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The relative entropy method for the stability of
intermediate shock waves ; the rich case

Denis Serre∗, Alexis F. Vasseur†‡

October 14, 2015

Dedicated to Peter Lax, with admiration and gratitude

Abstract

M.-J. Kang and one of us [2] developed a new version of the relative entropy method,
which is efficient in the study of the long-time stability of extreme shocks. When a system
of conservation laws is rich, we show that this can be adapted to the case of intermediate
shocks.

1 Introduction

We consider a strictly hyperbolic system of conservation laws in one space dimension

ut + f(u)x = 0, u(x, t) ∈ U ,

where U is a convex open domain in Rn and f : U → Rn is a smooth vector field. By assumption,
the Jacobian df(u) is diagonalizable with real eigenvalues λ1(u) < · · · < λn(u) and eigenvectors
rk(u). The fields u 7→ (λk, rk) are smooth.

An entropy-flux pair is made of functions η(u), q(u) for which every classical solution satisfies
in addition

∂tη(u) + ∂xq(u) = 0.

We are interested only in entropies such that D2η is positive definite, which we call strongly
convex entropies. Then we say that a bounded measurable solutions is admissible if it satisfies
the entropy inequality

∂tη(u) + ∂xq(u) ≤ 0.
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for every convex entropy.
If a is a fixed state, the relative entropy η(u|a) and its relative flux q(u; a) are defined as

usual by

η(u|a) = η(u)− η(a)− dηa · (u− a), q(u; a) = q(u)− q(a)− dηa · (f(u)− f(a)).

We point out that η(u|a) > 0 unless u = a. The relative entropy-flux pair still satisfies

∂tη(u|a) + ∂xq(u; a) ≤ 0

for every admissible solution.

Let U denote a pure shock wave:

U(x, t) =

{
u`, if x < σt,
ur, if x > σt.

Its data u`,r satisfy the Rankine–Hugoniot jump relation

(1) f(ur)− f(u`) = σ(ur − u`).

We treat here the case of a Lax shock : there is an index 1 ≤ k ≤ n (we speak of a k-shock)
such that the following inequalities hold true :

(2) λk−1(u`) < σ < λk+1(ur), λk(ur) < σ < λk(u`).

P. Lax [5] proved that such shocks exist with u`,r ∼ u∗ if the k-th characteristic field is genuinely
nonlinear at u∗ : (dλk · rk)(u∗) 6= 0. The jump [u] := ur − u` is then approximately colinear
with rk(u∗).

The assumption (2), together with the Implicit Function Theorem, ensures that ur can be
locally defined as a smooth function of the other parameters: (u`, σ) 7→ ur.

Leger & Vasseur showed in [3, 4] that the relative entropy method applied to a scalar (case
n = 1) conservation law, with a convex (or concave) flux f , yield the strong property that

t 7→ inf
h∈R

(∫ h

−∞
η(u|u`) dx+

∫ +∞

h

η(u|ur) dx
)

is non-increasing for every shock U and every entropy solution u, whenever the initial data
u(·, 0) belongs to U + L2(R). We interpret this property as saying that scalar shock waves are
attractors up to a shift.

We considered in [13] the relative entropy method applied to systems (n ≥ 2). We were
interested in those shock waves that are attractors up to a shift. We found that, although the
so-called Keyfitz–Kranzer system does admit such stable shocks, most systems resist to the
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method. A new tool was therefore needed, which was elaborated recently by Vasseur & M.-J.
Kang [2]. Their idea was, instead of integrating the relative entropy associated with the same
η on both sides of the shock, to involve η on the left side of the shock, and aη on the right side,
for some appropriate constant a > 0. Depending on whether a is small or large, they obtained
that either 1-shocks or n-shocks (the so-called extreme shocks) are local attractors up to a shift.
The method however, even with this improvement, does not work for intermediate shocks, as
those encountered in elasticity or MHD. Our goal is therefore to adapt it to the case of a rich
system (see [10] for this notion). We shall use two entropies η± on both sides of the shock to
measure the distance from u to v. We thus consider the quantity

E[u;h] :=

∫ h

−∞
η−(u|u`) dx+

∫ +∞

h

η+(u|ur) dx,

which incorporates a shift h. For intermediate shocks, η+ and η− will not be linearly dependent
modulo the affine functions. Our main result (Theorem 3.1) is that given a Lax shock of a rich
system, strongly convex entropies η± can be chosen so that the shock be a local attractor up
to a shift.

The necessity of a shift tolerance

Let U be a Lax shock associated with a genuinely nonlinear field. Without loss of generality,
we may assume that it is steady. If u0 = U + φ is a compactly supported perturbation where
φ is small, then the asymptotic behaviour as t → +∞ has been described by T.-P. Liu [6]. It
consists of a superposition of so-called N -waves (which decay in L2-norm like t−1/4), of linear
waves that just propagate at constant velocity, and of a shift of the shock from x = 0 to x = h.
To determine h, we split the mass m =

∫
R φ dx into three parts X−+h[u]+X+, where X− (resp.

X+) belongs to the stable (resp. unstable) subspace of df(u`) (resp. df(ur)) ; thus h[u] = πm
for some projection operator in Rn. All these waves asymptotically separate from each other
and therefore the limit of E[u(t); 0] equals either |h|η−(ur|u`) or |h|η+(u`|ur), depending on the
sign of h.

If E[·; 0] was a Lyapunov function for the system, then this limit would not be greater than

E[U + φ; 0] =

∫ 0

−∞
η−(u` + φ|u`) dx+

∫ +∞

0

η+(ur + φ|ur) dx ∼
∫
R
φ2 dx.

This would imply an inequality

|ur − ul|2
∣∣∣∣∫

R
πφ dx

∣∣∣∣ ≤ C ·
∫
R
φ2dx,

which is obviously false because L2(R) does not embed into L1(R). Therefore the uniform
stability of shock waves cannot be obtained without involving a shift, as it was done by Leger
& Vasseur in the scalar case. This explains why we consider

Emin(t) := inf
h
E[u(t);h] = inf

h

(∫ h

−∞
η−(u(x, t)|u`) dx+

∫ +∞

h

η+(u(x, t)|ur) dx
)
.
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2 Local analysis

If a shock U is stable, we expect, following [6], that for every admissible solution u, close
enough to U , there is a shock curve x = X(t) with X ′(t)→ σ and u± := u(X(t)± 0, t)→ u`,r
as t→ +∞. For such a solution, we expect that Emin(t) is achieved by the shift h = X(t), for
large enough t.

The function

ψ(h) :=

∫ h

−∞
η−(u|u`) dx+

∫ +∞

h

η+(u|ur) dx

has left and right derivatives at h = X(t), with

ψ′(X(t)− 0) = η−(u−|u`)− η+(u−|ur), ψ′(X(t) + 0) = η−(u+|u`)− η+(u+|ur).

When t is large enough, we obtain ψ′(X(t) − 0) ∼ −η+(u`|ur) < 0 and ψ′(X(t) + 0) ∼
η−(ur|u`) > 0, which ensures that ψ has a local minimum at h = X(t).

If instead u(·, t) is continuous at h̄ where ψ(h̄) is minimum, then we must have

(3) η−(ū|u`) = η+(ū|ur), ū := u(h̄).

Let us assume that the minimum Emin(t) is achieved at some h(t), a piecewise smooth
function of time. Then t 7→ Emin(t) is a continuous function, piecewise C1, and its decay is
equivalent to the fact that the derivative be non-positive. We compute

d

dt
Emin =

d

dt

(∫ h(t)

−∞
η−(u|u`) dx+

∫ +∞

h(t)

η+(u|ur) dx

)

= ḣ(η−(u−|u`)− η+(u+|ur)) +

∫ h(t)

−∞
∂tη−(u|u`) dx+

∫ +∞

h(t)

∂tη+(u|ur) dx

≤ ḣ(η−(u−|u`)− η+(u+|ur))−
∫ h(t)

−∞
∂xq−(u;u`) dx−

∫ +∞

h(t)

∂xq+(u;ur) dx

= q+(u+;ur)− ḣη+(u+|ur)− q−(u−;u`) + ḣη−(u−|u`),

where we have used the entropy inequalities for η±.
If u is continuous at h(t), we have

d

dt
Emin ≤ Dc(ū;u`,r) := q+(ū;ur)− q−(ū;u`),

where ū = u(h, t) is constrained by (3).
If instead u is discontinuous at h(t), we have

d

dt
Emin ≤ Ds(u±;u`,r) := q+(u+;ur)− ḣη+(u+|ur)− q−(u−;u`) + ḣη−(u−|u`),

4



where (u±; ḣ) are constrained by the Rankine–Hugoniot relation and the Lax entropy inequality

(4) f(u+)− f(u−) = ḣ(u+ − u−), q±(u+)− q±(u−) ≤ ḣ(η±(u+)− η±(u−)).

We ask therefore whether, given a shock U , there is a pair of strongly convex entropies
η± such that Dc(ū;u`,r) ≤ 0 for all ū satisfying (3), and Ds(u±;u`,r) ≤ 0 for every (u−, u+)
satisfying (4). If this holds true, we may say that the shock is a global attractor. If we only
have Ds(u±;u`,r) ≤ 0 for every (u−, u+) close to (u`, ur) and satisfying (4), then we say that the
shock is a local attractor. Notice that we exclude the ”continuous” case in the latter definition,
because a continuous u(x) cannot be uniformly close to the shock U , even up to a shift.

2.1 Local attractors

Because

η(b|a) ∼ 1

2
D2ηa(b− a, b− a), q(b; a) ∼ 1

2
D2ηa(dfa(b− a), b− a),

we see on the one hand that Ds behaves approximately quadratically around the pair (u`, ur) :

2Ds(u±;u`,r) ∼ D2η+r((dfr − σ)δu+, δu+)−D2η−`((df` − σ)δu−, δu−),

where δu+ := u+ − ur and δu− := u− − u`. We have written D2η+r for D2(η+)r = D2η+|u=ur .
On the other hand, differentiating the Rankine–Hugoniot relation (remember that u+ is a

smooth function of u− and σ), we have

(dfr − σ)dur − (df` − σ)du` = (dσ)(ur − u`),

from which we infer
(dfr − σ)δu+ − (df` − σ)δu− ∼ ε(ur − u`)

for ε = ḣ− σ. In order that U be a local attractor, it is therefore necessary that the quadratic
form

(v−, v+)
Q7−→ D2η+r((dfr − σ)v+, v+)−D2η−`((df` − σ)v−, v−)

be negative semi-definite over the linear space defined by

(dfr − σ)v+ − (df` − σ)v− ∈ R(ur − u`).

Conversely, if this quadratic form is negative definite, then there is a neighbourhood of (u`, ur)
in which Ds has a constant negative sign, and then the shock is a local attractor.

Let us recall that dfa is D2ηa-symmetric: the product

S := D2ηadfa

is a symmetric matrix. In other words, the eigen-basis of dfa is orthogonal with respect to
D2ηa, that is

(i 6= j) =⇒ (D2η(ri, rj) = 0).
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We deduce that, if the matrix dfa − σ is non-singular, then

Ma := (dfa − σ)−TD2ηa ∈ Symn(R).

We point out that, because of D2ηa is positive definite, the signature (n−, n+) of Ma is made
of the number n± of positive/negative eigenvalues of dfa − σ.

Our quadratic form can be re-written in the form

Q(v, s) := (v + s[u])TM+r(v + s[u])− vTM−`v,

where (df`−σ)v− =: v and (dfr−σ)v+ =: v+s[u]. The negative definiteness of Q is equivalent
to that of the matrix

Q :=

(
M+r −M−` M+r[u]

[u]TM+r [u]TM+r[u]

)
.

2.2 The choice of entropies η±

A general system of conservation laws does not always admit a non-trivial entropy (that is,
a non-affine one). If n = 1, every function is an entropy, thus every convex function is a
convex entropy. If n = 2, the system admits a lot of entropy-flux pairs, among which there is
an infinite dimensional cone of convex entropies (Serre [10], Chapter 12). More generally, we
may declare that physically relevant systems do admit at least one strongly convex entropy.
However, if n ≥ 3, this convex entropy η is unique up to the addition of an affine function and
the multiplication by a positive constant. The former modification does not change the relative
entropy.

In the general case, we have therefore only the choice η± = a±η where a± are positive
constants and only the ratio a+/a− matters. This is the approach made by Kang & Vasseur
[2]. In the rich case (see [10]), we have a more general choice, which we exploit in Section 3.

2.2.1 One entropy only doesn’t work

It turns out that in the scalar case with a convex flux f , we may choose a+/a− = 1, that
is η+ = η−. It is therefore of some importance to recognize whether this is also possible for
systems. The following example shows that the answer is negative.

If U is a local attractor when we choose only one entropy (denoted η), then the matrix(
Mr −M` Mr[u]
[u]TMr [u]TMr[u]

)
is non-positive. We show below that this does not happen in the simple example of the p-system

vt + wx = 0, wt + p(v)x = 0, u =

(
v
w

)
,
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where p′ > 0 and p′′ does not vanish. The natural entropy is η(u) = 1
2
w2 + e(v) with e a

primitive of p. We have

D2η =

(
c2 0
0 1

)
, c :=

√
p′

and

df(u) =

(
0 1
c2 0

)
.

This yields

M =
1

c2 − σ2

(
σ c2

1 σ

)(
c2 0
0 1

)
=

1

c2 − σ2

(
σc2 c2

c2 σ

)
.

We obtain therefore

Mr −M` =
σ(c2` − c2r)

(c2r − σ2)(c2` − σ2)

(
σ2 σ
σ 1

)
= κY Y T , Y :=

(
σ
1

)
.

Because Mr −M` is only rank-one, we see that Q cannot be negative definite. We show below
that it is not even negative semi-definite.

On another hand, the Rankine–Hugoniot conditions are

[w] = σ[v], [p(v)] = σ[w],

hence

σ2 = [p(v)]/[v], [u] = [v]

(
1
σ

)
.

When U is a 2-shock, that is σ > 0, the Lax shock inequalities give cr < σ < c` ; we thus have
κ < 0. If U is a 1-shock, then −cr < σ < −c` and we obtain again κ < 0. In both cases, the
block Mr −M` is negative semi-definite. We also have

[u]TMr[u] =
σ[v]2

c2r − σ2
(3c2r + σ2) < 0.

The Sherman–Morrison criterion therefore says that Q is negative semi-definite if and only if

Mr −M` −
1

[u]TMr[u]
Mr[u][u]TMr ≤ 02,

or equivalently
[u]TMr[u](Mr −M`) ≥Mr[u][u]TMr.

Both sides are rank-one non-negative matrices ; this inequality has the form ZZT ≤ βY Y T

with β > 0 and Z = Mr[u]. It implies that Z is colinear to Y ; in other words, we must have

0 =
(
1 −σ

)
Z = [v]

(
1 −σ

)
Mr

(
1
σ

)
= σ[v].

This is absurd because σ 6= 0 and [v] 6= 0.
In conclusion, a shock U is not a local attractor for the p-system if we only choose η+ = η−

equal to the mechanical energy.
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2.2.2 Extreme shocks (after Kang & Vasseur)

We now allow that η− = aη+ for some positive constant a. We denote η = η+, a convex entropy
usually provided by some physical principle.

An “extreme” shock is either a 1-shock or an n-shock. Up to a switch x 7→ −x, we may
suppose that U is a 1-shock:

λ1(ur) < σ < λ1(u`), σ < λ2(ur,`).

In the construction above, df(u`)−σ has positive eigenvalues, while df(ur)−σ has n−1 positive
and one negative eigenvalues. Therefore M−` is positive definite while M+r is of signature
(n− 1, 1).

Because M−` is positive definite, Q is negative definite provided a is large enough, and
[u]TMr[u] < 0. Therefore, the shock is a local attractor if

(5) D2ηur((df(ur)− σ)−1[u], [u]) < 0.

Remarking that the restriction of Mr to the hyperplane spanned by r2(ur), . . . , rn(ur) is positive
definite, we see that (5) is slightly stronger than the Liu–Majda’s criterion

det([u], r2(ur), . . . , rn(ur)) 6= 0.

We recall that the latter is the condition under which the local-in-time stability of the shock
wave U holds true: the free boundary value problem associated with the evolution of the shock
under initial disturbances is locally well-posed in spaces of smooth functions. : See [7, 8].

If the shock strength is small, the direction [u] is approximately that of r1(ur). Then

D2ηur((df(ur)− σ)−1[u], [u]) ∼ (`1 · [u])2

λ1(ur)− σ
D2η(r1, r1) < 0,

because of the Lax shock inequality. Then the criterion (5) is satisfied trivially.

Kang & Vasseur actually proved that when 1 < k < n (non extreme case), a small shock
cannot be an attractor if we deal with a pair η± = (aη, η). This can be checked by following
the arguments developed in the next paragraph.

3 Intermediate shocks in rich systems

The class of rich systems generalizes that of 2 × 2 systems ; it was introduced in [9]. A
rich system has a lot of entropies. Specifically, if ū ∈ U and Rj(ū) is the integral curve
of the j-th characteristic field passing through ū, then for every set of prescribed functions
φj : Rj(ū) → R vanishing at ū, there exists one and only one entropy coinciding with φj over
Rj for all j = 1, . . . , n.
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In particular, we may specify the Hessian matrix of an entropy at one given point ū, provided
that it is diagonal in the basis {r1(ū), . . . , rn(ū)}. Choosing a positive definite Hessian, the
entropy is strongly convex in some neighbourhood of ū.

Let U be a k-shock. The stable subspace Sr of df(ur)− σ is spanned by r1(ur), . . . , rk(ur).
Likewise, the unstable subspace Ur is spanned by rk+1(ur), . . . , rn(ur). They have dimensions
k and n− k, respectively. The matrix df(u`)− σ has also a stable and an unstable subspaces
S` and U`, but then dimS` = k − 1 and dimU` = n− k + 1.

Because we may choose arbitrarily the Hessian of η+ at ur, among the positive diagonal
matrices in the eigenbasis Br = {r1(ur), . . . , rn(ur)}, we see that the quadratic form q+ associ-
ated with M+r can be any difference qSr 	 qUr, where qUr and qSr are diagonal in Br as well,
and are positive semi-definite, with ker qUr = Ur and ker qSr = Sr respectively. Likewise the
quadratic form q− associated with M−` has the form qS` 	 qU` where each form is diagonal in
the eigenbasis B`, et cætera.

By choosing qS` large enough and then qU` small enough we see that the form Q can be
made negative definite, provided that the restriction of

Qr :=

(
M+r M+r[u]

[u]TM+r [u]TM+r[u]

)
to S` × R is negative definite. Because

Qr = XTMrX, X =
(
In [u]

)
,

this amounts to requiring that Mr is negative definite over S` + R[u], and that the last sum is
a direct sum: [u] 6∈ S`. Finally, choosing qUr large enough and then qSr small enough, we see
that this Mr can be made negative definite over S` ⊕ [u] if and only if (S` ⊕ [u]) ∩ Ur = {0}.
Because the dimensions sum up to n, we obtain

Theorem 3.1 For a rich system, the following properties are equivalent to each other.

• There exist two entropies η±, strongly convex about u`,r respectively, such that the matrix
Q is negative definite (and then the shock U is a local attractor up to a shift for the
corresponding E).

• One has
Rn = S` ⊕ [u]⊕ Ur.

The latter property is nothing but the Liu–Majda’s condition

det(r1(u`), . . . , rk−1(u`), [u], rk+1(ur), . . . , rn(ur)) 6= 0,

under which the evolution of the shock wave (a free boundary-value problem) is locally well-
posed (again, see [7, 8]). It can be viewed as a Lopatinskii condition for the shock stability.

9



Comments

• The result stated in the theorem suggests that every Lax shock satisfying Liu–Majda’s
condition is actually asymptotically stable ; a similar result is known for viscous profiles,
but only for extreme shocks, see [1].

• When we consider an extreme shock, say a 1-shock, Theorem 3.1 actually gives a slightly
better result than that of Kang & Vasseur : if we had to choose η− = aη+ with a large
enough, the attractivity would require the stronger condition

(6) D2ηr
(
(dfr − σ)−1[u], [u]

)
< 0,

which is not needed here. Notice that our result is a genuine improvement only for large
amplitude shocks: if [u] is small, then its direction is approximately that of r1, and (6) is
automatically satisfied.

• Kang & Vasseur’s restricted choice is nevertheless relevant if the system is the limit of
some dissipation process, because then we cannot prove the entropy inequality for every
convex entropy, but only for one of them ; see [11].

• When the shock strength tends to zero, the matrices df(ur,`) − σ become singular. A
good question is whether we can choose η± independently of the shock triplet (u`, ur;σ)
in the neighbourhood of (ū, ū;λk(ū)) when the k-th field is genuine nonlinear. The answer
is positive in the scalar case (convex flux), where we may just choose η+ = η−, a strongly
convex function.

Acknowledgements. We are grateful to the referee for her/his careful reading and useful
comments.
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