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The Amitsur-Levitski Theorem tells us that the standard polynomial in 2n non-commuting indeterminates vanishes identically over the matrix algebra M n (K). For K = R or C and 2 ≤ r ≤ 2n -1, we investigate how big S r (A 1 , . . . , A r ) can be when A 1 , . . . , A r belong to the unit ball. We privilegiate the Frobenius norm, for which the case r = 2 was solved recently by several authors. Our main result is a closed formula for the expectation of the square norm. We also describe the image of the unit ball when r = 2 or 3 and n = 2.

The problem. First results

Let r ≥ 2 be an integer. The standard polynomial in r non-commuting indeterminates x 1 , . . . , x r is defined as usual by S r (x 1 , . . . , x r ) := ∑ {ε(σ)x σ(1) x σ(2) • • • x σ(r) : σ ∈ S r }, where S r is the symmetric group in r symbols and ε is the signature. Each monomial is a word in the letters x j , affected by a sign ±1. Despite its superficial similarity with the determinant of r × r matrices, S r is a completely different object: on the one hand, its arguments are non-commuting indeterminates, on the other hand, there are only r indeterminates instead of the r 2 entries of a matrix. We list here elementary properties of S r :

1. S r is alternating.

2. S r+1 (x 1 , . . . , x r+1 ) = ∑ i (-1) i+1 x i S r ( xi ), where xi := (x 1 , . . . , x i-1 , x i+1 , . . . , x r+1 ).

3. If r is even, and an x i commutes with all other x j 's, then S r (x 1 , . . . , x r ) = 0. Mind that this is false if r is odd.

The first polynomial x 1 x 2x 2 x 1 of the list is the commutator. When applied to the elements of an algebra A, it leads us to distinguish between commutative and non-commutative algebras. More generally, the polynomials S r measure somehow the degree of non-commutatitivity of a given algebra.

A classical theorem tells us that for a given matrix A ∈ M n (C), the commutator S 2 vanishes identically over the algebra A, A * (in other words, A is normal) if and only if A is unitarily diagonalizable. It is less known that S 2 vanishes identically over the algebra A, A * if and only if A is unitarily blockwise diagonalizable, where the diagonal blocks have at most size × ; see Exercise 324 in [START_REF] Serre | Matrices : Theory & applications[END_REF].

In addition, we have the theorem of Amitsur and Levitski [START_REF] Amitsur | Minimal identities for algebras[END_REF], of which an elegant proof has been given by Rosset [START_REF] Rosset | A new proof of the Amitsur-Levitski identity[END_REF].

Theorem 1.1 (Amitsur-Levitski.) Let K be a field (a commutative one, needless to say). The standard polynomial S 2n of degree 2n vanishes identically over M n (K). However the standard polynomials of degree less than 2n do not vanish identically.

In the sequel, we focus on the algebra M n (K) (K = R or C) of real or complex matrices. A norm over M n (K) is submultiplicative if it satisfies AB ≤ A B . The main examples are operator norms A := sup

x∈K n , x =0 |Ax| |x| ,
where | • | is a given norm over K n . One often says that • is induced by | • |. In particular, • 2 is the norm induced by the standard Euclidian/Hermitian norm. We are also interested in the Frobenius norm

A F := ∑ i, j |a i j | 2 ,
which is not induced, because

I n F = √ n > 1. Nevertheless, it is submultiplicative. A more exotic norm is the numerical radius h(A) := sup |x * Ax| x 2 2 : x ∈ C n \ {0} .
This is not a submultiplicative norm but it satisfies h(A k ) ≤ h(A) k . The numerical radius is therefore a super-stable norm.

The general question that we address is to find precise bounds of

S r (A 1 , . . . , A r ) ∏ r j=1 A j .
This can be cast into two sub-problems. On the one hand, we are interested in the best constant

C = C(r, n) satisfying S r (A 1 , . . . , A r ) ≤ C r ∏ j=1 A j , ∀A 1 , . . . , A r ∈ M n (K).
On the other hand, we may ask what is a typical ratio.

For the first task, we look for the smallest ball containing the image when each argument is taken out of the unit ball of M n (K). We may even ask for an accurate description of this image. For instance, we shall prove that for 2 × 2 matrices (i.e. n = 2) and the Frobenius norm, the image of the unit ball under S 2 (the commutator) is the ball of radius √ 2, while the image under S 3 is an ellipsoid. In order to tackle the second problem, we shall compute the closed form of

E( S r (A 1 , . . . , A r ) 2 F ) E(∏ r j=1 A j 2 F )
, when A 1 , . . . , A r are chosen independently and uniformly in the Frobenius unit ball. Strangely enough, our proof makes use of the Amitsur-Levitski Theorem.

When using a submultiplicative norm, the trivial bound

S r (A 1 , . . . , A r ) ≤ r! r ∏ j=1 A j , ∀A 1 , . . . , A r ∈ M n (K),
suggests to work with the normalized polynomial

T r := 1 r! S r , which now satisfies T r (A 1 , . . . , A r ) ≤ r ∏ j=1 A j , ∀A 1 , . . . , A r ∈ M n (K).
However this inequality ignores the cancellations that are likely to occur because of the signs ε(σ) in the definition of T r . For instance, the left-hand side vanishes whenever r ≥ 2n. For this reason, we are interested in the norm τ(r, n) of T r , defined by

τ(r, n) := sup T r (A 1 , . . . , A r ) ∏ r j=1 A j : A 1 , . . . , A r ∈ M n (K) \ {0 n } .
Alternatively,

τ(r, n) := sup{ T r (A 1 , . . . , A r ) : A 1 , . . . , A r ∈ M n (K), A 1 , . . . , A r ≤ 1} = C(r, n) r! .
Our definition above depends on the chosen norm on M n (K), and our notation should indicate this dependance. In this sense, the Frobenius norm and the operator norm • 2 yield the numbers τ F (r, n) and τ 2 (r, n), respectively. As said above, we always have τ(r, n) ≤ 1. However this bound is very poor as for instance τ(2n, n) = 0. Besides, one trivially has τ(1, n) = 1. The first non-trivial case comes when r = 2, where S 2 is the commutator. When n = 1, clearly τ(2, 1) = 0. But for n ≥ 2, the result depends on the norm we are considering. For instance, we know that

τ F (2, n) = √ 2 2 ,
the case n = 2 being due to Böttcher and Wenzel [START_REF] Böttcher | How big can the commutator be and how big is it typically?[END_REF], and the case n = 3 to László [START_REF] László | Proof of Böttcher and Wenzel's conjecture on commutator norms for 3-by-3 matrices[END_REF]. The equality for every n was conjectured in [START_REF] Böttcher | How big can the commutator be and how big is it typically?[END_REF] and proved by [START_REF] Vong | Proof of Böttcher and Wenzel's conjecture[END_REF], and independently by [START_REF] Lu | Proof of the normal scalar curvature conjecture[END_REF] for K = R and [START_REF] Audenaert | Variance bounds, with an application to norm bounds for commutators[END_REF] for K = C. See also [START_REF] Böttcher | The Frobenius norm and the commutator[END_REF]. The situation is significantly different with the standard operator norm, induced by the Hermitian norm. It is known (

[4], Example 5.2) that τ 2 (2, n) = 1, ∀n ≥ 2.
All the subtlety in the upcoming analysis comes from cancellations. We shall prove several inequalities that hold true for every submultiplicative norm. The simplest one, τ(r +s, n) ≤ τ(r, n)τ(s, n), is not sharp. But it suggests to extend our study to operators in infinite dimension. An interesting class in this respect is that of Hilbert-Schmidt operators, whose norm generalizes the Frobenius norm. We thus define the upper bound

τ F (r) := sup n≥1 τ F (r, n) = lim n→+∞ τ F (r, n).
Again, one has τ F (r + s) ≤ τ F (r)τ F (s). Since Theorem 1.1 is lost as n → +∞, we have τ F (r) > 0 for every r, and it becomes interesting to compute the rate of cancellation

ρ F := lim r→+∞ τ F (r) 1/r = inf r≥1 τ F (r) 1/r .
Because of Böttcher-Wenzel's inequality, we have τ F (2) = √ 2/2 and ρ F ≤ 2 -1/4 . One of our results from below is the improved bound

ρ F ≤ τ F (2k + 1) 1/2k , ∀k ≥ 1.
Theorem 2.1 Let n ≥ 2 be given. Then

(1) h([A, B]) ≤ 4h(A) h(B), ∀A, B ∈ M n (C).
The constant 4 is the smallest possible.

Proof If M ∈ M n (C), we define the real and imaginary parts of M by

ℜM = 1 2 (M + M * ) ∈ H n ℑM = 1 2i (M -M * ).
Then

h(M) = sup x sup ϕ ℜ(e iϕ x * Mx) x 2 2 = sup x sup ϕ x * ℜ(e iϕ M)x x 2 2 = sup ϕ sup x x * ℜ(e iϕ M)x x 2 2 = sup ϕ∈R/2πZ ℜ(e -iϕ M) 2 ,
where the supremum is actually a maximum, because ϕ → ℜ(e -iϕ M) 2 is continuous over the com-

pact set R/2πZ. Let A, B ∈ M n (C) be given. We write M = [A, B] and chose a ϕ with h(M) = ℜ(e -iϕ M) 2 . Let us denote X = ℜ(e -iϕ A), Y = ℑ(e -iϕ A), Z = ℜB and T = ℑB. From e -iϕ M = [X + iY, Z + iT ] = [X, Z] + [T,Y ] + i([X, T ] + [Y, Z])
and the fact that the commutator of Hermitian matrices is skew-Hermitian, we derive

ℜ(e -iϕ M) = i([X, T ] + [Y, Z]). We infer h([A, B]) = [X, T ] + [Y, Z] 2 ≤ [X, T ] 2 + [Y, Z] 2 ≤ 2( X 2 • T 2 + Y 2 • Z 2 ).

This proves immediately (1).

The constant 4 is attained for the choice

A = 0 1 0 0 ⊕ I n-2 , B = 0 0 1 0 ⊕ I n-2 ,
for which

[A, B] = 1 0 0 -1 ⊕ I n-2 .
We have

h(A) = h(B) = 1 2 , h([A, B]) = 1.
This completes the proof.

Inequality ( 1) is of little interest; a similar proof yields the same optimal factor 4 if one replace the commutator by AB + BA: h(AB + BA) ≤ 4 h(A)h(B).

Consequently the numerical radius does not detect the possible cancellations, in contrast to the Frobenius norm.

When considering polynomials of higher degree, the same proof provides the inequality

h(S r (A 1 , . . . , A r )) ≤ 2 r-1 r! r ∏ j=1 h(A j ),
which seems to be very far from optimal.

General inequalities

We assume for the remainder that the norm is submultiplicative:

AB ≤ A • B .

Two formulae about S r

It is well-known that

S r (x 1 , . . . , x r ) = r ∑ i=1 (-1) i-1 x i S r-1 ( xi ),
where xi is obtained from x by deleting x i . The following formula generalizes the one above.

Proposition 3.1 Let r = r 1 + • • • + r be a partition into positive integers (k → r k need not to be monotonous). Denote by P(r 1 , . . . , r ) the set of ordered partitions of [[1, r]] = {1, . . . , r} into subsets I 1 , . . . , I such that |I k | = r k . If I = (I 1 , . . . , I ) ∈ P(r 1 , . . . , r ), and

I k = {i k,1 < • • • < i k,r k }, let us denote α(I)
the signature of the permutation ρ I defined by

ρ I ( j + r 1 + • • • + r k-1 ) = i k, j , 1 ≤ j ≤ r k , 1 ≤ k ≤ . Then (2) S r (x 1 , . . . , x r ) = ∑ I∈P(r 1 ,...,r ) α(I)S r 1 (X I 1 ) • • • S r (X I ),
where

X I k = (x k,1 , . . . , x k,r(k) ).
Proof Every σ ∈ S r can be factorized as

σ = (σ 1 × • • • × σ ) • ρ I
with I ∈ P(r 1 , . . . , r ) and σ k ∈ S r k . For this, take I 1 = σ({1, . . . , r 1 }), etc... This decomposition is unique; actually, one has

|S r | = r! = r 1 ! • • • r ! r r 1 r -r 1 r 2 • • • r r = |S r 1 × • • • × S r | × card P(r 1 , . . . , r ).
The signature of σ is obviously the product of all the signatures of σ 1 , . . . , σ , ρ I . Therefore the righthand side of (2) contains exactly once the monomial x σ(1) • • • x σ(r) , with the sign

α(I)ε(σ 1 ) • • • ε(σ ) = ε(σ).
Hence both sides are equal to each other. This proves the proposition.

Let 1 ≤ k < m ≤ be given, and denote ς the transposition (k, m). The ordered partition I ς is defined by

I ς k = I m , I ς m = I k
and I ς j = I j otherwise; mind that r k and r m have been flipped. We have α(I ς ) = (-1) r k r m α(I). Hence we derive from (2) the following identities.

Proposition 3.2 Let r = r 1 + • • • + r . Then, (3) 
∑ I∈P(r 1 ,...,r ) α(I)S (S r 1 (X I 1 ), . . . , S r (X I )) = ! S r (X), if every r k is odd, 0,
otherwise.

The case r = 3 = 2 + 1 (hence = 2) of ( 3) is the Jacobi identity for the commutator.

Proof Let F(X) denote the left-hand side. The transposition i ↔ j induces an involution S over P(r 1 , . . . , r ) and we have α(SI) = -α(I). Therefore

F(x 1 , . . . , x i-1 , x j , x i+1 , . . . , x j-1 , x i , x j+1 , . . . , x r ) = -F(X).
Since F is a homogenenous polynomial, linear in each of the indeterminates, we deduce that F equals a multiple of S r . In order to determine the constant factor, we may focus on the monomial

X ↑ = x 1 x 2 • • • x r . This monomial occurs in the sum each time the interval [[1, r]] is split into consecutive intervals I ν(1) , . . . of respective lengths r ν(1)
, where ν ∈ S is arbitrary. It is accompanied by the sign α(I ν(1) , . . .)ε(ν). If all the r k are odd, then α(I ν(1) , . . .)ε(ν) = +1 for every ν and all the terms have a positive sign, whence the factor !.

Suppose on the contrary that some r k is even, say r 1 , and let us denote ς the transposition 1 ↔ 2. Then S is the disjoint union of A and ςA . If ν ∈ A , then α(I ςν(1) , . . .) = α(I ν(1) , . . .), while ε(ςν) = -ε(ν). Therefore half of the occurences of X ↑ have a positive sign, and half of them have a negative sign, whence the second formula and the proposition.

Submultiplicativity of τ(•, n)

The identity (2) allows us to derive a bound for τ(r, n) in terms of τ(s, n) and τ(rs, n). If A 1 , . . . , A r are in the unit ball, then each product in the sum above is bounded by

s!(r -s)!τ(s, n)τ(r -s, n) r ∏ j=1 A j .
Since there are r!/(s!(rs)!) terms in the sum, we immediately obtain

T r (A 1 , . . . , A r ) ≤ τ(s, n)τ(r -s, n) r ∏ j=1 A j ,
from which we derive the following estimate.

Proposition 3.3 If the norm is submultiplicative, then τ(r, n) ≤ τ(s, n)τ(r -s, n), ∀1 ≤ s < r.
In particular, τ F (r) ≤ τ F (s)τ F (rs). It is well known that for such a submultiplicative sequence, the sequence u r := τ F (r) 1/r converges to its lower bound. We call this limit the rate of cancellation and denote it by

ρ F = lim r→+∞ τ F (r) 1/r = inf r τ F (r) 1/r .
Because of τ(r, n) ≤ 1, we infer the next statement.

Corollary 3.1 As a function of its first argument r, τ(r, n) is non-increasing.

Improved submultiplicativity

The formula (2) has the drawback that it still involves the product of matrices, for which we have no gain in norm, since we cannot improve AB ≤ A B in general. To go further, we use (3), which involves operators T but no single matrix product. It can be recast as

∑

I∈P(r 1 ,...,r ) α(I)T (T r 1 (X I 1 ), . . . , T r (X I )) = cardP(r 1 , . . . , r ) • T r (X), if every r k is odd, 0, otherwise.
For instance, we have

8T 4 (A, B,C, D) = [A, T 3 (B,C, D)] + [B, T 3 (A, D,C)] +[C, T 3 (A, B, D)] + [D, T 3 (A,C, B)],
an identity which immediately gives

τ(4, n) ≤ τ(3, n)τ(2, n).
The latter inequality is tighter than τ(4, n) ≤ τ(2, n) 2 given by Proposition 3.3, since r → τ(r, n) is non-increasing.

More generally, we have

(5) 4rT 2r (A 1 , . . . , A 2r ) = 2r ∑ i=1 (-1) i+1 [A i , T 2r-1 ( Âi )],
with the classical notation Âi for the list A 1 , . . . , A i-1 , A i+1 , . . . , A r in which A i has been omitted. We deduce immediately

τ(2r, n) ≤ τ(2r -1, n)τ(2, n).
Using again submultiplicativity, this yields

τ(2r, n) ≤ τ(2, n)τ(3, n)τ(2r -4, n).
By induction, we infer

τ(4k, n) ≤ τ(2, n) k τ(3, n) k , τ(4k + 2, n) ≤ τ(2, n) k+1 τ(3, n) k ,
where submultiplicativity alone only grants

τ(2 , n) ≤ τ(2, n) .
More generally, (4) yields the inequality

(6) τ(r, n) ≤ τ( , n)τ(r 1 , n) • • • τ(r , n).
This improves the submultiplicativity in the following way: let us define a new sequence θ by shifting the first argument θ(s, n) := τ(s + 1, n).

Then ( 6) becomes

(7) θ(s, n) ≤ θ(s 0 , n)θ(s 1 , n) • • • θ(s , n),
for s = s 0 + • • • + s , whenever s 1 , . . . , s are even (s 0 may be odd). This is exactly submultiplicativity, up to the restriction on parity. In particular, the sequence µ(k, n) := θ(2k, n) is submultiplicative. Likewise, let us denote θ(s) = τ F (s + 1). Clearly, τ F (r) 1/r and θ(s) 1/s have the same limit, which must be equal to the infimum of the θ(2k) 1/2k . Combined, this delivers the following result.

Proposition 3.4 We have ρ F ≤ τ F (2k + 1) 1/2k , ∀k ∈ N.
The above bound improves, for odd arguments, the one we had before, namely τ(r) 1/r .

The Frobenius norm

The Frobenius norm, which it is the one studied in [START_REF] Böttcher | How big can the commutator be and how big is it typically?[END_REF], has several advantages for our study. First of all, it enjoys better bounds than either the operator norm, or the numerical radius: the limit n → +∞ seems non trivial. Next, it is a smooth, regular norm, and it is possible to use differential calculus when studying r-uplets which realize the norm of T r . At last, we have a duality principle, based on the inner product of two matrices

M F = sup{ℜTr (M * N) : N F ≤ 1}, whence [A, B] F = sup{ℜTr ([A, B]C) : C ∈ B F },
where B F denotes the unit ball for the Frobenius norm. Since 3Tr

([A, B]C) = Tr S 3 (A, B,C), we also have (say that K = R) τ F (2, n) = sup{Tr T 3 (A, B,C) : A, B,C ∈ B F }.
We warn the reader that this identity extends only to the even numbers r:

τ F (2s, n) = sup{Tr T 2s+1 (A 1 , . . . , A 2s+1 ) : A 1 , . . . , A 2s+1 ∈ B F }, while Tr T 2s (A 1 , . . . , A 2s ) ≡ 0.
The latter identity expresses the fact that T 2s (A 1 , . . . , A 2s ) can be written as a sum of commutators, an idea developed in Section 3.3. The vanishing of these traces is used in the proof by Rosset [START_REF] Rosset | A new proof of the Amitsur-Levitski identity[END_REF] of the Amitsur-Levitski Theorem.

Average estimate

Let us endow M n (R) with the usual probability measure, where the entries a i j are Gaussian independent variables:

dµ(A) = 1 V n e -A 2 da 11 • • • da nn , A 2 = Tr (A T A).
Here V n is a normalizing factor. For instance, we have

E( A 2 ) = n 2 ´x2 e -x 2 dx ´e-x 2 dx =: n 2 m 2 ,
where m 2 = 1 2 is the second moment of the Gaussian. We wish to calculate the expectation of S (A 1 , . . . , A ) 2 when A 1 , . . . , A are independent matrices. This amounts to calculating the average of S (A 1 , . . . , A ) 2 when A 1 , . . . , A all have unit norm.

Lemma 4.1 As a function of the size n of the matrices, the expression

n 2 E[ S (A 1 , . . . , A ) 2 ] is a polynomial. Proof Denoting A π = A π(1) • • • A π( ) , we have E[ S (A 1 , . . . , A ) 2 ] = E[Tr S (A 1 , . . . , A ) T S (A 1 , . . . , A )] = ∑ π∈S E[ε(π)Tr (A π ) T S (A 1 , . . . , A )] = ∑ π∈S E[ε(π)Tr (B id ) T S (B π -1 (1) , . . . , B π -1 ( ) )] = ! E[Tr (B id ) T S (B 1 , . . . , B )] = ! ∑ π∈S ε(π)E[Tr (B id ) T B π ].
Given π ∈ S , we have

Tr (A id ) T A π = a α -1 α • • • a 2 α 1 α 2 a 1 β 1 α 1 a π(1) β 1 β 2 • • • a π( ) β α ,
with Einstein's convention of summation over repeated indices. We stress that β 1 plays the role of an α 0 , and α plays the role of a β +1 . When taking the expectation of a given monomial, we obtain either (m 2 ) or 0, according to whether every entry shows up with a square, or not. A non-zero contribution happens when

(β k , β k+1 ) = (α π(k)-1 , α π(k) ),
or equivalently if

(8) α π(k)-1 = α π(k-1) = β k
for every k = 1, . . . , + 1. Hereabove we have to extend π by ( 9)

π(0) = 0, π( + 1) = + 1.
Let G π be the graph whose vertices are the indices 0 ≤ j ≤ for the α s, and the indices 1 ≤ k ≤ + 1 for the β s. Thus G π has 2( + 1) vertices. The edges correspond to every equality of the form either j = π(k -1) or j = π(k) -1. This includes the edge between the vertices j = 0 and k = 1, and the edge between the vertices j = and k = + 1. Notice that j and k may be connected by two edges, in case π(k) -1 = π(k -1) = j.

Given the permutation π, many among the monomials have zero expectation. The remaining ones have expectation m 2 ; they are parametrized by the maps

a α -1 α • • • a 2 α 1 α 2 a 1 β 1 α 1 a π(1) β1β2 • • • a π( ) β α
G π (α,β) -→ [[1, n]]
that are constant on each connected component. The number of such maps (α, β) is n N(π) , where N(π) is the number of connected components of G π . Therefore, we obtain

E[Tr (A id ) T A π ] = n N(π) m 2
and

E[ S (A 1 , . . . , A ) 2 ] = ! m 2 ∑ π∈S ε(π)n N(π) =: ! P (n)m 2 ,
for some P ∈ Z[X]. We infer ( 10)

E[ S (A 1 , . . . , A ) 2 ] = ! P (n) n 2 E[ A 1 2 • • • A 2 ].
We are now going to express the polynomial P in closed form. To begin with, we note that always N(π) ≥ 1, and therefore P (0) = 0. Actually, the quantity N(π) can further be restricted. 

In addition,

(N(π) = + 1) ⇐⇒ (π = id).

Proof The edges of π always link an α-index j to a β-index k. In addition, every vertex has valence 2. Therefore a connected component is an even cycle in which the j's and the k's alternate. We may therefore construct a graph J π , whose vertices are the indices j ∈ [[0, ]] and there is an edge between j and j if { j, j } = {Sπk, πSk} for some k, where S is the shift k → kover [ [1, + 1]]. For completeness, we define S(0) = + 1, so that S is a permutation of [[0, + 1]]. This amounts to saying that J π is the graph associated with the permutation ρ := πSπ -1 S -1 in [[0, ]] (because of ( 9), + 1 is a fixed point of ρ). For instance, the examples displayed in Figure 1 yield ρ = (031) (left) or ρ = (021) (right); in both cases, the resulting J π consists of a three-node cycle and an isolated vertex. Every connected component

( j 1 , k 1 , j 2 , k 2 , . . .) of G π corresponds to a connected component ( j 1 , j 2 , . . .) of J π . Thus N(π) is nothing but the number of orbits of ρ.
Because ρ is a commutator, it is an even permutation of [[0, ]]. The number N even of its cycles of even length (these are odd permutations !) is thus even. Counting the elements modulo 2, we deduce that

N odd ≡ + 1. Hence N(π) = N even + N odd ≡ + 1.
If π is the identity, then ρ is the identity too and [START_REF] Vong | Proof of Böttcher and Wenzel's conjecture[END_REF], we deduce that π is the identity.

N(π) = + 1. Conversely, if N(π) = + 1, we have ρ = id, that is π(k -1) = π(k) -1 for every k ∈ [[1, + 1]]. With
Corollary 4.1 The monic polynomial P is odd if is even, and it is even if is odd. It has the form P (X) = X +1 + l.o.t, without constant term.

Finally, we invoke the theorem of Amitsur and Levistki. If 2n ≤ , we have P (n) = 0, thus Xn divides P (X). Because of the parity, we infer that X 2n 2 divides P . Hence

P (X) = Q (X)(X 2 -1)(X 2 -4) • • • (X 2 -r 2 ), r = 2 .
By the corollary, we know that Q is a monic polynomial of degree + 1 -2r. If is even, then Q is odd, of degree 1, hence equals X. If is odd, Q is even of degree 2, vanishes at 0 and is therefore equal to X 2 . Summarizing these thoughts, we obtain the desired relation.

Theorem 4.1 Let A j be i.i.d. Gaussians. Then,

E[ S (A 1 , . . . , A ) 2 ] = ! P (n) n 2 E[ A 1 2 • • • A 2 ] with P 2k (X) = X(X 2 -1 2 ) • • • (X 2 -k 2 ), P 2k+1 (X) = X 2 (X 2 -1 2 ) • • • (X 2 -k 2 ).

Asymptotic properties

We focus on the even case, = 2k which behaves a little nicer than the odd one, even if their asymptotics are quite similar.

Let us denote the ratio given by Theorem 4.1 by

ω(k; n) = (2k)! P 2k (n) n 4k .
First fix n and vary k from 1 to n -1. We have

ω(1; n) = 2 n 1 - 1 n 2 ,
a formula already known to Böttcher & Wenzel [START_REF] Böttcher | How big can the commutator be and how big is it typically?[END_REF]. Then

ω(k; n) ω(k -1; n) = 2k(2k -1) n 4 (n 2 -k 2 ). Denoting t = k n , this reads ω(k; n) -1; n) = 4t t - 1 2n (1 -t 2 ) < 4t 2 (1 -t 2 ) ≤ 1.
Therefore the sequence k → ω(k; n) is strictly decreasing. It has a critical point for

t n ∼ √ 2 2 (that is k n ∼ n √ 2 
2 ). The decay is faster for small values of k, and also for k approaching n. We next investigate the behaviour of ω(k; n) as n → +∞, while k/n → t ∈ (0, 1). We start from

ω(k; n) = (2k)! (n + k)! n 4k (n -k -1)! .
The Stirling formula yields

ω(k; n) ∼ 2n -4k 2k e 2k n + k e n+k e n -k -1 n-k-1 πk n + k n -k -1 = 2 4k 2 (n + k)(n -k -1) e 4 n 4 k n + k n -k -1 n n -k -1 e πk n + k n -k -1 . Hence log ω(k; n) ∼ dk, where d = d(t) := log 4t 2 (1 -t 2 ) -4 + 1 t log 1 + t 1 -t .
A simple calculation gives that τ is increasing over (0, x) and decreasing over (x, 1), where x ≈ 0.95 ∈ (0, 1) is the unique root of (11

) 4t = log 1 + t 1 -t . Then max d(t) = d(x) = log 4x 2 (1 -x 2 ) < 0.
In conclusion, n → ω( tn ; n) decays exponentially fast, with a rate not larger than 4x 2 (1x 2 ), a number strictly less than one.

5 The law of distribution of the commutator (n = 2)

We continue our investigation for the Frobenius norm. We already know that

[A, M] F ≤ √ 2 A F M F ,
where the constant √ 2 is optimal [START_REF] Böttcher | How big can the commutator be and how big is it typically?[END_REF]. As noted by several authors, we may always restrict to the hyperplane H of zero-trace matrices, because on the one hand Therefore we have the commutative diagram

(A, M) ---→ √ 2 2 [A, M] L   L   (x, y) ---→ F(x × y)
where L is an isometry, and

F :   a b c   →   a c b   is an isometry in R 3 . Because the diagram's bottom line is onto B 3 , we already see that (A, M) ∈ B H × B H → √ 2 2 [A, M] ∈ B H is surjective, too.
Let us denote dν the pushforward of dA ⊗ dM, and dµ that of dx ⊗ dy. Because of the equivariance R(x × y) = (Rx) × (Ry) under every rotation R, we know that dµ is rotationally invariant. Therefore

ˆBH f (Z)dν(Z) := ¨BH ×B H f √ 2 2 [A, M] dA dM = ¨B3 ×B 3 f √ 2 2 [Lx, Ly] dx dy = ¨B3 ×B 3 f (LF(x × y)) dx dy = ˆB3 ( f • L • F)(z) dµ(z) = ˆB3 ( f • L)(Fz) dµ(z) = ˆB3 ( f • L)(z) dµ(z).
This shows that the distribution of (A, M) → √ 2 2 [A, M] over B H × B H is exactly the same as the distribution of (x, y) → x × y over the unit ball B 3 , up to the identification provided by the isometry L.

Proposition 5.2 The map (x, y) → x × y from B 3 × B 3 is onto B 3 . The pushforward dµ of dx ⊗ dy is radial, with density h(ρ)dρdω
where dω is the normalized area over S 2 , and

h(ρ) = 9ρ 2 1 -ρ 2 ρ + 2 arctan 1 + ρ 1 -ρ -π .
This instantly transfers to the commutator setting. We infer h(ρ) = 9 ρ ¨0<r,s<1,rs>ρ rs drds

r 2 s 2 -ρ 2 .
We integrate first with respect to s, which varies from ρ/r to 1. From d r 2 s 2ρ 2 = r 2 s ds Let us parametrize

r = ρ a 2 + 1 a 2 -1 , r 2 -ρ 2 = ρ 2a a 2 -1 , a > 1 + ρ 1 -ρ .
We obtain

h(ρ) = 9ρ 2 ˆ+∞ 1+ρ 1-ρ 4a 2 a 2 -1 da a 2 -1 - da a 2 + 1 = 9ρ 2 - 2a a 2 -1 -2 arctan a +∞ 1+ρ 1-ρ
, which is the required formula.

Let us compare the distribution dν with the uniform distribution dM = 3ρ 2 dρdω over B H . We have dν = g(ρ)dM, where

g(ρ) = 3 1 -ρ 2 ρ + 2 arctan 1 + ρ 1 -ρ -π .
Clearly, g(0) = +∞, g(1) = 0 and g (ρ) = -3ρ -2 1ρ 2 < 0. Therefore g is monotonous decreasing. Large commutators (with norms ≈ √ 2) are rare while small ones are likely. This phenomenon becomes stronger for larger matrix sizes n. On the one hand, the average ratio for [A, B] 2 F / A F B F is 2 n 1 -1 n 2 (see [START_REF] Böttcher | How big can the commutator be and how big is it typically?[END_REF] or Paragraph 4.1). On the other hand, when n ≥ 3, very few trace-less matrices of norms √ 2 can be written as [A, B] with A F = B F = 1; see Section 4 in [START_REF] Böttcher | The Frobenius norm and the commutator[END_REF], or [START_REF] Cheng | Commutators with maximal Frobenius norm[END_REF].

6 The law of distribution of S 3 over M 2 (R)

The situation changes significantly when passing from r = 2 (the commutator) to r = 3. On the one hand, the addition of tI n becomes harmful: 
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 1 Figure 1: The graph G π when = 3. The α-indices, from 0 to 3, are outer; the β-indices, from 1 to 4, are inner. Left: the cycle (123). Right: the transposition (12). In both cases, the graph has two connected components. For the identity, it should have four of them.
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The commutator in terms of the numerical radius For the following result concerning the numerical radius h, we benefited of a fruitful disussion with Piotr Migdal.
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we have

Observe that the image of B 4 × B 4 × B 4 by the mixed product is B 4 itself. Therefore the image of B F × B F is given by the inequality

This is an ellipsoid centered at the origin, whose main semi-axis have lengths 1, 1, 3 and 3. We deduce the optimal inequality

The equality holds precisely when a, b, c form an orthogonal basis of the orthogonal complement of the vector

in other words when A, B and C are mutually orthogonal and trace-less. The factor 9 above must be compared with the average ratio given by Theorem 4.1,

We remark that this average ratio is larger than the inner radius of the ellipsoid. When A, B,C are drawn uniformly and independently from B F , the law of S 3 (A, B,C) is the pushforward of the law of a × b × c (a, b, c chosen uniformly and independently in B 4 ) under the linear map f → (W, X,Y, Z) declared previously. If R ∈ SO 4 , we have (Ra) × (Rb) × (Rb) = R(a × b × c), while the distribution of (Ra, Rb, Rc) is the same as that of (a, b, c). Therefore the law of a × b × c is radial.

Another consequence of ( 12) is a statement of the annihilating case.