣ ∑
y∈Zn−1∩(z+◻n)

((∇w)z+◻n
− (∇w)y+◻n−1

) ⋅ (∇u)y+◻n−1
.

By the Poincaré inequality,

∑
y∈Zn−1∩(z+◻n)

∣(∇w)z+◻n
− (∇w)y+◻n−1

∣2 ≤ C32n⨏
z+◻n

∣∇2w(x)∣2 dx.
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Therefore, after summing over z ∈ Zn and using Hölder’s inequality, we get

∑
z∈Zn

∫
z+◻n

∇u(x) ⋅ (∇w(x) − (∇w)z+◻n
) dx

≤ ∑
y∈Zn−1

∫
y+◻n−1

∇u(x) ⋅ (∇w(x) − (∇w)y+◻n−1
) dx

+C3n(1+d/2) (∫◻m

∣∇2w(x)∣2 dx)
1

2 ( ∑
y∈Zn−1

∣(∇u)y+◻n−1
∣2)

1

2

.

Iterating this and using (6.3),

∫◻m

∇u(x) ⋅ ∇w(x)dx ≤ ∑
z∈Z0

∫
z+◻0

∇u(x) ⋅ (∇w(x) − (∇w)z+◻0
) dx

+C ∣◻m∣ 12 m−1∑
n=0

3n(1+d/2) ( ∑
y∈Zn

∣(∇u)y+◻n
∣2)

1

2

.

By the Poincaré inequality and (6.3),

∑
z∈Z0

∫
z+◻0

∣∇w(x) − (∇w)z+◻0
∣2 dx ≤ C ∫◻m

∣∇η(x)∣2 dx = C ∣◻m∣.
Thus using Hölder’s and Young’s inequalities, we obtain

∫◻m

∇u(x) ⋅ ∇w(x)dx
≤ C ∣◻m∣ 12 (∫◻m

∣∇u(x)∣2 dx)
1

2 +C ∣◻m∣ 12 m−1∑
n=0

3n(1+d/2) ( ∑
y∈Zn

∣(∇u)y+◻n
∣2)

1

2

.

Using (6.4) and rearranging the inequality yields the desired conclusion after
taking the supremum over all such η.

Step 2. The estimate for ∥u∥L2(◻m). By the representation theorem, there exists

φ ∈ L2(◻m) such that ⨏◻m
∣φ(x)∣2 dx = 1 and

(6.5) (⨏◻m

∣u(x)∣2 dx)
1

2 = ⨏◻m

u(x)φ(x)dx = ⨏◻m

u(x) (φ(x) − (φ)◻m
) dx.

Denote by w ∈ H2(◻m) the unique (up to additive constants) solution of the
Neumann problem

{ −∆w = φ − (φ)◻m
in ◻m,

∂νw = 0 on ∂◻m.

We have that w ∈ H2(◻m) and
⨏◻m

∣∇2w(x)∣2 dx ≤ C ⨏◻m

∣φ(x) − (φ)◻m
∣2 dx ≤ C.

Testing the equation for w with u yields that

⨏◻m

u(x) (φ(x) − (φ)◻m
) dx = ⨏◻m

∇u(x) ⋅ ∇w(x)dx.
The conclusion now follows from the previous step and (6.5). �
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6.2. Proof of Theorem 1.2. Throughout this subsection, we let

v(x,U, p) ∶= −u(x,U, p,0) − p ⋅ x.
That is, v(⋅, U, p) ∈H1

0
(U) is the minimizer in the definition of ν(U,p) with the

plane x↦ p ⋅ x subtracted.

The multiscale Poincaré inequality motivates us to prove the sublinearity of
the correctors by studying the spatial averages of its gradient in mesoscopic
cubes. This is accomplished by a very simple energy comparison argument
combined with the Lipschitz estimate, which reduce the needed estimates to
the convergence of the subadditive quantities. The statements we need are
given in the following two lemmas.

In the first lemma, we compare ∇v(⋅,◻m, p) in the large cube ◻m to the
gradient of the function obtained by gluing together the functions v(⋅, z+◻m, p)
on the mesoscopic subgrid {z +◻n ∶ z ∈ Zn} and bound the difference in terms
of the cell problem energies in these cubes.

Lemma 6.2. For every p ∈ Rd and m,n ∈ N with m ≥ n,
(6.6) ∣Zn∣−1 ∑

z∈Zn

∥∇v(⋅,◻m, p) −∇v(⋅, z +◻n, p)∥2L2(z+◻n)

≤ −ν(◻m, p) + ∣Zn∣−1 ∑
z∈Zn

ν(z +◻n, p),
where Zn ∶= 3nZd ∩◻m.

Proof. The lemma is a simple consequence of the uniform convexity of the
energy functional and a proof can be found in [4, Lemma 2.1]. For the reader’s
convenience, we also provide the argument here. Define V ∈ H1

0
(◻m) to be

the function obtained by gluing together the functions v(⋅, z + ◻n, p) for z ∈
3nZd ∩◻m. In other words, V ≡ v(⋅, z +◻n, p) in z +◻n, for each z ∈ 3nZd ∩◻m.
Since x ↦ p ⋅ x + v(x,◻m, p) is a solution of (1.1), we have

⟨a (p +∇v(⋅,◻m, p)) ,∇V ⟩◻m
= 0.

Using this and a direct computation, we find that

1

2
∥∇v(⋅,◻m, p) −∇V ∥2L2(◻m)

≤ 1
2
⟨∇v(⋅,◻m, p) −∇V,a (∇v(⋅,◻m, p) −∇V )⟩◻m

= 1
2
⟨p +∇V,a (p +∇V )⟩◻m

− 1

2
⟨p +∇v(x,◻m, p),a (p +∇v(x,◻m, p))⟩◻m

= (∣Zn∣−1 ∑
z∈Zn

ν(z +◻n, p)) − ν(◻m, p).
This completes the proof. �

We now use the Lipschitz estimate to upgrade the previous estimate. This
will give us uniform local control as we blow up the macroscopic cube ◻m to
the whole space and thereby yield information on the stationary correctors.
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Lemma 6.3. Let X be as in the statement of Theorem 2.1. There exists

C(d,Λ) <∞ such that, for every p ∈ Rd, m,n, k ∈ N with m ≥ n ≥ k and X ≤ 3k,
we have the estimate

(6.7) ∥∇v(⋅,◻m, p) −∇v(⋅,◻n, p)∥L2(◻k)

≤ C m−1∑
l=n

⎛
⎝−ν(◻l+1, p) + 3−d ∑

z∈3lZd∩◻l+1

ν(z +◻l, p)⎞⎠
1

2

.

Proof. Fix k ∈ N with X ≤ 3k. By Theorem 2.1 (here we just use the Lipschitz
estimate) and the previous lemma, for every l ∈ N, l ≥ k, we have

∥∇v(⋅,◻l+1, p) −∇v(⋅,◻l, p)∥2L2(◻k)

≤ C ∥∇v(⋅,◻l+1, p) −∇v(⋅,◻l, p)∥2L2(◻l)

≤ C ⎛⎝−ν(◻l+1, p) + 3−d ∑
z∈3lZd∩◻l+1

ν(z +◻l, p)⎞⎠ .

Note that the first inequality in the display above is obvious if l = k, and is a
consequence of Theorem 2.1 for l ≥ k + 1. Taking the square root, summing
over l = n, . . . ,m − 1 and using the triangle inequality yields (6.7). �

We next combine the previous two inequalities with the multiscale Poincaré
inequality to obtain estimates on the corrector itself in a large macroscopic
cube terms of ν in triadic subcubes.

Lemma 6.4. Let X be as in the statement of Theorem 2.1. Then, for every

m ∈ N with 3m ≥ X ,
∥Φ(⋅, p) − (Φ(⋅, p))◻m

∥
L2(◻m) + ∥∇Φ(⋅, p)∥H−1(◻m)(6.8)

≤ C ∣p∣ +C m−1∑
n=0

3n (−ν(◻m, p) + ∣Zn∣−1 ∑
z∈Zn

ν(z +◻n, p))
1

2

+C3m ∞∑
l=m

⎛
⎝−ν(◻l+1, p) + 3−d ∑

z∈3lZd∩◻l+1

ν(z +◻l, p)⎞⎠
1

2

.

Proof. Letting m →∞ in (6.7) yields that, for every m ∈ N with 3m ≥ X ,
(6.9) ∥∇Φ(⋅, p) −∇v(⋅,◻m, p)∥L2(◻m)

≤ C ∞∑
l=m

⎛
⎝−ν(◻l+1, p) + 3−d ∑

z∈3lZd∩◻l+1

ν(z +◻l, p)⎞⎠
1

2

.
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For n ∈ N with n ≤m, we use the fact that v(⋅, z +◻n, p) ∈H1

0
(z +◻n) and use

integration by parts, the Hölder inequality and Lemma 6.2 to get

∣Zn∣−1 ∑
y∈Zn

∣(∇v(⋅,◻m, p))y+◻n
∣2

≤ ∣Zn∣−1 ∑
z∈Zn

∥∇v(⋅,◻m, p) −∇v(⋅, z +◻n, p)∥2L2(z+◻n)

≤ C (−ν(◻m, p) + ∣Zn∣−1 ∑
z∈Zn

ν(z +◻n, p)) .
Applying Proposition 6.1, we obtain

∥v(⋅,◻m, p)∥L2(◻m) + ∥∇v(⋅,◻m, p)∥H−1(◻m)

≤ C ∥∇v(⋅,◻m, p)∥L2(◻m) +C
m−1∑
n=0

3n (∣Zn∣−1 ∑
y∈Zn

∣(∇v(⋅,◻m, p))y+◻n
∣2)

1

2

≤ C ∣p∣ +C m−1∑
n=0

3n (−ν(◻m, p) + ∣Zn∣−1 ∑
z∈Zn

ν(z +◻n, p))
1

2

.

By the previous display, (6.9), the triangle inequality and the fact that the L2

norm is stronger than the H−1 norm, we get

∥∇Φ(⋅, p)∥H−1(◻m) ≤ ∥∇v(⋅,◻m, p)∥H−1(◻m) + ∥∇Φ(⋅, p) −∇v(⋅,◻m, p)∥H−1(◻m)
≤ ∥∇v(⋅,◻m, p)∥H−1(◻m) +C ∥∇Φ(⋅, p) −∇v(⋅,◻m, p)∥L2(◻m)

≤ C ∣p∣ +C m−1∑
n=0

3n (−ν(◻m, p) + ∣Zn∣−1 ∑
z∈Zn

ν(z +◻n, p))
1

2

+C3m ∞∑
l=m

⎛
⎝−ν(◻l+1, p) + 3−d ∑

z∈3lZd∩◻l+1

ν(z +◻l, p)⎞⎠
1

2

.

This is the desired estimate for ∥∇Φ(⋅, p)∥H−1(◻m). To complete the proof

of (6.8) and obtain the estimate for ∥Φ(x, p) − (Φ(⋅, p))◻m
∥
L2(◻m), we argue

similarly, but there is an extra step in which we use the Poincaré inequality:

∥Φ(x, p) − (Φ(⋅, p))◻m
∥
L2(◻m)

≤ 2 ∥v(⋅,◻m, p)∥L2(◻m) + ∥Φ(x, p) − v(⋅,◻m, p) − (Φ(⋅, p) − v(⋅,◻m, p))◻m
∥
L2(◻m)

≤ C ∥v(⋅,◻m, p)∥L2(◻m) +C3m (⨏◻m

∣∇Φ(x, p) −∇v(x,◻m, p)∣2 dx)
1

2

≤ C ∣p∣ +C m−1∑
n=0

3n (−ν(◻m, p) + ∣Zn∣−1 ∑
z∈Zn

ν(z +◻n, p))
1

2

+C3m ∞∑
l=m

⎛
⎝−ν(◻l+1, p) + 3−d ∑

z∈3lZd∩◻l+1

ν(z +◻l, p)⎞⎠
1

2

. �

We are now ready to complete the proof of Theorem 1.2.
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Proof of Theorem 1.2. By standard comparisons, it suffices to establish the
result with BR replaced by ◻m, m ∈ N. We may also assume ∣p∣ ≤ 1 by homo-
geneity. Fix β ∈ (0, 1

2
) and define, for each n ∈ N,

sn ∶=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3−(m−n) (−ν(◻m, p) + ∣Zn∣−1 ∑
z∈Zn

ν(z +◻n, p))
1

2

if n ≤m − 1,
⎛
⎝−ν(◻n+1, p) + 3−d ∑

z∈3nZd∩◻n+1

ν(z +◻n, p)⎞⎠
1

2

if n ≥m.
By Lemma 6.4, the theorem is proved if we can show that

logE

⎡⎢⎢⎢⎢⎣
exp
⎛
⎝λ32mβ ( ∞∑

n=0
sn)

2⎞
⎠
⎤⎥⎥⎥⎥⎦
≤ C(1 + λ2).

We let β′ ∈ (β,1/2), and apply Jensen’s inequality with respect to the measure
∑∞n=0 3−n(β′−β)δn and the convex function x ↦ exp(x2) to get

exp
⎛
⎝λ32mβ ( ∞∑

n=0
sn)

2⎞
⎠ ≤ C

∞∑
n=0

3−n(β
′−β) exp (λ32mβ+2n(β′−β)s2n) .

We analyse first the sum over n ≥m. By Theorem 1.1 with α = 2β′/d,
∞∑

n=m
3−n(β

′−β)
E [exp (λ32mβ+2n(β′−β)s2n)] ≤ ∞∑

n=m
3−n(β

′−β) exp [C (1 + 3−2β(n−m)λ2)]
≤ exp [C(1 + λ2)] .

For the sum over n <m, we use Jensen’s inequality and Theorem 1.1 to get

logE[exp(λ32nβ′ ∣1
2
p ⋅ ap − ∣Zn∣−1 ∑

z∈Zn

ν(z +◻n, p)∣)] ≤ C(1 + λ2).
Therefore

m−1∑
n=0

3−n(β
′−β)

E [exp (λ32mβ+2n(β′−β)s2n)]
≤ m−1∑

n=0
3−n(β

′−β) exp [C (1 + 3−2(1−β)(m−n)λ2)] ≤ exp [C (1 + λ2)] .
This completes the proof. �
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