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Abstract

We consider a quasilinear elliptic boundary value problem with homogenenous Dirich-
let condition. The data is a convex planar domain. The gradient estimate is needed to
ensure the uniform ellipticity, before applying regularity theory. We establish this estimate
in terms of a distance which is equivalent to the Hilbert metric.

This fills the proof of existence and uniqueness of a solution to this BVP, when the
domain is only convex but not strictly, for instance if it is a polygon.
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1 Introduction

Let Ω be a connected planar open domain. We are interested in the following elliptic boundary-
value problem:

div
∇w√

1 + |∇w|2
+

2

w
√

1 + |∇w|2
= 0 in Ω,(1)

w > 0 in Ω,(2)

w = 0 on ∂Ω.(3)

Because of ellipticity we anticipate that the solution is classical, hence (1) amounts to

(4) (1 + |∇w|2)∆w −D2w : ∇w ⊗∇w +
2

w
(1 + |∇w|2) = 0.

The principal part in (1) is the operator of minimal surfaces. There are at least three
interpretations of the PDE (1) :
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• Equation (1) is the Euler–Lagrange equation for the functional

A[w] =

∫ √
1 + |∇w|2
w2

dx.

The graph x3 = w(x1, x2) is therefore a complete minimal surface in the half-space x3 > 0
endowed with the Poincaré Riemannian metric

ds2 =
dx2

1 + dx2
2 + dx2

3

x2
3

.

The curve ∂Ω is the asymptote of the surface at the “infinity” x3 = 0. We notice that
the total area of the graph is infinite; see [3], especially a remark after Theorem 5.1.

General minimal surfaces associated with the metric ds2, with prescribed asymptote at
infinity have been studied by Anderson [1] in terms of currents. When ∂Ω is not a convex
curve, a minimal surface is not a graph over Ω.

• The hypersurface of revolution in R4 defined by√
x2

3 + x2
4 = w(x1, x2)

satisfies the equation

κ3 =
1

2
(κ1 + κ2),

in terms of its principal curvatures; see [3], especially a remark after Theorem 5.1.

• Our original motivation in [3] was the resolution of a 2-dimensional Riemann problem for
a gas that obeys the equation of state of Chaplygin.

The function φ := 1
2
w2 is the potential of a self-similar irrotational isentropic flow. The

independent variable is a self-similar coordinate x = y
t

, where y, t are the space and
time variables, respectively. The cone defined by y ∈ tΩ is the domain where the flow is
pseudo-subsonic. The velocity and the density are given by

u(y, t) =
y

t
+ (∇xφ)

(y
t

)
, ρ(y, t) =

a√
2φ+ |∇φ|2

for some constant a > 0. The domain Ω can be determined from the Riemann data, by
solving explicitely the flow in its pseudo-supersonic regime.

The data of the BVP is nothing but the domain Ω. The function φ defined in the third item
above helps us to guess for which domains the BVP is likely to be well-posed. The equation
satisfied by φ is

(5) (2φ+ |∇φ|2)∆φ−D2φ : ∇φ⊗∇φ+ 4φ+ |∇φ|2 = 0.

The positivity of φ is the condition that this second-order equation is elliptic. Of course the
ellipticity degenerates at the boundary because of (3). However this degeneracy is of a rather
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strong form, that called Keldysh type; formally, if φ could be extended such that φ < 0 away
from Ω (hyperbolic type), then the characteristic curves would be tangent to ∂Ω. This is the
symptom that if φ ∈ C2(Ω), the normal derivative can be calculated in terms of the curvature
of ∂Ω (again, see [3], Paragraph 5.4) :

(6) κ
∂φ

∂ν
= −1.

Because φ is positive in Ω and vanishes at the boundary, we must have

∂φ

∂ν
≤ 0,

which yields the necessary condition that κ > 0. In other words, Ω needs to be convex, in a
strong sense.

We proved in [3] that this necessary condition is also sufficient:

Theorem 1.1 Let Ω be a bounded convex planar domain, whose boundary ∂Ω is a piecewise-C2

curve, with uniformly strictly positive curvature.
Then there exists one and only one strictly positive solution φ ∈ Lip(Ω) ∩ C∞(Ω) of (5)

satisfying the boundary condition φ = 0.

Of course, w =
√

2φ is the unique solution of our BVP in this situation. We remark that,
although w is smooth in Ω, it is not globally Lipschitz, as it experiences a square root singularity
at the boundary.

Theorem 1.1 raises the question whether a solution exists when Ω is a convex domain but
the curvature vanishes in some part of the boundary ; for instance, we are interested in the case
where the domain is polygonal. Then (6) suggests that even φ will not be globally Lipschitz
over Ω. This observation is meaningful because the Lipschitz estimate of φ was a crucial step
in the proof of Theorem 1.1. We recall now the procedure that we followed in [3] :

Step #1. Construct a sequence of approximate solutions wm. There are several possible
choices, but they need to be consistent with the estimates described below.

Step #2. Equation (1) satisfies the maximum principle. One may compare w to exact solu-
tions wp,r =

√
2φp,r where

φp,r =
1

2
(r2 − |x− p|2).

We obtain upper/lower bounds w±, given by

φ− = inf{φp,r |D(p; r) ⊂ Ω}, φ+ = sup{φp,r |Ω ⊂ D(p; r)},

where D(p; r) is the disk of radius r, with center at p.

The solution is therefore expected to satisfy

(7) φ− ≤ φ ≤ φ+.

The lower bound ensures that w > 0 in Ω, while the upper bound provides an L∞

estimate. Of course, the approximate solutions must be constructed so as to fill the same
inequality, or an approximate form of it.
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Step #3. Because the curvature is everywhere strictly positive (this is the assumption that
we intend to drop below), we have φ± ≡ 0 on the boundary. Therefore (7) ensures that
w is continuous at the boundary, with w = 0 along ∂Ω.

Actually, (7) implies the bounds

0 ≥ ∂φ

∂ν
≥ ∂φ+

∂ν
≥ − 1

κ̄
,

where κ̄ is a lower bound of the κ along ∂Ω. This can be recast as

(8) |∇φ| ≤ 1

κ̄
along ∂Ω.

Step #4. It turns out that if α ∈ (2, 3), then αφ + |∇φ|2 must reach its maximum on the
boundary. This fact and (8) provide the needed a priori Lipschitz estimate.

Step #5. The Lipschitz estimate provides the relative compactness of wm in C(Ω). It also
tells us that (1) is a uniformly elliptic equation. Therefore the regularity theory provides
interior estimates for D2wm and higher derivatives (see [2]). With Ascoli–Arzela Theorem,
this ensures the relative compactness of ∇wm in C(K) for every compact K ⊂ Ω. We may
therefore pass to the limit in a subsequence : the limit w satisfies the PDE. We obtain in
the limit φ− ≤ φ ≤ φ+, which guaranties (2,3).

When the curvature vanishes somewhere, two arguments in the strategy above fall down. On
the one hand, it may happen that φ+ does not vanish on the boundary. When Ω is a triangle,
one finds that φ+ coincide with φP ;R where D(P ;R) is the circumscribed disk ; then φ+ vanishes
only at the vertices. On the other hand, even if κ vanishes only at isolated points and therefore
φ+ ≡ 0 on the boundary, its normal derivative must be infinite at these exceptional points.
Therefore one cannot conclude in the Step #4 above.

The purpose of this article is to provide new a priori estimates for both w and∇w, which are
valid for arbitrary bounded convex domains. The L∞ estimates involve one-dimensional barrier
functions ; this part is far from original. The technique employed to estimate the gradient is
more interesting and, up to our knowledge, rather new. We use the scale invariance of (1) and
compare w to itself, after translation and dilation. We obtain a Lipschitz estimate of the form

| logw(y)− logw(x)| ≤ d(x, y),

where d is a distance on Ω, which is locally equivalent to the Euclidian distance. For the metric
d, ∂Ω is a horizon at infinity ; this ressembles the situation when Ω is equipped with the Hilbert
distance, although our metric does not coincide with the latter.

With these estimates in hands, we may proceed as in Step #5 above. Passing to the limit
from uniformly convex domains to arbitrary ones, we obtain the more general conclusion :

Theorem 1.2 Let Ω be a bounded planar convex domain. Then the boundary-value problem
(1,2,3) admits one and only one solution w ∈ C(Ω) ∩ C∞(Ω).
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Plan of the paper: We construct barrier functions in Section 2. Even if they are new with
respect to [3], they are hardly surprising. We introduce our (new ?) distance on convex domains
in Section 3, and compare it with the Euclidian distance and the Hilbert metric. Our most
original idea is the Lipschitz estimate, presented in Section 4. We use both estimates to prove
Theorem 1.2 in Section 5.

2 Barrier functions, L∞-estimate

Let y := x · ξ be a one-dimensional variable, where ξ is a unit vector. The function x 7→ W (y)
solves (1) if and only if

(9)
1

2
WW ′′ +W ′2 + 1 = 0.

Lemma 2.1 Let I = (a, b) be a non-void interval. There exists a positive solution W I of (9)
over I, with the property that W I(a) = W I(b) = 0.

Proof
Let v(t) be the solution of the Cauchy problem

v′ =
√

1− 9v4/3 , v(0) = 0.

The function v is increasing from 0 to the maximum 1
3
√

3
reached at

y∗ =

∫ 1
3
√
3

0

dv√
1− 9v4/3

=
1

3
√

3

∫ 1

0

du√
1− u4/3

.

The function v can be extended over (0, 2y∗) by v(2y∗ − y) = v(y), as a solution of

v′2 + 9v4/3 = 1.

Then z := v1/3 satisfies z′2 + 1 = 1
9
z−4, or

z4z′2 + z4 =
1

9
.

Differentiating once, we obtain
1

2
zz′′ + z′2 + 1 = 0.

There remains to define

W I(y) =
b− a
2y∗

z

(
2y∗

y − a
b− a

)
.

A more careful analysis provides a positive solution such that W (a) = W (b) = 0, and
W (a+ b− y) = W (y). We don’t need it to establish the following upper bound:
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Corollary 2.1 Let Ω be a bounded planar convex domain. Then there exists a super-solution
w+ ∈ C(Ω) of (1), positive in Ω and vanishing along ∂Ω. It satisfies

w+ ≤ diam Ω

2y∗
√

3
.

Proof
Given a direction ξ ∈ S1, let us define

a(ξ) = inf
x∈Ω

x · ξ, b(ξ) = sup
x∈Ω

x · ξ.

Let us denote I(ξ) = (a(ξ), b(ξ)). Lemma 2.1 provides a solution of (1) of the form wξ(x) =
W I(ξ)(x · ξ). Then

w+(x) = inf
ξ
wξ(x)

is a continuous positive super-solution of (1).
The bound

w+(x) ≤ diamΩ

2y∗
z

(
min
ξ

x · ξ − a(ξ)

b(ξ)− a(ξ)

)
shows that w+(x)→ 0 as x→ x̄ ∈ ∂Ω (consider the inward unit normal at x̄).

Of course, if Ω is a polygon, a super-solution vanishing at the boundary can be defined as
the minimum of finitely many one-dimensional solutions of (1).

3 A distance over a bounded convex domain

As above, Ω is a non-void, bounded convex open domain. The fact that Ω is 2-dimensional is
not essential here.

Given two points p, q ∈ Ω, Ω − p contains a ball centered at the origin and is therefore
absorbing. Thus there exists some λ > 0 such that Ω − q ⊂ λ · (Ω − p). If µ > λ, then also
Ω − q ⊂ µ · (Ω − p), by convexity. Likewise, the infimum m(p, q) of all such numbers satisfies
the same inclusion, by continuity. Hence the set of these numbers is of the form [m(p, q),+∞).
Considering the volumes, we have

|Ω| = |Ω− q| ≤ m(p, q)2|Ω− p| = m(p, q)2|Ω− q|,

which implies

(10) m(p, q) ≥ 1.

The equality in (10) stands only if
Ω− q = Ω− p,
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that is if p = q.
If r ∈ Ω is a third point, then

Ω− r ⊂ m(q, r) · (Ω− q) ⊂ m(q, r)m(p, q) · (Ω− p)

and therefore
m(p, r) ≤ m(q, r)m(p, q).

All this shows that the logarithm of m is a non-negative function over Ω × Ω, which vanishes
only along the diagonal and satisfies the triangle inequality. In other words, the function

dΩ(p, q) = logm(p, q) + logm(q, p)

is a distance over Ω.

Our distance is finer than the Euclidian one:

Proposition 3.1 Denote M the diameter of Ω. Then

|q − p| ≤ M

2
dΩ(p, q).

Proof
Let J = (α, β) be the segment in Ω passing through p and q, with α, β ∈ ∂Ω. We may

assume that α, p, q, β are ordered in that way along the line, and we use the same order along
J below. If

Ω− q ⊂ λ · (Ω− p),

then J − q ⊂ λ · (J − p), which means α− q ≥ λ(α− p), that is

q − p ≤ (q − α)

(
1− 1

λ

)
.

We deduce

|q − p| ≤M

(
1− 1

m(p, q)

)
≤M logm(p, q).

The opposite inequality is non-uniform at the boundary:

Proposition 3.2 The following inequality holds true:

dΩ(p, q) ≤ log

(
1 +

|q − p|
dist(p, ∂Ω)

)
+ log

(
1 +

|q − p|
dist(q, ∂Ω)

)
≤ |q − p|

(
1

dist(p, ∂Ω)
+

1

dist(q, ∂Ω)

)
,

where dist(·, ∂Ω) denotes the Euclidian distance to the boundary.
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Proof
One has

Ω− q = p− q + Ω− p ⊂ D(0; |q − p|) + Ω− p ⊂
(
|q − p|

dist(p, ∂Ω)
+ 1

)
· (Ω− p),

whence

m(p, q) ≤ |q − p|
dist(p, ∂Ω)

+ 1.

We conclude with the inequality log(1 + t) ≤ t.

Using the fact that the inclusion between two disks D(P ; r) ⊂ D(Q; s) is equivalent to
s− r ≥ |P −Q|, we calculate easily the distance associated with the unit disk D :

dD(p, q) = 2 log

(
1− p · q +

√
|q − p|2 − |p|2|q|2 sin2 θ

)
− log(1− |p|2)− log(1− |q|2),

where θ denotes the angle between the vectors p and q. When |q| → 1, the first term above is
equivalent to log(2− 2|p| cos θ). If p is kept fixed, we thus have

dD(p, q) ∼ log
1

1− |q|
→ +∞.

Therefore the boundary is the infinite horizon of D. In other words, (D, dD) is a complete
metric space.

For a general domain, we have

Proposition 3.3 The following inequality holds true:

dΩ(p, q) ≥ | log dist(q, ∂Ω)− log dist(p, ∂Ω)|.

In particular, (Ω, dΩ) is a complete metric space.

Proof
Denote r = dist(q, ∂Ω) and s = dist(p, ∂Ω). We have

D(0; r) ⊂ Ω− q ≤ m(p, q) · (Ω− p),

whence

D

(
0;

r

m(p, q)

)
⊂ Ω− p.

We deduce
m(p, q) ≥ r

s
, or logm(p, q) ≥ (log r − log s)+.
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Propositions 3.2 and 3.3 show that when p is kept fixed and q tends to ∂Ω, then dΩ(p, q)
blows up like

log
1

dist(q, ∂Ω)
.

When Ω = (a, b) is one-dimensional, our distance coincides with that defined by Hilbert:

d(a,b)(p, q) =

∣∣∣∣log
b− q
b− p

p− a
q − a

∣∣∣∣ .
For a convex domain Ω of arbitrary dimension, the Hilbert distance dH(p, q) between two points
p, q ∈ Ω is defined as dJ(p, q) where J = Ω ∪ Aff(pq) is the segment obtained by intersecting
Ω with the line passing through p and q. The coincidence of dΩ with dH holds true only in
one space dimension. In higher dimension, it fails, as shown by our formula above for a disk.
Instead, we have

Proposition 3.4 For general bounded convex domains, we have dH ≤ dΩ, where dH denotes
the Hilbert metric.

Proof
Let L be an affine subspace, and define ω := L∩Ω. If p, q ∈ ω and if Ω−q ⊂ λ ·(Ω−p), then

also ω−q ⊂ λ ·(ω−p), because L−q = L−p is a vector space. We deduce mω(p, q) ≤ mΩ(p, q),
hence dω(p, q) ≤ dΩ(p, q)

Choose L the line passing through p an q and remark that dL(p, q) is nothing but dH(p, q).

4 Lipschitz estimate

Suppose w is a solution of (1,2,3) in a bounded convex planar domain Ω.
Observe that the equation (1) is translation invariant as well as dilation invariant: if r ∈ R2

and µ > 0, then

x 7→ 1

µ
w(µx+ r)

is also a solution.
Given p, q ∈ Ω, we thus define

w̄(x) := λw

(
p+

x− q
λ

)
, with λ = m(p, q),

which is a positive solution of (1) in the domain

q + λ(Ω− p).

Because the latter contains Ω, w̄ is a super-solution of (1,2,3) and we infer

w ≤ w̄.
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Evaluating this inequality at q, we obtain

w(q) ≤ w̄(q) = m(p, q)w(p),

that is
(logw(q)− logw(p))+ ≤ logm(p, q).

This yields our Lipschitz estimate:

Proposition 4.1 Let Ω be a bounded convex planar domain, and w be a solution of the BVP
(1,2,3) in Ω. Then we have

| logw(q)− logw(p)| ≤ dΩ(p, q).

Using Proposition 3.2, we deduce

Corollary 4.1 We have the gradient estimate

|∇w(p)| ≤ 2w(p)

dist(p; ∂Ω)
.

When the boundary has a positive curvature, we know that w2 is Lipschitz up to the boundary,
with non-zero normal derivative. The estimate above is thus improved into

|∇w(p)| = O

(
1√

dist(p; ∂Ω)

)
.

For general convex domain, the accuracy of Corollary 4.1 is unclear. The barrier function w+

constructed in Section 2 satisfies a slightly better bound

|∇w+(p)| = O

(
1

(dist(p; ∂Ω))2/3

)
.

5 Proof of Theorem 1.2

5.1 Outer approximation of Ω by strictly convex domains

We begin by constructing a one-parameter family of bounded convex domains Ωε (ε > 0), with
three properties:

1. The boundary ∂Ωε is a C1-curve, piecewise C2. Its curvature is bounded below by ε.

2. The family ε 7→ Ωε is decreasing for the inclusion.

3. More precisely
Ωε ⊂ Ω +D(0;h(ε)), lim

ε→0+
h(ε) = 0.
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To begin with, we define U ε as the intersection of all disks D(p; ε+ 1
ε
) such that

Ω ⊂ D(p;
1

ε
).

Each of this disk is convex, with a curvature less than ε, and so is their intersection. The
boundary has at most denumerably many vertices. Each vertex, being at a distance ≥ ε of Ω,
can be smoothed out by placing a bitangent arc of circle of radius ε

2
. This is done in a unique

way and yields a domain Ωε ⊂ U ε which satisfies the requirements above.

5.2 A converging approximation

According to [3], Theorem 5.1, the BVP (1,2,3) admits a unique solution wε ∈ C(Ω) ∩ C∞(Ω).
If ε < η then wη is a super-solution to the BVP in Ωε and thus wε ≤ wη by the maximum
principle. The map ε 7→ wε is therefore non-decreasing.

A positive lower bound is the one established in [3]. It uses the solutions wp,r of (1) defined
in Step #2 above. If D(p; r) ⊂ Ω, wp,r is a sub-solution for all these BVPs and we infer
wε ≥ wp,r in D(p; r). We deduce

wε ≥ w− := sup{wp,r |D(p; r) ⊂ Ω}.
If K is a compact subset of Ω, this lower bound is uniformly positive over K.

By monotonicity, the limit
w(x) = lim

ε→0+
wε(x)

exists and satifies w− ≤ w. Therefore w > 0 in Ω. On the other hand, passing to the limit in
the bound wε ≤ w+

ε obtained in Section 2, yields the upper bound w ≤ w+, implying

(11) lim
d(x;∂Ω)→0

w(x) = 0.

To each wε, we apply the L∞ estimate (Section 2) and the Lipschitz estimate (Corollary
4.1) above. This shows that the operator

Lε = (1 + |∇wε|2)∆−∇wε ⊗∇wε : D2

is uniformly (in ε and x) elliptic in Ω′, provided Ω′ b Ω.

C2,α-Estimates. Let us fix a sub-domain Ω′ b Ω. Our Lipschitz estimate tells us that there
exists a finite number $ such that |∇ε(x)| ≤ $ for every ε < η and x ∈ Ω′. In this region, wε
is therefore a solution of the quasilinear uniformly elliptic equation

(1 + |f(∇wε)|2)∆wε −D2wε : f(∇wε)⊗ f(∇wε) +
2

wε
(1 + |∇wε|2) = 0,

where

f(p) =

{
p, if |p| ≤ $,
$
|p|

(
2− $

|p|

)
p, if |p| ≥ $.

We may therefore apply Theorem 13.6 in [2] to derive uniform estimates of D2wε in Cα(Ω′′)
whenever Ω′′ b Ω′.
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Concluding. Applying repeatedly Theorem 6.17, we actually obtain uniform estimates of
higher derivatives in every sub-domain ω b Ω. This ensures that w ∈ C∞(Ω). With (11), we
have in particular w ∈ C(Ω). Finally, wε → w in C∞(Ω) and we may pass to the limit in

(1 + |∇wε|2)∆wε −D2wε : ∇wε ⊗∇wε +
2

wε
(1 + |∇wε|2) = 0

and infer that w solves (1). This proves the existence part of Theorem 1.2. The uniqueness is
just a consequence of the maximum principle, as in [3].

Acknowledgement. I am indebted to the referee for his/her careful reading and pointing
out the correct reference for the regularity estimates.
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