Isometry-invariant geodesics and the fundamental group - ENS de Lyon - École normale supérieure de Lyon Access content directly
Journal Articles Mathematische Annalen Year : 2015

Isometry-invariant geodesics and the fundamental group

Abstract

We prove that on closed Riemannian manifolds with infinite abe-lian, but not cyclic, fundamental group, any isometry that is homotopic to the identity possesses infinitely many invariant geodesics. We conjecture that the result remains true if the fundamental group is infinite cyclic. We also formulate a generalization of the isometry-invariant geodesics problem, and a generalization of the celebrated Weinstein conjecture: on a closed contact manifold with a selected contact form, any strict contactomorphism that is contact-isotopic to the identity possesses an invariant Reeb orbit.
Fichier principal
Vignette du fichier
inv_geod_p1.pdf (325.74 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

ensl-01404297 , version 1 (28-11-2016)

Identifiers

Cite

Marco Mazzucchelli. Isometry-invariant geodesics and the fundamental group. Mathematische Annalen, 2015, 362, pp.265 - 280. ⟨10.1007/s00208-014-1113-8⟩. ⟨ensl-01404297⟩
49 View
78 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More