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THE LAGRANGIAN CONLEY CONJECTURE

MARCO MAZZUCCHELLI

Abstract. We prove a Lagrangian analogue of the Conley conjecture: given a 1-periodic
Tonelli Lagrangian with global flow on a closed configuration space, the associated Euler-
Lagrange system has infinitely many periodic solutions. More precisely, we show that
there exist infinitely many contractible integer periodic solutions with a priori bounded
mean action and either infinitely many of them are 1-periodic or they have unbounded
period.
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1. Introduction

An old problem in classical mechanics is the existence and the number of periodic orbits
of a mechanical system. As it is well known, there are two dual formulations of classical
mechanics, namely the Lagrangian one and the Hamiltonian one. If a system is constrained
on a manifold, sayM , then it is described by a (possibly time-dependent) Lagrangian defined
on the tangent bundle of M or, dually, by a Hamiltonian defined on the cotangent bundle
of M . A classical assumption is that a Lagrangian function L : R × TM → R is Tonelli
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with global flow. This means that L has fiberwise superlinear growth, positive definite
fiberwise Hessian, and every maximal integral curve of its associated Euler-Lagrange vector
field has all of R as its domain of definition. The Tonelli class is particularly important
in Lagrangian dynamics: in fact, whenever a Lagrangian function is fiberwise convex, its
Legendre transform defines a diffeomorphism between the tangent and cotangent bundles of
the configuration space if and only if the Lagrangian function belongs to the Tonelli class.
In other words, the Tonelli Lagrangians constitute the broadest family of fiberwise convex
Lagrangian functions for which the Lagrangian-Hamiltonian duality, given by the Legendre
transform, occurs. Furthermore, the Tonelli assumptions imply existence and regularity
results for action minimizing orbits joining two given points on the configuration space. For
a comprehensive reference on Tonelli Lagrangians, we refer the reader to the forthcoming
book by Fathi [Fa].

The problem of the existence of infinitely many periodic orbits, for Hamiltonian systems
on the cotangent bundle of closed manifolds, is a non-compact version of the celebrated
Conley conjecture [Co], which goes back to the eighties. In its original form, the conjecture
states that every Hamiltonian diffeomorphism on the standard symplectic torus T

2n has
infinitely many periodic points. Under a non-degeneracy assumption on the periodic orbits,
the conjecture was soon confirmed by Conley and Zehnder [CZ2], and then extended to
aspherical closed symplectic manifolds in 1992 by Salamon and Zehnder [SZ]. The full
conjecture was established in 2004 by Hingston [Hi] for the torus case, and in 2006 by
Ginzburg [Gi] for the aspherical closed case. Other related results are contained in [FS, GG,
Gü, HZ, Sc, Vi2].

In the Lagrangian formulation, the periodic orbits are extremal points of the Lagrangian
action functional, and several sophisticated methods from Morse theory may be applied in
order to assert their existence. However, these methods only work for classes of Lagrangians
that are significantly smaller than the Tonelli one. Along this line, in 2000 Long [Lo2]
proved the existence of infinitely many periodic orbits for Lagrangian systems associated to
fiberwise quadratic Lagrangians on the torus T

n. More precisely, he proved the result for
C3 Lagrangian functions L : R/Z× TTn → R of the form

L (t, q, v) = 〈A(q)v, v〉 + V (t, q), ∀(t, q, v) ∈ R/Z× TTn,

where A : Tn → GL(n) takes values in the space of positive definite symmetric matrices,
〈·, ·〉 is the standard flat Riemannian metric on T

n and V : R/Z×T
n → R is a C3 function.

Recently, Lu [Lu] extended Long’s proof in many directions, in particular to the case of a
general closed configuration space. Other related results concerning autonomous Lagrangian
systems are contained in [CT, LL, LW].

In 2007, Abbondandolo and Figalli [AF] showed how to apply some techniques from
critical point theory in the Tonelli setting. They proved that, on each closed configuration
space with finite fundamental group, every Lagrangian system associated to a 1-periodic
Tonelli Lagrangian with global flow admits an infinite sequence of 1-periodic solutions with
diverging action. In this paper, inspired by their work and by Long’s one, we address
the problem of the existence of infinitely many periodic solutions of a 1-periodic Tonelli
Lagrangian system on a general closed configuration space.

1.1. Main result. Our main result is the following.
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Theorem 1.1. LetM be a smooth closed manifold, L : R/Z×TM → R a smooth 1-periodic
Tonelli Lagrangian with global flow and a ∈ R a constant greater than

max
q∈M

{∫ 1

0

L (t, q, 0) dt

}
.(1.1)

Assume that only finitely many contractible 1-periodic solutions of the Euler-Lagrange sys-
tem of L have action less than a. Then, for each prime p ∈ N, the Euler-Lagrange system
of L admits infinitely many contractible periodic solutions with period that is a power of p
and mean action less than a.

Here it is worthwhile to point out that the infinitely many periodic orbits that we find
are geometrically distinct in the phase-space R/Z×TM of our system, and the mean action
of an orbit is defined as the usual Lagrangian action divided by the period of the orbit.

Theorem 1.1 can be equivalently stated in the Hamiltonian formulation. In fact, it is well
known that the Legendre duality sets up a one-to-one correspondence

{
L : R/Z× TM → R

Tonelli

}
←→

{
H : R/Z× T∗M → R

Tonelli

}
,

where two correspondent functions L and H satisfy the Fenchel relations

H (t, q, p) = max {p(v)−L (t, q, v) | v ∈ TqM} , ∀(t, q, p) ∈ T∗M,

L (t, q, v) = max
{
p(v)−H (t, q, p) | p ∈ T∗

qM
}
, ∀(t, q, v) ∈ TM.

(1.2)

Here, the definition of Tonelli Hamiltonian is the cotangent bundle analogue of the one of
Tonelli Lagrangian: the Hamiltonian H : R/Z×T∗M → R is Tonelli when it has fiberwise
superlinear growth and positive definite fiberwise Hessian. The Legendre duality also sets
up a one-to-one correspondence between the (contractible) integer-periodic solutions of the
Euler-Lagrange system of L and the (contractible) integer-periodic orbits of the Hamilton
system of the dual H . Therefore theorem 1.1 can be translated into the following.

Theorem 1.2 (Hamiltonian formulation). Let M be a smooth closed manifold, H : R/Z×
T∗M → R a smooth 1-periodic Tonelli Hamiltonian with global flow and a ∈ R a constant
greater than

−min
q∈M

{∫ 1

0

min
p∈T∗

qM
{H (t, q, p)} dt

}
.

Assume that only finitely many contractible 1-periodic solutions of the Hamilton system of
H have (Hamiltonian) action less than a. Then, for each prime p ∈ N, the Hamilton system
of H admits infinitely many contractible periodic solutions with period that is a power of
p and (Hamiltonian) mean action less than a.

Let Φt
H

be the Hamiltonian flow of H , i.e. if Γ : R→ T∗M is a Hamiltonian curve then
Φt

H
(Γ(0)) = Γ(t) for each t ∈ R. A Hamiltonian curve Γ is τ -periodic, for some integer τ , if

and only if its starting point Γ(0) is a τ -periodic point of the Hamiltonian diffeomorphism
ΦH = Φ1

H
, i.e.

ΦH ◦ ... ◦ ΦH︸ ︷︷ ︸
τ times

(Γ(0)) = Γ(0).

Therefore, theorem 1.2 readily implies the Conley conjecture for Tonelli Hamiltonian systems
on the cotangent bundle of a closed manifold.
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Corollary 1.3. Let M be a smooth closed manifold and H : R/Z×T∗M → R a 1-periodic
Tonelli Hamiltonian with global flow Φt

H
. Then the Hamiltonian diffeomorphism Φ1

H
has

infinitely many periodic points. �

We shall prove theorem 1.1 by a Morse theoretic argument, inspired by a work of Long
[Lo2]. The rough idea is the following: assuming by contradiction that the Euler-Lagrange
system of a Tonelli Lagrangian L admits only finitely many integer periodic solutions as
in the statement, then it is possible to find a solution whose local homology persists under
iteration, in contradiction with a homological vanishing property (analog to the one proved
by Bangert and Klingenberg [BK] for the geodesics action functional).

Under the Tonelli assumptions we need to deal with several problems while carrying out
the above scheme of the proof. These problems are mainly due to the fact that a functional
setting in which the Tonelli action functional is both regular (say C1) and satisfies the Palais-
Smale condition, the minimum requirements to perform Morse theory, is not known. To
deal with these lacks, we apply the machinery of convex quadratic modifications introduced
by Abbondandolo and Figalli [AF]: the idea consists in modifying the involved Tonelli
Lagrangian outside a sufficiently big neighborhood of the zero section of TM , making it
fiberwise quadratic there. If we fix a period τ ∈ N and an action bound, a suitable a priori
estimate on the τ -periodic orbits with bounded action allows to prove that these orbits must
lie in the region where the Lagrangian is not modified. Some work is needed in order to
apply this argument in our proof, since the mentioned a priori estimate holds only in a fixed
period τ , while we look for orbits with arbitrarily high period.

Moreover, we have to deal with some regularity issues in applying the machinery of critical
point theory to the action functionals of the modified Lagrangians. In fact, the natural
ambient to perform Morse theory with these functionals is the W 1,2 loop space, over which
they are C1 and satisfy the Palais-Smale condition. However, all the arguments that involve
the Morse lemma (such as the vanishing of the local homology groups in certain degrees) are
valid only for C2 functionals. We will show that these arguments are still valid, developing
an analog of the classical broken geodesic approximation of the loop space: we shall prove
that the action sublevels deformation retract onto finite dimensional submanifolds of the
loop space, over which the action functionals are C2.

1.2. Organization of the paper. In section 2 we set up the notation and we give most of the
preliminary definitions and results. In the subsequent three sections we deal with Lagrangian
functions that are convex quadratic-growth (the precise definition is given in section 2.2).
In section 3 we introduce a discretization technique for the action functional. In section 4
we prove an abstract Morse-theoretic result, which will be applied to the action functional.
In section 5, we prove a vanishing result for elements of the relative homology groups of
pairs of action sublevels under the iteration map. The three sections 3, 4 and 5 can be read
independently from one another, with the only exception of subsection 4.4, which requires
section 3. In section 6 we introduce the machinery of convex quadratic modifications of
Tonelli Lagrangians, and we apply it to build suitable local homology groups and to prove a
homological vanishing result for the Tonelli action. Finally, in section 7 we prove theorem 1.1.

Acknowledgments. I am indebted to Alberto Abbondandolo for many fruitful conversa-
tions. This work was largely written when I was a visitor at Stanford University. I wish
to thank Yakov Eliashberg for his kind hospitality.
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2. Preliminaries

Throughout the paper, M will be a smooth N -dimensional closed manifold, the configu-
ration space of a Lagrangian system, over which we will consider an arbitrary Riemannian
metric 〈·, ·〉·.

2.1. The free loop space. We recall that a free loop space of M is, loosely speaking, a set
of maps from the circle T := R/Z to M . Common examples are the spaces C(T;M) or
C∞(T;M). For our purposes, a suitable free loop space will be W 1,2(T;M), which is the
space of absolutely continuous loops in M with square-integrable weak derivative. It is
well known that this space admits an infinite dimensional Hilbert manifold structure, for
the reader’s convenience we briefly sketch this argument here (see [Kl, chapter 1] for more
details). First of all, we recall that that the inclusions

C∞(T;M) ⊆W 1,2(T;M) ⊆ C(T;M)

are dense homotopy equivalences. For each γ ∈W 1,2(T;M) we denote by W 1,2(γ∗TM) the
separable Hilbert space of W 1,2-sections of the pull-back vector bundle γ∗TM . Its inner
product, that we denote by 〈〈·, ·〉〉γ , is given by

〈〈ξ, ζ〉〉γ :=

∫ 1

0

[
〈ξ(t), ζ(t)〉γ(t) + 〈∇tξ,∇tζ〉γ(t)

]
dt, ∀ξ, ζ ∈W 1,2(γ∗TM),

where ∇t denotes the covariant derivative with respect to the Levi-Civita connection on the
Riemannian manifold (M, 〈·, ·〉·). Now, let ǫ > 0 be a constant smaller than the injectivity
radius of (M, 〈·, ·〉·), and Uǫ := {v ∈ TqM | q ∈M, |v|q < ǫ}. We define a bijective map

expγ :W 1,2(γ∗Uǫ)→ Uγ ⊆W 1,2(T;M)

as

(expγ ξ)(t) := exp(ξ(t)), ∀ξ ∈W 1,2(γ∗Uǫ), t ∈ T,

where W 1,2(γ∗Uǫ) ⊆ W 1,2(γ∗TM) is the open set of sections that take values inside Uǫ.
Then, the above mentioned differentiable structure on W 1,2(T;M) is induced by the atlas{
exp−1

γ : Uγ →W 1,2(γ∗Uǫ) | γ ∈ C∞(T;M)
}
. The tangent space of W 1,2(T;M) at a loop

γ is given by W 1,2(γ∗TM), and the above defined 〈〈·, ·〉〉· is a Hilbert-Riemannian metric
on W 1,2(T;M). By means of this metric, W 1,2(T;M) turns out to be a complete Hilbert-
Riemannian manifold.

Remark 2.1. Notice that, whenever a smooth loop γ is contractible, by means of a trivial-
ization of γ∗TM we can identify W 1,2(γ∗Uǫ) with an open neighborhood of 0 in the Hilbert
space W 1,2(T;RN ).

For each τ ∈ N, let T[τ ] := R/τZ. Extending the definition given before, we introduce the
τ -periodic free loop space W 1,2(T[τ ];M), which is a complete Hilbert-Riemannian manifold
with respect to the metric 〈〈·, ·〉〉· given by

〈〈ξ, ζ〉〉γ :=
1

τ

∫ τ

0

[
〈ξ(t), ζ(t)〉γ(t) + 〈∇tξ,∇tζ〉γ(t)

]
dt,

∀γ ∈W 1,2(T[τ ];M), ξ, ζ ∈W 1,2(γ∗TM).

For each n ∈ N, we define the nth-iteration map

ψ[n] :W 1,2(T[τ ];M) →֒W 1,2(T[nτ ];M)
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by ψ[n](γ) := γ[n] for each γ ∈ W 1,2(T[τ ];M), where γ[n] is given by the composition of γ
with the n-fold covering map of the circle T

[τ ]. Analogously, for each γ ∈ W 1,2(T[τ ];M),
we define the nth-iteration map

Ψ[n] :W 1,2(γ∗TM) →֒ W 1,2(γ[n]∗TM),

which is a linear isometric embedding. It is straightforward to verify that

expγ[n] ◦Ψ[n] = ψ[n] ◦ expγ
and

dψ[n](γ) = Ψ[n],

which implies that ψ[n] is a smooth isometric embedding.

2.2. Lagrangian settings. The elements of the tangent bundle TM will be denoted by (q, v),
where q ∈M and v ∈ TqM . Let L : T×TM → R be a smooth 1-periodic Lagrangian. We
will be interested in integer periodic solutions γ : R →M of the Euler-Lagrange system of
L , which can be written in local coordinates as

d

dt

∂L

∂vj
(t, γ(t), γ̇(t)) − ∂L

∂qj
(t, γ(t), γ̇(t)) = 0, j = 1, ..., N.(2.1)

We denote by ΦtL : TM
≃−→TM the associated Euler-Lagrange flow, i.e.

ΦtL (γ(0), γ̇(0)) = (γ(t), γ̇(t)),

where γ : [0, t]→M is a solution of (2.1).
In this paper we will consider two classes of 1-periodic Lagrangian functions. A smooth

Lagrangian L : T× TM → R is called Tonelli when:

(T1) the fiberwise Hessian of L is positive definite, i.e.

N∑

i,j=1

∂2L

∂vi ∂vj
(t, q, v)wiwj > 0,

for all (t, q, v) ∈ T× TM and w =
∑N

i=1 wi
∂
∂qi
∈ TqM with w 6= 0;

(T2) L is fiberwise superlinear, i.e.

lim
|v|q→∞

L (t, q, v)

|v|q
=∞,

for all (t, q) ∈ T×M .

Moreover, we will always require that each Tonelli Lagrangian L further satisfies:

(T3) the Euler-Lagrange flow of L is global, i.e. ΦL : R× TM → TM .

The second class of Lagrangians that we will be interested in consists of smooth functions
L : T× TM → R satisfying:

(Q1) there is a positive constant ℓ0 such that

N∑

i,j=1

∂2L

∂vi ∂vj
(t, q, v)wiwj ≥ ℓ0|w|2q ,

for all (t, q, v) ∈ T× TM and w =
∑N

i=1 wi
∂
∂qi
∈ TqM ;
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(Q2) there is a positive constant ℓ1 such that
∣∣∣∣
∂2L

∂vi ∂vj
(t, q, v)

∣∣∣∣ ≤ ℓ1,
∣∣∣∣
∂2L

∂qi ∂vj
(t, q, v)

∣∣∣∣ ≤ ℓ1(1 + |v|q),
∣∣∣∣
∂2L

∂qi ∂qj
(t, q, v)

∣∣∣∣ ≤ ℓ1(1 + |v|
2
q),

for all (t, q, v) ∈ T× TM and i, j = 1, ..., N .

In the following we will informally refer to this latter class as the class of convex quadratic-
growth Lagrangians. Notice that, up to changing the constants ℓ0 and ℓ1, the above con-
ditions (Q1) and (Q2) are independent of the choice of the Riemannian metric and of the
system of local coordinates used to express them. Moreover, assumption (Q1) implies that
L is a Tonelli Lagrangian, hence this second class is contained in the first.

For each τ ∈ N, we define the mean action functional A [τ ] :W 1,2(T[τ ];M)→ R by

A
[τ ](γ) =

1

τ

∫ τ

0

L (t, γ(t), γ̇(t)) dt.

In the following we will simply call A [τ ] themean action or just the action, and in period 1 we
will omit the superscript, i.e. A := A [1]. Since for all n ∈ N we have A [nτ ] ◦ψ[n] = A [τ ], if
we seeW 1,2(T[τ ];M) as a submanifold ofW 1,2(T[nτ ];M) via the embedding ψ[n], then A [τ ]

is the restriction of A [nτ ] toW 1,2(T[τ ];M). It is well known that the τ -periodic solutions of
the Euler-Lagrange system (2.1) are precisely the extremals of A [τ ]. These extremals turn
out to be smooth, as it is guaranteed by the Tonelli assumptions. If the involved Lagrangian
L is convex quadratic-growth, the associated action functional A [τ ] has good properties:
the fact that L grows at most quadratically guarantees that A [τ ] is C1 and twice Gateaux-
differentiable, while the fact that L grows at least quadratically implies that A [τ ] satisfies
the Palais-Smale condition (see [Be] or [AS2, propositions 2.2 and 2.5]). However, A [τ ] is
C2 if and only if the restriction of L to each fiber of TM is a polynomial of degree at most
2 (see [AS2, proposition 2.3]).

Remark 2.2. For simplicity, in this paper, all the Lagrangian functions are assumed to be
smooth, i.e. C∞. This assumption can be easily weakened, but then one would have to care
about technical issues due to the fact that the solutions of the Euler-Lagrange system would
not be C∞ anymore (they are Cr whenever the Lagrangian is Cr).

2.3. The Conley-Zehnder-Long index pair. Let L : T × TM → R be a 1-periodic Tonelli
Lagrangian. We denote by ∂vL (t, q, v) ∈ T∗

qM the fiberwise derivative of L at (t, q, v),
which is given in local coordinates by

∂vL (t, q, v) =
N∑

j=1

∂L

∂vj
(t, q, v) dqj .

Under the Tonelli assumptions it is well known that the Legendre transform Leg : T×TM →
T× T∗M , given by

Leg(t, q, v) = (t, q, ∂vL (t, q, v)), ∀(t, q, v) ∈ T× TM,

is a diffeomorphism (see [Fa, theorem 3.4.2]). This diffeomorphism allows to define a Hamil-
tonian H : T× T∗M → R by

H (t,Leg(t, q, v)) = ∂vL (t, q, v)v −L (t, q, v), ∀(t, q, v) ∈ T× TM.
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The functions L and H are said to be Legendre-dual, and they fulfill the Fenchel rela-
tions (1.2).

The cotangent bundle T∗M , whose elements will be denoted by (q, p), has a canonical
symplectic form ω given in local coordinates by

ω =

N∑

j=1

dqj ∧ dpj .

The (time-dependent) Hamiltonian vector field XH is defined as usual by XH yω = dH ,
and its flow Φt

H
is called the Hamiltonian flow of H . It is well known that this latter is

conjugated to the Euler-Lagrange flow Φt
L

by the Legendre transform. In other words, a
curve γ : [0, τ ] → M is a solution of the Euler-Lagrange system of L if and only if the
curve (γ, ρ) : [0, τ ] → T∗M , where ρ(t) := ∂vL (t, γ(t), γ̇(t)), is an integral curve of the
Hamiltonian vector field XH . In particular, there is a one-to-one correspondence between
the τ -periodic Euler-Lagrange orbits of L and the τ -periodic Hamiltonian orbits of H .

Let TverT∗M denote the vertical subbundle of TT∗M , i.e.

Tver
(q,p)T

∗M = ker(dτ∗(q, p)), ∀(q, p) ∈ T∗M,

where τ∗ : T∗M → M is the projection of the cotangent bundle onto the base manifold.
Consider a τ -periodic solution γ of the Euler-Lagrange system of L and its Hamiltonian
correspondent Γ = (γ, ∂vL (·, γ, γ̇)). If γ is contractible, Γ is contractible as well, and there
exists a symplectic trivialization

φ : T[τ ] ×R
2N ≃−→Γ∗TT∗M

that maps the vertical Lagrangian subspace V
N := {0} × R

N ⊂ R
2N to the vertical sub-

bundle Γ∗TverT∗M , more precisely

φ(T[τ ] ×V
N ) = Γ∗TverT∗M,(2.2)

see [AS1, lemma 1.2] for a proof. By means of this trivialization, the differential of the
Hamiltonian flow along Γ defines a path Γφ : [0, τ ]→ Sp(2N) in the symplectic group, given
by

Γφ(t) := φ(t, ·)−1 ◦ dΦtH (Γ(0)) ◦ φ(0, ·), ∀t ∈ [0, τ ].

Notice that Γφ(0) is the identity matrix, hence Γφ has a well defined Conley-Zehnder index
ι(Γφ) ∈ Z. We denote by ν(Γφ) ∈ N ∪ {0} the geometric multiplicity of 1 as an eigenvalue
of Γφ (in particular, we set ν(Γφ) = 0 if 1 is not an eigenvalue of Γφ).

Remark 2.3. Here, we are using the generalized notion of Conley-Zehnder index that is due
to Long, see [Lo1]. In case ν(Γφ) = 0, the index ι(Γφ) coincides with the usual Conley-
Zehnder index, see [CZ, SZ].

The pair (ι(Γφ), ν(Γφ)) does not depend on the chosen symplectic trivialization φ, as long
as this latter satisfies (2.2), see [AS1, lemma 1.3]. Hence, we can define the Conley-Zehnder-
Long index pair of the periodic orbit γ as (ι(γ), ν(γ)) := (ι(Γφ), ν(Γφ)). This pair satisfies
the following iteration inequalities

n ι̂(γ)−N ≤ ι(γ[n]),
ι(γ[n]) + ν(γ[n]) ≤ n ι̂(γ) +N,

∀n ∈ N(2.3)

where N = dim(M) as before, and ι̂(γ) ∈ R is mean Conley-Zehnder index of γ, given by

ι̂(γ) = lim
n→∞

ι(γ[n])

n
.
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We refer the reader to [LL1, theorem 1] or [LL2, theorem 1.1] for more details on these
inequalities.

If the Lagrangian L also happens to be convex quadratic-growth, as we have already
remarked in the previous section, its action functional A [τ ] is C1 and twice Gateaux differ-
entiable over the loop space W 1,2(T[τ ];M). In this case, ι(γ) is equal to the Morse index
of A [τ ] at γ, while ν(γ) is equal to the nullity of A [τ ] at γ, i.e. to the dimension of the
null-space of the Gateaux-Hessian of A [τ ] at γ, see [Vi1], [LA] or [Ab] for a proof.

3. Discretizations for convex quadratic-growth Lagrangians

Throughout this section, L : T×TM → R will be a 1-periodic convex quadratic-growth
Lagrangian, with associated mean action A [τ ], τ ∈ N. In order to simplify the notation, we
will work in period τ = 1, but everything goes through in every integer period.

TheW 1,2 functional setting for the action functional A presents several drawbacks. First
of all, the regularity that we can expect for A is only C1,1, at least if we assume to deal
with a general convex quadratic-growth Lagrangian. This prevents the applicability of all
those abstract results that require more smoothness, for instance the Morse lemma from
critical point theory. Moreover, the W 1,2 topology is sometimes uncomfortable to work
with. In fact, in several occasions it may be desirable to deal with a topology that is as
strong as the C1 topology, or at least as the W 1,∞ topology. This would guarantee that
the restriction of the action functional A to a small neighborhood of a loop γ only depends
on the values that the Lagrangian assumes on a small neighborhood of the support of the
lifted loop (γ, γ̇) in TM . In theW 1,∞ functional setting, the action functional A is smooth,
but unfortunately its sublevels do not satisfy any compactness condition (such as the Palais-
Smale condition), which makes that functional setting inadequate for Morse theory. In order
to overcome these difficulties, in this section we develop a discretization technique that is
a generalization to Lagrangian systems of the broken geodesics approximation of the path
space (see [Mi, section 16] or [Kl, section A.1] for the Riemannian case, and [Ra] for the
Finsler case).

3.1. Uniqueness of the action minimizers. Given an interval [t0, t1] ⊂ R, we say that an
absolutely continuous curve γ : [t0, t1] → M is an action minimizer with respect to the
Lagrangian L when every other absolutely continuous curve ζ : [t0, t1]→M with the same
endpoints of γ satisfies

∫ t1

t0

L (t, γ(t), γ̇(t)) dt ≤
∫ t1

t0

L (t, ζ(t), ζ̇(t)) dt.

It is well known that the action minimizers are smooth solutions of the Euler-Lagrange
system (2.1). The existence of an action minimizer joining two given points ofM is a known
result that holds even for Tonelli Lagrangians, and it is essentially due to Tonelli (see e.g.
[BGH] or [Fa, page 98] for a modern treatment). A more ancient result, that goes back to
Weierstrass, states that every sufficiently short action minimizer is unique, meaning that it
is the only curve between its given endpoints that minimizes the action (see [Fa, page 106]
or [Ma, page 175]). However, in this paper, we shall need the following stronger result that
holds only for convex quadratic-growth Lagrangians.

Proposition 3.1. Let L : T × TM → R be a convex quadratic-growth Lagrangian. There
exist ǫ0 = ǫ0(L ) > 0 and ρ0 = ρ0(L ) > 0 such that, for each real interval [t0, t1] ⊂ R

with 0 < t1 − t0 ≤ ǫ0 and for all q0, q1 ∈ M with dist(q0, q1) < ρ0, there is a unique action
minimizer (with respect to L ) γq0,q1 : [t0, t1]→M with γq0,q1(t0) = q0 and γq0,q1(t1) = q1.
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Proof. For each absolutely continuous curve ζ : [t0, t1] → M , we denote by A t0,t1(ζ) its
action (with respect to L ), i.e.

A
t0,t1(ζ) =

∫ t1

t0

L (t, ζ(t), ζ̇(t))dt ∈ R ∪ {+∞} .

Up to summing a positive constant to L , we can assume that there exist two positive
constants ℓ < ℓ such that

ℓ |v|2q ≤ L (t, q, v) ≤ ℓ(|v|2q + 1), ∀q ∈M, v ∈ TqM.(3.1)

Consider two points q0, q1 ∈M and two real numbers t0 < t1. We put

ρ := dist(q0, q1), ǫ := t1 − t0.

SinceW 1,2([t0, t1];M) is dense in the space of absolutely continuous maps from [t0, t1] toM
and since the action minimizers are smooth, a curve γq0,q1 as in the statement is an action
minimizer if and only if it is a global minimum of A t0,t1 over the space

W
t0,t1
q0,q1 =

{
ζ ∈W 1,2([t0, t1];M) | ζ(t0) = q0, ζ(t1) = q1

}
.

Therefore, all we have to do in order to prove the statement is to show that, for ρ and ǫ
sufficiently small, the functional A t0,t1 |

W
t0,t1
q0,q1

admits a unique global minimum.

Consider an arbitrary real constant µ > 1. By compactness, the manifold M admits a
finite atlas U =

{
φα : Uα → R

N |α = 1, ..., u
}
such that, for all α ∈ {1, ..., u}, q, q′ ∈ Uα and

v ∈ TqM , we have

µ−1 |φα(q)− φα(q′)| ≤ dist(q, q′) ≤ µ |φα(q)− φα(q′)| ,(3.2)

µ−1 |dφα(q)v| ≤ |v|q ≤ µ |dφα(q)v| ,(3.3)

where we denote by |·| the standard norm in R
N and by |·|q the Riemannian norm in TqM

as usual. Moreover, we can further assume that the image φα(Uα) of every chart is a convex
subset of RN (e.g. a ball). Let Leb(U) denote the Lebesgue number1 of the atlas U and
consider the two points q0, q1 ∈ M of the beginning with dist(q0, q1) = ρ. By definition of
Lebesgue number, the Riemannian closed ball

B(q0,Leb(U)/2) = {q ∈M | dist(q, q0) ≤ Leb(U)/2}

is contained in a coordinate open set Uα for some α ∈ {1, ..., u}. Therefore, if we require
that ρ ≤ Leb(U)/2, the points q0 and q1 lie in the same open set Uα.

Let r : [t0, t1]→ Uα be the segment from q0 to q1 given by

r(t) = φ−1
α

(
t1 − t
ǫ

φα(q0) +
t− t0
ǫ

φα(q1)

)
, ∀t ∈ [t0, t1].

1We recall that, for every open cover U of a compact metric space, there exists a positive number
Leb(U) > 0, the Lebesgue number of U, such that every subset of the metric space of diameter less than
Leb(U) is contained in some member of the cover U.



THE LAGRANGIAN CONLEY CONJECTURE 11

By (3.1), (3.2) and (3.3) we obtain the following upper bound for the action of the curve r

A
t0,t1(r) ≤ ℓ

(∫ t1

t0

|ṙ(t)|2r(t)dt+ ǫ

)
≤ ℓ

(
ǫ max
t∈[t0,t1]

{
|ṙ(t)|2r(t)

}
+ ǫ

)

≤ ℓ
(
µ2 |φα(q1)− φα(q0)|

2

ǫ
+ ǫ

)
≤ ℓ

(
µ4 dist(q0, q1)

2

ǫ
+ ǫ

)

≤ ℓµ4

(
ρ2

ǫ
+ ǫ

)
= C

(
ρ2

ǫ
+ ǫ

)
,

where the positive constant C = ℓµ4 does not depend on q0, q1 and [t0, t1]. This estimate,
in turn, gives as an upper bound for the action of the minima, i.e.

min
ζ∈W

t0,t1
q0,q1

{
A
t0,t1(ζ)

}
≤ C

(
ρ2

ǫ
+ ǫ

)
,

therefore the action sublevel

U
t0,t1
q0,q1 = U

t0,t1
q0,q1 (ρ, ǫ) =

{
ζ ∈ W

t0,t1
q0,q1 |A

t0,t1(ζ) ≤ C
(
ρ2

ǫ
+ ǫ

)}
(3.4)

is not empty and it must contain a global minimum γq0,q1 of the action (the existence of a
minimum is a well known fact that holds even for Tonelli Lagrangians, see [Fa, page 98]).
All we have to do in order to conclude is to show that, for ρ and ǫ sufficiently small, the
sublevel U t0,t1

q0,q1 = U t0,t1
q0,q1 (ρ, ǫ) cannot contain other minima of the action.

By the first inequality in (3.1) we have
∫ t1

t0

|ζ̇(t)|2ζ(t)dt ≤ ℓ−1
A
t0,t1(ζ), ∀ζ ∈ W

t0,t1
q0,q1 ,

and this, in turn, gives the following bound for all ζ ∈ U t0,t1
q0,q1

max
t∈[t0,t1]

dist(ζ(t0), ζ(t))
2 ≤

(∫ t1

t0

|ζ̇(t)|ζ(t)dt
)2

≤ ǫ
∫ t1

t0

|ζ̇(t)|2ζ(t)dt

≤ ǫℓ−1
A
t0,t1(ζ) ≤ Cℓ−1(ρ2 + ǫ2).

Therefore all the curves ζ ∈ Uq0,q1(ρ, ǫ) have image inside the coordinate open set Uα ⊆M
provided ρ and ǫ are sufficiently small, more precisely for

ρ2 + ǫ2 ≤ ℓ

4C
Leb(U)2.(3.5)

This allows us to restrict our attention to the open set Uα. From now on we will briefly
identify Uα with φα(Uα) ⊆ R

N , so that

q0 ≡ φα(q0) ∈ R
N , q1 ≡ φα(q1) ∈ R

N .

Without loss of generality we can also assume that q0 ≡ φα(q0) = 0 ∈ R
N . On the set

Uα ≡ φα(Uα) we will consider the standard flat norm | · | of RN , and the norms ‖ · ‖L1 ,
‖ · ‖L2 and ‖ · ‖L∞ will be computed using this norm. We will also consider L as a convex
quadratic-growth Lagrangian of the form

L : T× φα(Uα)×R
N → R

by means of the identification

L (t, q, v) ≡ L (t, φ−1
α (q), dφ−1

α (φα(q))v).
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Now, consider the following close convex subset of W 1,2([t0, t1];R
N )

(3.6) C
t0,t1
q0,q1 = C

t0,t1
q0,q1 (ρ, ǫ) =

{
ζ ∈W 1,2([t0, t1];R

N )

∣∣∣∣

ζ(t0) = q0 = 0, ζ(t1) = q1, ‖ζ̇‖2L2 ≤ µCℓ−1

(
ρ2

ǫ
+ ǫ

)}
.

Since ‖ζ‖2L∞ ≤ ǫ‖ζ̇‖2L2 , for ρ and ǫ sufficiently small all the curves ζ ∈ C t0,t1
q0,q1 have support

inside the open set Uα. Moreover, by (3.1), (3.3) and (3.4), we have

‖ζ̇‖2L2 ≤ µ
∫ t1

t0

|ζ̇(t)|2ζ(t)dt ≤ µℓ−1
A
t0,t1(ζ) ≤ µCℓ−1

(
ρ2

ǫ
+ ǫ

)
, ∀ζ ∈ U

t0,t1
q0,q1 ,

that implies U t0,t1
q0,q1 ⊆ C t0,t1

q0,q1 . Now, since we know that a minimum γq0,q1 of the action exists

and all the minima lie in the closed convex subset C t0,t1
q0,q1 ⊆ W 1,2([t0, t1];R

N ), in order to
conclude that γq0,q1 is the unique minimum we only need to show that the Hessian of the
action is positive definite on C t0,t1

q0,q1 provided ρ and ǫ are sufficiently small, i.e. we need to
show that there exist ρ0 > 0 and ǫ0 > 0 such that, for all ρ ∈ (0, ρ0) and ǫ ∈ (0, ǫ0], we have

HessA t0,t1(ζ)[σ, σ] > 0,

∀ζ ∈ C
t0,t1
q0,q1 = C

t0,t1
q0,q1 (ρ, ǫ), σ ∈W

1,2
0 ([t0, t1];R

N ).
(3.7)

Notice that the above Hessian is well defined, since A t0,t1 is C1 and twice Gateaux differ-
entiable. In (3.7), we have denoted by W 1,2

0 ([t0, t1];R
N ) the tangent space of C t0,t1

q0,q1 at ζ,
i.e.

W 1,2
0 ([t0, t1];R

N) =
{
σ ∈ W 1,2([t0, t1];R

N ) |σ(t0) = σ(t1) = 0
}
.

Consider arbitrary ζ ∈ C t0,t1
q0,q1 and σ ∈W 1,2

0 ([t0, t1];R
N ). Then, we have

HessA t0,t1(ζ)[σ, σ]

=

∫ t1

t0

(
〈∂2vvL (t, ζ, ζ̇)σ̇, σ̇〉+ 2〈∂2vqL (t, ζ, ζ̇)σ, σ̇〉+ 〈∂2qqL (t, ζ, ζ̇)σ, σ〉

)
dt

≥
∫ t1

t0

ℓ0 |σ̇|2 dt−
∫ t1

t0

2ℓ1(1 + µ|ζ̇|) |σ| |σ̇| dt
︸ ︷︷ ︸

=: I1

−
∫ t1

t0

ℓ1(1 + µ2|ζ̇|2) |σ|2 dt
︸ ︷︷ ︸

=: I2

,

where ℓ0 and ℓ1 are the positive constants that appear in (Q1) and (Q2) with respect to the
atlas U. Now, the quantities I1 and I2 can be estimated from above as follows

I1 ≤ 2ℓ1µ‖σ‖L∞

(
‖σ̇‖L1 +

∥∥∥|ζ̇| · |σ̇|
∥∥∥
L1

)

≤ 2ℓ1µ
√
ǫ‖σ̇‖L2

(√
ǫ‖σ̇‖L2 + ‖ζ̇‖L2‖σ̇‖L2

)

= 2ℓ1µ‖σ̇‖2L2

(
ǫ+
√
ǫ‖ζ̇‖L2

)
,

I2 ≤ ℓ1µ2
(
‖σ‖2L2 + ‖σ‖2L∞‖ζ̇‖2L2

)
≤ ℓ1µ2‖σ̇‖2L2

(
ǫ2 + ǫ‖ζ̇‖2L2

)
,

and, since by (3.6) we have

‖ζ̇‖2L2 ≤ µCℓ−1

(
ρ2

ǫ
+ ǫ

)
,
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we conclude

HessA t0,t1(ζ)[σ, σ]

≥ ℓ0‖σ̇‖2L2 − I1 − I2

≥ ‖σ̇‖2L2

(
ℓ0 − 2ℓ1µ

(√
µCℓ−1 + 1

)
(ρ+ ǫ)− ℓ1µ2

(
µCℓ−1 + 1

)
(ρ2 + ǫ2)

)

︸ ︷︷ ︸
=: F (ρ, ǫ)

.

Notice that the quantity F (ρ, ǫ) is independent of the specific choice of the points q0, q1 and
of the interval [t0, t1], but depends only on ρ = dist(q0, q1) and ǫ = t1 − t0. Moreover, there
exist ρ0 > 0 and ǫ0 > 0 small enough so that for all ρ ∈ (0, ρ0) and ǫ ∈ (0, ǫ0] the quantity
F (ρ, ǫ) is positive. This proves (3.7). �

Now, we want to remark that the short action minimizers γq0,q1 , given by proposition 3.1,
depend smoothly on their endpoints q0 and q1. If ρ0 is the constant given by proposition 3.1,
we denote by ∆ρ0 the open neighborhood of the diagonal submanifold of M ×M given by

∆ρ0 = {(q0, q1) ∈M ×M | dist(q0, q1) < ρ0} .

Proposition 3.2. With the notation of proposition 3.1, for each real interval [t0, t1] ⊂ R with
0 < t1 − t0 ≤ ǫ0 the assignment

(q0, q1) 7→ γq0,q1 : [t0, t1]→M(3.8)

defines a smooth map ∆ρ0 → C∞([t0, t1];M).

Proof. Since the action minimizers are smooth, (3.8) defines a map

∆ρ0 → C∞([t0, t1];M),

and we just need to show that the dependence of γq0,q1 from (q0, q1) is smooth. If t1 − t0 ∈
(0, ǫ0] and (q0, q1) ∈ ∆ρ0 , in the proof of proposition 3.1 we have already shown that the
minimizer γq0,q1 : [t0, t1] → M has image contained in a coordinate neighborhood Uα ⊆ M
that we can identify with an open set of RN . The curve γq0,q1 is a smooth solution of the
Euler-Lagrange system of L , therefore

ΦtL ◦ (Φt0L )−1(q0, v0) = (γq0,q1(t), γ̇q0,q1(t)), ∀t ∈ [t0, t1],

where v0 = γ̇q0,q1(t0) and Φt
L

is the Euler-Lagrange flow associated to L (see section 2.2).
We define

Qt := π ◦ ΦtL ◦ (Φt0L )−1 : U ′
α ×R

N → Uα, ∀t ∈ [t0, t1],

where U ′
α ⊂ Uα is a small neighborhood of q0, and π : RN × R

N → R
N is the projection

onto the first N components, i.e. π(q, v) = q for all (q, v) ∈ R
N ×R

N . We claim that

dQt1(q0, v0)({0} ×R
N ) = R

N .(3.9)

In fact, assume by contradiction that (3.9) does not hold. Then, there exists a nonzero
vector v ∈ R

N such that
d

ds

∣∣∣∣
s=0

Qt1(q0, v0 + sv) = 0.

If we define the curve σ : [t0, t1]→ R
N by

σ(t) :=
d

ds

∣∣∣∣
s=0

Qt(q0, v0 + sv),
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then σ(t0) = σ(t1) = 0, and σ is a solution of the linearized Euler-Lagrange system

d

dt

(
∂2vvL (t, γq0,q1 , γ̇q0,q1)σ̇ + ∂2vqL (t, γq0,q1 , γ̇q0,q1)σ

)

− ∂2qvL (t, γq0,q1 , γ̇q0,q1)σ̇ − ∂2qqL (t, γq0,q1 , γ̇q0,q1)σ = 0.

This implies that HessA t0,t1(γq0,q1)[σ, σ] = 0, which contradicts the positive definitiveness
of HessA t0,t1(γq0,q1) (see (3.7) in the proof of proposition 3.1). Therefore, (3.9) must hold.

By the implicit function theorem we obtain a neighborhood Uq0,q1 ⊂ R
N ×R

N of (q0, q1),
a neighborhood Uv0 ⊂ R

N of v0 and a smooth map V0 : Uq0,q1 → Uv0 such that, for each
(q′0, q

′
1, v

′
0) ∈ Uq0,q1 × Uv0 , we have Qt1(q′0, v

′
0) = q′1 if and only if v′0 = V0(q

′
0, q

′
1). Then, we

can define a smooth map from Uq0,q1 to C∞([t0, t1];Uα) given by

(q′0, q
′
1) 7→ ζq′0,q′1 ,(3.10)

where for each t ∈ [t0, t1] we have

ζq′0,q′1(t) = Qt(q′0, V0(q
′
0, q

′
1)).

In order to conclude we only have to show that the map in (3.10) coincides with the one in
(3.8) on Uq0,q1 provided this latter neighborhood is sufficiently small, i.e. we have to show
that ζq′0,q′1 is the unique action minimizer joining q′0 and q′1, for each (q′0, q

′
1) in a sufficiently

small neighborhood Uq0,q1 of (q0, q1). This is easily seen as follows. By construction, the

curves ζq′0,q′1 are critical points of the action A t0,t1 over the space W
t0,t1
q′0,q

′
1
, being solutions of

the Euler-Lagrange system of L . By the arguments in the proof of proposition 3.1, each of
these curves ζq′0,q′1 is the unique action minimizer joining its endpoints if and only if it lies in

the convex set C
t0,t1
q′0,q

′
1
defined in (3.6). We already know that ζq0,q1 = γq0,q1 ∈ C t0,t1

q0,q1 . Since

the map in (3.10) is smooth, for (q′0, q
′
1) close to (q0, q1) we obtain that the curve ζq′0,q′1 is

C1-close to ζq0,q1 = γq0,q1 , and therefore ζq′0,q′1 ∈ C
t0,t1
q′0,q

′
1
. �

3.2. The discrete action functional. Let ǫ0 = ǫ0(L ) and ρ0 = ρ0(L ) be the positive con-
stants given by proposition 3.1, and let k ∈ N be such that 1/k ≤ ǫ0. We define the k-broken
Euler-Lagrange loop space as the subspace Λk = Λk,L ⊂ W 1,2(T;M) consisting of those

loops γ : T→M such that dist(γ( ik ), γ(
i+1
k )) < ρ0 and γ|[i/k,(i+1)/k] is an action minimizer

for each i ∈ {0, ..., k − 1}. Notice that, by propositions 3.1 and 3.2, the correspondence

γ 7→
(
γ(0), γ( 1k ), ..., γ(

k−1
k )
)

defines a diffeomorphism between Λk and an open subset of the k-fold product M × ...×M .
Thus, Λk is a finite dimensional submanifold of the W (T;M), which implies that the W 1,2

and W 1,∞ topologies coincide on it.
We define the discrete action functional Ak as the restriction of A to Λk, i.e.

Ak := A |Λk
.

Notice that Ak is smooth, since A is smooth on W 1,∞(T;M) and Λk ⊂ W 1,∞(T;M).
Moreover, the next proposition implies that, for each action value c ∈ R, there is a sufficiently
big discretization pass k ∈ N such that Ak satisfies the Palais-Smale condition in the c-
sublevel.

Proposition 3.3. For each c ∈ R there exists k̄ = k̄(c) ∈ N such that, for each k ≥ k̄, the
closed sublevel A

−1
k (−∞, c] is compact.
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Proof. Consider the compact subset of Λk defined by

Ck :=
{
γ ∈ Λk | dist(γ( ik ), γ( i+1

k )) ≤ ρ0/2, ∀i ∈ {1, ..., k − 1}
}
.

In order to prove the statement, we just need to show that

lim
k→∞

min {Ak(γ) | γ ∈ ∂Ck} = +∞.

Up to summing a positive constant to L , we can assume that there exists a constant ℓ > 0
such that L (t, q, v) ≥ ℓ |v|2q for every (t, q, v) ∈ T × TM . Then, consider an arbitrary
γ ∈ ∂Ck. For some i ∈ {0, ..., k − 1} we have that

dist(γ( ik ), γ(
i+1
k )) = ρ0/2,

and therefore we obtain the desired estimate

Ak(γ) ≥
∫ (i+1)/k

i/k

L (t, γ(t), γ̇(t)) dt ≥
∫ (i+1)/k

i/k

ℓ |γ̇(t)|2γ(t) dt

≥ k ℓ
(∫ (i+1)/k

i/k

|γ̇(t)|γ(t) dt
)2

≥ k ℓ dist(γ( ik ), γ( i+1
k ))2

≥ k ℓ (ρ0/2)2. �

Each critical point γ of the action functional A belongs to the k-broken Euler-Lagrange
loop space Λk, up to choosing a sufficiently big k, and in particular it is a critical point of
the discrete action Ak. It is easy to verify that the converse is also true, namely that the
critical points of the discrete action Ak are smooth solutions of the Euler-Lagrange system
of L . The next statement discusses the invariance of the Morse index and nullity under
discretization.

Proposition 3.4. Consider a contractible γ : T→M that is a smooth solution of the Euler-
Lagrange system of L . Then, for each sufficiently big k ∈ N, the Morse index and nullity
pair of A and Ak at γ are the same.

We will split the proof of this proposition in several lemmas, which will take the remaining
of this subsection. First of all, since the statement is of a local nature, let us adopt suitable
local coordinates in the loop space. Being γ a smooth contractible loop, we can consider
the chart of W 1,2(T;M) given by

exp−1
γ : Uγ →W 1,2(γ∗TM) ≃W 1,2(T;RN ),

see section 2.1 for the notation. Let U be a small neighborhood of the origin in R
N and let

πγ : T× U ×R
N →֒ T× TM be the embedding defined by

πγ(t, q, v) =

(
t, expγ(t)(q), d(expγ(t))(q)v +

d

dt
expγ(t)(q)

)
, ∀(t, q, v) ∈ T× U ×R

N .

The pulled-back Lagrangian L ◦ πγ : T × U ×R
N → R is again convex quadratic-growth,

since conditions (Q1) and (Q2) are invariant with respect to coordinate transformations
of the form πγ (up to changing the constants ℓ0 and ℓ1 in the definition). Moreover, the
pulled-back functional A ◦expγ is the Lagrangian action functional associated to the convex
quadratic-growth Lagrangian L ◦ πγ , i.e.

A ◦ expγ(ξ) =
∫ 1

0

L ◦ πγ(t, ξ(t), ξ̇(t)) dt.
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From now on, we will simply write A and L for A ◦ expγ and L ◦ πγ respectively, so

that γ will be identified with the point 0 in the Hilbert space W 1,2(T;RN ). Moreover, for
each k ∈ N such that γ belongs to Λk, we identify (an open neighborhood of γ in) the k-
broken Euler-Lagrange loop space Λk with a finite dimensional submanifold of W 1,2(T;RN )
containing 0.

We introduce the quadratic Lagrangian L : T×R
N ×R

N → R given by

(3.11) L(t, q, v) =
1

2
〈a(t)v, v〉+ 〈b(t)q, v〉+ 1

2
〈c(t)q, q〉 ,

∀(t, q, v) ∈ T×R
N ×R

N ,

where, for each t ∈ T, a(t), b(t) and c(t) are the N ×N matrices defined by

aij(t) :=
∂2L

∂vi ∂vj
(t, 0, 0), bij(t) :=

∂2L

∂vi ∂qj
(t, 0, 0), cij(t) :=

∂2L

∂qi ∂qj
(t, 0, 0).

A straightforward computation shows that the Euler-Lagrange system associated to L is
given by the following linear system of ordinary differential equations for curves σ in R

N

a σ̈ + (b+ ȧ− bT ) σ̇ + (ḃ− c)σ = 0.(3.12)

This is precisely the linearization of the Euler-Lagrange system of L along the periodic
solution γ ≡ 0. The 1-periodic solutions σ : T → R

N of (3.12) are precisely the critical
points of the action functional A :W 1,2(T;RN )→ R associated to L, given as usual by

A(ξ) =

∫ 1

0

L(t, ξ(t), ξ̇(t)) dt, ∀ξ ∈W 1,2(T;RN ).

The following lemma characterizes the elements of the tangent space of the k-broken
Euler-Lagrange loop space Λk at γ ≡ 0.

Lemma 3.5. The tangent space T0Λk is the space of continuous and piecewise smooth loops
σ : T→ R

N such that, for each h ∈ {0, ..., k − 1}, the restriction σ|[h/k,(h+1)/k] is a solution
of the Euler-Lagrange system (3.12).

Proof. By definition of tangent space, every σ ∈ T0Λk is a continuous loop σ : T → R
N

given by

σ(t) =
∂

∂s

∣∣∣∣
s=0

Σ(s, t),(3.13)

for some continuous Σ : (−ǫ, ǫ)×T→ R
N such that, for all h ∈ {0, ..., k − 1}, the restriction

Σ|(−ǫ,ǫ)×[h/k,(h+1)/k] is smooth, Σ(s, ·) ∈ Λk for all s ∈ (−ǫ, ǫ) and Σ(0, ·) ≡ 0. Namely Σ is
a piecewise smooth variation of the constant loop 0 such that the loops Σs = Σ(s, ·) satisfy
the Euler-Lagrange system of L in the intervals [h/k, (h + 1)/k] for all h ∈ {0, ..., k − 1},
i.e.

∂2vvL (t,Σs, Σ̇s) Σ̈s + ∂2vqL (t,Σs, Σ̇s) Σ̇s + ∂2vtL (t,Σs, Σ̇s)− ∂qL (t,Σs, Σ̇s) = 0

By differentiating the above equation with respect to s in s = 0, we obtain the Euler-
Lagrange system (3.12) for the loop σ (as before, satisfied on the intervals [h/k, (h+ 1)/k]
for all h ∈ {0, ..., k − 1}). Vice versa, a continuous loop σ : T → R

N whose restrictions
σ|[h/k,(h+1)/k] satisfy (3.12) is of the form (3.13) for some Σ as above, and therefore it is an
element of T0Λk. �

The null-space of the Hessian of A at 0 can be characterized as follows.
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Lemma 3.6. The null-space of HessA (0) consists of those smooth loops σ : T → R
N that

are solutions of the Euler-Lagrange system (3.12).

Proof. For every σ, ξ ∈ W 1,2(T;RN ) we have

HessA (0)[σ, ξ] =

∫ 1

0

(
〈a σ̇, ξ̇〉+ 〈b σ, ξ̇〉+ 〈bT σ̇, ξ〉+ 〈c σ, ξ〉

)
dt = dA(σ)ξ.

Therefore σ is in the null-space of HessA (0) if and only of it is a critical point of A, that is
if and only if it is a (smooth) solution of the Euler-Lagrange system (3.12). �

As a consequence of lemmas 3.5 and 3.6, the null-space of HessA (0) is contained in
T0Λk, and therefore it is contained in the null-space of the Hessian of the discrete action
HessAk(0). This inclusion is actually an equality, as shown by the following.

Lemma 3.7. HessA (0) and HessAk(0) have the same null-space, and in particular A and
Ak have the same nullity at 0.

Proof. We only need to show that any curve σ ∈ T0Λk that is not everywhere smooth
cannot be in the null-space of HessAk(0). In fact, since σ is always smooth outside the
points h

k (for h ∈ {0, ..., k − 1}), for each ξ ∈ T0Λk we have

HessAk(0)[σ, ξ] =

k−1∑

h=0

∫ (h+1)/k

h/k

(
〈a σ̇, ξ̇〉+ 〈b σ, ξ̇〉+ 〈bT σ̇, ξ〉+ 〈c σ, ξ〉

)
dt

=

k−1∑

h=0

∫ (h+1)/k

h/k

〈−a σ̈ − b σ̇ − ȧ σ̇ − ḃ σ + bT σ̇ + c σ︸ ︷︷ ︸
=0

, ξ〉dt

+

k−1∑

h=0

〈a σ̇ + b σ, ξ〉
∣∣∣
((h+1)/k)−

(h/k)+

=

k−1∑

h=0

〈a(hk )[σ̇(hk
−

)− σ̇(hk
+

)], ξ(hk )〉.(3.14)

By assumption, we have that σ̇(hk
+

) 6= σ̇(hk
−

) for some h ∈ {0, ..., k − 1}, and therefore

a(hk )[σ̇(
h
k

+

)− σ̇(hk
−

)] 6= 0.

Here, we have used the fact that the matrix a(hk ) is invertible, since the Lagrangian L

satisfies (Q1) (see section 2.2). Now, consider ξ ∈ T0Λk given by

ξ( lk ) =

{
a(hk )[σ̇(

h
k

+

)− σ̇(hk
−

)], l = h,
0, l ∈ {0, ..., k − 1} , l 6= h.

By (3.14), we have

HessAk(0)[σ, ξ] =
∣∣∣a(hk )[σ̇(hk

+

)− σ̇(hk
−

)]
∣∣∣
2

6= 0,

and therefore we conclude that σ is not in the null-space of HessAk(0). �

In order to conclude the proof of proposition 3.4 we only need to prove the invariance of
the Morse index under discretization.
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Lemma 3.8. For all k ∈ N sufficiently big, the functionals A and Ak have the same Morse
index at 0.

Proof. For every σ ∈W 1,2(T;RN ) we have

HessA (0)[σ, σ] =

∫ 1

0

(
〈a σ̇, σ̇〉+ 〈b σ, σ̇〉+ 〈bT σ̇, σ〉+ 〈c σ, σ〉

)
dt =

=2

∫ 1

0

L(t, σ(t), σ̇(t)) dt = 2A(σ).

(3.15)

Let ι(0) be the Morse index of A at 0. By definition, there exists a ι(0)-dimensional vector
subspace V ⊆W 1,2(T;RN ) over which HessA (0) is negative definite, i.e.

HessA (0)[σ, σ] < 0, ∀σ ∈ V \ {0} .(3.16)

By density, for each k ∈ N sufficiently big we can choose V to be composed of k-piecewise
affine curves. Namely we can choose V such that, for each σ ∈ V , we have

σ(h+tk ) = (1− t)σ(hk ) + t σ(h+1
k ), ∀t ∈ [0, 1], h ∈ {0, ..., k − 1} .(3.17)

Now, let us define a linear map K : V → T0Λk as K(σ) = σ̃, where σ̃ is the unique element
in T0Λk such that σ(hk ) = σ̃(hk ) for each h ∈ {0, ..., k − 1}. Notice that K is injective. In

fact, if K(σ) = 0, we have σ(hk ) = 0 for each h ∈ {0, ..., k − 1} and, by (3.17), we conclude

σ = 0. Hence Ṽ = K(V ) is a ι(0)-dimensional vector subspace of T0Λ
k.

In order to conclude we just have to show that HessAk(0) is negative definite over the

vector space Ṽ . To this aim, consider an arbitrary σ̃ ∈ Ṽ \{0} and put σ = K−1(σ̃) ∈ V \{0}.
For each h ∈ {0, ..., k − 1} the curve σ̃|[h/k,(h+1)/k] is an action minimizer with respect to
the Lagrangian L, and therefore A(σ̃) ≤ A(σ). By (3.15) and (3.16) we conclude

HessAk(0)[σ̃, σ̃] = 2A(σ̃) ≤ 2A(σ) = HessA (0)[σ, σ] < 0. �

3.3. Homotopic approximation of the action sublevels. We want to show that the sublevels
of the action A deformation retract onto the corresponding sublevels of the discrete action
Ak, for all the sufficiently big k ∈ N. To begin with, we need the following.

Proposition 3.9. For each ρ > 0 and c ∈ R there exists ǭ = ǭ(L , ρ, c) > 0 such that, for
each ζ ∈ W 1,2(T;M) with A (ζ) < c and for each interval [t0, t1] ⊂ R with 0 < t1 − t0 ≤ ǭ,
we have dist (ζ(t0), ζ(t1)) < ρ.

Proof. Up to summing a positive constant to the convex quadratic-growth Lagrangian L ,
we can always assume that there exists ℓ > 0 such that

L (t, q, v) ≥ ℓ |v|2q , ∀(t, q, v) ∈ T× TM.

Then, let us consider an arbitrary ζ ∈ W 1,2(T;M) such that A (ζ) < c. For each interval
[t0, t1] ⊂ R with 0 < t1 − t0 ≤ 1 we have

dist (ζ(t0), ζ(t1))
2 ≤

(∫ t1

t0

|ζ̇(t)|ζ(t)dt
)2

≤ (t1 − t0)
∫ t1

t0

|ζ̇(t)|2ζ(t) dt

≤ (t1 − t0)
∫ t1

t0

ℓ−1
L (t, ζ(t), ζ̇(t)) dt ≤ (t1 − t0)ℓ−1

A (ζ)

< (t1 − t0)ℓ−1c.

Hence, for ǭ = ǭ(L , ρ, c) := ρ2 ℓ c−1, we obtain the claim. �
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Figure 1. (a) Example of a loop ζ (solid line) and the corresponding r(ζ) (dashed line), for the case of the

geodesics action functional on the flat R2, i.e. L (t, q, v) = v21 + v22 , and k = 5. (b) Homotoped
loop R(s, ζ) (solid line).

From now on, we will briefly denote the open sublevels of the action A and of the discrete
action Ak by

(A )c := A
−1(−∞, c), (Ak)c := A

−1
k (−∞, c), ∀c ∈ R.

Let ρ0 = ρ0(L ), ǫ0 = ǫ0(L ) and ǭ = ǭ(L , ρ0, c) be the positive constants given by propo-
sitions 3.1 and 3.9, and consider the integer

k̄ = k̄(L , c) :=

⌈
max

{
1

ǫ0
,
1

ǭ

}⌉
∈ N.

We fix an integer k ≥ k̄ and we define a retraction r : (A )c → (Ak)c in the following
way: for each ζ ∈ (A )c, the image r(ζ) is the unique k-broken Euler-Lagrange loop such
that r(ζ)( ik ) = ζ( ik ) for each i ∈ {0, ..., k − 1}, see figure 1(a). Then, we define a homotopy

R : [0, 1]×(A )c → (A )c as follows: for each i ∈ {0, ..., k − 1}, s ∈ [ ik ,
i+1
k ] and ζ ∈ (A )c, the

loop R(s, ζ) is defined as R(s, ζ)|[0,i/k] = r(ζ)|[0,i/k] , R(s, ζ)|[s,1] = ζ|[s,1] and R(s, ζ)|[i/k,s] is
the unique action minimizer (with respect to the Lagrangian L ) with endpoints ζ( ik ) and
ζ(s), see figure 1(b). By proposition 3.9, the homotopy R and the map r are well defined
and we have A (R(s, ζ)) ≤ A (ζ) for every (s, ζ) ∈ [0, 1] × (A )c. Moreover R is a strong
deformation retraction. In fact, for each ζ ∈ (A )c we have R(0, ζ) = ζ, R(1, ζ) = r(ζ) and,
if ζ already belongs to (Ak)c, we further have R(s, ζ) = ζ for every s ∈ [0, 1].

If c1 < c2 ≤ c, the same homotopy R can be used to show that the pair ((A )c2 , (A )c1)
deformation retracts strongly onto ((Ak)c2 , (Ak)c1). Furthermore, if γ ∈ W 1,2(T;M) is a
critical point of A with A (γ) = c, up to increasing k we have that γ belongs to Λk, and
we can extend R to a strong deformation retraction of the pair ((A )c ∪ {γ} , (A )c) onto
((Ak)c ∪ {γ} , (Ak)c) such that R(s, γ) = γ for every s ∈ [0, 1]. Summing up, we have
obtained the following.

Lemma 3.10.

(i) For each c1 < c2 <∞ there exists k̄ = k̄(L , c2) ∈ N and, for every integer k ≥ k̄, a
strong deformation retraction of the pair ((A )c2 , (A )c1) onto ((Ak)c2 , (Ak)c1).
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(ii) For each critical point γ of A with A (γ) = c, there exists k̄ = k̄(L , c) ∈ N and, for
every integer k ≥ k̄, a strong deformation retraction of the pair ((A )c ∪ {γ} , (A )c)
onto ((Ak)c ∪ {γ} , (Ak)c). �

Let γ be a critical point of A with critical value c = A (γ). For every integer k ≥ k̄(L , c)
we have that γ belongs to the k-broken Euler-Lagrange loop space Λk and therefore it is a
critical point of the discrete action Ak as well. We recall that the local homology groups of
A at γ are defined as

C∗(A , γ) = H∗ ((A )c ∪ {γ} , (A )c) ,

where H∗ denotes the singular homology functor with an arbitrary coefficient group (the
local homology groups of the discrete action functional Ak at γ are defined analogously).
The above lemma 3.10(ii) has the following immediate consequence.

Corollary 3.11. For each integer k > k̄(L , c) the inclusion

ι : ((Ak)c ∪ {γ} , (Ak)c) →֒ ((A )c ∪ {γ} , (A )c)(3.18)

induces the homology isomorphism ι∗ : C∗(Ak, γ)
≃−→C∗(A , γ). �

It is well known that the local homology groups of a C2 functional at a critical point
are trivial in dimension that is smaller than the Morse index or bigger than the sum of the
Morse index and the nullity (see [Ch, corollary 5.1]). By lemma 3.10(ii), we recover this
result for the C1 action functional A : W 1,2(T;M) → R, at least for contractible critical
points.

Corollary 3.12. Let γ : T → M be a contractible loop that is a critical point of the action
functional A with Morse index ι(γ) and nullity ν(γ). Then, the local homology groups
C∗(A , γ) are trivial if ∗ is less than ι(γ) or greater than ι(γ) + ν(γ).

Proof. For each sufficiently big k ∈ N, γ is also a critical point of the discrete action Ak.
By proposition 3.4, up to increasing k we have that A and Ak have the same Morse index
and nullity pair (ι(γ), ν(γ)) at γ. By the above corollary 3.11, up to further increasing k we
have C∗(Ak, γ) ≃ C∗(A , γ). Since Ak is smooth, the local homology groups C∗(Ak, γ) are
trivial if ∗ is less than ι(γ) or greater than ι(γ) + ν(γ), and the claim follows. �

4. Local Homology and Embeddings of Hilbert Spaces

In this section we will prove an abstract Morse-theoretic result that might be of indepen-
dent interest, and then we will discuss its application to the action functional of a convex
quadratic-growth Lagrangian. The result will be an essential ingredient in the proof of the
Lagrangian Conley conjecture.

Let us consider an open set U of a Hilbert space E and a C2 functional F : U → R

that satisfies the Palais-Smale condition. Let E• be a Hilbert subspace of E such that
U• := U ∩E• 6= ∅ and ∇F (y) ∈ E• for all y ∈ U•. This latter condition is equivalently
expressed via the isometric inclusion J : E• →֒ E as

(∇F ) ◦ J = J ◦ ∇(F ◦ J).(4.1)

Let x ∈ U be an isolated critical point of F that sits in the subspace E•, and let us
further assume that the Morse index ι(F ,x) and the nullity ν(F ,x) of F at x are finite.
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We denote by H = H(x) the bounded self-adjoint linear operator on E associated to the
Hessian of F at x, i.e.

HessF (x)[v,w] = 〈Hv,w〉E , ∀v,w ∈ E.(4.2)

We require that H is a Fredholm operator, so that the functional F satisfies the hypotheses
of the generalized Morse lemma (see [Ch, page 44]).

Throughout this section, for simplicity, all the homology groups are assumed to have
coefficients in a field F (in this way we will avoid the torsion terms that appear in the
Künneth formula). We recall that the local homology groups of the functional F at x are
defined as C∗(F ,x) = H∗ ((F )c ∪ {x} , (F )c), where c = F (x) and (F )c := F−1(−∞, c).
If we denote by F• : U• → R the restricted functional F |U•

, then x is a critical point of
F• as well and the local homology groups C∗(F•,x) are defined analogously as H∗((F•)c ∪
{x} , (F•)c). The inclusion J restricts to a continuous map of pairs

J : ((F•)c ∪ {x} , (F•)c) →֒ ((F )c ∪ {x} , (F )c).

In this way, it induces the homology homomorphism

J∗ : C∗(F•,x)→ C∗(F ,x).

The main result of this section is the following.

Theorem 4.1. If the Morse index and nullity pair of F and F• at x coincide, i.e.

(ι(F ,x), ν(F ,x)) = (ι(F•,x), ν(F•,x)),

then J∗ is an isomorphism of local homology groups.

The proof of this theorem will be carried out in subsection 4.3, after several preliminaries.
The reader might want to skip the remaining of section 4 (beside subsection 4.4) on a first
reading.

Remark 4.1. One might ask if theorem 4.1 still holds without the assumption (4.1). This
is true in case x is a non-degenerate critical point: briefly, a relative cycle that represents a
generator of Cι(F ,x)(F•,x) also represents a generator of Cι(F ,x)(F ,x), and all the other
local homology groups C∗(F•,x) and C∗(F ,x), with ∗ 6= ι(F ,x) = ι(F•,x), are trivial.
However, in the general case, assumption (4.1) is necessary, as it is shown by the following
simple example. Consider the functional F : R2 → R given by

F (x, y) = (y − x2)(y − 2x2), ∀(x, y) ∈ R
2.

The origin 0 is clearly an isolated critical point of F , and the corresponding Hessian is given
in matrix form by

HessF (0, 0) =

[
0 0
0 2

]
.(4.3)

Now, let us consider the inclusion J : R →֒ R
2 given by J(x) = (x, 0), namely the inclusion

of the x-axis in R
2. The Morse index of F at the origin is 0 and coincides with the Morse

index of the restricted functional F ◦ J . Analogously, the nullity of F and F ◦ J at the
origin are both equal to 1. However the gradient of F on the x-axis is given by

∇F (x, 0) = (8x3,−3x2), ∀x ∈ R,

hence condition (4.1) is not satisfied, i.e. (∇F ) ◦ J 6= J ◦ ∇(F ◦ J). The local homology
groups of F and F ◦ J at the origin are not isomorphic (and consequently J∗ is not an
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x

y

0

Figure 2. Behavior of F (x, y) = (y−x2)(y−2x2) around the critical point 0. The shaded region corresponds

to the sublevel (F )0 = F−1(−∞, 0).

isomorphism). In fact, by examining the sublevel (F )0 (see figure 2), it is clear that the
origin is a saddle for F and a minimum for F ◦ J . Therefore we have

C∗(F ,0) =

{
F ∗ = 1,
0 ∗ 6= 1,

C∗(F ◦ J, 0) =
{

F ∗ = 0,
0 ∗ 6= 0.

Remark 4.2. Also the hypothesis of C2 regularity of the involved functional is essential in
order to obtain the assertion of theorem 4.1. In fact, let us modify the functional F of the
previous remark in the following way

F (x, y) = (y − x2)(y − 2x2) + 3x6 arctan
( y
x4

)
, ∀(x, y) ∈ R

2.

This functional is C1 and twice Gateaux differentiable, but it is not C2 at the origin, which
is again a critical point of F . The Hessian of F at the origin is still given by (4.3), but the
gradient of F on the x-axis is now given by

∇F (x, 0) = (8x3, 0), ∀x ∈ R,

hence condition (4.1) is satisfied, i.e. (∇F ) ◦ J = J ◦∇(F ◦ J), where J : R →֒ R
2 is given

by J(x) = (x, 0). The Morse index and nullity pair of F at the origin is (0, 1) and coincides
with the Morse index and nullity pair of F ◦ J at 0. Moreover, 0 is a local minimum of
F ◦ J , which implies

C∗(F ◦ J, 0) =
{

F ∗ = 0,
0 ∗ 6= 0,

However, the origin 0 ∈ R
2 is not a local minimum of the functional F . In fact, a straight-

forward computation shows that 0 is a local maximum of the functional F restricted to the
parabola y = 3

2x
2, namely 0 ∈ R is a local maximum of the functional

x 7→ F
(
x, 32x

2
)
= −1

4
x4 + 3x6 arctan

(
3

2x2

)
.

This readily implies that C0(F ,0) = 0 6= C0(F ◦ J, 0), which contradicts the assertion of
theorem 4.1.

4.1. The generalized Morse lemma revisited. In order to prove theorem 4.1, we need to
give a more precise statement of the generalized Morse lemma. Everything that we will
claim already follows from the classical proof (see [Ch, page 44]). In order to simplify the
notation, from now on we will assume, without loss of generality, that x = 0 ∈ E and
hence U ⊂ E is an open neighborhood of 0. According to the operator H associated to the
Hessian of F at the critical point 0, we have an orthogonal splitting E = E+ ⊕E− ⊕E0,
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where E+ [resp. E−] is a closed subspace in which H is positive definite [resp. negative
definite], while E0 is the finite-dimensional kernel of H . We denote by P± : E → E± the
linear projector onto E± := E+⊕E−. On E± \{0} we introduce the local flow ΘH defined
by ΘH(s, σ(0)) = σ(s), where σ : (s0, s1) → E± \ {0} (with s0 < 0 < s1) is a curve that
satisfies

σ̇(s) = − Hσ(s)

‖Hσ(s)‖E
, ∀s ∈ (s0, s1).(4.4)

We also set ΘH(0,0) := 0. Then, the generalized Morse lemma may be restated as follows.

Lemma 4.2 (Generalized Morse Lemma revisited). With the above assumptions on F , there
exists an open neighborhood V ⊆ U of 0, a homeomorphism onto its image

φ : (V ,0)→ (U ,0)

and a C1 map

ψ : (V ∩E0,0)→ (E±,0),

such that the following assertions hold.

(i) For each v ∈ V , if we write v = v0 + v± according to the splitting E = E0 ⊕E±,
we have

F ◦ φ(v) = F
(
v0 + ψ(v0)

)
︸ ︷︷ ︸

=:F0(v0)

+ 1
2

〈
Hv±,v±

〉
E︸ ︷︷ ︸

=:F±(v±)

.

(ii) The origin 0 is a critical point of both F 0 and F±.
(iii) The map ψ is implicitly defined by

P±
(
∇F (v0 + ψ(v0))

)
= 0, ∀v0 ∈ V ∩E0,

ψ(0) = 0.

(iv) The homeomorphism φ is given by

φ−1(v) = v0 +ΘH(τ(v − ψ(v0)),v± − ψ(v0)), ∀v = v0 + v± ∈ φ(V ),

where τ is a continuous function defined in the following way: for each v = v0 + v±

that belongs to its domain, τ(v) is the only real number satisfying

|τ(v)| < ‖v±‖E,
F
(
v + ψ(v0)

)
−F

(
v0 + ψ(v0)

)
= F

±(ΘH(τ(v),v±)).

�

4.2. Naturality of the Morse lemma. Let H• be the bounded self-adjoint linear operator on
E• ⊂ E associated to the Hessian of the restricted functional F• = F |E•

at 0. Then

H |E•
= H•.(4.5)

In fact, by condition (4.1), we have

H ◦ J = d(∇F )(0) ◦ J = d((∇F ) ◦ J︸ ︷︷ ︸
J◦∇(F•)

)(0) = J ◦ d(∇(F•))(0) = J ◦H•.

In particular H• is a Fredholm operator on E•. If we denote by E• = E0
• ⊕E+

• ⊕E−
• the

orthogonal splitting defined by the operator H•, equation (4.5) readily implies that

E0
• ⊆ E0, E+

• ⊆ E+, E−
• ⊆ E−,(4.6)
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and moreover, if we denote by P±
• : E• → E±

• the orthogonal projector ontoE±
• = E+

• ⊕E−
• ,

this latter turns out to be the restriction of the projector P± : E → E± to E•, i.e.

P±|E•
= P±

• .(4.7)

The hypotheses of the generalized Morse Lemma are fulfilled by both the functional F

and its restriction F•. The following is the long list of the symbols involved in the statement
of lemma 4.2, and we write in the subsequent line the corresponding list of symbols involved
in the statement referred to the restricted functional F•:

E±, E0, P±, V , ΘH , φ, ψ, τ, F 0, F±,
E±

• , E0
• , P±

• , V•, ΘH•
, φ•, ψ•, τ•, F 0

• , F±
• .

We want to show that, under the hypotheses of theorem 4.1, the decomposition F± + F 0

of F , given by the generalized Morse lemma, restricts to the corresponding decomposition
F±

• + F 0
• of F•.

Lemma 4.3.

(i) If ι(F ,0) = ι(F•,0), then E− = E−
• .

(ii) If ν(F ,0) = ν(F•,0), then E0 = E0
• .

Proof. The claims follow at once from (4.6), since

dimE−
• = ι(F•,0) = ι(F ,0) = dimE−,

dimE0
• = ν(F•,0) = ν(F ,0) = dimE0. �

Proposition 4.4. If ν(F ,0) = ν(F•,0), the following equalities hold (on some neighborhood
of the critical point 0 where the involved maps are defined):

(i) ψ = ψ•,
(ii) φ|E•

= φ•.

Proof. By lemma 4.3(ii), the domains of the maps ψ and ψ• are open neighborhoods of 0
in E0 = E0

• . Up to shrinking these neighborhoods, we can assume that both ψ and ψ• have
common domain V 0 ⊂ E0. By lemma 4.2(iii) we have ψ(0) = ψ•(0) = 0, and all we have
to do in order to conclude the proof of (i) is to show that, for each v0 ∈ V 0 \ {0}, the maps
ψ•(v

0) and ψ(v0) are implicitly defined by the same equation, that is

P±
(
∇F (v0 + ψ(v0))

)
= 0 = P±

(
∇F (v0 + ψ•(v

0))
)
.

This is easily verified since, by (4.1) and (4.7), we have

P±(∇F (v0 + ψ•(v
0))) = P±

• (∇F•(v
0 + ψ•(v

0))) = 0.

For (ii), up to shrinking the domains of φ and φ•, we can assume that they are maps of the
form φ : V → U and φ• : V• → U•, where V• = V ∩E•. Being φ and φ• homeomorphisms
onto their images, we can equivalently prove that φ−1 = φ−1

• on the open set φ•(V•) ⊂ U•.
To begin with, notice that (4.5) readily implies that the flow ΘH•

is the restriction of the
flow ΘH to E±

• \ {0}, i.e.
ΘH(·,v±) = ΘH•

(·,v±), ∀v± ∈ E±
• \ {0} .

By lemma 4.2(iv) and since ψ = ψ•, for each v = v0 + v± ∈ φ•(V•) we have

φ−1(v) = v0 +ΘH(τ(v − ψ(v0)),v± − ψ(v0)),

φ−1
• (v) = v0 +ΘH(τ•(v − ψ(v0)),v± − ψ(v0)).
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Hence, in order to conclude the proof of (ii) we just need to show that, for each v in the
domain of τ•, we have τ(v) = τ•(v). This is easily verified since, by lemma 4.2(iv), τ(v)
and τ•(v) are implicitly defined by the same equation

1

2

〈
H ΘH(τ(v),v

±),ΘH(τ(v),v±)
〉
E
= F

(
v + ψ(v0)

)
−F

(
v0 + ψ(v0)

)

=
1

2

〈
H ΘH(τ•(v),v

±),ΘH(τ•(v),v
±)
〉
E
. �

Corollary 4.5. If ν(F ,0) = ν(F•,0) then F±|E•
= F±

• and F 0 = F 0
• . �

4.3. Local Homology. Before going to the proof of theorem 4.1, we need to establish another
naturality property, this time for the isomorphism between the local homology of F at 0

and the homology of the corresponding Gromoll-Meyer pairs. For the reader’s convenience,
let us briefly recall the needed definition applied to our setting. We denote by ΦF the
anti-gradient flow of F , i.e.

∂ΦF

∂t
(t,y) = −∇F (ΦF (t,y)), ΦF (0, ·) = idE .

A pair of topological spaces (W ,W−) is called a Gromoll-Meyer pair for F at the critical
point 0 when

(GM1) W ⊂ E is a closed neighborhood of 0 that does not contain other critical points
of F ;

(GM2) if F (0) = c, there exists ǫ > 0 such that [c− ǫ, c) does not contain critical values of
F , and W ∩ (F )c−ǫ = ∅;

(GM3) if t1 < t2 are such that ΦF (t1,y),ΦF (t2,y) ∈ W for some y ∈ E, then ΦF (t,y) ∈
W for all t ∈ [t1, t2];

(GM4) W− = {y ∈ W |ΦF ((0,∞)× {y}) ⊂ E \W } is a piecewise submanifold of E trans-
versal to the flow ΦF .

It is always possible to build a Gromoll-Meyer pair (W ,W−) for F at 0, and we have
H∗(W ,W−) ≃ C∗(F ,0), see [Ch, page 48].

Lemma 4.6. Let (W ,W−) be a Gromoll-Meyer pair for F at 0. Then, the following holds.

(i) The pair (W•,W•−) := (W ∩E•,W−∩E•) = (J−1(W ), J−1(W−)) is a Gromoll-Meyer
pair for F• = F |E•

at 0.
(ii) Consider the restrictions of J : E• →֒ E given by

J : ((F•)c ∪ {x} , (F•)c) →֒ ((F )c ∪ {x} , (F )c),

J : (W•,W•−) →֒ (W ,W−).

These restrictions induce the homology homomorphisms

J∗ : C∗(F•,0)→ C∗(F ,0),

J∗ : H∗(W•,W•−)→ H∗(W ,W−).
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Then, there exist homology isomorphisms ι(W•,W•−) and ι(W ,W−) such that the fol-
lowing diagram commutes.

C∗(F•,0)
J∗ //

ι(W•,W•−) ≃

��

C∗(F ,0)

ι(W ,W−)≃

��
H∗(W•,W•−)

J∗ // H∗(W ,W−)

Proof. Part (i) just requires the straightforward verification that the pair (W•,W•−) satisfies
conditions (GM1),...,(GM4). Part (ii) requires to examine the isomorphism between the
homology of a Gromoll-Meyer pair and a corresponding local homology group (we refer the
reader to [Ch, page 48] for more details on what we claim). The point, here, is to show that
this isomorphism is given by the composition of homology isomorphisms induced by maps,
so that the assertion follows from the functoriality of singular homology.

Notice that, by the assumption (4.1), the anti-gradient flow ΦF of F restricts on E• to
the anti-gradient flow ΦF•

of the restricted functional F•. We introduce the sets Y and
Y• given by

Y := ΦF ([0,∞)×W ) ,

Y• := ΦF•
([0,∞)×W•) = ΦF ([0,∞)×W•) = Y ∩E•,

and we consider the following diagram.

C∗(F•, 0)
J∗ // C∗(F ,0)

H∗ (Y• ∩ (F•)c ∪ {0} ,Y• ∩ (F•)c) //

≃

OO

≃

��

H∗ (Y ∩ (F )c ∪ {0} ,Y ∩ (F )c)

≃

OO

≃

��
H∗ (Y•,Y• ∩ (F•)c) // H∗ (Y ,Y ∩ (F )c)

H∗(W•,W•−)
J∗ //

≃

OO

H∗(W ,W−)

≃

OO

In this diagram, all the arrows are homology homomorphisms induced by inclusions. More-
over, all the vertical arrows are isomorphisms (this fact is proved by anti-gradient flow
deformations and excisions), and we define the isomorphisms ι(W•,W•−) and ι(W ,W−) as the
composition of the whole left vertical line and right vertical line respectively. By the func-
toriality of singular homology, this diagram is commutative, and the claim of part (ii)
follows. �
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After these preliminaries, let us go back to the proof of theorem 4.1. First of all, if we
assume ν(F ,0) = ν(F•,0), corollary 4.5 implies that F 0 = F 0

• . Hence the inclusion J
restricts to the identity map on the pair

((F 0
• )c ∪ {0} , (F 0

• )c) = ((F 0)c ∪ {0} , (F 0)c),

and therefore

C∗(F
0
• ,0) = C∗(F

0,0).(4.8)

For the Morse functionals F±
• and F± we have the following result.

Lemma 4.7. If (ι(F ,0), ν(F ,0)) = (ι(F•,0), ν(F•,0)) then the inclusion J , restricted as
a map

J : ((F±
• )c ∪ {0} , (F±

• )c) →֒ ((F±)c ∪ {0} , (F±)c),(4.9)

induces the homology isomorphism J∗ : C∗(F
±
• ,0)

≃−→C∗(F
±,0).

Proof. The fact that J restricts to a map of the form (4.9) is guaranteed by corollary 4.5.
Moreover, lemma 4.3(i) guarantees that E−

• = E−. Hence J further restricts to a homeo-
morphism

J̃ : (E− ∩ (F±
• )c ∪ {0} ,E− ∩ (F±

• )c)
≃−→(E− ∩ (F±)c ∪ {0} ,E− ∩ (F±)c),

and we obtain the following commutative diagram of inclusions.

((F±
• )c ∪ {0} , (F±

• )c)
� � J // ((F±)c ∪ {0} , (F±)c)

(E− ∩ (F±
• )c ∪ {0} ,E− ∩ (F±

• )c)
J̃

≃
//

?�

k• ∼

OO

(E− ∩ (F±)c ∪ {0} ,E− ∩ (F±)c)
?�

k ∼

OO

It is well known that k• and k are homotopy equivalences. Therefore J∗ = k∗ ◦ J̃∗ ◦ (k•∗)−1

is a homology isomorphism. �

Proof of theorem 4.1. The homeomorphisms φ and φ• obtained by the Morse lemma induce
local homology isomorphisms φ∗ and φ•∗ such that the following diagram commutes.

C∗(F•,0)
J∗ // C∗(F ,0)

C∗(F
0
• + F±

• ,0)
J∗ //

φ•∗ ≃

OO

C∗(F
0 + F±,0)

φ∗≃

OO

Hence, we only need to prove that the lower horizontal homomorphism J∗ is an isomorphism.
We consider Gromoll-Meyer pairs (W ±,W ±

− ) and (W 0,W 0
−) for F± and F 0 respectively at

0, so that the cross product of these pairs, which is

(W ,W−) := (W ± ×W
0, (W ±

− ×W
0) ∪ (W ± ×W

0
−)),
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is a Gromoll-Meyer pair for F 0 +F± at 0. Then, by lemma 4.6, we obtain Gromoll-Meyer
pairs for the functionals F±

• , F 0
• and F 0

• + F±
• at 0 respectively as

(W ±
• ,W ±

•−) := (W ± ∩E•,W
±
− ∩E•) = (J−1(W ±), J−1(W ±

− )),

(W 0
• ,W

0
•−) := (W 0 ∩E•,W

0
− ∩E•) = (J−1(W 0), J−1(W 0

−)),

(W•,W•−) := (W ∩E•,W− ∩E•) = (J−1(W ), J−1(W−))

and, together with the Künneth formula, we obtain the following commutative diagram.

C∗(F
0
• + F±

• ,0)
J∗ //

ι(W•,W•−) ≃

��

C∗(F
0 + F±,0)

ι(W ,W−)≃

��
H∗(W•,W•−)

J∗ //

Künneth ≃

��

H∗(W ,W−)

Künneth≃

��
H∗(W

±
• ,W ±

•−)
⊗

H∗(W
0
• ,W

0
•−)

J∗ ⊗ J∗ //
H∗(W

±,W ±
− )

⊗
H∗(W

0,W 0
−)

H∗(F
±
• ,0)
⊗

H∗(F
0
• ,0)

J∗ ⊗ J∗

≃
//

ι
(W

±
• ,W

±
•−

)
⊗ ι

(W 0
• ,W 0

•−
) ≃

OO

H∗(F
±,0)
⊗

H∗(F
0,0)

ι
(W ±,W

±
−

)
⊗ ι

(W 0,W 0
−

)≃

OO

The commutativity of the upper and lower squares follows from lemma 4.6, while the com-
mutativity of the central square follows from the naturality of the Künneth formula (see
for instance [Ha, page 275]). By (4.8) and lemma 4.7, the lower horizontal homomorphism
J∗ ⊗ J∗ is an isomorphism, and so must be all the others horizontal homomorphisms. �

4.4. Application to the Lagrangian action functional. We conclude this section showing
that the abstract theorem 4.1 applies when J is the iteration map and F is the mean
action functional associated to a convex quadratic-growth Lagrangian. To be more precise,
the action functional does not fulfill the hypotheses of theorem 4.1, since it is not C2 in
general (the C2-regularity is needed by the Generalized Morse Lemma). However, we can
still obtain the assertions of theorem 4.1 by means of the discretization technique developed
in section 3.

Let L : T × TM → R be a convex quadratic-growth Lagrangian with action A [τ ] and
let γ : T[τ ] → M be a contractible τ -periodic solution of the Euler-Lagrange system of L

(namely, a contractible critical point of A [τ ]) with A [τ ](γ) = c. In order to simplify the
notation, let us assume that τ = 1.
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Proposition 4.8. Let n ∈ N be such that (ι(γ), ν(γ)) = (ι(γ[n]), ν(γ[n])). Then the iteration
map ψ[n], restricted as a map of pairs of the form

ψ[n] : ((A )c ∪ {γ} , (A )c) →֒ ((A [n])c ∪ {γ} , (A [n])c),

induces the homology isomorphism ψ
[n]
∗ : C∗(A , γ)

≃−→C∗(A
[n], γ[n]).

Proof. By corollary 3.11, for all k ∈ N sufficiently big, the inclusion

ι : ((Ak)c ∪ {γ} , (Ak)c) →֒ ((A )c ∪ {γ} , (A )c)

induces an isomorphism in homology. Now, let Λ
[n]
k be the n-periodic analogue of the k-

broken Euler-Lagrange loop space Λk (see section 3.2). Namely, Λ
[n]
k is the subspace of

W 1,2(T[n];M) consisting of those loops ζ : T[n] →M such that dist(ζ( ik ), ζ(
i+1
k )) < ρ0 and

ζ|[i/k,(i+1)/k] is an action minimizer for each i ∈ {0, ..., nk − 1} (here, ρ0 is the constant

given by proposition 3.1). We denote by A
[n]
k the restriction of A [n] to Λ

[n]
k . Notice that

the iteration map restricts as a continuous map of pairs of the form

ψ[n] : ((Ak)c ∪ {γ} , (Ak)c) →֒ ((A
[n]
k )c ∪ {γ} , (A [n]

k )c).(4.10)

Moreover, as before, the inclusion

ι[n] : ((A
[n]
k )c ∪ {γ} , (A [n]

k )c) →֒ ((A [n])c ∪ {γ} , (A [n])c)

induces an isomorphism in homology, and the following diagram commutes.

C∗(A , γ)
ψ[n]

∗ // C∗(A
[n], γ)

C∗(Ak, γ)
ψ[n]

∗ //

ι∗ ≃

OO

C∗(A
[n]
k , γ)

ι[n]
∗

≃

OO

By proposition 3.4, up to choosing a sufficiently big discretization pass k ∈ N, the Morse
index and nullity of the critical points of the action functional do not change under dis-
cretization. Therefore, all we have to do in order to conclude the proof of the proposition is
to establish the analogous claim for the restricted iteration map (4.10).

Applying the localization argument of section 3.2 around γ, we can assume that our
convex quadratic-growth Lagrangian function has the form L : T×U ×R

N → R, where U
is an open neighborhood of the origin in R

N , and the corresponding action and mean action
have the form A : W 1,2(T;U)→ R and A [n] :W 1,2(T[n];U)→ R. In this way we identify
γ with the point 0 ∈ W 1,2(T;U). Notice that the claim that we are proving is precisely

the assertion of the abstract theorem 4.1 when F is the discrete mean action A
[n]
k and J is

the iteration map ψ[n]. All we have to do in order to conclude is to verify that theorem 4.1
applies in our situation.

First of all, we recall that an open neighborhood U• ⊂ Λk of γ ≡ 0 can be identified with
an open set of RNk by the diffeomorphism

ζ 7→
(
ζ(0), ζ( 1k ), ..., ζ(

k−1
k )
)
, ∀ζ ∈ U•.

Analogously, we can identify an open neighborhood U ⊂ Λ
[n]
k of γ[n] ≡ 0 with an open set

of RNnk by the diffeomorphism

σ 7→
(
σ(0), σ( 1

nk ), ..., σ(
nk−1
nk )

)
, ∀σ ∈ U .
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With these identifications, the iteration map ψ[n] is the restriction of an injective linear map
R
Nk →֒ R

Nnk, that we still denote by ψ[n], given by

ψ[n](w) = (w, ..., w
︸ ︷︷ ︸
n times

), ∀w ∈ R
Nk.

This map is an isometry with respect to the standard inner product 〈〈·, ·〉〉 on R
Nk and the

inner product 〈〈·, ·〉〉[n] on R
Nnk obtained multiplying by n−1 the standard one, i.e.

〈〈w, z〉〉 =
k−1∑

j=0

〈wj , zj〉 , ∀w = (w0, ..., wk−1), z = (z0, ..., zk−1) ∈ R
Nk,

〈〈w′, z′〉〉[n] = 1

n

nk−1∑

j=0

〈
w′
j , z

′
j

〉
, ∀w′ = (w′

0, ..., w
′
nk−1), z

′ = (z′0, ..., z
′
nk−1) ∈ R

Nnk,

where 〈·, ·〉 denotes the standard inner product of RN .
Now, in order to conclude, the last hypothesis of theorem 4.1 that must be verified is the

condition expressed in (4.1), that in our setting becomes

∇A
[n]
k (ζ [n]) = ψ[n] ◦ ∇Ak(ζ), ∀ζ ∈ U•,(4.11)

where the gradients of the action functionals Ak and A
[n]
k are computed with respect to the

above inner products on R
Nk and R

Nnk.
For each ζ ∈ U• and ξ ∈ TζΛk, we have

dAk(ζ) ξ =

k−1∑

h=0

∫ (h+1)/k

h/k

(
〈∂vL (t, ζ, ζ̇), ξ̇〉+ 〈∂qL (t, ζ, ζ̇), ξ〉

)
dt

=
k−1∑

h=0

〈
∂vL (hk , ζ(

h
k ), ζ̇(

h
k

−

))− ∂vL (hk , ζ(
h
k ), ζ̇(

h
k

+

)), ξ(hk )
〉
.

This computation, together with lemma 3.5, shows that ∇Ak(ζ) : T → R
N is the element

of TζΛk given by

∇Ak(ζ)(
h
k ) = ∂vL (hk , ζ(

h
k ), ζ̇(

h
k

−

))− ∂vL (hk , ζ(
h
k ), ζ̇(

h
k

+

)), ∀h ∈ {0, ..., k − 1} .

Analogously, for each σ ∈ Tζ[n]Λ
[n]
k we have

dA
[n]
k (ζ [n])σ =

1

n

n−1∑

l=0

k−1∑

h=0

〈
∂vL (hk , ζ(

h
k ), ζ̇(

h
k

−

))− ∂vL (hk , ζ(
h
k ), ζ̇(

h
k

+

)), σ(hk + l)
〉
,

and, from this computation, equation (4.11) readily follows. �

5. Homological vanishing under iteration

In this section we prove that the elements of the homotopy and homology groups of pairs
of sublevels of the action functional (associated to a convex quadratic-growth Lagrangian)
are killed by the nth-iteration map, for n that is a sufficiently big power of any given positive
integer. This result was proved in the particular case of the geodesics action functional by
Bangert and Klingenberg [BK, theorem 2], and then extended by Long [Lo2, section 5]
to more general Lagrangian systems. Long’s proof relies on an ad hoc homology theory,
which he calls Finite Energy Homology, in order to deal with technical issues concerning the
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regularity of the involved singular simplices. Here, we provide a proof that makes use of the
standard singular homology theory.

Consider a convex quadratic-growth Lagrangian L : T×TM → R with associated action
A [τ ], τ ∈ N. As usual, let us put τ = 1 in order to simplify the notation. We denote by
W 1,2

contr(T;M) ⊂ W 1,2(T;M) and, more generally, by W 1,2
contr(T

[n];M) ⊂W 1,2(T[n];M), the
connected component of contractible loops. Notice that the iteration map restricts to a map

ψ[n] :W 1,2
contr(T;M) →֒ W 1,2

contr(T
[n];M).

From now on we will implicitly consider the action functionals A and A [n] restricted to
W 1,2

contr(T;M) and W 1,2
contr(T

[n];M) respectively. In particular, all the action sublevels will
be contained in this latter sets.

Theorem 5.1 (Homological vanishing). Let c1 < c2 ≤ ∞, where the sublevel (A )c1 is not
empty, and let [µ] ∈ H∗((A )c2 , (A )c1). Then, for any integer p ≥ 2, there exists n̄ =

n̄(L , [µ], p) ∈ N that is a power of p such that ψ
[n̄]
∗ [µ] = 0 in H∗((A

[n̄])c2 , (A
[n̄])c1).

Since ψ[n]◦ψ[m] = ψ[nm] for each n,m ∈ N, the assertion of this theorem can be rephrased
as follows: for each n ∈ N that is a sufficiently big power of the given p ∈ N, we have

ψ
[n]
∗ [µ] = 0 in H∗((A

[n])c2 , (A
[n])c1).

The proof of theorem 5.1 is based on a homotopic technique that is essentially due to
Bangert (see [Ba, section 3] or [BK, theorem 1]). We recall that a homotopy F : [0, 1] ×
(X,U) → (Y,W ) is said relative U when F (t, x) = F (0, x) for all (t, x) ∈ [0, 1] × U . For
each q ∈ N, we denote by ∆q the standard q-simplex in R

q.

Lemma 5.2. Let c1 < c2 ≤ ∞ and σ : (∆q, ∂∆q) → ((A )c2 , (A )c1) be a singular simplex,
i.e. [σ] ∈ πq((A )c2 , (A )c1). Then, there exists n̄ = n̄(L , σ) ∈ N and, for every integer
n ≥ n̄, a homotopy

B[n]
σ : [0, 1]× (∆q, ∂∆q)→ ((A [n])c2 , (A

[n])c1) relative ∂∆q,

which we call Bangert homotopy, such that B
[n]
σ (0, ·) = σ[n] := ψ[n] ◦ σ and B

[n]
σ (1,∆q) ⊂

(A [n])c1 . In particular, ψ
[n]
∗ [σ] = 0 in πq((A

[n])c2 , (A
[n])c1).

Proof. First of all, let us introduce some notation. For each path α : [x0, x1] → M , we
denote by α : [x0, x1]→M the inverse path

α(x) = α(x0 + x1 − x), ∀x ∈ [x0, x1].

If we consider a second path β : [x′0, x
′
1] → M with α(x1) = β(x′0), we denote by α • β :

[x0, x1 + x′1 − x′0]→M the concatenation of α and β, namely

α • β(x) =
{
α(x) x ∈ [x0, x1],
β(x− x1 + x′0) x ∈ [x1, x1 + x′1 − x′0].

Now, consider a continuous map θ : [x0, x1] → W 1,2(T;M), where [x0, x1] ⊂ R. For
each n ∈ N, we define θ[n] := ψ[n] ◦ θ : [x0, x1] → W 1,2(T[n];M). Now, we want to build
another continuous map θ〈n〉 : [x0, x1] → W 1,2(T[n];M) as explained in the following. To
begin with, let us denote by ev :W 1,2(T;M)→M the evaluation map, given by

ev(ζ) = ζ(0), ∀ζ ∈W 1,2(T;M).

This map is smooth, which implies that the initial point curve ev ◦ θ : [x0, x1] → M is
(uniformly) continuous. In particular, there exists a constant ρ = ρ(θ) > 0 such that, for
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each x, x′ ∈ [x0, x1] with |x− x′| ≤ ρ, we have that dist(ev ◦ θ(x), ev ◦ θ(x′)) is less than the
injectivity radius ofM . Here, we have denoted by“dist”the Riemannian distance onM (with
respect to its fixed Riemannian metric). Now, for each x, x′ ∈ [x0, x1] with 0 ≤ x′ − x ≤ ρ,

we define the horizontal geodesic θx
′

x : [x, x′] → M as the shortest geodesic that connects
the points ev ◦ θ(x) and ev ◦ θ(x′). Notice that, by proposition 3.2, this geodesic depends
smoothly on its endpoints. Then, let J ∈ N be such that x0 + Jρ ≤ x1 ≤ x0 + (J + 1)ρ.
For each x ∈ [x0, x1] we further choose j ∈ N such that x0 + jρ ≤ x ≤ x0 +(j+1)ρ, and we
define the horizontal broken geodesics θxx0

: [x0, x]→M and θx1
x : [x, x1]→M by

θxx0
:= θx0+ρ

x0
• θx0+2ρ

x0+ρ • ... • θ
x
x0+jρ,

θx1
x := θx0+(j+1)ρ

x • θx0+(j+2)ρ
x0+(j+1)ρ • ... • θ

x1

x0+Jρ
.

We define a preliminary map θ̃〈n〉 : [x0, x1]→ W 1,2(T[n];M) in the following way. For each
j ∈ {1, ..., n− 2} and y ∈ [0, x1−x0

n ] we put

θ̃〈n〉(x0 + y) := θ[n−1](x0) • θx0+ny
x0

• θ(x0 + ny) • θx0+ny
x0 ,

θ̃〈n〉
(
x0 +

j
n (x1 − x0) + y

)
:= θ[n−j−1](x0) • θx0+ny

x0
• θ(x0 + ny)

• θx1
x0+ny • θ

[j](x1) • θx1
x0 ,

θ̃〈n〉
(
x0 +

n−1
n (x1 − x0) + y

)
:= θ(x0 + ny) • θx1

x0+ny • θ
[n−1](x1) • θx1

x0+ny.

For each x ∈ [x0, x1], we reparametrize the loop θ̃〈n〉(x) as follows: in the above formulas,
each fixed part θ(x0) and θ(x1) spends the original time 1, while the moving parts θ(x0+ny)
and the pieces of horizontal broken geodesics share the remaining time 1 proportionally to
their original parametrizations. We define

θ〈n〉 : [x0, x1]→W 1,2(T[n];M)

as the obtained continuous path in the loop space (see the example in figure 3(a)).

For each x ∈ [x0, x1], we define the pulling loop θ̂(x) : T → M as the loop obtained

erasing from the formula of θ̃〈n〉(x) the fixed parts θ(x0) and θ(x1) and reparametrizing on

[0, 1] (see the example in figure 3(b)). Notice that θ̂ is independent of the integer n ∈ N and,

for each x ∈ N, the action A (θ̂(x)) is finite and depends continuously on x. In particular
we obtain a finite constant

C(θ) := max
x∈[x0,x1]

{
A (θ̂(x))

}
= max

x∈[x0,x1]

{∫ 1

0

L

(
t, θ̂(x)(t),

d

dt
θ̂(x)(t)

)
dt

}
<∞,

and, for each n ∈ N, the estimate

A
[n](θ〈n〉(x)) ≤ 1

n

[
(n− 1)max {A (θ(x0)),A (θ(x1))}+ A (θ̂(x))

]

≤ max {A (θ(x0)),A (θ(x1))} +
C(θ)

n
.

(5.1)

Now, let L ⊆ R
q be the straight line passing through the origin and the barycenter of

the standard q-simplex ∆q ⊂ R
q. According to the orthogonal decomposition R

q = L
⊥⊕L,

we can write the elements of ∆q as z = (y, x) ∈ L
⊥ ⊕ L. For each s ∈ [0, 1] we denote

by s∆q the rescaled q-simplex, given by {sz | z ∈ ∆q}. Varying s from 1 to 0 we obtain
a deformation retraction of ∆q onto the origin of Rq. For each (y, x) ∈ s∆q, we denote
by [x0(y, s), x1(y, s)] ⊆ L the maximum interval such that (y, x′) belongs to s∆q for all
x′ ∈ [x0(y, s), x1(y, s)] (see figure 4).
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(a)

(b)

θ〈4〉(0)

θ〈4〉(14 + y)

θ〈4〉(1)

θ〈4〉(y)

θ[4](0)

θ[3](0)

θ[2](0)

θ(4y)

θ(4y)

θ(4y)

θ(4y)

θ(4y)

θ(1)

θ[4](1)

θ̂(y)

θ̂( j4 + y)

θ̂(34 + y)

0 ≤ y < 1/4

0 ≤ y < 1/4

0 ≤ y < 1/4

0 ≤ y < 1/4

0 ≤ y < 1/4, j ∈ {1, 2}

Figure 3. (a) Description of θ〈4〉 : [0, 1] → W 1,2(T[4];M), obtained from a map θ : [0, 1] → W 1,2(T;M).
Here, for simplicity, we are assuming that the diameter of θ([x0, x1]) is less than the injectivity
radius of M , so that the horizontal geodesics are not broken. The arrows show the direction in

which the loop θ(4y) is pulled as y grows. (b) Description of the map of pulling loops θ̂ : [0, 1] →

W 1,2(T;M).
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s∆q ⊂ ∆q

LL
⊥

y x0(y, s)

x1(y, s)

Figure 4.

Consider the q-singular simplex σ of the statement. For each n ∈ N, we define the

homotopy B
[n]
σ : [0, 1]×∆q →W 1,2(T[n];M) by

B[n]
σ (s, z) :=

{ (
σ(y, ·)|[x0(y,s),x1(y,s)]

)〈n〉
(x) z = (y, x) ∈ s∆q,

σ[n](z) z 6∈ s∆q,

for each (s, z) ∈ [0, 1]×∆q. This homotopy B
[n]
σ is relative ∂∆q, for

B[n]
σ (s, z) = σ[n](z), ∀(s, z) ∈ [0, 1]× ∂∆q,

and clearly B
[n]
σ (0, ·) = σ[n]. Take ǫ > 0 such that

max
z∈∆q

A (σ(z)) ≤ c2 − ǫ, max
z∈∂∆q

A (σ(z)) ≤ c1 − ǫ.

For each s ∈ [0, 1], n ∈ N and z = (y, x) ∈ s∆q, by the estimate in (5.1) we have

A
[n](B[n]

σ (s, z)) ≤ max {A (σ(x0(y, s))),A (σ(x1(y, s)))} +
C(σ(y, ·)|[x0(y,s),x1(y,s)])

n
,

while, for each z ∈ ∆q \ s∆q, we have

A
[n](B[n]

σ (s, z)) = A (σ(z)).

In particular, there exists a finite constant

C(σ) := max
{
C(σ(y, ·)|[x0(y,s),x1(y,s)]) | s ∈ [0, 1], (y, x) ∈ s∆q

}

such that, for each n ∈ N and (s, z) ∈ [0, 1]×∆q, we have

A
[n](B[n]

σ (s, z)) ≤ max
w∈∆q

{A (σ(w)} + C(σ)

n
≤ c2 − ǫ+

C(σ)

n
,

A
[n](B[n]

σ (1, z)) ≤ max
w∈∂∆q

{A (σ(w)} + C(σ)

n
≤ c1 − ǫ+

C(σ)

n
.

These estimates prove that, for n sufficiently big, the homotopy B
[n]
σ satisfies the properties

stated in the lemma. �
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Remark 5.1. In section 6.2 we will need the following observation. Assume that the singular
simplex σ of lemma 5.2 has W 1,∞-bounded image, i.e. there exists a real R̄′ such that

sup
z∈∆q

ess sup
t∈T

{∣∣∣∣
d

dt
σ(z)(t)

∣∣∣∣
σ(z)(t)

}
≤ R̄′.

Then the Bangert homotopies B
[n]
σ have W 1,∞-bounded image as well, and this bound is

uniform in n ≥ n̄(L , σ). In other words, there exists a real R̄ ≥ R̄′ such that, for every
integer n ≥ n̄(L , σ), we have

sup
(s,z)∈[0,1]×∆q

ess sup
t∈T[n]

{∣∣∣∣
d

dt
B[n]
σ (s, z)(t)

∣∣∣∣
B

[n]
σ (s,z)(t)

}
≤ R̄.

Proof of theorem 5.1. We denote by Σ(µ) the set of singular simplices in µ together with
all their faces, and by K ⊂ N the set of nonnegative integer powers of p, i.e. K =
{pn |n ∈ N ∪ {0}}. The idea of the proof is to apply lemma 5.2 successively to all the
elements of Σ(µ). More precisely, for each singular simplex σ : ∆q → (A )c2 that belongs to
Σ(µ), we will find n̄ = n̄(L , σ, p) ∈ K and a homotopy

P [n̄]
σ : [0, 1]×∆q → (A [n̄])c2 ,

such that

(i) P
[n̄]
σ (0, ·) = σ[n̄],

(ii) P
[n̄]
σ (1,∆q) ⊂ (A [n̄])c1 ,

(iii) if σ(∆q) ⊂ (A )c1 , then P
[n̄]
σ (s, ·) = σ[n̄] for each s ∈ [0, 1],

(iv) P
[n̄]
σ◦Fi

= P
[n̄]
σ (·, Fi(·)) for each i = 0, ..., q, where Fi : ∆

q−1 → ∆q is the standard

affine map onto the ith face of ∆q.

For each n ∈ K greater than n̄, we define a homotopy P
[n]
σ : [0, 1] × ∆q → (A [n])c2 by

P
[n]
σ = ψ[n/n̄] ◦ P [n̄]

σ . This homotopy satisfies the analogous properties (i),...,(iv) in period
n. Notice that property (iv) implicitly requires that n̄(L , σ, p) ≥ n̄(L , σ ◦ Fi, p) for each
i = 0, ..., q.

Now, assume that such homotopies exist and put

n̄ = n̄(L , [µ], p) := max {n̄(L , σ, p) |σ ∈ Σ(µ)} ∈ K.

Then, we have a family of homotopies {P [n̄]
σ |σ ∈ Σ(µ)} satisfying the above proper-

ties. Therefore, a classical result in algebraic topology (basically, a variation of the ho-

motopic invariance of singular homology, see [BK, lemma 1]) implies that ψ
[n̄]
∗ [µ] = 0 in

H∗((A
[n̄])c2 , (A

[n̄])c1).
In order to conclude the proof, we only need to build the above homotopies. We do it

inductively on the degree of the relative cycle µ. If µ is a 0-relative cycle, then Σ(µ) is simply
a finite set of contractible loops that is contained in (A )c2 . Let γ ∈ Σ(µ) be one of these

loops. If γ ∈ (A )c1 we simply set n̄ = n̄(L , γ, p) := 1 and P
[n̄]
γ (s) := γ for each s ∈ [0, 1]. If

γ 6∈ (A )c1 , since we are assuming that (A )c1 is non-empty, we can find a continuous path

Γ : ([0, 1], {0, 1})→ (W 1,2
contr(T;M), (A )c2)

such that Γ(0) = γ and Γ(1) ∈ (A )c1 . By lemma 5.2, for every integer n ≥ n̄(L ,Γ) there
exists a Bangert homotopy

B
[n]
Γ : [0, 1]× ([0, 1], {0, 1})→ (W 1,2

contr(T
[n];M), (A [n])c2) relative {0, 1}
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B
[n̄]
ΓΓ[n̄] P

[n̄]
γ

≡ γ[n̄]

≡ Γ[n̄](1)

Figure 5.

such that B
[n]
Γ (0, ·) = Γ[n] and B

[n]
Γ (1, [0, 1]) ⊂ (A [n])c2 . Then, we set

n̄ = n̄(L , γ, p) := min{n ∈ K |n ≥ n̄(L ,Γ)}

and we define the map P
[n̄]
γ : [0, 1]→ (A [n̄])c2 as P

[n̄]
γ := B

[n̄]
γ (1, ·), see figure 5.

In case µ is a q-relative cycle, with q ≥ 1, we can apply the inductive hypothesis: for every
nonnegative integer j < q and for each j-singular simplex ν ∈ Σ(µ) we obtain n̄(L , ν, p) ∈ K

and, for every n ∈ K greater or equal than n̄(L , ν, p), a homotopy P
[n]
ν satisfying the above

properties (i),...,(iv). Now, consider a q-singular simplex σ ∈ Σ(µ). If σ(∆q) ⊂ (A )c1 we

simply set n̄ = n̄(L , σ, p) := 1 and P
[n̄]
σ (s, ·) := σ for each s ∈ [0, 1]. Hence, let us assume

that σ(∆q) 6⊂ (A )c1 . We denote by n̄′ = n̄′(L , σ, p) the maximum of the n̄(L , ν, p)’s for
all the proper faces ν of σ. For each n ∈ K greater or equal than n̄′, every proper face ν of

σ has an associated homotopy P
[n]
ν : [0, 1]×∆q−1 → (A [n])c2 . For technical reasons, let us

assume that P
[n]
ν (s, ·) = P

[n]
ν (12 , ·) for each s ∈ [ 12 , 1]. Patching together the homotopies of

the proper faces of σ, we obtain

P [n]
σ : ([0, 12 ]× ∂∆

q) ∪ ({0} ×∆q)→ (A [n])c2 , ∀n ∈ K, n ≥ n̄′,

such that P
[n]
σ (0, ·) = σ[n] and P

[n]
σ (·, Fi(·)) = P

[n]
σ◦Fi

for each i = 0, ..., q. By retracting

[0, 12 ]×∆q onto ([0, 12 ]× ∂∆q) ∪ ({0} ×∆q) we can extend the homotopy P
[n]
σ to the whole

[0, 12 ]×∆q, obtaining

P [n]
σ : [0, 12 ]×∆q → (A [n])c2 , ∀n ∈ K, n ≥ n̄′.(5.2)

Notice that P
[n̄′]
σ (12 , ·) is a singular simplex of the form

P [n̄′]
σ (12 , ·) : (∆

q, ∂∆q)→ ((A [n̄′])c2 , (A
[n̄′])c1).

Let us briefly denote this singular simplex by σ̃. By lemma 5.2, there exists n̄′′ ∈ K greater
or equal than n̄(L , σ̃) and a Bangert homotopy

B
[n̄′′]
σ̃ : [0, 1]× (∆q, ∂∆q)→ ((A [n̄′n̄′′])c2 , (A

[n̄′n̄′′])c1) relative ∂∆q,

such that B
[n̄′′]
σ̃ (0, ·) = σ̃[n̄′′] = P

[n̄′n̄′′]
σ (12 , ·) and B

[n̄′′]
σ̃ (1,∆q) ⊂ (A [n̄′n̄′′])c1 . Finally, we set

n̄ = n̄(L , σ, p) := n̄′n̄′′ and we build the homotopy

P [n̄]
σ : [0, 1]×∆q → (A [n̄])c2

extending the one in (5.2) by P
[n̄]
σ (s, ·) := B

[n̄′′]
σ̃ (2s− 1, ·) for each s ∈ [ 12 , 1]. �
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6. Convex quadratic modifications

Throughout this section, L : T×TM → R will be a Tonelli Lagrangian with associated
action A [τ ], τ ∈ N. We want to show how several techniques from the W 1,2 Morse Theory
of the action functional still apply in the Tonelli case. This will require some work, since
the Tonelli action functional A [τ ] is not even continuous on the W 1,2 loop space.

First of all, notice that the Tonelli assumptions and the compactness of M imply that L

is uniformly fiberwise superlinear (namely, the limit in (T2) is uniform in (t, q) ∈ T ×M).
In fact, if H is the Hamiltonian that is Legendre dual to L (see section 2.3) and k > 0, for
each (t, q, v) ∈ T× TM we have

L (t, q, v) ≥ max
|p|q≤k

{p(v)−H (t, q, p)} ≥ max
|p|q≤k

{p(v)} − max
|p|q≤k

{H (t, q, p)}

≥ k |v|q −max {H (t′, q′, p′) | (t′, q′, p′) ∈ T× T∗M, |p′|q′ ≤ k} .

In particular, if we put C(L ) := max {H (t, q, p) | (t, q, p) ∈ T× T∗M, |p|q ≤ 1}, we get

L (t, q, v) ≥ |v|q − C(L ), ∀(t, q, v) ∈ T× TM.

Following Abbondandolo and Figalli [AF, section 5], for each real R > 0 we say that a convex
quadratic-growth Lagrangian LR : T× TM → R is a convex quadratic R-modification (or
simply an R-modification) of the Tonelli Lagrangian L when:

(M1) LR(t, q, v) = L (t, q, v) for each (t, q, v) ∈ T× TM with |v|q ≤ R,
(M2) LR(t, q, v) ≥ |v|q − C(L ) for each (t, q, v) ∈ T× TM .

It is always possible to build a convex quadratic modification of a given Tonelli Lagrangian
(see [AF, page 637]). For each R > 0, we will denote by LR an arbitrary R-modification

of the Tonelli Lagrangian L with associated action A
[τ ]
R : W 1,2(T[τ ];M) → R (for each

τ ∈ N), i.e.

A
[τ ]
R (ζ) =

1

τ

∫ τ

0

LR(t, ζ(t), ζ̇(t)) dt, ∀ζ ∈ W 1,2(T[τ ];M).

As before, we will simply write AR for A
[1]
R . Notice that, if γ : T[τ ] → M is a smooth

τ -periodic solution of the Euler-Lagrange system of L and R > max{|γ̇(t)|γ(t) | t ∈ T
[τ ]},

then γ is a critical point of A
[τ ]
R . Moreover, the Hessian of A

[τ ]
R at γ depends only on L ,

since L and LR coincide along the lifted curve (γ, γ̇) : T[τ ] → TM . In particular, the

Morse index and nullity pair (ι(γ), ν(γ)) of A
[τ ]
R at γ is independent of the chosen R, and

in fact coincides with the Conley-Zehnder-Long index pair of γ.
One of the important features of convex quadratic modifications is given by the following

a priori estimate, that is due to Abbondandolo and Figalli (see [AF, lemma 5.2] for a proof).

Lemma 6.1. For each ã > 0 and τ̃ ∈ N, there exists R̃ = R̃(ã, τ̃ ) > 0 such that, for any

R-modification LR of L with R > R̃ and for any τ ∈ {1, ..., τ̃}, the following holds: if γ

is a critical point of A
[τ ]
R such that A

[τ ]
R (γ) ≤ ã, then max{|γ̇(t)|γ(t) | t ∈ T

[τ ]} ≤ R̃. In

particular, γ is a τ -periodic solution of the Euler-Lagrange system of L , and A [τ ](γ) =

A
[τ ]
R (γ). �

6.1. Convex quadratic modifications and local homology. Let γ be a contractible integer
periodic solution of the Euler-Lagrange system associated to the Tonelli Lagrangian L . In
order to simplify the notation, we assume that the period of γ is 1, so that it is a map of
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the form γ : T→M . We fix a real constant U > 0 such that

U > max
t∈T

{
|γ̇(t)|γ(t)

}
,(6.1)

and we consider a U -modification LU of L . Notice that, by (6.1), γ is a critical point of
AU with AU (γ) = A (γ).

Now, for each k ∈ N sufficiently big, we consider the k-broken Euler-Lagrange loop space
Λk = Λk,LU

associated to LU (see section 3.2), and we denote by AU,k its discrete action,
i.e. AU,k = AU |Λk

. We recall that Λk is a finite dimensional submanifold of W 1,2(T;M)
and, in particular, its topology coincides with the one induced as a subspace ofW 1,∞(T;M).
Therefore, we can define an open set Uk ⊂ Λk by

Uk :=

{
ζ ∈ Λk

∣∣∣∣ max
t∈T

{|ζ̇(t)|ζ(t)} < U

}
.

Notice that, for k ∈ N sufficiently big, γ belongs to Uk. Moreover, the action AU coincides
with the Tonelli action A on the open set Uk. This allows us to define the discrete Tonelli
action Ak : Uk → R by

Ak := A |Uk
= AU |Uk

= AU,k|Uk
.

Since AU,k is smooth, we readily obtain that the discrete Tonelli action Ak is smooth as
well. Moreover, the germ of Ak at γ turns out to be independent of the chosen U and of
the chosen U -modification LU of L , as stated by the following.

Lemma 6.2. Consider a real constant R ≥ U , an R-modification LR of L with associated
discrete action AR,k and a sufficiently big k ∈ N so that both AR,k and AU,k are defined.
Then, there exists Vk ⊂ Uk that is an open subset of both Λk,LU

and Λk,LR
and that

contains γ. In particular Ak|Vk
= AU,k|Vk

= AR,k|Vk
.

Proof. The Lagrangian functions LU and LR coincide on a neighborhood of the support of
the lifted curve (γ, γ̇) : T→ TM . Therefore the k-broken Euler-Lagrange loops of LU and
LR that are close to γ are the same, and the claim follows. �

Now, let c = Ak(γ) = A (γ). By corollary 3.11 and the excision property, for each
k ≥ k̄(LU , c), the inclusion

ιk : ((Ak)c ∪ {γ} , (Ak)c) →֒ ((AU )c ∪ {γ} , (AU )c)

induces the local homology isomorphism

ιk∗ : C∗(Ak, γ)
≃−→C∗(AU , γ).(6.2)

For each R-modification LR of L , with R > U , the action AR coincides with Ak on Uk.
Hence, we also have an inclusion

jk : ((Ak)c ∪ {γ} , (Ak)c) →֒ ((AR)c ∪ {γ} , (AR)c).

A priori, this inclusion might not induce an isomorphism in homology. However, we have
the following statement.

Lemma 6.3. The inclusion jk induces the homology isomorphism

jk∗ : C∗(Ak, γ)
≃−→C∗(AR, γ).
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Proof. Notice that, for each h ∈ N, we have Uk ⊂ Uhk. Since hk ≥ k ≥ k̄(LU , c), by
corollary 3.11 and the excision property, the inclusion

ιhk : ((Ahk)c ∪ {γ} , (Ahk)c) →֒ ((AU )c ∪ {γ} , (AU )c)

induces the homology isomorphism ιhk∗ : C∗(Ahk, γ)
≃−→C∗(AU , γ), analogously to ιk in

(6.2). We define an inclusion λh that factorizes ιk as in the following diagram

((Ak)c ∪ {γ} , (Ak)c)
� � ιk //

� _

λh

��

((AU )c ∪ {γ} , (AU )c)

((Ahk)c ∪ {γ} , (Ahk)c)

(
�

ιhk

66llllllllllllllllllllllllllll

This inclusion induces the homology isomorphism

λh∗ = (ιhk∗)
−1 ◦ ιk∗ : C∗(Ak, γ)

≃−→C∗(Ahk, γ).

Now, let us consider the R-modification LR of L . By lemma 6.2, for each h ∈ N, we know
that there exists an open neighborhood Vhk ⊂ Uhk of γ that is also an open subset of Λhk,LR

,
and in particular Ahk|Vhk

= AR,hk|Vhk
= AR|Vhk

. Applying once more corollary 3.11 and
the excision property, we obtain that the inclusion

j′hk : ((Ahk|Vhk
)c ∪ {γ} , (Ahk|Vhk

)c) →֒ ((AR)c ∪ {γ} , (AR)c).

induces an isomorphism in homology. Finally, consider the following diagram of inclusions.

((Ak)c ∪ {γ} , (Ak)c)
� v

jk

))SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
� _

λh (∗)

��

((Ahk)c ∪ {γ} , (Ahk)c)
� � jhk // ((AR)c ∪ {γ} , (AR)c)

((Ahk|Vhk
)c ∪ {γ} , (Ahk|Vhk

)c)

(
�

j′hk

(∗)

55kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk� ?

excision
inclusion

(∗)

OO

We already know that the inclusions marked with (∗) induce isomorphisms in homology.
Therefore, jhk and jk also induce isomorphisms in homology. �

Remark 6.1. As a consequence of the above lemma, we immediately obtain that the local
homology groups C∗(AR, γ) do not depend (up to isomorphism) on the chosen real constant
R ≥ U and on the chosen R-modification LR.
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6.2. Convex quadratic modifications and homological vanishing. All the arguments of the
previous section can be carried out word by word in an arbitrary period n ∈ N. Briefly, we
introduce the open set

U
[n]
k :=

{
ζ ∈ Λ

[n]
k

∣∣∣∣ max
t∈T[n]

{|ζ̇(t)|ζ(t)} < U

}

and we define the discrete mean Tonelli action as

A
[n]
k := A

[n]|
U

[n]
k

: U
[n]
k → R.

Then lemmas 6.2 and 6.3 go through. Notice that the image of Uk under the nth-iteration

map ψ[n] is contained in U
[n]
k . Now, consider ∞ ≥ c2 > c1 = c = A (γ), and let us assume

that γ is not a local minimum of A . For each R ≥ U , we have the following diagram of
inclusions.

((Ak)c1 ∪ {γ} , (Ak)c1)
� � ψ[n]

//
� _

ρ

��

((A
[n]
k )c1 ∪ {γ[n]}, (A

[n]
k )c1)

� _

ρ[n]

��

((AR)c2 , (AR)c1)
� � ψ[n]

// ((A [n]
R )c2 , (A

[n]
R )c1)

This latter, in turn, induces the following commutative diagram in homology.

C∗(Ak, γ)
ψ[n]

∗ //

ρ∗

��

C∗(A
[n]
k , γ[n])

ρ[n]
∗

��
H∗((AR)c2 , (AR)c1)

ψ[n]
∗ // H∗((A

[n]
R )c2 , (A

[n]
R )c1)

Since γ is not a local minimum of the action functional A , the sublevel (AR)c1 is not empty.
Hence, the homological vanishing (theorem 5.1) guarantees that for each [µ] ∈ C∗(Ak, γ)

and p ∈ N, there is n̄ = n̄(LR, [µ], p) ∈ N that is a power of p such that ψ
[n̄]
∗ ◦ ρ∗[µ] = 0.

Here, we want to remark that we can choose n̄ independent of R.

Proposition 6.4. With the above assumptions, consider [µ] ∈ C∗(Ak, γ) and p ∈ N. Then,
there exist R̄ = R̄(L , [µ], p) > 0 and n̄ = n̄(L , [µ], p) ∈ N that is a power of p such that,

for every real R ≥ R̄, we have ψ
[n̄]
∗ ◦ ρ∗[µ] = 0 in H∗((A

[n̄]
R )c2 , (A

[n̄]
R )c1). Equivalently, we

have that ψ
[n̄]
∗ [µ] ∈ ker ρ

[n̄]
∗ .

Proof. We denote by Σ(µ) the set of singular simplices in µ together with all their faces, and
by K ⊂ N the set of nonnegative integer powers of p, i.e. K = {pn |n ∈ N ∪ {0}}. Notice
that, for each q-singular simplex σ ∈ Σ(µ) we have σ(∆q) ⊂ Uk, and in particular

sup
z∈∆q

ess sup
t∈T

{∣∣∣∣
d

dt
σ(z)(t)

∣∣∣∣
σ(z)(t)

}
≤ U.(6.3)
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Hence, we can proceed along the line of the proof of the homological vanishing (theorem 5.1):
for each q-singular simplex σ ∈ Σ(µ) we get n̄ = n̄(L , σ, p) ∈ K and, for every n ∈ K greater
or equal than n̄, a homotopy

P [n]
σ : [0, 1]×∆q →W 1,2

contr(T
[n];M),

such that

(i) P
[n]
σ (0, ·) = σ[n],

(ii) A [n](P
[n]
σ (s, z)) < c2 for each (s, z) ∈ [0, 1]×∆q,

(iii) A [n](P
[n]
σ (1, z)) < c1 for each z ∈ ∆q,

(iv) if A (σ(z)) < c1 for each z ∈ ∆q, then P
[n]
σ (s, ·) = σ[n] for each s ∈ [0, 1],

(v) P
[n]
σ◦Fi

= P
[n]
σ (·, Fi(·)) for each i = 0, ..., q, where Fi : ∆

q−1 → ∆q is the standard

affine map onto the ith face of ∆q.

Notice that, by (6.3) and remark 5.1, there exists a real constant R̄(L , σ, p) > 0 such that

sup
(s,z)∈[0,1]×∆q

ess sup
t∈T[n]

{∣∣∣∣
d

dt
P [n]
σ (s, z)(t)

∣∣∣∣
P

[n]
σ (s,z)(t)

}
≤ R̄(L , σ, p).

Now, we define

n̄ = n̄(L , [µ], p) := max {n̄(L , σ, p) |σ ∈ Σ(µ)} ,
R̄ = R̄(L , [µ], p) := max

{
R̄(L , σ, p) |σ ∈ Σ(µ)

}
,

and we consider an R-modification LR of R, with R ≥ R̄. Then, the family of homotopies

{P [n̄]
σ |σ ∈ Σ(µ)} which we have built satisfies the following properties: for each q-singular

simplex σ ∈ Σ(µ), the homotopy P
[n̄]
σ has the form

P [n̄]
σ : [0, 1]×∆q → (A

[n̄]
R )c2 ,

and moreover

(i) P
[n̄]
σ (0, ·) = σ[n̄],

(ii) P
[n̄]
σ (1,∆q) ⊂ (A

[n̄]
R )c1 ,

(iii) if σ(∆q) ⊂ (AR)c1 , then P
[n̄]
σ (s, ·) = σ[n̄] for each s ∈ [0, 1],

(iv) P
[n̄]
σ◦Fi

= P
[n̄]
σ (·, Fi(·)) for each i = 0, ..., q.

As in the proof of theorem 5.1, by [BK, lemma 1] we conclude that ψ
[n̄]
∗ ◦ ρ∗[µ] = 0 in

H∗((A
[n̄]
R )c2 , (A

[n̄]
R )c1). �

7. Proof of theorem 1.1

We are now ready to prove theorem 1.1. Throughout the proof, we will adopt the same
notation of the previous section. In particular, we will implicitly assume that the mean

action functionals A
[n]
R of the R-modifications of L , for each n ∈ N and R > 0, will be

defined on the connected component of contractible loopsW 1,2
contr(T

[n];M) ⊂W 1,2(T[n];M).
Moreover, all the homology groups that will appear from now on are assumed to have
coefficients in the field Z2.

Let us fix a prime p ∈ N. We will denote by K ⊂ N the set of non-negative integer
powers of p, i.e. K = {pn |n ∈ N ∪ {0}}. We will proceed by contradiction, assuming that
the only contractible periodic solutions of the Euler-Lagrange system of L with period in
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K and mean action less than a (the constant chosen in the statement) are

γ1, ..., γr.

Without loss of generality, we can assume that all these orbits have period 1 = p0. This
can be easily seen in the following way. If pn is the maximum of their basic periods (and, in

particular, they are all pn-periodic) we can build a Tonelli Lagrangian L̃ : T × TM → R

by time-rescaling of L as

L̃ (t, q, v) := L (pnt, q, p−nv), ∀(t, q, v) ∈ T× TM.

For each j ∈ N, a curve γ̃ : R → M is a j-periodic solution of the Euler-Lagrange system
of L̃ if and only if the reparametrized curve γ : R→M , given by γ(t) := γ̃(p−nt) for each
t ∈ R, is a pnj-periodic solution of the Euler-Lagrange system of L . Moreover, γ̃ and γ
have the same mean action (with respect to the Lagrangians L̃ and L respectively).

We recall that N is the dimension of the closed manifold M . For each R > 0 and n ∈ N,

the homology of the sublevel (A
[n]
R )a is non-trivial in degree N , i.e.

HN ((A
[n]
R )a) 6= 0, ∀R > 0, n ∈ N.(7.1)

This is easily seen as follows. First of all, notice that the quantity in (1.1) is finite (due
to the compactness of M) and may be interpreted in the following way: for each integer

n ∈ N, if we denote by ι[n] :M →֒W 1,2
contr(T

[n];M) the embedding that maps a point to the
constant loop at that point, the quantity in (1.1) is equal to the maximum of the functional
A [n] ◦ ι[n] :M → R. By our choice of the constant a, we have

A
[n]
R ◦ ι[n](q) = A

[n] ◦ ι[n](q) < a, ∀q ∈M,

therefore ι[n] can be seen as a map of the form ι[n] : M →֒ (A
[n]
R )a. We denote by ev :

W 1,2(T;M) → M the evaluation map, defined by ev(ζ) = ζ(0) for each ζ ∈ W 1,2(T;M).
Since M is an N -dimensional closed manifold and we consider homology groups with Z2

coefficients, we have that HN (M) is non trivial. Therefore, the following commutative

diagram readily implies that ι
[n]
∗ is a monomorphism, and the claim follows.

HN ((A
[n]
R )a)

ev∗

&&MMMMMMMMMM

0 6= HN (M)

ι[n]
∗

77ooooooooooo
idM∗

≃
// HN (M)

Now, we want to show that there exists γ ∈ {γ1, ..., γr} having mean Conley-Zehnder
index ι̂(γ) equal to zero (see section 2.3). In fact, assume by contradiction that ι̂(γv) > 0
for each v ∈ {1, ..., r}. By the first iteration inequality in (2.3), there exists n ∈ K such that

ι(γ[n]v ) > N, ∀v ∈ {1, ..., r} .(7.2)

By lemma 6.1, if we choose a real constant R > R̃(a, n), we know that the only critical

points of A
[n]
R in the open sublevel (A

[n]
R )a are γ

[n]
1 , ..., γ

[n]
r . By (7.2) and corollary 3.12, the

local homology of A
[n]
R at the γ

[n]
v ’s vanishes in degree N , i.e.

CN (A
[n]
R , γ[n]v ) = 0, ∀v ∈ {1, ..., r} .



THE LAGRANGIAN CONLEY CONJECTURE 43

Then, by the Morse inequality

dimHN ((A
[n]
R )a) ≤

r∑

v=1

dimCN (A
[n]
R , γ[n]v ),

we readily obtain that HN ((A
[n]
R )a) = 0, which contradicts (7.1).

Hence we can assume that γ1, ..., γs, with 1 ≤ s ≤ r, are periodic solutions with mean
Conley-Zehnder index equal to zero, while γs+1, ..., γr (if s < r) are the ones with strictly
positive mean Conley-Zehnder index. By the second iteration inequality in (2.3), we have

ι(γ[n]v ) + ν(γ[n]v ) ≤ N, ∀n ∈ K, v ∈ {1, ..., s} .
In particular ι(γ

[n]
v ), ν(γ

[n]
v ) ∈ {0, ..., N} for each n ∈ K and v ∈ {1, ..., s}, and therefore we

can find an infinite subset K′ ⊆ K such that

(ι(γ[n]v ), ν(γ[n]v )) = (ι(γ[m]
v ), ν(γ[m]

v )), ∀n,m ∈ K
′, v ∈ {1, ..., s} .

For each n,m ∈ K
′ with n < m and for each real R > max{|γ̇v(t)|γv(t) | t ∈ T, v ∈ {1, ..., s}},

corollary 4.8 guarantees that the iteration map ψ[m/n] induces the homology isomorphism

ψ
[m/n]
∗ : C∗(A

[n]
R , γ[n]v )

≃−→C∗(A
[m]
R , γ[m]

v ), ∀v ∈ {1, ..., s} .(7.3)

If s < r, by the first iteration inequality in (2.3), there exists n ∈ K
′ big enough so that

the periodic solutions γs+1, ..., γr with strictly positive mean Conley-Zehnder index satisfy

ι(γ[n]v ) ≥ n ι̂(γv)−N > N, ∀v ∈ {s+ 1, ...r} .
By corollary 3.12, for each real R > max{|γ̇v(t)|γv(t) | t ∈ T, v ∈ {s+ 1, ..., r}}, we have

CN (A
[n]
R , γ

[n]
v ) = 0 for each v ∈ {s+ 1, ..., r}. If s = r we just set n := 1. If we further take

R > R̃(a, n), where R̃(a, n) is the constant given by lemma 6.1, the Morse inequality

0 6= dim HN ((A
[n]
R )a) ≤

r∑

v=1

dim CN (A
[n]
R , γ[n]v ) =

s∑

v=1

dim CN (A
[n]
R , γ[n]v )

implies that there is a γ ∈ {γ1, ..., γs} such that

CN (A
[n]
R , γ[n]) 6= 0.

At this point, let us assume without loss of generality that 1 ∈ K
′ (this can be achieved by

time-rescaling, as we discussed at the beginning of the proof). Then, by (7.3), we have

ψ
[n]
∗ : C∗(AR, γ)

≃−→C∗(A
[n]
R , γ[n]) 6= 0, ∀n ∈ K

′.(7.4)

Now, we apply our discretization technique as in section 6.1: we choose U > 0 as in (6.1)

and we get the discrete mean Tonelli action functional A
[n]
k : U

[n]
k → R, for some k ∈ N

sufficiently big and for every n ∈ N. For each R ≥ U , the homology isomorphism induced
by the iteration map in (7.4) fits into the following commutative diagram

C∗(Ak, γ)
ψ[n]

∗ //

≃

��

C∗(A
[n]
k , γ[n])

≃

��
C∗(AR, γ)

ψ[n]
∗

≃
// C∗(A

[n]
R , γ[n])
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In this diagram, the vertical arrows are isomorphisms induced by inclusions (see lemma 6.3).
Therefore, the iteration map induces a homology isomorphism

ψ
[n]
∗ : C∗(Ak, γ)

≃−→C∗(A
[n]
k , γ[n]) 6= 0, ∀n ∈ K

′.

Let c1 = A (γ) and let ǫ > 0 be small enough so that c2 := c1 + ǫ < a and there are no

γv ∈ {γ1, ..., γr} with A (γv) ∈ (c1, c2). By lemma 6.1, for every n ∈ K
′ and R > R̃(a, n),

the action functional A
[n]
R does not have any critical point with critical value in (c1, c2).

This implies that the inclusion

((A
[n]
R )c1 ∪ {γ} , (A

[n]
R )c1) →֒ ((A

[n]
R )c2 , (A

[n]
R )c1)

induces a monomorphism in homology (see [Ch, theorem 4.2]), and therefore the inclusion

ρ[n] : ((A
[n]
k )c1 ∪ {γ} , (A

[n]
k )c1) →֒ ((A

[n]
R )c2 , (A

[n]
R )c1),

induces a monomorphism in homology as well. Summing up, for each R > R̃(a, n) and
n ∈ K

′, we have obtained the following commutative diagram.

0 6= CN (Ak, γ)
ψ[n]

∗

≃
//

� _

ρ[1]∗

��

CN (A
[n]
k , γ[n])

� _

ρ[n]
∗

��
HN ((AR)c2 , (AR)c1)

ψ[n]
∗ // HN ((A

[n]
R )c2 , (A

[n]
R )c1)

This diagram contradicts the homological vanishing (proposition 6.4). In fact, since the local
homology group CN (Ak, γ) is nontrivial and N > 0, γ is not a local minimum of Ak. For
each nonzero [µ] ∈ CN (Ak, γ), there exist R̄ = R̄(L , [µ], p) ∈ R and n̄ = n̄(L , [µ], p) ∈ K

such that, for each real R ≥ R̄ and for each n ∈ K greater or equal than n̄, we have

ψ
[n]
∗ ◦ ρ[1]∗ [µ] = ψ

[n/n̄]
∗ ◦ ψ[n̄]

∗ ◦ ρ[1]∗ [µ]︸ ︷︷ ︸
=0

= 0,

therefore ψ
[n]
∗ [µ] ∈ kerρ

[n]
∗ .
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