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UNIVERSALITY IN SEVERAL-MATRIX MODELS
VIA APPROXIMATE TRANSPORT MAPS

A. FIGALLI", A. GUIONNET?

ABSTRACT. We construct approximate transport maps for perturbative several-matrix models. As a
consequence, we deduce that local statistics have the same asymptotic as in the case of independent
GUE or GOE matrices (i.e., they are given by the sine-kernel in the bulk and the Tracy-Widom
distribution at the edge), and we show averaged energy universality (i.e., universality for averages of
m-points correlation functions around some energy level E in the bulk). As a corollary, these results
yield universality for self-adjoint polynomials in several independent GUE or GOE matrices which are
close to the identity.
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Large random matrices appear in many different fields, including quantum mechanics, quantum
chaos, telecommunications, finance, and statistics. As such, understanding how the asymptotic prop-
erties of the spectrum depend on the fine details of the model, in particular on the distribution of the
entries, soon appeared as a central question.

An important model is the one of Wigner matrices, that is Hermitian matrices with independent and
identically distributed real or complex entries. We will denote by N the dimension of the matrix, and
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assume that the entries are renormalized to have covariance N~!. It was shown by Wigner [Wig55]
that the macroscopic distribution of the spectrum converges, under very mild assumptions, to the
so-called semi-circle law. However, because the spectrum is a complicated function of the entries, its
local properties took much longer to be revealed. The first approach to the study of local fluctuations
of the spectrum was based on exact models, namely the Gaussian models, where the joint law of the
eigenvalues has a simple description as a Coulomb Gas law [Meh04, TW94a, TW94b, For10, Dei99|.
There, it was shown that the largest eigenvalue fluctuates around the boundary of the support of the
semi-circle law in the scale N=2/3, and that the limit distribution of these fluctuations were given by
the so-called Tracy-Widom law [TW94a, TW94b|. On the other hand, inside the bulk the distance
between two consecutive eigenvalues is of order N~! and the fluctuations at this scale can be described
by the sine-Kernel distribution. Although this precise description was first obtained only for the
Gaussian models, it was already envisioned by Wigner that these fluctuations should be universal, i.e.,
independent of the precise distribution of the entries.

Recently, a series of remarkable breakthroughs [Erd10, EPRT10, ESYY12, EYY12, EY12a, TV12,
TV11, TV10, Taol3| proved that, under rather general assumptions, the local statistics of a Wigner
matrix are independent of the precise distribution of the entries, provided they have enough finite
moments, are centered and with the same variance. These results were extended to the case where
distribution of the entries depend on the indices, still assuming that their variance is uniformly bounded
below [EY12b|. The study of band-matrices is still a challenge when the width of the band approaches
the critical order of v/N, see related works [Shcl4b, EKYY13]. Such universality results were also
extended to non-normal square matrices with independent entries [TV15].

A related question is to study universality for local fluctuations for the so-called S-models, that are
laws of particles in interaction according to a Coulomb-gas potential to the power § and submitted
to a potential V. When 8 = 1,2,4 and V is quadratic, these laws correspond to the joint law of the
eigenvalues of Gaussian matrices with real, complex, or symplectic entries. Universality was proven for
very general potentials in the case f = 2 [LL08, Lub14|. In the case § = 1,4, universality was proved in
[DGO7b] in the bulk, and [DGO07a| at the edge, for monomials V' (see [DG09] for a review). For general
one-cut potentials, the first proof of universality was given in [Shcl4a| in the case 8 = 1, whereas [KS10]
treated the case 5 = 4. The local fluctuations of more general S-ensembles were only derived recently
[VV09, RRV11] in the Gaussian case. Universality in the S-ensembles was first addressed in [BEY14a)
(in the bulk, 8 > 0, V € C%), then in [BEY14b]| (at the edge, 3 > 1, V € C%), [KRV13] (at the edge,
B > 0, V convex polynomial), and finally in [Shcl4a] (in the bulk, § > 0, V analytic, multi-cut case
included) and in [BFG15| (in the bulk and the edge, V' smooth enough). The universality at the edge
in the several-cut case is treated in [Bekl15]. The case where the interaction is more general than a
Coulomb gas, but given by a mean-field interaction [[,_; ¢(z; — x;) where ¢(t) behaves as [t in a
neighborhood of the origin and log || #¢(x) is real analytic as well as the potential, was considered in
[GV14] (8 = 2, universality in the bulk), [Ven13] (8 > 0, universality in the bulk), and [KV15] (8 = 2,
universality at the edge).

Despite all these new developments, up to now nothing was known about the universality of the
fluctuations of the eigenvalues in several-matrix models, except in very particular situations. The aim
of this paper is to provide new universality results for general perturbative several matrix models,
giving a firm mathematical ground to the widely spread belief coming from physics that universality
of local fluctuations should hold, at least until some phase transition occurs.

An important application of our results is given by polynomials in Gaussian Wigner matrices and
deterministic matrices. More precisely, let X fV gy X éV be N x N independent GUE matrices, that is
N x N Hermitian matrices with independent complex Gaussian entries with covariance 1/N, and let
BY,...,BY be N x N Hermitian deterministic matrices. Assume that for any choices of i1,...,ij €
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{1,...,m} and k € N,
1
(1.1) NTr(Bflv - BY)

converges to some limit 7(b;, - - - b;, ), where 7 is a linear form on the set of polynomials in the variables
{be}1<e<m that inherits properties of the trace (such as positivity, mass one, and traciality, see (6.2)),
and it is called a “tracial state” or a “non-commutative distribution” in free probability.

A key result due to Voiculescu [Voi91] shows the existence of a non-commutative distribution o such
that for any polynomial p in d + m self-adjoint non-commutative variables

A}i_r}rloo %Tr(p(X{V, e ,Xév, BN, ..., B,]X)) = a(p(Sl, ey Sy by, ,bm)) a.s.
where, under o, S1,...,Sy are d free semicircular variables, free from bq,...,b, with law 7. More
recently, Haagerup and Thorbjgrnsen [HT05| (when the matrices { BN }1<i<m vanish) and then Male
[Mal12] (when the spectral radius of polynomials p(BY,..., BY) in {BN}1<;<; converge to the norm
of their limit p(by, ..., b)) showed that this convergence is also true for the operator norms, namely
the following convergence holds almost surely:

th (XN, .. XN BN BN loe = I(S1,- -+, S, b1,y b)) |loo 5
— 00

where

1

1P(S1 - Sasbrs b loo = Tim (0SS0, b1, bu)p(S1, - S, b)) )™

However, it was not known in general how the eigenvalues of such a polynomial fluctuate locally.

In this paper we show that if p is a perturbation of x; then, under some weak additional assumptions
on the deterministic matrices Bi¥, ..., BN the eigenvalues of p(X{", ... ,Xév, BY, ..., BY) fluctuate as
the eigenvalues of Xi¥. In particular, if p(X1, ..., Xy) = X1 +eQ(X1,. .., X ) with € small enough and
Q self-adjoint, then we can show that, once properly renormalized, the fluctuations of the eigenvalues
of p(X{¥,..., X}) follow the sine-kernel inside the bulk and the Tracy-Widom law at the edges. In
addition, this universality result holds also for (averages with respect to E of) m-points correlation
functions around some energy level F in the bulk. Furthermore, all these results extend to the case of
GOE matrices.

Although we shall not investigate this here, our results should extend to non-Gaussian entries at
least when the entries have the same first four moments as the Gaussian. This would however be a
non-trivial generalization, as it would involve fine analysis such as the local law and rigidity.

To our knowledge this type of result is completely new except in the case of the very specific poly-
nomial p(S,b) = b+ S, which was recently treated in non-perturbative situations [CP14, LSSY14] or p
is a product of non-normal random matrices [LW16, AI15]|. Notice that although our results hold only
in a perturbative setting, it is clear that some assumptions on p are needed and universality cannot
hold for any polynomial. Indeed, even if one considers only one matrix, if p is not strictly increasing
then the largest eigenvalue of p(X{¥) could be the image by p of an eigenvalue of X1V inside the bulk,
hence it would follow the sine-kernel law instead of the Tracy-Widom law.

Our approach to universality for polynomials in several matrices goes through the universality for
unitarily invariant matrices interacting via a potential. Indeed, as shown in Section 7, the law of the
eigenvalues of such polynomials is a special case of the latter models, that we describe now.

Let V be a polynomial in non-commutative variables, Wy, ..., Wy : R — R be smooth functions, and
consider the following probability measure on the space of d-uple of N x N Hermitian or symmetric
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matrices (see also Section 2 for more details):

d
1 _ d
ZN’V eNTI"V(Xl,...7Xd7Bl,...,Bm)€ NZk:l Ter(Xk) H ]-”XZHOOSM dX,
B i=1
where dX = dX7 ...dX,is the Lebesgue measure on the set of d-uple of N x N Hermitian or symmetric
matrices (from now on, to simplify the notation, we remove the superscript N on X; and B;). M >0
is a cut-off which ensures that

d

NV NTV(X1,....Xq,B1,....Bm) ,.—N >, TrWi (X

z) '_/e YV (X1, X, B1 ) o= N X, TeWi( k)Hl“XiHOOSMdX
=1

AP} (dXy, ..., dXg) =

is finite despite the fact that V is a polynomial which could go to infinity faster than the Wy’s. We
assume that V is self-adjoint in the sense that V (X1, ..., Xy, B1, ..., By,) is Hermitian (resp. symmet-
ric) for any N x N Hermitian (resp. symmetric) matrices Xi,..., X4, B1,..., By,. As a consequence,
Pg’v has a real non-negative density. Since we shall later need to assume V small, we shall not try
to get the best assumptions on the Wp’s, and we shall assume that they are uniformly convex. As
discussed in Remark 2.2 below, this could be relaxed.

Such multi-matrix models appear in physics, in connection with the enumeration of colored maps
[BIPZ78, Meh81, Kos11, EB99], and in planar algebras and the Potts model on random graphs [GJS10,
GJSZJ12]. However, despite the introduction of biorthogonal polynomials [Ber11] to compute precisely
observables in these models, the local properties of the spectrum in these models could not be studied
so far, except in very specific situations [ABK05]. Our proof shows that the limiting spectral measure
of the matrix models has a connected support and behaves as a square root at the boundary when « is
small enough and the W}, are uniformly convex, see Lemma 3.2. This in particular shows that in great
generality the n-th moments for the related models, which can be identified with generating functions
for planar maps, grow like C"n=3/2, as for the semi-circle law and rooted trees. More interesting
exponents could be found at criticality, a case that we can hardly study in this article since we need
a to be small. The transport maps between the limiting measures could themselves provide valuable
combinatorial information, as a way to analyze the limiting spectral measures, but they would also
need to be extended to criticality too. Yet, the extension of our techniques to the non-commutative
setting yields interesting isomorphisms of related algebras [GS14, Nell5].

In [GMS06, GMS07| it was shown that there exists My < oo such that the following holds: for
M > My there exists ap > 0 so that, for a € [—ag, ag], there is a non-commutative distribution i
satisfying

. a 1 a
lim IP)JBV’ v <NTr(p(X1, . ,Xd))> =7 V(p)

N—o0
for any polynomials p in d non-commutative letters. In particular, if ()\f)lgz‘g ~ denote the eigenvalues
of X, the spectral measure L{CV = % >; 0yx converges weakly and in moments towards the probability

measure sz defined by
(1.2) 12V (2t = 7o ((Xk)‘f) VeeN..

Moreover, one can bound these moments to see that ugv is compactly supported and hence defined
by the family of its moments. In addition, it can be proved that ,uZV does not depend on the cutoff
M. Furthermore, a central limit theorem for this problem was studied in [GMS07] where it was proved
that, for any polynomial p,

Tr(p(X1,..., Xa)) = N7V (p)

converges in law towards a Gaussian variable. Higher order expansion (the “topological expansion”)
were derived in [MS06].
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In this article we show that, if a is small enough, the local fluctuations of the eigenvalues of each
matrix under Pg’av are the same as when a = 0 and the W}, are just quadratic; in other words, up to
rescaling, they follow the sine-kernel distribution inside the bulk and the Tracy-Widom law at the edges
of the corresponding ensemble (see Corollaries 2.6 and 2.7). In addition, averaged energy universality
of the correlation functions holds in our multi-matrix setting (see Corollary 2.8).

The idea to prove these results consists in finding a map from the law of the eigenvalues of inde-
pendent GUE or GOE matrices to a probability measure that approximates our matrix models (see
Theorem 2.5 and Corollary 2.7). This approach is inspired by the method introduced in [BFG15| to
study one-matrix models. However, not only the arguments here are much more involved, but we also
improve the results in [BFG15|. Indeed, the estimates on the approximate transport map obtained in
[BFG15] allowed one to obtain universality results only with bounded test functions, and could not be
used to show averaged energy universality even in the single-matrix setting. Here, we are able to show
stronger estimates that allow us to deal also with functions that grow polynomially in N (see Equation
(2.8)), and we exploit this to prove averaged energy universality in multi-matrix models (see Corollary
2.8).

A second key (and highly nontrivial) step in our proof consists in showing a large N-expansion for
integrals over the unitary and orthogonal group (see Section 6). Such integrals arise when one seeks
for the joint law of the eigenvalues by simply performing a change of variables and integrating over the
eigenvectors. The expansion of such integrals was only know up to the first order [CGMS09| in the
orthogonal case, and was derived for linear statistics in the case 5 = 2 in [GN14]. However, to be able to
study the law of the eigenvalues of polynomials in several matrices we need to treat quadratic statistics.
Moreover, we need to prove that the expansions are smooth functions of the empirical measures of the
matrices. Indeed, such an expansion allows us to express the joint law of the eigenvalues of our matrix
models as the distribution of mean field interaction models (more precisely, as the distribution of d /-
ensembles interacting via a mean field smooth interaction), and from this representation we are able to
apply to this setting the approximate transport argument mentioned above, and prove our universality
results.

In the next section we describe in detail our results.

2. STATEMENT OF THE RESULTS

We are interested in the joint law of the eigenvalues under P]ﬂv,v. We shall in fact consider a slightly
more general model, where the interaction potential may not be linear in the trace, but rather some
tensor power of the trace. This is necessary to deal with the law of a polynomial in several matrices.
Hence, we consider the probability measure

d
1 @
dIP’gy(Xl, o Xa) =y N TV (X0 X4, By, B H ng’]\V}/k(Xk)
Zﬂ k=1
with
NW 1 _Nmwx
dRghy (X) = N ¢ WO e <ardX

ﬁ7M

where 15 denotes the indicator function of a set E, and Zév’v, Zévj\‘j[v are normalizing constants. Here:

- B =2 (resp. B = 1) corresponds to integration over the Hermitian (resp. symmetric) set ’Hév
of N x N matrices with complex (resp. real) entries. In particular dX = HléjSESN dXy; if
B =1, whereas dX =[], ;e y dR(Xej) [[1<jcpcy dS(Xyy) if B = 2.

- Tr denotes the trace over N x N matrices, that is, TrA = Zj Ajj.

- Wi : R — R are uniformly convex functions, that is

W (x) > co >0 VreR,
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and given a function W : R — R and a N x N Hermitian matrix X, we define W (X) as
W(X)=UW(D)U",

where U is a unitary matrix which diagonalize X as X = UDU*, and W(D) is the diagonal
matrix with entries (W(DH), e W(DNN)).

- By,..., By, are Hermitian (resp. symmetric) matrices if 5 = 2 (resp. § = 1).

- Clz1,. .., 2q,b1,...,by)®" denote the space of r-th tensor product of polynomials in d non-
commutative variables with complex (resp. real) coefficients when 5 = 2 (resp. 8 = 1). For
pe Clzy,...,wq,b1, -+ ,by)®" we denote by

P=> P01 @@ ®@¢) g @ Qg

its decomposition on the monomial basis, and let p* denote its adjoint given by

=Y i ®aRa) g @)
where * denotes the involution given by
Y- Y,)" =Y, Y, Vi, ... ig € {1,...,d+m},
where {Y; = X;}i<i<q and {Yjiq = Bjlicj<m. We take V' to belong to the closure of
C{x1,...,24,b1,...,by)%" for the norm given, for £ > 1 and ¢ > 1, by

(2.1) ||pH§7C = Z |<p, GLRqg @ QT>|£Z;:1 degx(Qi)CZ;;l degp(g:)

where degx(q) (resp. degp(q)) denotes the number of letters {X;}i<i<q (resp. {Bi}i<i<m)
contained in ¢. If p only depends on the X; (resp. the B;), its norm does not depend on ¢
(resp. £) and we simply denote it ||p[l¢ (resp. ||p||¢). We also assume that V' is self-adjoint,
that is V(Xl,.. . ,Xd,Bl,. . -;Bm)* = V(Xl,...,Xd,Bl,.. . ,Bm)

- We use || - ||oo to denote the spectral radius norm.

Performing the change of variables X + U D(A*)U}, with Uy, unitary and D(A\*) the diagonal matrix
with entries A\¥ := (A¥, ... \K), we find that the joint law of the eigenvalues is given by

1
(2.2) aPy" (AL ) = I H dR} 1 (AF)
B

where

Iév,v()\17 . 7)\d) — / N2 @V (U D(AY)UY,.. ,UdD(Ad)U;,Bl,...,Bm)dUl ...dUy,
dU being the Haar measure on the unitary group when 8 = 2 (resp. the orthogonal group when g = 1),
Zév’v > 0 is a normalization constant, and R]ﬁv’]\v}/ is the probability measure on RY given by

N
1 _ N .

Zﬁ,M i<j i=1

(2.3) ARGy (N) =

As we shall prove in Section 3, if Wy are uniformly convex and V is sufficiently small, for all £ €
{1,...,d} the empirical measure L{gv of the eigenvalues of X} converges to a compactly supported
probability measure /‘X- In particular, if the cut-off M is chosen sufficiently large so that [—M, M] DD
supp(u?), for V sufficiently small [—M, M] DD supp(p)) and the limiting measures p) will be in-
dependent of M. Hence, we shall assume that M is a universally large constant (i.e., the largeness
depends only on the potentials Wj). More precisely, throughout the whole paper we will suppose that
the following holds:

Hypothesis 2.1. Assume that:
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o Wi : R=R is uniformly convex for any k € {1,...,d}, that is, W]/(z) > ¢y > 0 for all z € R.
Moreover, W, € C?(R) for some o > 36.

o M > 1 is a large universal constant.

o V is self-adjoint and ||V | pe,c < 0o for some & large enough (the largeness being universal, see
Lemma 6.16) and ¢ > 1.

o The spectral radius of the Hermitian matrices By, ..., By, is bounded by 1.

Remark 2.2. The convexity assumption on the potentials W} could be relaxed. Indeed, the main
reasons for this assumption are:

- To ensure that the equilibrium measures, obtained as limits of the empirical measure of the eigenvalues,
enjoy the properties described in Section 3.

- To guarantee that the operator E; appearing in Proposition 4.4 is invertible.

- To prove the concentration inequalities in Section 4.5.

- To have rigidity estimates on the eigenvalues, needed in the universality proofs in Section 5.

As shown in the papers [BEY12, BGK15, BEG15], the properties above hold under weaker assumptions
on the Wy’s. However, because the proofs of our results are already very delicate, we decided to
introduce this convexity assumptions in order to avoid additional technicality that would obscure the
main ideas in the paper.

In order to be able to apply the approximate transport strategy introduced in [BFG15], a key result

we will prove is the following large dimensional expansion of Iév’v.

Theorem 2.3. Under Hypothesis 2.1, there exists ag > 0 so that for a € [—ay, ag]
(2.4) IV (ML) = (1 4 o(;f))ez?_o N2 LY LY T

where Lfcv are the spectral measures

1 N
L{cv = N Zé)\f )
i=1

O(%) depends only on M, Tg denotes the non-commutative distribution of the B;’s given by the
collection of complex numbers

(2.5) ™ (p) := %Tr(p(Bl,...,Bm)), p € Clby,...,bnm),

and {EFf(p1, - ., pd, T) Yo<i<e are smooth functions of (p1,...,pd,7) for the weak topology generated
on the space of probability measures P([—M, +M]) by ||ullcar := maxy>1 (M) ™% u(x¥)| and the norm
sup|p| <1 [T(p)| on linear forms 7 on C(by, ..., bm).

This result is proved in Section 6. We notice that it was already partially proved in [GN14] in the
unitary case. However, only the case where r = 1 was considered there, and the expansion was shown
to hold only in terms of the joint non-commutative distribution of the diagonal matrices { D(A\¥)}1<x<q
rather than the spectral measure of each of them.

From the latter expansion of the density of Pév 2V we can deduce the convergence of the spectral
measures by standard large deviation techniques.

Corollary 2.4. Assume that, for any polynomial p € C(by,...,bn),
(2.6) lim 73 (p) = 78(p).
N—o0

Then, under Hypothesis 2.1, there exists ag > 0 such that, for a € [—ag,ag, the empirical measures

{Lfgv}lgkgd converge almost surely under PBN’aV towards probability measures {M%thkgd on the real
line.
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In the case r = 1 this result is already a consequence of [GMS06] and [CGMS09]. The existence and
study of the equilibrium measures is performed in Section 3.

Starting from the representation of the density given in Theorem 2.3 (see Section 4), we are able to
prove the following existence results on approximate transport maps:

Theorem 2.5. Under Hypothesis 2.1 with ( > 1, suppose additionally that

1 1 1
(2.7 ) =50+ 70+ 77300+ 0 )
where the error is uniform on balls for || - ||c. Then there exists a constant o > 0 such that, provided

la] < «, we can construct a map
TN - ((TN)%’ Y (TN)}V’ Tt (TN)(liv RS (TN)?V> : RdN—)RdN

satisfying the following property: Let x : R — R be a nonnegative measurable function such that
IXlloo < N* for some k > 0. Then, for any n > 0, we have

1og<1 +/XoTN dPéV’()) —log<1 + /XdPgVW)‘ < Gy N1

for some constant Cy, . independent of N. Moreover TN has the form

(2.8)

- 1 A -
(TY)E ) =Tg ) + (@) Vi=1l.o  Nok=1....d  A=(\,....A%),

where Té“ :R — R and TlN c RN 5 RN gre of class C°~3 and satisfy uniform (in N) regularity
estimates. More precisely, we have the decomposition TlN = Xf\fl + %Xé\fl where

2. XNk < C log N XNk < C (log N)?
( 9) 1§k§r£ll,al}éi§NH( 1,1)1HL4(pBN’0)_C og iV, 1§k§I£ll,a1)§i§NH( 2,1)zHL2(PéVv0)—C(Og )7

for some constant C > 0 independent of N. In addition, with PN’O-probability greater than 1 —
B
e—c(logN)2}

max| (X{})}] < C'log N NVEH, - max|(X)F| < € (log N)? N#/(7719),

max | (XIER) - (D)

< ClogNNYE=B) Nk _\E| v =1... d,
1<4,i/<N

max| (X3E) — (XBDE ()] < C (log N2 NYCIDNE— 0| vE=1,..,,

Nk
max ’axg (X11):

| max (A) <Clog NNV yE =1, 4
LS

As explained in Section 5, the existence of an approximate transport map satisfying regularity
properties as above allows us to show universality properties for the local fluctuations of the spectrum.
For instance, we can prove the following result:

Corollary 2.6. Under the hypotheses of Theorem 2.5 the following holds: Let Té“ be as in Theorem 2.5
and denote by ]Sév’av the distribution of the increasingly ordered eigenvalues ({\F}1<i<n,1 < k < d)
under the law Pév’av. Also, let H%MZV be as in Corollary 2.4, and o as in Theorem 2.5. Then, for

any 0 € (0,1/6) there exists a constant C> 0, independent of N, such that the following two facts hold
true provided |a| < «:
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(1) Let {ix}1<k<a C [eN,(1 — e)N] for some ¢ > 0. Then, choosing VZC/N € R such that
,ug((—oo,'yf;c/N)) =i /N, if m < N?/3=9 then, for any bounded Lipschitz function f : R%™ — R,

‘/f((]\f el — )\k) ()‘fk—&-m )‘?k))gkgd) dPBNﬂV

—/f(((Téf)/(’Yi/N)N()\zkH A (T8) (ke ) NN e — )\fk))lgkgd)> dpg""

< ON"H | flloe + CmP2 N1V ]| oo

(2) Leta (resp. akv) denote the smallest point in the support of pif) (resp. ,u,%v), s0 that supp(u))) C
[a?,00) (resp. supp(u") C [afV,00)). If m < N7 then, for any bounded Lipschitz function
f:RI™ 5 R,

2/3(\k _ _aV 2/3 aV HN.aV
‘/f((]\f BOF =), NP = af) ey ) AP
- N,
-/ f((<T§>’<a2> NI —a), ., (T () NP0k, — ) cy) 4PS
< CAvNGfl ”f”oo + C« (m1/2 N071/3 + m7/6 N72/3) ”fooo

The same bound holds around the largest point in the support of ug" .

Similar results could be derived with functions of both statistics in the bulk and at the edge. Let
us remark that for a = 0 the eigenvalues of the different matrices are uncorrelated and Pév ¥ becomes
a product: dPéV 0 = szl dR]BV”]\ZV‘“. Universality under the latter S-models was already proved in
[BEY14a, BEY14b, Shcl4a, BFG15]. Moreover, by the results in [BFG15] we can find approximate
transport maps SN : RV — RY from the law PéVVEﬁ (this is the law of GUE matrices when g = 2
and GOE matrices when = 1) to RN W for any k= 1,...,d. Hence (SV,... ,SC][V) : RV 5 RN g
an approximate transport from (PGVE’ ﬁ)®d (i.e., the law of d independent GUE matrices when 8 = 2
and GOE matrices when g = 1) to Pév ’0, and this allows us to deduce that the local statistics are in
the same universality class as GUE (resp. GOE) matrices.

More precisely, as already observed in [BFG15], the leading orders in the transport can be restated
in terms of the equilibrium densities: denoting by

(2.10) o) = 5= )5

the density of the semicircle distribution and by pg the density of ug, then the leading order term of

S,JCV is given by (S(’]“)@N, where Sé; : R — R is the monotone transport from pg. dz to pg dx that can be
found solving the ODE

Psc k 0
(2.11) (S5)'(x) = (),  50(=2) = a.
° Pa(Sh) °
Also, the transport T é“ : R — R appearing in Corollary 2.6 solves
0
Pk k aV
(2.12) (Ty) (@) = i (@), Tg(aR) = af”.
’ oV (T§) ’
Set
(2.13) @ = lim — 2 (q).

a——2+ p&V (T o Sk)

Thanks to these observations, we can easily prove the following result:
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Corollary 2.7. Letm € N. Under the hypotheses of Theorem 2.5 the following holds: Denote by Pév’av
(resp. (ﬁéVVE 5)®d) the distribution of the increasingly ordered eigenvalues ({\F}1<i<n,1 < k < d)
under the law P;}V’av (resp. (PéVVEﬁ)@d). Also, let a be as in Theorem 2.5. Then, for any 0 € (0,1/6)

and Cy > 0 there ezists a constant C' > 0, independent of N, such that the following two facts hold
true provided |a| < «:
(1) Given {ok}1<k<a C (0,1), let 75, € R be such that psc((—00,%e,)) = 0k, and Yo, such that
1Y (=00, Yoy k) = o%. Then, if |ix/N — o] < Co/N and m < N?/370_ for any bounded
Lipschitz function f : R — R we have

N, aV
‘/f((N i+l )‘k) ()\f:k"!‘m )‘?k))lgkgd) dP,B
- Pse(Voy.) k Psc(Vo,.) k _©\k PN ®d
/f<<pﬁv(%vk7 ) ()‘zk+1 Azk)v RS sz(')/ak, ) ()‘zk—l-m )‘ )>1<k<d d(PGVE,B)

SON"|fllos + C m** N* [V f|oc

(2) Let &V be as in (2.13). If m < N*7 then, for any bounded Lipschitz function f : R™ — R, we
have

08 N0 )

)) 1<k<d

_ /f(cgv N2/3()\]f + 2), R ,civ N2/3()‘fn + 2))1§k§d) d(p(]}VVEﬁ)@d

< C«NG—1||f||OO + C« (m1/2 N9—1/3 + m7/6 N—2/3) ||vf”oo

The same bound holds around the largest point in the support of uj." .

While the previous results deal only with bounded test function, in the next theorem we take full
advantage of the estimate (2.8) to show averaged energy universality in our multi-matrix setting. Note
that, to show this result, we need to consider as test functions averages (with respect to E) of m-points
correlation functions of the form >, , f(N()\fl —-E),..., N()\fm — E)) where E belongs to the
bulk of the spectrum. In particular, these test functions have L°° norm of size N™. Actually, as in
Corollaries 2.6 and 2.7, we can deal with test functions depending at the same time on the eigenvalues
of the different matrices.

Here and in the following, we use ; to denote the averaged integral over an interval I C R, namely

JC1:|Tl\fI'

Corollary 2.8. Fizm € N and ¢ € (0,1), and let o be as in Theorem 2.5. Also, let Té“ and S(’)“ be as in
(2.12) and (2.11), and define Ry := T} o S§. Then, given {Ey}1<k<a C (=2,2), 0 € (0,min{¢,1—(}),
and f : R — R o nonnegative Lipschitz function with compact support, there exists a constant
C > 0, independent of N, such that the following holds true provided |a| < a:

R1 E1)+N~CR{(E1) _ Rq(Eq)+N~¢ Rj(Eq) _
’ / [ dEq .. ][ dE,
Ri(E1)-N—¢ R{(E1) R4(Eq)—N—¢ R)(Eq)

Z f(( (Afk 1 Ek)7 . ()\f:km - Ek))1§k§d>] dPéV’aV
ik 17 Flkm

B +N—¢ Eg+N—¢
_/[][ .. f " dE,
ElfN_C Edi_C
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> f((R;c(Ek> NS, = Er), - Rp(By) N, — Em)lgkgd)] APy
ik, 17 Flk,m

<C (N”C’l + NH).

It is worth mentioning that, in the single-matrix case, Bourgade, Erdos, Yau, and Yin [BEYY15]
have recently been able to remove the average with respect to E and prove the Wigner-Dyson-Mehta
conjecture at fixed energy in the bulk of the spectrum for generalized symmetric and Hermitian Wigner
matrices. We believe that combining their techniques with ours one should be able to remove the
average with respect to E in the previous theorem. However, this would go beyond the scope of this
paper and we shall not investigate this here.

Another consequence of our transportation approach is the universality of other observables, such
as the minimum spacing in the bulk. The next result is restricted to the case § = 2 since we rely on
[BAB13, Theorem 1.4] which is proved in the case f = 2 and is currently unknown for 5 = 1.

Corollary 2.9. Let 3 =2, firk € {1,...,d}, let I be a compact subset of (—a3"",b&V") with non-empty
interior, and denote the renormalized gaps by

k AkJrl — )\k k
A = L ¢ 5 A € Ik?
‘ (Téf © S(IJC)'(%/N) '
where v;/n € R is such that psc((—o0,vi/n)) = i/N. Also, denote by pﬂNl’:V the distribution of the
increasingly ordered eigenvalues {)\f}lgiSN under Péngav, the law of the eigenvalues of the k-th matrix

under Pév’av. Then, under the hypotheses of Theorem 2.5, it holds:

e Smallest gaps. Let E}sz < f?\,k e < t~§)\,k denote the p smallest renormalized spacings Af of the
eigenvalues of the k-th matriz lying in I, and set

X 1/3
o= — 4 —2%)2d .
TN,k <1447T2 x/(\Té“oS(’)f)—l(])( X ) .T) N,k

Then, as N — oo, N4/3%]’<,k converges in law towards 7P whose density is given by
3
(p—1)!

e Largest gaps. Let €%, (I) > €3 (1) > ... be the largest gaps of the form AF with \¥ € Iy.. Let
{rn}nen be a family of positive integers such that

_ _ 3
e

logry
log N

— 0 as N — oo.

Then, as N — oo,
N : = N,aV
32log Nk =1 in L)

for any q < oco.

All the above corollaries are proved in Section 5.

As an important application of our results, we consider the law of the eigenvalues of a self-adjoint
polynomials in several GUE or GOE matrices. Indeed, if € is sufficiently small and Xi,..., Xy are
independent GUE or GOE matrices, a change of variable formula shows that the law of the eigenvalues
of the d random matrices given by

Yi=X,+eP(X1,...,Xq), 1<i<d,
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follows a distribution of the form PBN WV with r =2 and V a convergent series, see Section 7. Hence
we have:

Corollary 2.10. Let Pi,..., Py € Clzy,...,24,b1,...,by) be self-adjoint polynomials. There exists
€0 > 0 such that the following holds: Let X; be independent GUE or GOFE matrices and set

Y, .= X,'-I-GPZ‘(Xl,...,Xd).

Then, for € € [—ep, €0], the eigenvalues of the matrices {Y; }1<i<q fluctuate in the bulk or at the edge as
when € = 0, up to rescaling. The same result holds for

Y;':Xi+€P¢(X1,...,Xd,B1,...,Bm)

provided Tg satisfies (2.7). Namely, in both models, the law ]E’év’gp of the ordered eigenvalues of the

matrices Yy satisfies the same conclusions as ]Sév’av in Corollaries 2.7 and 2.9.

Remark 2.11. Recall that, as already stated at the beginning of Section 2, when 8 = 1 the matrices
B; are assumed to be real as well as the coefficients of P. In particular, in the statement above, if
X,; are GOE then the matrices Y; must be orthogonal. The reason for that is that we need the map
(X1,...,Xq) — (Y1,...,Yy) to be an isomorphism close to identity at least for uniformly bounded
matrices. Our result should generalize to mixed polynomials in GOE and GUE which satisfy this
property, but it does not include the case of the perturbation of a GOE matrix by a small GUE matrix
which is Hermitian but not orthogonal.

Acknowledgments: AF was partially supported by NSF Grant DMS-1262411 and NSF Grant DMS-
1361122. AG was partially supported by the Simons Foundation and by NSF Grant DMS-1307704.
The authors would like to thank an anonymous referee for his challenging questions.

3. STUDY OF THE EQUILIBRIUM MEASURE

In this section we study the macroscopic behavior of the eigenvalues, that is the convergence of their
empirical measures and the properties of their limits. Note here that we are restricting ourselves to
measures supported on [—M, M| so that the weak topology is equivalent to the topology of moments
induced by the norm ||v||cps = maxy>1(¢M)"*|v(z¥)]. As a consequence, a large deviation principle

for the law Hjﬁv’av of (LY,...,LY) under PﬁN’“V can be proved:

Lemma 3.1. Assume that M > 1 is sufficiently large and that Tév converges towards Tp (see (2.5)
and (2.6)). Then the measures (Hg’“V)NZO on P([—M, M))?¢ equipped with the weak topology satisfy a
large deviation principle in the scale N? with good rate function

I“(uq, ..., = Ju, ..., — inf J v, ..., 1),
(11 [td) (11 [td) ukeP(l[IiM,M]) (11 va)

where

d
T = 5 3 (] o) + Walo) = 8108 e = o] s i) ) = oo 7).
k=1

Proof. The proof is given in [BAG97, AGZ10] in the case F§ = 0, while the general case follows from
Laplace method (known also as Varadhan lemma) since Fj§ is continuous for the || - ||¢as topology (and
therefore for the usual weak topology, which is stronger). O

It follows by the result above that {Lfcv }i<k<dq converge to the minimizers of I®. We next prove
that, for a small enough, I* admits a unique minimizer, and show some of its properties. This is an
extended and refined version of (1.2) which shall be useful later on.



UNIVERSALITY IN SEVERAL-MATRIX MODELS VIA APPROXIMATE TRANSPORT MAPS 13

Lemma 3.2. Let Hypothesis 2.1 hold. There exists ap > 0 such that, for a € [—ag,ap], I* admits a
unique minimizer (| u‘fv, e ,ugv). Moreover the support of each uzv 1s connected and strictly contained
inside [—M, M], and each u%v has a density which is smooth and strictly positive inside its support
except at the two boundary points, where it goes to zero as a square Toot.

Proof. We first notice that if I%(u, ..., py) is finite, so is — [log |z — y| dug(z) duk(y). In particular
the minimizers {u$" }1<;j<q of I* have no atoms. We then consider the small perturbation I%(u$" +
vy, ..., n3Y +evy) for centered measures (v1, .. .,v4) (that is, [ dvg = 0) such that v, > 0 outside the
support of u¢" and ¢V + ey > 0 for |e|<1. Hence, by differentiating I¢(u§V + evy, ..., u8" + evg)
with respect to € and setting € = 0, we deduce that

(3.1) 0= /Fk(x) dvg(z),
where
Fi(x) = Wi() — DeFS (Y .. 7)[6.] — B / log [z — y| dyst (1)

and x — DpF§(u1,. .., ftd, 78)[0z] denotes the function such that, for any measure v,

d
(3:2)  —le=oFg (u1" - il i ey, g 7h)
= /DkFg(,u‘fV, 18 TR0, du(x) .

It is shown in Lemma 6.16 that this function is smooth and of size a (as well as its derivatives). Since
vy, is centered and v > 0 outside the support of py, it follows from (3.1) that there exists a constant
(. € R such that

{ = C), on supp(pg"),

Fy, aV

> Cr on R\ supp(u;” ),

Since 02 (DyF§ (1Y, ..., utV)[6,]) is uniformly bounded by C(M)a for some finite constant C(M)
which only depends on M, the effective potential

(3-3) Wit (z) = Wi(z) = DrFg (3", 1Y, 75) 18]

is uniformly convex for a < ¢p/C(M) thanks to Hypothesis 2.1. In addition z — — [ log |z —y|du (y)
is convex for z € R\ supp(p¢"). This implies that the nonnegative function Fj — C is uniformly
convex on ]R\supp(,uﬁv) and vanishes at the boundary of the support of ug, hence ,uzv has necessarily
a connected support, that we denote by [a2V, b3V].

We now consider the measures pf := (Id+efx) gud", where fi : R — R is a smooth function. Then,
since 1¢(u5, ..., u5) > I*(ugY, ..., 1u2"), we deduce by comparing the terms linear in ¢ that

sy [o@i@as @ - [[ PO g @ ag ) ve=1d v

X

In particular, choosing f(z) := (2 — x)~! with 2 € R\ [a?V,b¢"] we obtain that Gi(z) == [(z —
x) "t duV (z) satisfies the equation

Z—X

Weff ") — Weff /(4
Gu(= = (WY (IGu(a) + Hiule), o) o= [ W=D g,
Solving this quadratic equation so that G(z) — 0 as |z| — oo yields

Grl(z) = 3 (W™ () — /Wy ()2 + 4 (2))
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from which it follows (by smoothness of Hy, see also [BFG15, Proof of Lemma 3.2]) that
dpgY (x)

P — @)/ (@ - a0 )

where
di(@)? (@ — ag¥ ) (B — 2) = (W) (@) — 4Hp(2) = gu(e)  for z € [af, b ).

Note that g is a smooth function. In the case where a = 0, it is well known that the strict convexity of
W, implies that g, has simple zeroes in a%v, b%v, and that dj does not vanish in an open neighborhood
of [a?V,b3V]. On the other hand we also know (see e.g. Lemma 6.15) that the measures pu¢"’s
depends continuously on the parameter a (the set of probability measures being equipped with the
weak topology) as they are compactly supported measures with moments depending analytically on a.
As a consequence, gi and g; are smooth functions of a, uniformly in the variable z. This implies that,
for a small enough, g can only vanish in a small neighborhood of a,@‘v and bZV where its derivative
does not vanish. Hence g can only have one simple zero in a small neighborhood of aZV (resp. b%v),
and dj cannot vanish in an open neighborhood of [a%v, bzv]. Also, notice that dj is smooth as so are
Wt and Hy. In addition, if one chooses M > max{|al],|b}|} for all k = 1,...,d, then by continuity
we deduce that [a$",b3V] C (=M, M) for any a € [—ag, ag].

We finally deduce uniqueness: Assume there are two minimizers (y1,...,uq) and (uf, ..., p1,). By
the previous considerations, both p; and ) have smooth densities with respect to the Lebesgue measure
on R and we can therefore consider the unique monotone nondecreasing maps 7; : R — R such that
that p; = (T;)4pi. We then consider

ja(T) = Ja((TId+ (1 — T)Tl)#,u,l, R (TId+ (1 — T)Td)#ﬂd)-

By concavity of the logarithm and uniform convexity of Wi, — Dy EF§(v1, ..., v4,TB)[0z] (uniform with
respect to vy € P([—M, M])), we conclude that j* is uniformly convex on [0, 1], which contradicts the
minimality of p; and . O

We next show that, since the support of each ,LLZV is strictly contained inside [— M, M|, the eigenvalues
will not touch R\ [—M, M| with large probability.

Lemma 3.3. Let Hypothesis 2.1 hold. There exists ag > 0 such that the following holds for a €
[—ao, ao): if [alV,b¢V] denotes the support of u$¥ (see Lemma 3.2), then for any € > O there exists
c(e) > 0 such that, for N large enough,

Py YV (3ie{l,... N}y, 3k e{l,...,d} : M € [ag” — e, b +2]°) <e N

Proof. By [BGK15, Lemma 3.1] (see also [BG13b, BG13a|) we can prove that for any closed sets Fj,
1 —log PV <H,I<::>\- F)<_ T
i o8 P (306N ) <2t

where 7 is the good rate function

(21, oy xy) =T (21, .., 2) — inf T (W15 -5 Yk)
Y1, Yk E[—M,M]?

with

d
Tlorsesza) = S [We(wn) = 3 [ g — vl i ()]
k=1
where We is defined in (3.3). As in the proof of Lemma 3.2 one sees that, for |a| sufficiently small,
J is uniformly convex outside the support of the measure, whereas it is constant on each support.
Hence it is strictly greater than its minimal value at positive distance of this support, from which the
conclusion follows. O
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4. CONSTRUCTION OF APPROXIMATE TRANSPORT MAPS: PROOF OF THEOREM 2.5

As explained in the introduction, one of the drawbacks of the results in [BFG15| is that it only
allows one to deal with bounded test functions. To avoid this, we shall prove a multiplicative closeness
result (see (2.8)).

4.1. Simplification of the measures and strategy of the proof. We begin from the measure
PBN Y as in (2.2). Because of Theorem 2.3, it makes sense to introduce the probability measures

d
dPN aV(A .. -7>\d) — Z]\/'l’aveNZtFa(Ll R ,TB )—i—NtF“(L1 R ,TB )—I—tFa(L1 N 7 ,Tg) H ng{’]\‘j[[/k(Ak)
tvﬁ kzl

for t € [0, 1], where Rg’w is as in (2.3). Then, it follows by (2.2) and (2.4) that, for any nonnegative
function y : RY — R,

1+ [ydPY*V 1+ y)dpMe” 1
I x 8 _f( X) 8 —1+O<>,

1+ [xdP™ [+ x)ar N
therefore
C
(4.1) 10g<1—|—/xdpﬁN#lV> _log<1+/xdplzvéav>’ <<

Hereafter we do not stress the dependency in [, so Pt]\g’av = PtN’aV.

To remove the cutoff in M, let

1 2—lyppa( s M N
N,aV dy ._ oS0 N2TUFH Y LY s LY 1) NWi y\k
dQ,; " (A ")\)‘_ZtN’“V =0 1 4TE HdR BT
where
(4.2) ZNav / 2 o N2 UFa($M LY .. oM LY, Tg)HdRNWk

and ¢ : R — R is a smooth function equal to  on a neighborhood of the supports [agv,bﬁv],
vanishing outside of [-2M, 2M], and bounded by 2M everywhere. Then Lemma 3.3 (as well as similar

considerations for in ,av) implies that, for some ¢ > 0,

(43) HQNaV NCLVHTV S 6_6N .

Notice that QN av — fr’o = Pév 0 so, if we can construct an approximate transport map from QN aV’

to QN V" as in the statement of Theorem 2. 5, by (4.1) and (4.3) the same map will be an approximate
transport from PNO to PN V' Thus it suffices to prove Theorem 2.5 with QN WV and QN WV in place

of Pévo and P[‘;V aV.

For this, we improve the strategy developed in [BFG15|: we construct a one parameter family of

RdN N,aV

maps T}V : — R that approximately sends Qo onto Qi\] aV’ by solving

on" =YN(T)Y), Ty =14,
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where Y7 = (Y")1,...,(Y")4) : R — R is constructed so that the following quantity is small
in L(Q™) for any ¢ < oo
s <YN \
RY (YY) = o) BZZ ZaAkY
k z<]
—Fé’(ﬂLiV,---,ﬂLd,TB +ZaAkHt )

wherej\::(Al,...,)\d):()\%,...,A}V,...,A‘f,...)\ﬁl\,),cN = log Z)" | LN = LN Oy, and

(4.5) Hy(A) =N _ Wi(\) —tN*Fg (¢l LY ,..., o) LY 75
i,k

_tNFla(d)%Livvad) daTB) tF2(¢ 7¢ d?TB)

In [BFG15] it is proved that the flow of Y2 is an approximate transport map prov1ded RN(YN) is
small: more precisely, if X}V solves the ODE

(4.6) XY =Yr (XY, X =14,
and we set TV := XV, then [BFG15, Lemma 2.2] shows that

(4.7) ' / X o TN dQy " - / xdQY Y

for any bounded measurable function y : R¥?V — R.

Although this result is powerful enough if x is a bounded test function, it becomes immediately
useless if we would like to integrate a function that grows polynomially in N. For this reason we prove
here a new estimate that considerably improves [BFG15, Lemma 2.2].

1
<l | IR O g,

Lemma 4.1. Assume that, for any q < oo, there exists a constant Cy such that

(log N)?
N

(4.8) IR (Y™ pagivavy < Cq vt el0,1],

)

define X}V as in (4.6), and set TV := X{V. Let x : RY — RY be a nonnegative measurable function
satisfying ||x|lcc < N* for some k > 0. Then, for any n > 0 there ezists a constant Cy,,, independent
of x, such that

10g<1 +/de§V’“V) —log<1 n /XoTN ngV’“V)‘ < Chy N1

Notice that this lemma proves the validity of (2.8) with QN AV and in,av in place of Pév 0 and

Pév V' provided we can show that (4.8) holds.

Here, we shall first prove Lemma 4.1 and then we show the validity of (4.8). More precisely, in
Section 4.2 we prove Lemma 4.1. Then in Sections 4.3-4.5 we show that
(log N)?
N

Since R (Y™) is trivially bounded by CN? everywhere (being the sum of O(N?) bounded terms, see
(4.4)), (4.9) implies that

(4.9) RN (YN) <C on a set Gy C RY satisfying Q?’“V(Gt) >1— NN,

1/q (log N)3

(l"gN{V)wN?(QN“V(RN\G)) <O

IRY (YY)l gpeary < €

proving (4.8).
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Finally, in Section 4.6 we show that TV = X {V satisfies all the properties stated in Theorem 2.5.

4.2. Proof of Lemma 4.1. Let p; denote the density of in WV with respect to the Lebesgue measure
L. Then, by a direct computation one can check that p;, YV, and RY = RN (Y?) are related by the
following formula:

Now, given a smooth function x : RV — R* satisfying ||x||ec < N* we define

(4.11) Xt :=xo XN o (XMt Vte[0,1].

Note that with this definition y; = x. Also, since x; o X} is constant in time, differentiating with
respect to t we deduce that

d
0= (XtOXt ) = <8tXt+Y£V'VXt) o X7V,

dt
hence x; solves the transport equation
(4.12) Oixe+ Y - Vxe=0, x1=x

Combining (4.10) and (4.12), we compute

(Z /Xt prdL = /8th5 pr dL + /Xt Opr dL
=- /Yt “VxiprdL — /Xt div(Y{ py) dL + /Xt Ry prdL
= / Xt Ry prdL.
We want to control the last term. To this aim we notice that, since ||x||co < N¥, it follows immediately

from (4.11) that ||x¢|/ec < N¥ for any ¢ € [0, 1]. Hence, using Holder inequality and (4.8), for any p > 1
we can bound

N
/@R”qummpmwmumww<wmomuQmmmnwwm

N (log NP
r(log 1
et PO
p

where ¢ := T Hence, given 1 > 0, we can choose p := 1 + g to obtain

<

1
ummwmumww

V

’/Xth ptdﬁ’ <G N 1HXtH1/p wav) S CNT 1( +HXtHL1(QiV’“V))’

)
where C' depends only on Cy, k, and 7. Therefore, setting

20 = [ xupde =l pygpe,
(recall that x; > 0), we proved that
1Z(t)] < C N1+ Z(1)),

which implies that
[log(1+ Z(1)) —log(1 4+ Z(0))| < C N"".

Recalling that TV = X{¥, this proves the desired result when y is smooth. By approximation the result
extends to all measurable functions x : RY — R satisfying ||x|/cc < N*, concluding the proof. O
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4.3. Construction of approximate transport maps. Define

N
N
= Z 5)\f - N”Z,t?
i=1

where pp, = MZ‘Z are the limiting measures for Liv under in ,aV; their existence and properties are
derived exactly as in the case ¢t = 1, see Section 3. In analogy with [BFG15, Section 2.3] we make the
following ansatz: we look for a vector field YV of the form

. 1
(4.13) (Yiv)f(/\) = yg,t()‘?) N Z Cket
0 . 1. _ . T2 Ny ._ N
where y;, : R = R, y;, : R = R, 2y = zgpy : R® = R, and Crep(w, M) = [ Zges(z,y) dM} (y).
With this particular choice of Y we see that

> o (YN =N [ R @) L @) + [ (v () a2l @)
+Z/81Cku z, M{Y) dLy (x) /32Zkkt z,z)dLy ().

We now expand {Fl‘l}lzo,m around the stationary measures pj, , (recall that F}* are smooth by Lemma
6.16, and that My has mass bounded by 2N) and use that gb%uz’t = ,uz’t to get

* * 1 * *
Fla(qb%[’]lva ce vgb%Ld »TB ) Fla(ul,tv te v:ud,t’ Tg) + N Z DkFla(lul,t’ s 7ud,ta Tg)[QS%MéV]
k

1 *
t 2 Z DRFP (5 - 1o T8 )03 MY o MY
ol

| MV |
N4

1 * *
+ ﬁ Z Dl%fm‘Fla(Hl,tv tee 7:U’d,t7 Tg)[gb%Mév’ ¢%MZN7 qb%MTJr\L]] + O<
kfm

MMN p D
where O <¢#Z\7k|) =0 (Nk"¢A#4MN“Mg)’ see Lemma 6.16.

We now use assumption (2.7) and the smoothness of the functions F}* (see Lemma 6.16 again) to
expand Dy F}, D,%EFZ“, and D;?,Kmﬂ“ with respect to 7. To simplify notation, we define the following

functions:

Fea(w) := DrFP (i g - 110 T8) 01 (1)
For (@) = DE L FH (15 4o b TB) 000 (2 THI,
frr2y(x) == Dy A s 7'1%)[5¢>M(x)7 3]
+ lDl?s’ TTFa(/‘LT,t’ e wurl,t’ Tg)[(szi)M(x)’ 7113”%}]7
Frea(@,y) = DRgF (U3 g s 10,60 TB) 051 (1) Tgr o]
Freri1(2,y) = Dip  FP (0 oo 1 TB) g0 (1) S0 (), T,
Sroma (@, y) = Dipn (13 45+ g TB) [0 501 (1) O ()5 O ()]
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We can assume without loss of generality that these functions are symmetric with respect to their
arguments. Then we get the following formulas:

Fla(qb%L{V"'wgb daTB) Fl(lultw"nudt’TB NZ/fkl de( )
SN ESYCLACES > o) RACVEABEED
Ngz/fkTQZ ) dM}Y (x NgZ//fkallwyde()de()

#5322 ) 0 ) 12 + O(W)

and
o 1
a)\f‘Fl ((ﬁ%L{Vavqb%LéV’Tg) = Nfllﬁ,l()‘ic) Ngflﬂ'l Z/alfkgl 17y dMN( )
1
—"_Wfl/c’rQ )\k +Z/alfk371 z7y)dMZ ( )

3 B, b dMY (y) dMN 0 194 MNF)
+ WZ L rem i (N5 Y, z) ) m (2) + TNE
Im

This gives, for H defined in (4.5),

a,\;sHt(j\) = NWi(Af) = tN fro(AF) — t|:fl/c7'1,0()‘f) - fl/c,l(Af)} - QtZ/alfke,o()\fay) dM¥ (y)
¢

%[filwao(/\f) + fr 1 (AF) +fl/c,2()‘§)} - %Z/[alfkhl,o(/\?vy) + 01 frea (A, y) | dMPY (y)
‘

3t ’(bMMN‘Q
_NZ/ (91fk£m,0()\f,y,z)dMéN(y)dMg(z)+O<#N?>_
Im

Also, with this notation, the analogue of (3.3) for ¢ € [0, 1] becomes
(4.14) W,fg(x) = Wi(z) — tfrolx).

Hence, with all this at hand, we can estimate the term R (Y”) defined in (4.4): using the convention
that when we integrate a function of the form %;ﬁ(y) with respect to Lév ® Lfﬁv the diagonal terms

give (), we get
RY(YM) = o ﬁgzg //yz,t@c; :;f%t@/’ @)z ) - v (1-5) ) [onyan
_[n’é\fz// yi,t(xi:yi,t(y) ALY () LY () <1_>Z/ VaLs
Z/ L ngc’““( ) a0y )

_ (1 — 2) Z/&Ckg,t(%MzN)decv - Z/a2zkk,t(3?7$) dL (z)
ke k
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Nt - NS [ o) b @) = Y [ ueole.) db @) ar )
k ke

- NEf s 78 = 2 [ fra @) M @) = B 7H)
+N2Z/ x) dLY (z +NZ/ (2)yh, ALY (2)
+NZ/ ) Cure, MY LY (2) —tNZ/ Flovo— fia] @¥Le@) ALy )
t 3 [ [ Fea| @rhe@ L@ = ¢ 3 [ [ = Fia @) Cunglir. M) L )
k 574
—uny // 01 futo(w, )yl () MY (y) ALY ()
kel
-2y [ #sicote vt ite) ang ) and @

—QtZ//alszo 2,9) o, M) M () ALY ()

kfm

—3t2// O fremo (2, y, 2) Yo () AMYY (y) AM) (2) ALY ()

kfm

—2ty // [31]01@371,0 + 81fk€,1} (z,y) yh () dMY (y) ALy (x)
Kt

. ! / ¢MMN 3
_— / [z + Firi + Fha) (@)¥Ra(2) ALY () + O (’#N‘> |
k

Recalling (3.4) we observe that, for any function f,

1s) w7 gty sary - O [ O ZI0 gy anyy)
—N/kade —ﬁ//f p— W) g () dnad (),

where

(1.10 zes@) = =8 [ SO g )+ vy @1 o).

M prN |3
Also, observe that up to now the term O ( 193 N | ) does not depend on the smoothness of the functions

y%t,y,lgt,zkg’t. However, in order to be able later to quantify the degree of smoothness required on
oy MN|?

the potentials Wi, we introduce a further notation: we will denote by O( 501,02, - - - ,gp) a

quantity bounded by

p
C
(4.17) > Rlgm] +N||¢A#4MN||M47

m=1
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where the functions g,, map R“" into R for ¢, € {1,2}, and

Rlgm] = Z / do

71,72,73=

/// gm(az1 + (1 — a)z9, 23) dMﬁ\lf(zl) dMg(zg) dMg(Z?))

N ’//gm 2’1,2’2 dMi\l[(Zl)dMg(Zg)

—|— N '/gm 21, 21) dMYN (1)

ri=1

T1, 7’2 1
if £,, = 2, while

d

1 /1
> [
'rl,'rQ:lN 0

// gz + (1 a)za) dMN (1) dMY (25)

+ Edj % '/gm(h)dMﬂY(Zl)

ri=1

if £,, = 1. For instance, writing

_ 1
Zkg’t(flf, 2) Zkz,t(y, 2) _ / 31Zu7t(05$ + (1 —-a)y,2)da
T—y 0

and recalling the definition of ¢y, ., we see that

1 /Cké,t(fﬂaMzN) _Cké,t(vaéN)
N T—y

oY

N

dM,iV(:L") dM,iV(y) = O< ;alzkg,t)

N
Thus, applying (4.15) to f = y%t,y}g’t,cke’t(-,M[N), and using that LY = Hry T MT’“ (recall that
Ziet = Zek,y for all k, £), we get

R = NS [ [Eivke = 2(E [0 fiaotv ) i) — o 4
> [ (3t - (32 [ 3@ sical. ) dui )
— fr1 - t[f;'wl,o - fl::,l]yg,t - <§ - 1> (i)
<1 - > /81Zk€t Y ) dpg . (y)
_ t; / {ngl,o — F) ) Zhe(y, ) i ()
o ; [ 920 2S00 ] () () )
N Z // ( o) =2 S / B (21 9) 01 fantio(,0) iy 4 (2)
— freo(,y) — 2t 01 freo(z,y)y) (z) — é1k=e Viealr) ~ Vi)

2 T—y
=3 [ V0l Ol ) i (2) ) M ) M 1)
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MMN‘?’
N ’d)# ol o
+C +0 (N’ (Yit)' 012k, 62Zkk,t>

where C}¥ is a constant. Let us consider the operator Z; defined on d-uple of functions by

= (U1, ..., 0y) = (Et(\lll,...,\I/d)l,...,Et(\lfl,...,\lfd)d),

where

d
(4.18) (U, ..., Uy, = Ex U —QtZ/\I/g(y) 81fkg70(y,-) d#z7t(y) Vk=1,...,d.
(=1

Then, for RN (YY) to be small we want to impose

Et(y(l),tv---vy?l’t)k = (9(1)7792))

(419) Et(zl ,t('ay)a v 7Zd€,t('7y))k = (Q%K(ay)v v 7933(’3/)) Vi= 17 R ’d7 V?Ja
Et(yita .. 7y31,t)k; = (9%7 cee 79611)7

where

gi(@) = fro(x) + cx,
gre(@,y) = freo(@,y) + 2601 freo(x, y)yh . (2)
+ 3t Z / y?n’t(z) O frem,0(w, Y, 2) dpg, +(2) + cre(y) if k#£4,

B é}’g,t($) - Y%t(y)
2 T —y

9ri (T, y) = freno(@,y) + 2t D1 frwo(z, y)yR . (2)

36 [ 3000 Do, :2) di (2) + ),

(&) 1= fua )+t f o) ~ )] set) + (5~ 1) 0 @)

#(1-5) S [ omeatv) i) + X [ 51 maston ) il
)4 l
+2t Z / y.+(y) [31f1cerl,o + 81fk€,1} (y,-) dpg (y) + ¢4,
L

where ¢y, ¢}, are constants to be fixed later, and cge(y) is a family of functions depending only on y also
to be fixed.

Indeed, noticing that [ dM, ,ﬁv = 0 for all k, we see that all constants integrate to zero against MY,
and we conclude that the following holds:

Lemma 4.2. Let Z; be defined as in (4.18), with {Z}¢_, as in (4.16). Also, recall the notation (4.17).
Assume that we can find functions y%t,y}c?t,zu’t solving (4.19). Then

N/ ~N N ’(b%MN’g 1 v/
Ry (Y ):Ct +0 T;(Yk,t)aalzkz,uaﬂkk,t )

where O is a constant.



UNIVERSALITY IN SEVERAL-MATRIX MODELS VIA APPROXIMATE TRANSPORT MAPS 23

4.4. Invertibility properties of E;. Lemma 4.2 suggests that, to construct an approximate map,
we need to solve an equation of the form

Et(\pla s _,\Ild) = (g17 s 7gd)'

We remind that, in our setting, the functions 0 fre0(:,y) are smooth and their C* norm is of size
O(Ja]) for any s > 0, where a is a small number. Also, note that the operators = defined in (4.16)
are continuous with respect to the C' topology. This will allow us to show invertibility of Z; using
Lemma 4.3 below and a fixed point argument

Before stating that result in our setting we recall that, given a function f : R — R, the norm C¥ is
defined as

I fllcs ) == Z 1FD| Lo ).
=0

where fU) denotes the j-th derivative of f. The next result is contained in [BFG15, Lemma 3.2].

Lemma 4.3. Given V : R — R be a function of class C? with o > 4, assume that py has support
given by [a,b] and that
duy _ . _
(4.20) d—(x) = S(x)\/(a—z)(x —b) with S(x)>¢>0 ae. onla,bl.
T

Define the operator

— U(x)— U

=0(0) = =6 [ LW b @)+ V@)
and fix an integer 3 < s < o — 1. Then, for any function g : R—=R of class C*, there exists a unique
constant ¢y such that the equation

=W (x) = g() + ¢,

has a unique solution ¥ : R — R of class C*~2, also denoted by Z~'g, which satisfies the estimate

(4.21) 1]l cs—2(ry < Csllgllosr)-

Moreover ¥ (and its derivatives) behaves like (g(z) + ¢4)/V'(x) (and its corresponding derivatives)
when || — +00.

We now want to apply this lemma with V' = W,Sftf and py = pp, (so that = = Ej, see (4.16)), and
prove the invertibility of E; by a fixed point argument. We notice that the constants appearing in the
above result depend only on the smoothness of V' and on the assumption (4.20), that is satisfied by
u;;t thanks to Lemma 3.2. In particular, when applied with V = W,jff and py = Nz,t all the constants
are uniform for ¢ € [0,1]. Also, being F§ of class C*°, the smoothness of W,jftf is the same as the one
of Wy, (see (4.14)).

Proposition 4.4. There exists o > 0 such that the following holds. Assume that the functions
Wi,...,Wg : R = R are of class C? for some o > 4. Suppose that |a| < «, and let t € [0,1].

Then, for any family of functions gi, ..., g4 : R—=R of class C* with s € [3,0 — 1], there exist a unique
family of constants (cg,, ..., cq,) such that the equation

(422) Et(\l’l, ey \I’d) = (gl, v ,gd) + (0917 ey ng)

has a solution W1, ..., Wy : R=R of class C*2. In addition, there exists a finite constant Co such that
(4.23) Jax [[Wellerg) < Co Jnax lgeles ).

=1,...,

Furthermore, there exists vs > 0 such that ¥y and its derivatives up to order s — 1 decay like

1
O([(Wz’ff)/(:v)]VS) as |.’IJ’ — +00.
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Proof. Define the operator

d
TV (Uy,..., ) = Z/\I/g(y) 01 fre0(y, ) dug 1 (y),
=

so that (4.22) can be rewritten as
EUE — 20X (U, Uy) =gr+cy  VE=1,...,d

Recalling that 01 freo(,y) is a smooth function with all derivatives of size O(|al), for any family of
bounded functions ¥ : R — R it holds

(4.24) TR (W, ..., V)|l o) < Clal (Jax N7y

for some universal constant C. To prove the result we simply apply a fixed point argument: more
precisely, we set (Vy (g),..., ¥q0)) = (0,...,0) and we recursively define, for j > 1,

U = @07 (200 (W1 gyee s Wag) + k), k=1,
Applying Lemma 4.3 with V = W,fg and py = py, (so that = = Zx) we deduce that
Uy ECYR)  Vji>1,Vk=1,....d
Also, by the linearity of =; and T%V we have
Ui 1) — Yao) = (E6)7 (275 T (W) = ig-ns--o Vag) = ‘Pd,@fl)))y
so it follows from (4.21) and (4.24) that

(2% [Tk 1) = Ua ) lor gy < 26C5Clal | max W) = Ve lormy-

Hence, if we choose o small enough so that C5Ca < 1/4 we deduce that {¥ ) }i>1 is a Cauchy

sequence in C! for all k = 1,...,d. Recalling that the operator Z; are continuous with respect to
the C' topology, we deduce that the sequence (U1,3),---> ¥q,5)) converges a solution of our problem
(Uq,...,¥y).

Applying (4.21) and (4.24) again, we deduce that

Jmax ([ Wy i)llormy < 26CsClal max |8y, llcr) + Cs Qmax l9kllcs®)

=1,.. =1l,...

<5 max [ llore + Cs, max [lgrlloaw),

N | —

so (4.23) follows by letting j — oo. In addition, Lemma 4.3 implies that ¥y decays like O(W)
PEYACH

as |z| — 4o00. Furthermore, since Y¢V(Uy,..., ¥,) € C*, it follows by (4.21) that
Uillosr) < C
Jmax ([ Wllosm) < Cs,

showing that ¥y € C°.
To prove the final statement we note that, since ||W|csr)y < Cs and ¥y, decays like O(W),
k,t

by interpolation inequalities the derivatives of Wy up to order s — 1 decay as an inverse power of
(Wil 0

We can now apply the above proposition to invert the first equation in (4.19) and find a solution
y9, of class C?73. Then (since now y?, is given) we solve the second equation in (4.19) using again

the proposition above, and finally we invert the third equation. In this way, in analogy with [BFG15,
Lemma 3.3] we obtain the following result (we recall that a function of two variables belongs to C™
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if it is 7 times continuously differentiable with respect to the first variable and 7/ times with respect
to the second):

Corollary 4.5. Let o be as in Proposition 4.4. Assume that Wy, : R — R are of class C? for all
k =1,...,d for some o > 10, and that |a| < o. Then there exist functions y3 ., ¥t Zxes solving
(4.19), and a finite universal constant Cy, such that
0 1
HYk,tHC"*i”(R) + HYk,tHCff*Q(R) + Z ||Zkf,t||cr,r’(RxR) <Cs Vi £=1,....d.
T4+7'<0—6

Moreover these functions and their derivatives (except the last ones) decay as an inverse power of
(Wlfftf)/(;r) as |x| = +o0.

Recalling (4.4), it follows by Lemma 4.2 and Corollary 4.5 that

N (N N ’qb%M Mo
Ry (Y ): Gy +0 TQ(YW) aalzkf,haQZkk,t .
But in fact, since RY (YY) is centered (compare with [BFG15, Section 3.5]), we deduce that
e

RY (YY) = O< N Yk OrZret, 32Zk;k,t>-
The goal of the next section is to control the right hand side.
4.5. Getting rid of the rest. We start by using concentration inequalities to control M ,ﬁv —E[M, ,ﬁv .

Lemma 4.6. Let Hypothesis 2.1 hold, and let ay be as in Section 3. For a € [—agp,ap| there exists
d >0 such that, for any Lipschitz function f: R — R, for all 6 >0, allt € [0,1] and k € {1,...,d},

N N
> 704 B[ 00| = 116 < 267
=1 =1

N,aV
t

where || f||z denotes the Lipschitz constant of f.

Proof. in aV’ being a probability measure with uniformly log-concave density (see Section 3), Bakry-
Emery and Herbst argument applies (see e.g. [AGZ10, Section 4.4]). O

We now need to control the difference between E[L]kv ] and its limit .- We shall do this in two

steps: we first derive a rough estimate which only provides a bound of order N~1/2 following ideas
initiated in [MMS14], and in a second step we use loop equations to get a bound of order log N/N, see
e.g. [Shc09]. This two steps approach was already developed in [BG13b, BG13a, BGK15]. To get the
rough estimate, we shall use the distance d(u, 1') = d(u — p’) on the space of probability measures on
R defined on centered measures v by

() = (2 [0l = vl tavta) du<y>)l/2 - \/ [ 5 lotoar,

where © denotes the Fourier transform of the measure v. Because this distance blows up on measures
with atoms, we shall consider the following regularization of the empirical measure: For a given vector
A= (A1 <A < -+ < Ay), we denote by A := (A < --- < Ay) its transformation given by

5\1 = Aq, 5\¢+1 = 5\1 + maX()\iJrl — A\, N_g) .

We denote by Eév the empirical measure of the S\f, and by Ijév its convolution with the uniform measure
on [0, N~%]. We then claim that:

Lemma 4.7. Let Hypothesis 2.1 hold. Then there is ag > 0 so that, for a € [—aq, ag], there exist ¢, C
positive constants such that, for all 6 >0 and t € [0, 1]:
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- _Bs2n2 _ N2
ivvaV <ml?xdd(L1]gV>#Zt) > 5> < eCNlogN G0N + Ce cN )
1<k< ’

e If f: R — R is Lipschitz and belongs to L*>(R), then

v (| s aat - o)

where || fl|1 = ([ 7] 1f(7)[Pdr)'/>.

Remark 4.8. Note for later use that if f is supported in [—M, M], then there exists a constant C'(M)
finite such that

B
> 5HfH% +N_4HfHL> < €C’]VlogN—§52N2 +Ce—cN2’

1£1ly < CDI| £ loo -
Indeed,

115 = [ Wl Ras = [ P Pas = =2 [[losle =yl @) 1) ddy < O 1)

Proof of Lemma 4.7. We just recall the main point of the proof, which is almost identical to that of
[BGK15, Corollary 3.5]. In the latter article, the potential is only depending polynomially on the
measures rather than being an infinite series. It turns out that the main point is to show that

B a(, * *
S(v) =3 > dwe)® = DR FS (i i T8 vk i)
k k¢

is uniformly convex on the set P([—M, M])¢ of probability measures on [—M, M], so that its square
root defines a Lipschitz distance. Here, we more simply notice that for a small enough

ﬁ d
(4.25) Sv) ==Y d(w)?.
k=1

Indeed, the latter amounts to bound from above the second term in the definition of S. But since
D,%gFg(u’{,t, - ,ul’;,t)[&ag, d,] is smooth and compactly supported, so we can always write

DI%ZF(SI(/[{,U ce nu’;;,tv Tg)[(sxv 5y] - /df /dC ei£x+icyDI%€F6L(/[{,tv ce 7:“’2,167 Tg)(f, C)

and for any centered measures v, vy we get, by Cauchy-Schwartz inequality,

D2 FE (W 4oy il TH) s el | < d(w) d(we) ( / dé / dC | D2 FE (i g 1 TR E, om&uc\)Q .

Hence we can always choose a small enough so that the last term is as small as wished, proving (4.25).
Let us sketch the rest of the proof. By localizing the eigenvalues in a very tiny neighborhood around
the quantiles of yj , it is possible to show (see e.g. [BGK15, Lemma 3.11]) that there exists a finite

constant C such that
ZtN,aV > o= N2} grestty ) —CN log N

where ZV*V is as in (4.2) and
d
a 1 a N

S, mw) =5 Z(// [(Wi(z) + Wi(y) — Blog [z — yl] dug(x) duk(y)> —tFg (1, b TR ) -

k=1
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Then, writing Ly := (L{V,...,Lflv), Ly :=(L¥Y,... ,Eév), and p* = (i, ,,ufu), one has

5 a a * *
2/ log |z — y[dLn(z) dLN(y) — LG (LN,TéV)—Z/WdeiVJrJt (s -+ Hige)
Y k
/6 * * *
=5 ] toste —vidlL i) diiy — ) + R(Ex — )
TFY

= g/log |z —y|d[Ly — p*](z) d[Ln — p*](y) + R(Ln — p*) + O(log N/N),

where we used the regularization Ly of Ly to add the diagonal term 2 = y in the logarithmic term up
to an error of order N log N, we bounded uniformly F}* and Fi§ up to an error of order N, and we set

=Y [ fu@ydn(e) = DF (o + 00 ) ™)
k

for some 6 € [0,1] and some functions f; vanishing on the support of the equilibrium measure pj ,,
positive outside, and going to infinity like W (see [BGK15, Lemma 3.11] for more details). In this
way one deduces that

Qi\mv (max d(Lk aMkt) > 5) < eCNlogN/ _ €_N2d(EN’“*)2_N2R(EN_M*) Hd)‘f'
1<k<d maxy<g<d d(Ly) 1y ) =6

By the large deviation principle in Theorem 3.1, we see that the cubic term in R is negligible compared
to the quadratic term on a set with probability greater than 1 — e~ N, Thus, setting M,ﬁv = N(Lfgv —
[,4), we get

N,aV
’ >
Q; (lrélgicd d(MY) N5>

< eC’NlogN |:/ e*%£i:1 d(MN)2=N2Y, [ fe(z)dLY (z) Hd)\f +€CN2:|
max; <p<q d(MY)>N§
B nN242 2

< eCNlogN(eng 0 _i_ech )

This gives the first bound of the lemma, from which the second is easily deduced since

[ 1@ )| = | [ foperar] < iriyaw)
. [ r@a - i) < e

We finally improve the previous bounds to get an error of order log N/N instead of log N/ V'N.
Lemma 4.9. Let Hypothesis 2.1 hold, and given a function f : R — R define the norm given by

(4.26) A1l = / (L + |77 (r) dr

There exists ag > 0 so that, for all a € [—ag, ap] and all functions f : R — R with |||f]|| < oo,

[ f@aus = o] ag oV

for some constant C independent of a and f.

< Cll[ Il
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Proof. Before starting the proof, we recall the notation Ly := (LY, ... ,Lév) and p* = (py 4. ,,ufu).

To improve the bound we just obtained, we use the loop equation. Such an equation is simply
obtained by integration by parts and, for any smooth test function, reads as follows:

N,aV
//f JdLY () dQY Y = <5 Z/f(/\?)% (%) [Tax
_ / < / (@) (t[akaF“](LN,Tg){éx] Wi () dLy ()

5//f dLN( VALY (1) /f VALY (& )dQNaV7

where F® := Y7 F*N~'. Recalling that Mév = N(Ly — pj,) and (4.16), we rewrite the above
equation as

(4.27)
/[/Hk:fde —tbézk//(‘? e Dt S (1%, 75) [y, 0 ]f(l‘)dm’;t(:c)deV( ] NV ZRN
where
RY(f) := (1—)//]0 VALY () dQNV,
R (f) 2N//f Ty D ang (@) amp () @,

RY ()= Nt [ [ [ @) 0.DuFe = ) )0 A (o >] aQNe,

RY (1) = NZ/(/f )Ou DR+ 8(L — ). B M) @)Y,

and the last term was computed using a Taylor expansion. Writing f(z) = [ €' f(s) ds and noticing
that || || + |le™||z < 2(1 4+ |A]) so that Lemma 4.7 entails
2

/‘ MMN)| dQNY < CNlog N(1 + |A])2,

we get

RY (£ < Iz
RY (<N [arifir \/darr/\MN ar)| | G (1 — )7)| a@¥

< N- /dT\THf y/ do /) (M) (ar) dQNaV<1ogN/(1+\T|3)|f(T>\dT,

[RY ()] < Cllflloos
[RY ()] < Clog N| oo,

where we used Lemma 4.7 for the second and fourth terms, and to bound the last term we noticed
that, since F{§ is smooth and it is of size O(|a|) together with its derivatives, we have

Clal
(142 (1 + [¢]')

(4.28) max ’ [0, D FE] (N, C)‘ <
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Hence, since
[ | 0-Drers e 6801 10 i) ¥ )

//)f 4174 (0)| 10 Dic g ggy‘/ BI)(E) dQe

¢ dg,

we deduce from (4.27) that

‘//f 2) M} (z) QN

d¢ d¢

< Iz Al [ 1o DMF%U'/ QL)) dQY Y
0k

+CIE o +losN [+ )0 dr
Applying the above bound with f(x) = e** and using (4.21) with = = S, we get
/ MY (N dQNV | < N2 / max

By (4.28), we deduce from the above equation that

/15 (N dr < C gl /1d/\ /15 (Q)d¢ +C /Wd)\ log N
1+ A0 Y =2 T 1+ [N 1+ A0 ) %8

<CCla ’/1+y<10 N(Q)dC +C log N.

(4.29) on(A) = 1211?%(61

 DeFg (0, O)| 0n () dC + C(1+ A7) log .

In particular, if a is sufficiently small so that C'C'|a| < 1/2, we can reabsorb the first term in the right
hand side and obtain

1
. 6n(A\)dA < 2C log N.
/1+|/\|10 N(A) dA < 2C log

Plugging back this control in (4.29) and using again (4.28), we finally get the bound
Sn(A) <C(A+ |\ 1log N .

Therefore, using the identity f(z) = [ f )ei™dr we conclude
max| [ [ [ @) ar <x>} aQ)™| < [1fmlan(r)ar < ClogN [+ jrlfw]dr

as desired. ]

A straightforward corollary of Lemmas 4.6 and 4.9 is the following:

Corollary 4.10. There exists ag > 0 so that, for all a € [—ag,ag), there are finite positive constants
C,c such that, for all f: R — R with ||| f||| < co and all § > 0, we have

(4:30) (| s ana

In particular, for all p > 1 there exists a finite constant C), such that

> 8lfllz + CILAl logzv) < 26,

I3 gy = | [ 60 082 ) Co(l 1l + Il og V).

Lr(Qy V)

Thanks to this corollary we get:
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Corollary 4.11. Assume ¢M € C°(R), vanishes outside [~M, M| and is bounded by M. There exists
ag > 0 so that, for all a € [—ag,a0] and for all { > M, there are finite constants c¢c,C¢,c > 0 so that,
for all § > 0, we have

(4.31) ivav<||¢1\#/[M;£V||C > dc¢ + C¢ log N) < 2e7”

Proof. Using Corollary 4.10 with f(x) = (¢™(x))P, together with Remark 4.8, we deduce that there
exist constants ¢y, Cy > 0, only depending on ¢ such that

Nav<|MN( ™M) )‘ > copMP~16 + CoMpp7logN> < 2e~¢
Therefore, for ( > M we find c¢;,C; > 0 such that

N,aV N ((+M\p 7 p —c'52( prppz)
NV (1M ((6M)7)] 2 1?5 + CrcPlog N) < 26 ,

Applying this bound for p € [1, eV */ 2], by a union bound we deduce that there exists ¢’ > 0 such that

2

iV,aV( max C_p‘MéV((qu)p)} >c10+Cq logN) < 2¢~¢"0
1<p<ecN®/2

On the other hand, for p > e“N?/2 the bound is trivial as
ecN?/2

(& 2 C
as soon as N is large enough. This concludes the proof. ]

Thanks to this corollary, we can finally estimate the rest
A

RiV(YN)z()( ~

s (Vi) O1Zhe 1, OoZik t)
with C(log N)3/N. Indeed, recalling (4.17), using Fourier transform we have

// (e, 2)AMP (2)dMP (y)ddM? (2) // (e, ¢, 0) MY €] MY e M [e®) d dC db,

so applying Corollaries 4.10 and 4.11, and recalling (4.26), we can bound our rest by

log N)3
N

with probability greater than 1 — N~°V. Since all the functions involved decay at infinity, for the above
integral to converge it is enough to assume that ¢ € €20, as this ensures that

. C
GO +1EDT (1 + 1+10)7 <
DO (L + 6D (41T (41007 € e g
Recalling that by assumption 1 is as smooth as (y,lﬁt) ,O1Zget, OF O2Zky ¢, by Corollary 4.5 the assump-
tion is satisfied provided W € C7 with o > 36. Thanks to our Hypothesis 2.1, this concludes the
proof of (4.9). As explained at the end of Section 4.1 this implies (4.8), which combined with (4.1),
(4.3), and (4.7) proves (2.8).

ol

o) 3 -
+ UBEE T i, ¢.0)1 0+ €D (1-+1¢1) (1 1) de dc g

€ LY(R3).

Before concluding this section, we prove an additional estimate on the size of the integral of smooth
functions against the measure Mpy. Corollary 4.10 provides a very strong bound on the probability
that [ fdMy is large when f is a fixed function. We now show how to obtain an estimate that holds
true when we replace [ fdMy by its supremum over smooth functions.
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Lemma 4.12. There exists ap > 0 so that, for all a € [—ag, ap], the following hold: for any £ > 0 there
are finite positive constants Cy, cp such that

asm Qs | [ @)

up
||f||c€+9(R)§l

> IOgNNl/(ﬁ-&-l)) < Cge_cz(bg N)2+2/e.

Proof. Since the measure in’av is supported inside the cube [—~M, M]YN (see Section 4.1), we can
assume that all functions f are supported on [—2M,2M]. Fix L € N and define the points

M

L Y
Given f € CE([-2M,2M)) with || f[lcess < 1, we set g := fO) € C§([—2M,2M]) and define the
function

T, = —2M +m m=20,...,L.

-1

0 (z,, A
gr(x) == Z g(j'L)(x — Tm,L)’ V& € [Tm,L, Tmt1,L]-
— !

~

Note that, since ||g]|qoc < 1,

AM\*
90) = 0] < IOl = 50)" < () Vo€ lomprtminal Ym =00 L,

so, by the arbitrariness of x,
lg — gzl oo ((—2nr2nm) < (AM)LTE
Hence, if we set
x
= gy,
oM !
since ég) =gz and fU)(=2M) =0 for all j =0,...,8, we get

If = frllzoe(—2ar2nm) < Carel ™
Recalling that My has mass bounded by 2N, this implies that

(4.33) ‘/fdMN—/fL dMN) <2CyyNL ™.

Fix now a smooth cut-off function ¢; : R — [0, 1] satisfying ¢p; = 1 inside [-M, M] and ¢y = 0
outside [—2M,2M], and define
L-1¢6-1 )
Foan@) =" g9 (@ 1) fin (),
m=0 j=0

where
8

fmj(2) = () / (Gt

onr 8!

T

(Y = T, L) Xjom 1 omsr.] (¥) Ay

It is immediate to check that fm,j € Cg’l([—2M, 2M]) (that is, fmJ has 8 derivatives, and its 8-
th derivative is Lipschitz), and that fr, p = fr on [-M, M]. Also, since || f|ce+o < 1 we see that
199 (2m.1.)| < 1 for all m,j. Hence, recalling (4.33) and the fact that My is supported on [—M, M],
this proves that for any function f € C§™([—2M,2M]) with || f[|cess < 1 there exist some coefficients
am; € [—1,1] such that

‘/fdMN —Zam,j/fm,deN( <20y, NL™"
m7j
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Since #{ fm.;} = (L, this implies that
(4.34) iv,av< sup ‘/fdMN‘ > logNNl/(ﬁJrl))
|

[fllgero<1
. log N N/ (D) 90y, N L~
SZQ?’”VQ/fm,deN‘ > 28 M, )
m7j

2

We now observe that || fm,j”c&l < Aprp, where Ajprp is a constant depending only on M and ¢. Thus,
recalling that the functions f, ; are supported on [—2M,2M], this yields

11 fmslll < A,

where the norm ||| - ||| is defined in (4.26). Hence, choosing
(4.35) L:= LCA’MﬁgNl/(Hl)(log N)fl/KJ
with CA’MJ large enough so that
log N NY&D 90y N L~ > %logNNl/(“l),

we can apply Corollary 4.10 to the functions fm,j, and it follows from (4.34) and (4.35) that

in’av< sup }/fdMN‘ > logNNl/(”l))
I £l ce+o<1

, <log N N1/(E+1)

2
M L ) n =, ,(log N)2+2/¢
’ < CYp e meli%8
< Cuy .

S CJ,\/[,ZLQ

0

4.6. Reconstructing the transport map via the flow. In this section we study the properties of
the flow X} : R¥ — RN generated by a vector field Y1 as in (4.13), i.e., X}V solves the ODE

XN =yYNxM, XY =1d,

and we prove that 7% := X{¥ satisfies all the properties stated in Theorem 2.5.
Recalling the form of Y2 (see (4.13)), it is natural to expect that for all ¢ € [0,1] we can give an
expansion for X}V as

1 1
XtN = X07t + NXLt + WXQ,t;

where each component (Xo,t)g-c of Xo; should flow accordingly to ygt: more precisely, we define
(Xo4)k = X(I{t()\f) with X(]it : R — R the solution of

(4.36) X(I)C,t = yg,t<X(])€,t)7 Xg,t()\) =\
Recalling the notation A = (AL A where AR = (AF, ..., A%), we define

Xie= (Kb (ko K (Kuk ) RN R



UNIVERSALITY IN SEVERAL-MATRIX MODELS VIA APPROXIMATE TRANSPORT MAPS 33

to be the solution of the linear ODE
(K)F ) = 0 (X80 ) - (X10F ) + vk (X5, 08)

d
k k N
(4.37) T ;/Zkf,t (XO,t(/\i )731) dMXg’t(y)
d N

0 DS e (36,00, X400 ) - (X105

=1 j=1

with the initial condition (X1,0)¥ = 0, where M )](Vg is defined as
t

[ty - Z[f(XOtV /fduu] v f e CuR).

=1

Proposition 4.13. Let « be as in Proposition 4.4. Assume that Wi : R — R are of class C? for all
k=1,...,d, for some o > 16, and that |a| < o. Then the flow

X = (X)L Gk ) (R RV 5 RN

is of class C°~2 and the following properties hold: Let (Xo,)¥ and (X1.4)F be as in (4.36) and (4.37)
above, and define Xo; : RNV — RN wiq the identity

1 1
XtN = X07t + NXLt + WXZt .

Then, for any t € [0,1],

(4.38) max H(Xl,t)fum(QON,av) < ClogN, max (X271l 2 oy < C(log N)2.
In addition, there exist constants C,c > 0 such that, with probability greater than 1 — e*‘z(logN)2
(439)  sup max|(X1,)7| < Clog NNV, sup max|(Xp,)f| < C (log N)? N#/(7~19),

te0,1] “F tefo,1] “k

(4.40) (X10)F ) = (X1)E (V)| < Clog NNV 2E| VE=1,....d,

tefo,1] b’

(4.41) sup max|(Xa,)f (A) — (X205 ()| < C(log N2 N¥CIDINF—NE| VE=1,....d,
tefo,1] &’

(4.42) sup max‘@v (X10k (0) < Clog NNVE19)  yEe=1,... d

tel0,1] ©J

Proof. Since Yiv € 0779 (see Corollary 4.5) it follows by Cauchy-Lipschitz theory that X} is of class
C°79. Define

Nk (5 kooyk (X10)f 5 (X20)f 5 ! Nk (3
(XTER) i= X ) + R () 4+ 2 ) = (1= )X, ) + ()
Also, we define the measure MY ., As
(X;T)k
N

439) [ F) M) = 70 - XEOH + 7O - [ faui]  vs e
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In order to get an ODE for X5, the strategy is to use the Taylor formula with integral rest to expand
the ODE X}V = YN (X}¥), and then use (4.36) and (4.37) to simplify the terms involving X, and
X1,4. In this way we get

1
(20t = [ ho (R DEW) dr - (KoY

¢
(4.44) - / alzke,t(XOt(Af%y) dM)f(Vg’t(y)] dr ((Xu)z () + (Xz,}f\)ff(A))
+%:/31Zku<X0t(>\f),y) dM)](V(l;’t(y) ((Xl,t)z (5\)+ (XZ;\);()\))
N ) A
+ZZ/ [azzicz,t<(X,fV’T)f()\),(XtN’T)ﬁ()\))
¢ j=170
_ 82Zk£t(X0t(>\Z),th()\§)>] dr (Xlt)g(j\)
+Z§: / [32Zk€,t((Xt ’ )f(i),(xgvvf)g(x))] ir <X2§3§(X>7
¢ j=1

with the initial condition (X2,)¥ = 0. Using that

Iyhllco-s@) < C
(see Corollary 4.5) we obtain

(4.45) 1 Xo.tlle—s(r) < C.

We now start to control (let)f. First, simply by using that My has mass bounded by 2N we obtain
the rough bound |(X1,)¥| < C' N. Inserting this bound into (4.44) one easily obtains |(X2,)¥| < C N2

We now prove finer estimates. First, by Lemma 4.12 together with the fact that (Xo;)* and y
zke(2,y) are of class C7~6 uniformly in 2 and ¢ (see Corollary 4.5), it follows that there exists a finite

constant C such that, with probability greater than 1 — e—cllogN )2,

sup
z€R, t€(0,1]

Hence, using (4.37) we easily deduce the first bound in (4.39).

In order to control Xa; we first estimate (X1 ¢)F in L4(Q(])V’av): using (4.37) again, we get

/Zu,t(x, A) dM)](Vg t()\)‘ < C log N NY/(e=14),

d
(140) G| (X1 v, < € mall (608 g, + 1

+ max

Z7k7 0,t

[ s (5, 06).0) avsdy w)

L4<Q£¥’“V>>'
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To bound (X1,)¥ in L4(Qé\7’av), and then to be able to estimate Xo;, we will use the following:
Lemma 4.14. Assume that s > 15. Then, for anyi=1,...,N and k,£ =1,...,d,

(4.47) H/Zké,t<X(])€,t()‘ )dM xt, )

t

< C'log N,
L@y ")

< C'logN.
L@ ")

(4.48) H / Orznes (X5, (M), y) dMY, ()

Proof. Fix indices i, k, ¢ and write the Fourier decomposition of

N2, (T, ) = Zrey (Xg,t(fﬁ)7X§,t(y))
to get
[ i) ¥ ) = [ineta &) [ 0 ans ) de.
Since zyp € C*" for u,v < 0—6 and X&t € 0774 (see (4.45)) with derivatives decaying fast at infinity,

we deduce that

|§ Lv
1+ [glo0
d§

L4Q") S/Hﬁg’t("@HOOH/eifyd%ﬁv(y) LYQp™Y)

< ClogN/Hﬁzt(‘af)Hoo (1+1¢7) d¢
<ClogN

|ﬁ2,t($7 5)
so, using Corollary 4.10, we get

/ M, (w,y) dMY (y)

sup
X

provided o > 13. The same argument works for 01z provided o > 15, which concludes the proof. [

Inserting (4.47) into (4.46), we obtain the validity of the first bound in (4.38).
We now bound the time derivative of Xo;: using that My has mass bounded by 2N, in (4.44) we
can easily estimate

)

‘N/Ol (2. (XD = 08 (X)) dr - (X108 (X)‘

C
< Cl(X )7 + 1 (X0i (X207,

1
/812]%’15 ((XtN’T)f“‘()\) )dM(NNT /8lzkgt XOt(A ) y) dM)]}[gt(y) dr

1
< il + et + 5 (100051 + 10es]),
J

Oaze (XNTVEO, (VTR = oz (X6, 08, X8, (AD) )| dr 1(X1.0)5]

< 3 (100t + g} )Z!XU 1+ & Z(“‘X”” IR 1010
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hence, noticing that %\(ngt)ﬂ < [(X2.4)¥|, we get

d C
21Xz, )il < C(Xa2)f| + C[(X12)f* + N [(X1)7 |[(X2,0)F| + C\(Xl OF |+ N2 \(X2,t)f’2
C C
TN Z (X105 (X10)F ]+ N3 Z (X0 F I (X205 + m Z |(X2,)5] 1(Xa,0)5]
% % 0
+ ‘/alzkg,t(xgtuf),y) aMyy ‘\ X1k + = Zy X1,)!

22|X2t X5+ 53 Z\Xu i (Xa,0); !+—Z!th

Using the trivial bounds |(X1,)¥| < C' N and |(X24)¥| < C N2, and the elementary inequality ab <
a® 4 b2, we obtain

d

(a49) G101 < € (106208 + (X 7 IO + 7 3]

2
+ ‘/81Zk€,t (X(])c,t()‘;c)vy) dM)Jgg (y) )

,t

In particular, if we set A;; := max; \(let)ﬂ and A = max; |(X27t)ﬂ we obtain

\

d
(4.50) %AZt < C(A2,t +(A1g)? + max

[ v (5,06, w) avedy )

Hence, noticing that

(4.51) sup
z€R, t€[0,1]

/alzket T, ) dM ()\)‘ <C logNNl/("—H’)

with probability greater than 1 — e—c(log N )? (see Corollary 4.5 and Lemma 4.12) and recalling the first

bound in (4.39), using (4.50) and a Gronwall argument we deduce the validity also of the second bound
n (4.39).
Going back to (4.49) and again the inequality ab < a? + b?, we also see that

d 2 jam 1 i
aH( 20) H QNav) < C(H(X2t) HLQ(Qév,av) + [[(X1,1); HL4(Qév,av) tw ; ”(Xl,t)jHL4(QéVvaV)
7-]

1 212 k N
+N;|1(X2,t)j||L2(Q§,av)+ H/alzu,t(xo,tu ), y) dMY, (y)
7]

Ot

4
L4(Q0N*“V>)

Hence, recalling the first bound in (4.38) and (4.48), we get

d
IR g,y < O (120 2y g, + o)),

so a Gronwall argument concludes the proof of (4.38).
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We now prove (4.40): recalling (4.37) we have
[(X0i () = (Xae (V)
< () (X6 () = () (X6 AED[ (X107 (V)]
+ ) (XN (X10)F ) = X5 )]+ [y, (X5, () = yho (X6, (05)]

> [ (s (X80, w) = muaeC5, 6. )) dMé?g,t@)\

1
o | (X0, X8, (X)) = Doz (X8, N5), XE (X)) (X (A

L,j
Hence, using that |X(]it()\f;) - X(If’t()\f,)\ < C|AF — \E|, the bounds (4.39) and (4.51), and the Lipschitz
regularity of (yg t)’, y,lg’t7 Ziet, and Oozpp s, we get

(X)) = (X105 V] < ClX)E () = (X105 (V)] + C log N NVETIINE - AG|
outside a set of probability less than e =<8 N)* g6 (4.40) follows from Gronwall’s inequality.
By a completely analogous argument, it follows from (4.44), (4.40), (4.39), and estimates analogue

to (4.51) for the higher derivatives of zys,, that
[(X2,)F (V) = (X2)E (N < ClX2)F () — (X20)5(N)] + C (log N)2 N/ 0D|\E — 7k

holds outside a set of probability less than =18 M*  Thus (4.41) follows.
Finally, denoting by 5? the vector with zero entries except at position j, ¢ where there is a one (so

that X+ 6(55 =(\,..., /\§ +¢,...2%)), one can differentiate in time |(X7)F(\ + 6(55) — (Xlt)f,(j\)| and
argue as above to deduce that

|(X1)f (A + ) = (X1) (V)] < C log N NV ¢

c(log N)?

outside a set of probability less than e~ . Dividing by € and letting € — 0, this proves (4.42). O

5. UNIVERSALITY RESULTS
In this section we explain how Corollaries 2.6, 2.7 and 2.9 follow from our Theorem 2.5.
Proof of Corollary 2.6. Given ¥ > 0, we define the set
(5.1) Gy = {X eR™ N — 5l u| < NV minfi, N +1—i}/3 w,e}.

As proved in [EYY12| in the special case of the Gaussian ensembles and then generalized in [BEY14a,
Theorem 2.4 to potentials W}, satisfying much weaker conditions than the ones assumed here, the
following rigidity estimate holds: for all ¥ > 0 there exist ¢ > 0 and C' < co such that for all N > 0

(5.2) PYO(RN\ Gy) < Ce "

Also, thanks to the fact that M% has a density which is strictly positive inside its support [ag, bg] except
at the two boundary points where it goes to zero as a square root (see Lemma 3.2), we deduce that

m_ 1 Witmyn {\/ 0 \/bo }d

~ - min S—a - S S

N = C [y k2 V 7k ’
i/N

from which it follows easily that

C m
k ok . 2/3
(5:3) e =] < s min ’mm{i,zvﬂ_i}l“}'
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Since
(5.4) Afim = M1 <IN =il + X = Yoy + iy = Vi
using (5.2) and (5.3) and recalling that by assumption m < N, we deduce that

(5.5) yN(Aﬁm—A?k)réc(NMm) VAEGy, ine[NeNA-o),j=1,...,m,

and
(5.6) IN?BOE —af) < C (J\F9 +m2/3) VieGy, j=1,....m.

Now, given a bounded function x : R®Y — R, applying (2.8) to %(1 + m) with £k =0 and n = ¢,
we deduce that

(5.7) ‘/XOTN dp)™’ — /Xdpévvav

Recall that the map T is given by X{', where X}V is the flow of the vector-field Yév that has the
very special form (4.13) (see Proposition 4.13). In particular, since the functions y%t, y,lw7 Coe (-, y)
are uniformly Lipschitz, we see that

\(XgV)f—(XgV);?y < LI(XY)F = (x5 Vi,j=1,...,N, k=1,....d.

< CN" oo

Hence, since Xi¥ = TV and Xév = Id, Gronwall’s inequality yields
(5:8) eTHO = A) S (@NF) = (TN PP A VAT = A

We now remark that the law Pév’av is obtained as the image of the law of \¥ = ()\k, el /\5“\,), 1<k<d

under Pév Y under the map

(5.9) RRWY SRV RO AR AT = (RO, RO, L R(AY)),
where R : RV — RV is defined as

5.10 ;== mi . Yi=1,...,N.

(5.10) [R(z1,...,2N)] Iin max o i

Hence, thanks to (5.8), it follows that TV and R commute, namely

(5.11) RoTN =TV oR.

We now consider a test function y of the form

(5.12) ) = LV = A8, N = A0)) )
Then

k k k k HN,aV _ 5 N,aV

and it follows by (5.7) and (5.11) that
/Xdpév’av — /XOTN oRdPéV’O

Let Xo:, X1, and Xo; be as in Proposition 4.13, and note the following fact: whenever = Gy we
know that, for any £ =1,...,d, the numbers {Af}lgigN are close, up to an error NV, to the quantiles
of the stationary measure ug = py - Hence, given any 1-Lipschitz function 1,

]/degN

< ON"f -

<CN’  vi=1,...,d.
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Since Xét is a smooth diffeomorphism which sends the quantiles of /‘Zo onto the quantiles of ,uzt, we
deduce that
o
This implies that
sup/zke,t(a:,y) dM)f(Vgt(y) = O(NY), sup/(?lzk“ z, \) dMY, ()\) = O(N"),

x,t

MY, |<CN’ Vi=1,...,d,Vte[0,1].
t

and by the same argument as the one used in the proof of Proposition 4.13 to show (4.39) and (4.40)
we get

(5.13) rmm}XiQ(i)g(JNﬁ (X105 (V) = (X1)i (W] SCNYIXF=Mi| VA eGy.

Then, noticing that ||Vx|lcoc < N ||V f||c, thanks to (5.13), (4.41), and (5.5), we get

/XOTNO']AQdP/éV’O—/ XoXo,londPéV’o
Gﬁ Gﬂ

(X1)f = (X)F | [(Xg0)F (X2 )F N2
< Hvxlloo/ [ZZ( S e 4 s < > ] P’

k=1 j=1
/2 m/2 N? (N9 +m
<cIvrlN’ [ (ZZMW 1) any <o R,
k=1 j=1

Note now that (Xo1)¥ = T} for all i = 1,..., N, and that
(5.14) e b < (T < et

(this follows by the same proof as the one of (5.8), compare also with [BFG15, Equation (5.2)]). In
addition

(To.1)f 45N = (To)E, (N) = (T5) (M) Ny = AT+ O (N 4y = AL ),
hence, by the definition of Gy,

/ x© Xo1 0 RdP;"™"
Gy

= [ (Y05 N =M (YO N = X)) 4P
+O(HVfHOOm1/2 (Nﬁ+m)2N*1).

Also, in the integral above we can replace (Té“)’(/\fk) with (Té"’)’('yi/N), up to an error bounded by

d m /2
C [V flloc /G <22|A — P (VING 45 = A )2) AP} = OV flloo m"/ (N? +m) N*~1).
v

k=1 j=1

Finally, it follows by (5.2) that all integrals on RN \ Gy are bounded by C||f|lsce ™ . Hence, we
proved that!

IThis estimate, as well as the one at the edge that we shall prove below, should be compared with the one obtained in
[BFG15, Theorem 1.5]. While the estimates here are considerably stronger that the ones in [BFG15, Theorem 1.5] (this
follows from the fact that we have better bounds on our approximate transport maps), as a small “loss” we now have
N?~! instead of a term (log N)?/N. The reason for this small difference comes from the fact that we decided to apply
(2.8) to deduce (5.7). It is worth noticing that the argument in Section 4 combined with [BFG15, Lemma 2.2] proves
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‘/f(( (Azk—i-l )‘Z)a (/\fk-&-m /\i'ck))lgkgd) dpé\hav

—/ﬂmwwwwwm Moo (TR O ) NV o = X)) ) ) 4B

m1/2 N2Y +m3/2 NY

<C (N eIl + € = 19 £
Since e N < CN =1 choosing ¥ < /2 we conclude the validity of the first statement.
For the second statement we choose x () = f((Nz/S(Ak aV), ... N(\E, — a%v))1<k<d) and we

note that 7F(al) = a3". Then, thanks to (4.39) and (5.13), we get

/XOTNondPéV’O—/ XoXo,londPéV’o
Gy Gy

(Xa1)k\2 .71/
< ”]vv‘]:yf’/ [ZZ( [(X1,1)h 7( ;ﬁj‘) OR] ap)”’

k=1 j=1

_ . X k 1/2N19
< VI (dm)l/Q/ (maX|(X1,1)f|+ max k]|\(f 2,1>z|> dPéV’O < C|Vfllo ™
Gy

- N1/3 N1/3

Also, since

1y

Ty () = Tg (ap) = (T5)'(af) [Nf — ag] + O(|(A} — af ),
using the rigidity estimate (5.6), we can replace N2/3 (TENF) — T (a))) with (TF) (a2) N2B(\k —a))
up to an error of size m!/? (N? + m2/3) N~2/3_ Hence, arguing as above we conclude that

‘/f((NW?’(A’f—ag oo N2B(OE — qtV )apy

))1§k§d

—/f@@ﬂ@%ww%w—ﬁxnwwww%N%u%—ﬁ»g%ﬁdﬁm

m1/2 Nﬁ m1/2 (N19 + m2/3)
N1/3 + N2/3 > ||VfH00

which proves the second statement choosing 9 < 6. O

<ONWWMM+O(

Proof of Corollary 2.7. We first note that the proof of Corollary 2.6 could be repeated verbatim in the
context of [BFG15| to show that [BFG15, Theorem 1.5] holds with the same estimates as we obtained
here. Hence, by combining this result with Corollary 2.6 we have

[ (VO 1= A)c N O = M) ) 0P

‘/f@aﬁﬁﬁwmmwwaﬁlAﬂ.uxﬁ@%w%mwNﬁ%mzA”%@w)“%%wﬁﬂ
<CN flloo + Cm32 NIV £l oo

that also the stronger bound

(log N)*
< A A
<C N

’/XOTNdPéV’U—/XdPéV’“V

holds. However, since in general (2.8) is much more powerful than the estimate above (as it allows to deal with functions
that grow polynomially with respect to the dimension) and the improvement between (log N)*/N and N 9=1 is minimal,
we have decided not to state also this second estimate.

[Ixllo
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where 7;, /v satisfies psc((—00,7;,/8)) = ix/N. Then we notice that the transport relations (2.11) and
(2.12) imply that T} o S(])“('yik/N) = Vzkk/N,a where 'yfk/N’a satisfies N%V((_OOW;Z/N,G)) = iy/N, hence
(again by (2.11) and (2.12))

pSC(’Ylk/N)

Vi~k :
P (Vi na)

Finally, since |0} — i /N| < C/N and o} € (0,1), arguing as we did for proving (5.3), we deduce that

(Téc ° S[])C)/('Yik/N) =

Vi /N — You| < C/N, so up to another small error we can replace apff(’y,i’“m) with f‘s}c(%’“) . This
k P (ik/N,a) Pr ('Yak,k)

concludes the proof of of the first statement, while the second one is just a consequence of Corollary
2.6(2) and [BFG15, Theorem 1.5(2)]. O

Proof of Corollary 2.8. As it is clear by looking at the proof of Corollaries 2.6 and 2.7, the fact of
dealing at the same time with the eigenvalues of different matrices does not complicate the proof.
For this reason, since the proof of Corollary 2.8 is already very involved, to make the argument more
transparent we shall prove the result when the test function is of the form
Ry, (E)+N~¢ R, (E) ~ _ _
f > F(NO -E),...,N(\, —E))dE
Rp(E)=N=C Ri(B) 4~ 2.

for some E € (—2,2), the proof in the general case being completely analogous and just notationally
heavier.
To simplify the notation, we set

. .- .- Ry(EVENTCRL(E) 1
95N = > F(NO, —E),...,N\[, —E)), A ;:/[][ 95 dE | dPg" .
Ry (E)-N~=¢ R},(E)

i1 Fim

It follows by (2.8) with n = 6 that

(5.15) |log(1 + Ag) — log(1 + Ay )] < O N1
where

Ry, (E)+N~¢ R, (E) _ O
Ay = /[][ gp o (TN dE} dPg"
Ry (E)-N—¢ R (E)

e N(TM)EN - E N(TME (N = E))dE | dPY?°
_/[][Rk(E)_NQR;“(E)h;éZ.;éimf( (T8N = E),...,N((TV); (A — )) ] N0,

Define the quantiles ’yf/N € (50(-2),52(2)) as in Corollary 2.6, and given ¢ > 0 small (to be fixed

later) we consider the set Gy defined in (5.1).
Since the integrand gz o (TV)* is pointwise bounded by || f|ooN™, it follows by (5.2) that

A= Aop+0(e™™")
(5.16) -/ ][R’“(E”N o Ty B | aPY + 0(e ),
Go L) Ry (B)-N-< R\ (B)
Observe that if A € Gy then, by definition,
INF = M > vEy = A = N mindi, N 41— i} 78 - N2 minfj, N + 1 - j} 71/,
Hence, since 7@+1)/N — %k/N > ¢gN—2/3 min{i, N + 1 — i}_1/3 for all ¢, we deduce that

- )\§“| > NY-1 provided |i — j| > CoN?,
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that combined with (5.8) yields, for A € Gy,
(5.17) [(TY)E) = (TM)EA)| > e *N""1 provided |i — j| > CoN".
We now notice that, since f is compactly supported, the quantity
F(N(ENER) - B), . N (TV)E () - B))
can be nonzero only if

@M -B<S vi=1m

Therefore, if i € {1,..., N} is an index (depending on A and E) such that
@G - B < S,
then (5.17) yields
(TY)E(N) - E| < % = |i—3 < CoN.
This proves that, for any A € Gy, there exists a set of indices
S5 C Al vim) €{1,. NP tin # . F i}
such that #JX,E < CN™ and

Ao, :/ [
Gy

ap(\) = > (NG -E),.. N - E))

(i1,...,im)€J5\,E~

Ry (B) 4N~ Ry (B) i
][ g0 (TY)eaE | ap)?,
R ()N~ Ry (B)

where

satisfies |gT§(E)| <O flloo N,
We now perform the change of variable E +— T¥(E), which gives
Ry (E)+N~¢ Ry (E) . (T§) Rk (BE)+N~¢ R (B)] L
/ g0 (TV) dE = dnicy © (TV)* (THY(B) dE.
Ry, (E)=N~—¢ Ry (E) (T§)~'[Re(B)-N—CRy(B)] °
Recalling that Ry, = T¥ o S¥ and that these maps are all smooth diffeomorphisms of R, we see that for
E € [(T§)'Ri(E) — N~¢ Rj,(E)], (I§) " '[Ri(E) + N~¢ R},(E)]] it holds
(T3)'(B) — (I§) o S§(E)| < CN™¢,  Ry(E) = [(Tg)' o S§(E)] (S5)'(E),

and
(Ty) ' [R(E) = N~° Ry (E)] = S§(E) £ N~(S5)'(E) + O(N~*).
Hence, since |§T§(E)| < CN™,
T3) " [Ri(E)+N ¢ R(B)] Nk s 2=
( 1) @ (T (T4 (B) dE

§(E)=N~¢(S5)(B) .
S5 (E)=N=¢(S5)"(E)

T5) = [Ri(E)~N~¢ Ry (E)]

which proves that
Ay = Az + O(N™C)
k
0

(B)-N=$(S5) (B)

5.18 )
(>1%) ::/ [][S ng(E)o(TN)kdE] APy + O(N™¢).
Go L) S§(E)-N=<(s§y(E) "°
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We now estimate As .
Thanks to Theorem 2.5 we can write

drry o M N = > (NI - THE) + (x)EX),

(ilv---,im)EJ;\E

N(TFOE,) = THE) + (X)E ()

o9l s )

thus
mp=apro(x [ % jedlany)
Gﬁ (i1,sim)EJS
(5.19) KE)-N-(SH(E) O
;:/ { hEdE} ap?y 3k —1—0( / ’(X21) |dP )
G L ss(m)-n—<(sky(e) Co (iy, i eJAE
with

)= > F(NTEOE) —TEE) + (KDL, N (TEOE) = TEE)) + (XT)E, ().

(i17"'7i7'L)€J5\,E

We now want to get rid of the terms (Xf\fl) ~and [(X; 1),{“]\

7

Motivated by (4.37), for any E € R we define Xf (E) as the solution of the ODE
X (B) = (v, (Xbo(B) ) - XE (B) +yit(xéz< ))
d 1 X .
+3° [ (X6 (B).y) arsdy )y 2 2 e (X8 E). X)) - (%1050,
(=1 (=1 j=1

with ng\(E) — E, and we note the following fact: whenever A € Gy we know that {\}i<;<y are

close, up to an error NV, to the quantiles of the stationary measure M? = ;. Hence, arguing as we
did for (5.13) we get

(5.20) ‘agxf’x(ﬁ)] <ON’, ((XPDER) = XE (B <ON'INE— B VAEGy.
In addition, by the same reasoning,
e [ vz (X§, O, v) MY (1) = O(N') YA€ Gy,
and the argument used to prove (4.39) (see in particular (4.50)) yields
max (XPDF <eN?  vieGy.

Hence, since #J; 5 < CN ™ we immediately deduce that

(5.21) ( /G )

’(Xé\ﬁ)f]] dPéV:()) _ O(N(m+2)19_1)'

(%15eeeyim EJAE



UNIVERSALITY IN SEVERAL-MATRIX MODELS VIA APPROXIMATE TRANSPORT MAPS 44

Now, to get rid of the term Xf)\(E) inside hj, we take advantage of (5.20) and the average with respect

to E: more precisely, we consider the change of variable

Ew— &(E) := (T5) M TF(E) + %X%(E)

so that
S(E)=N~S(S§) (B) ~
hzdE =
SE(E)—N—¢(S)(E)

B(E)-N=() (B) ) ) ]
][; S r(NE@OE) - TEE) + (X)) - XE(B)],

G(E)=N=S(S5)(E) (i1y0esim)ET5 5

N(TEOE,) = TEE)) + [(XP)E, (3) = XE{(B)]) 0505 (E) dE.

Therefore, since 0;® (E) =1+O(N"~1) (thanks to (5.20)), |hz| < CN™’ and the interval [SF(E) —
N=(SEY(E), SE(E) — N=¢(SE)(E)] has length of order N~¢, we deduce that

BE)-N=S(s§)(B)
(5.22) hjdE =
S5(B)-N=<(Sk) (B)

5 (B)—N~C(S§)"(E) - . -
f S r(V@OL) - THE) + (XA - XE (B,

0 (E)—N_C(S(IJC)/(E) (2'1,...,im)€J;\ 5
SN(TEOE,) = THE)) + [(XP)E, (3) = XE(B)] ) dE + O(NSN™N"7).

We now observe that, since 7pf : R — R is a diffeomorphism with (7}) > e™% > 0 (see (5.14)), it
follows by (5.20) that
(XI5 ) = XF{(B) < CNYITE () = Tg (E)].

Therefore, since f is compactly supported, we see that the expression
F(N(TEOE) = TEE)) + (X)) - XEL(B)],

CON(TEOE,) = THE)) + [(XN)E, () - XEL(B)])

is nonzero only if

C .
TEO) - THE) < 5 V)

[l
3

In particular, using again that (T})' > e~% > 0, this implies that ])\l-“_ — E| < C/N. Thus

THO8) - THE) - (@ () W, - B = 0 )
and
NTEO) = T (B)] = O(N"7Y),
and we get
F(N(@O8) = THE) + [(XN)E ) = X} 5(B)],
N(TFOE,) = T8 () + [(XN)E, (3 - XJ 4 (B)])

= (@ EYNOE = B),.. (T8 (B) NN, = B)) +0 (|9 fN") .
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Combining this estimate with (5.22) and the fact that #.J; 5 < CN ™ we conclude that

§(E)=N—¢(S§) (E) -
][90 0 hE dE = G + O(N(m—i-l)ﬂ—l-g“—l)’
S§(E)—N=¢(S§)(B)

R §(E)=N~¢(S§)(E) . - -
gu(\) = fz ) S (@ E)NGE - B (T (B)N(, - B)) dE,

0 (E)fN_C(Sg)/(E) (il,...,im)EJX E

Also, by the argument above it follows that we can add back into the sum all the indices outside J5 5
(since, up to infinitesimal errors, the function above vanishes on such indices), therefore

Qn

K(EY=N—¢(SEY(E
][\50( ) (S5)'( )hEdE +O(N(m+1)79+c_1),
S§(E)=N=¢(S§) (E)

B(E)-N—¢(SE)Y (E) 5 - -
][: > @Y ENNE - B),. () (B)NOE ~ E))dE.

5(B)-N=C(SEY(B) 5, £y

QI

s3]

—
P
Il

Combining this bound with (5.15), (5.16), (5.18), (5.19), and (5.21), we conclude that
(5.23) llog(1 + Ag) —log(1+ Az)| < C (NmH + NOmF2)9-1 N<m+1>19+<*1),

where /:hg = [ gg dPéV’O.
We now repeat this very same argument replacing Pév’av, P/év’o, and TV, with Pév’o, (PéVVEﬁ)@’d,
and SN = (S1 ey Sév ), respectively (see the discussion before Corollary 2.7), and we deduce that

llog(1 + Ay) —log(1+ Ag)| < C (Nm”—C + NOmF2)9-1 N<m+1>”+<—1),

where

Ay = / [fm_c > F(BLUB)N(N —~>7-..,R;<E>N<Aim—E>)dE]dPéVVE,5-

E-N=¢, i ;.

Combining this estimate with (5.23) we get
|log(1 4 Ay) —log(1 4 A)| < C (Nmﬂ—é“ + Nm+2)9-1 N<m+1>19+<—1).
Choosing ¥ small enough so that (m + 2)¢ < 6, this gives

llog(1 + Ax) —log(1 + Ay)| < C (N”C’l +NO-1/2 NH) <C (N”H + N(”C),

and since Ay, is uniformly bounded in N (see for instance [VV09]) and the right hand side is infinitesimal
(recall that 8 < min{(,1 — (}), we conclude that

A, — Al < C (N9+<—1 n NH).



UNIVERSALITY IN SEVERAL-MATRIX MODELS VIA APPROXIMATE TRANSPORT MAPS 46
Recalling the definition of Ay and Ay, this proves that

‘/[ E)+N—¢ R} ( Z f ~) ...,N()\fm_E))dE} dPé\CaV

NCR/ Z# #Z

F4+N—¢ B 5 B
_ / f Y SRENO - B RUE) N, - B) dE | aPde

_N—¢ . .
E=NT% 4 % im

<0 (N9+¢—1 n Ne—g)7

which corresponds to our statement when f depends only on the eigenvalues of one matrix. As explained
at the beginning of the proof, the very same argument presented above extends also to the general
case. U

Proof of Corollary 2.9. We begin by noticing that the proof of Theorem 2.5 could be repeated verbatim
in the context of [BFG15| to show that [BFG15, Theorem 1.4] holds with the same estimates as we
obtained here.

To prove the gaps estimates, it is enough to show that the approximate transport maps do not change
gaps in the bulk uniformly (away from the edges). Thanks to Theorem 2.5 and [BFG15, Theorem 1.4],
we have the expansions

(TY)F) = T3 (AF) + N(X1 DE) + N2 (X2)F(N),

(SE)i(A*) = S5 (A7) + (Sk 1)i(A) + 7(Sk 2)i(A"),

where (Sk1); and (Sks2); satisfy the same estimates as (X{V)¥ and (X2')¥. Hence, by the formulas
above we deduce that

% [(Téf)’ o Sg(Af)] (Sk1)i(A7)

FOEE(SH0D + S0, ST+ Swaln (1) ) + &

where the error &; satisfies (thanks to the bounds from Theorem 2.5 and [BFG15, Theorem 1.4])

(5.25) \/Z I, =0<“]§]/V))

Also, using again Theorem 2.5 and [BFG15, Theorem 1.4|, with probability greater than 1 —e
and uniformly with respect to i € {1,..., N}, it holds

[[(T)" o S§ £ )] (Ska)isa (W) = [(T5) © S§AH] (Sk)i(A*)] < C log N NVETID L, — A,

(5.24) (TMF(SY(AY,..., Sév()\d)) = TF o SE(ONF) +

—c(log N)?

1 1 R
O = Ot o (DY 4 e (D + 555 ) ()

1
< Clog V VY119 ([§() = SEOU) + 1(Sa)isn () = (S0

< Clog N NVE=1)\E )k

while
To o SO()‘H—I) To ° So(Ak) (To o So) ()‘k)[)\z—i—l Ak] + O(|)‘z+1 )\?|2)-
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Recalling that, with probability greater than 1 — e N, ‘)‘H—l /\ﬂ < CN%1 when the {)\f}lgiSN are
ordered and i € [eN, (1 — €)N] (see (5.2) and (5.4)), we conclude that, with probability greater than
1 — e N)* uniformly with respect to i € [eN, (1 — €)N], we have

o 1/(c—15)
(T = @RS, ST O) = (3 o SEY O - A+ 0BT,

Combining this estimate with (5.25) and noticing that
N/ <1ogNN2/ (@=15)  (log N)?

N2-0 N3/2
provided 6 < 1/6 (recall that by assumption o > 36, see Hypothesis 2.1), the two statements follow
from the fact that TV o (S, ... SY) : RNV — RV is an approximate transport map from (PéVVE B)®d

to Pév V" and that the results are true under P(]}VVE,,B thanks to [BAB13, Theorem 1.3 and Corollary
1.5]. O

)—)0 as N — oo

6. MATRIX INTEGRALS

In this section, we consider the integral
IéV’V(Aly e Ad7 Bl; o 7Bm) — /6N2TTr®TV(U1A1Uf,...,UdAdU;,Bl,...,Bm) dUl o dUd

where 5 = 2 (resp. [ = 1) corresponds to integration over the unitary (resp. the orthogonal) group
U(N) (resp. O(N)). Here Ay,...,Aq,B1,...,B,, are m + d Hermitian (resp. symmetric) matrices
such that

. < ; <
(6.1 mas |4l <1, mas Bl <1,
and V belongs to the tensor product C(z1,...,24;b1,...,bn)®" (or more generally to its closure for the
norm defined below), where C(z1,...,x4;b1,...,by) denotes the set of polynomial in d+m self-adjoint
variables.

We shall see V' as a Laurent polynomial in {u;, v}, a;}i1<i<q and {b;}1<i<m, where x; = uiaiu;l

1 *

The set £ of Laurent polynomials is equipped with the involution * given by u = u; ", aj = a;,

b = b;, and for any Laurent polynomials p and ¢ one has (zpq)* = zZ¢*p*. We denote by p =
P, ®- - ®¢r )1 ® -+ - ® g the decomposition of a polynomial p in the set

LO = Clug,uf, ..., ug, ulg; a1, ..., aq;b1,. .., by)%"
in the basis of tensor of monomials, and for £, > 1 we set
‘ — Z (p,qr @ -+ - ® qp)|€2i=1 de8u (@) (Xizr dea, 5(4:) |
where degy;(q) (resp. degy p(q)) is the number of letters in {u;, u]}1<i<a (vesp. {ai}i<i<q and

{bit1<i<m) in the word g. We let .Z7 . := 76 e the closure of £®7 for the norm I e
We endow the space of linear forms ﬁ £ on .Z ¢ ¢ with the weak topology, that can be recast in terms
of the norm

Notice that, by abuse of notation, we use || - ||¢¢ to denote both the norm and the dual norm. It
will always be clear from the context which one we are referring to. For later purpose, observe that
§,¢ — |Iplle,c is increasing for any p € Z¢ ¢, whereas £, ¢ — | 7|l¢,c is decreasing for any 7 € Lo In
the case where r = 1, we denote in short % ¢, L¢ ¢, . ..

We denote by L(.) the set of linear forms on a vector subspace . of .Z, and endow it with the weak
norm || - ||¢¢. In particular if &7 % is the algebra generated by {a1,...,aq4,b1,...,bn}, the parameter
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¢ does not appear and we write in short | - ||¢. In case of a linear form on the algebra generated by a
single self-adjoint variable, that corresponds simply to measure on the real line, this is

vllc = sup ¢ Fw ().

We denote by M(K) (resp. P(K)) the set of Borel measures (resp. probability measure) on the set
K C R and by £ the algebra generated by {b1,...,bn}, and we write ||v||¢ := Z?:l lville + ||7||¢ for
d + 1 tuples consisting of d probability measures on [—1,1] and one linear form in £(%). Notice that,
for 7 € L(A),

- —k
[Tl :== sup ¥ (biy -+ b))
kiije{l,..,m}
as in this case the degree deg 4 p is simply the degree in {b; }1<i<m. We assume without loss of generality
that V' is symmetric, in the sense that for any permutation o on {1,...,r}

V@ 0¢)n® @6 =3 (Vgo) @ ® @o(r)) () @+ @ do(r) -

Compared to the notation used in (2.1), we have rescaled V' so that the A; are bounded by 1 instead of
M, but otherwise we can compare the norms as the diverse degrees are related by degy () < %deg x(q)
and degy p(q) = degx(q) + degg(q). In particular, the norm ||V|l¢¢ used in this section can be
compared to the norm ||V /e1/2¢ - used in (2.1). Once this is said, the two notions are sufficiently
close that we keep the same notation.

The main result of this section is the following.

Theorem 6.1. Let 3 = 2 (resp. § = 1). Let {a}}i<icagi<j<n C [—1,+1] and set LY =
% Z;VZI 5a§. Let Ay, ..., Aq be Hermitian (resp. symmetric) matrices with eigenvalues (o, ..., ak),
let By, ..., By, be Hermitian (resp. symmetric) matrices, and let

1

D Tg(p) : NTr(p(B1 cel, Bk))

be the non-commutative distribution of By, ..., Bm.
LetV € ||T-H5 ; be self-adjoint. Then, if |V ||¢c is finite for some & large enough and ¢ > 1, there exists
ag > 0 such that, for all a € [—ag, agl,

IYV(A,..., Aq,Bi,..., Bp) = eXizo N (L4 L) (1 +0 (zlv>>

where the error is uniform on the set of matrices satisfying (6.1) and Fl‘lv are smooth functions on
P([—1,1])? x L(B): more precisely, for any £ > 0, the {-th derivative of Fl“g at € P([—1,1))4 x L(B)
in the direction v is such that

| D FES [ () ®| < Celal v,
where Cy is a finite constant, uniform with respect to p.

The proof of this theorem is split over the next sections. For notational convenience, instead of adding
a small parameter a in front of V' we rather write down our hypotheses in terms of the smallness of
the norms of V.

6.1. Integrals over the unitary or orthogonal group. The goal of this section is to prove Theorem
6.1. Recall that Z ¢, £/ denote the completion of &, " for the norm | - [l¢ ¢

We shall prove Theorem 6.1 in two steps. First we extend the results of [GN14] to the case § =1
and r > 1:
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Proposition 6.2. Let § € {1,2}. Let TAVB be the non-commutative distribution of (Ai,..., Agq, B1,...,Bmn),
that is, the linear form on o/ B given by

1
TAVB(])) = NTI‘(p(Al,...,Ad,Bl,...,Bm)> Vpe.,%.

There exist & > 1, > 1, and eg > 0 such that if |V ||¢,,c < €0 then, uniformly on the set of matrices
Ay,...,Aq, B, ..., By satisfying (6.1) and with respect to the dimension N, we have

I)V(Ar,..., Aq,B,...,By) = eNzGoVﬂ(TﬁVB>+NG¥s<72]B>+G¥B<TéVB)(1+0<1))
) b ) PR N b

where GYB are real valued functions on £ (A B) and the error is uniform for the norm || - ||c.

Next, we show that the functions {leg}l:o,m depend only on the spectral measures of the matrices

A; and on T]]3V . More precisely, let 7 be the set of tracial states on .Z, that is, the set of linear forms
7 on .Z satisfying

(6.2) 7(pp*) 20, 7(pg) =7(gp), and 7(1)=1.

Also, denote by T (#) C £(2A) the set of tracial states on A.
Recall that, given 1= (,...,11) € M([=1, 1) x £(8), we have [l = S [l +
where

(6:3)  lullc =max¢H (b)), pe P(=1,1]),  lullc = max CMlu(Biy - Byy)l, e T(A).

Lemma 6.3. The functions {le}l:QLg are absolutely summable series whose coefficients depend only
on Tg and the moments

1
LN (z%) = NTr[(Ai)k], 1<i<m, keN.
In other words, there exists a function Flvﬁ :P([~1,1])? x T (%) — R such that
GXB(TAVB) - F}‘,,/B(Liva s 7L£lv77_g) :
Moreover, Fl‘% is Fréchet differentiable and its derivatives are bounded by
D'FYslul(v1, ... ve)| < Cellwlle -~ lwelle.

As in [GMS06, GMS07, CGMS09, BG13b, GN14], the derivation of the expansion for large N of the
free energy

1
FéV’V(Al,...,Ad,Bl,...,Bm) = ﬁlogfév’v(Al,...,Ad,Bl,...,Bm)

is based on the expansion of the function given, for any polynomial p € £, by
6.4) W) = /Tr(p(Ul, U U U A Ag By B) ) dQYY (U, Uy,

where d@g’v is the measure on U(N)? defined as

1

(65) d@]ﬁV,V(Ul’ o Ud) — IN,V eNZ—TTr®TV(U1AlU{‘,...,UdAdU;,Bl,...,Bm) dUl o dUd ]

B

The main step to prove Proposition 6.2 is the following large dimension expansion:
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Proposition 6.4. Let 5 =1 (resp. B =2). Let Aq,...,Aq be symmetric (resp. Hermitian) matrices
with real eigenvalues (o}, ..., alN)1<i<q and satisfying (6.1). Let V be a self-adjoint polynomial in L.

for some & > 1,( > 1. There exist § > 1, and €9 > 0 so that if £ > &y and ||V|¢ ¢ < €o then

1 1
WYNB(p) :NT150<p)+Tlﬁl<p)+NTIBQ(p>+O(]\72> Vpe Z,

for some 7150,7'151, 7'162 € Ze . Moreover, the error is uniform in || - ||¢.c.

Notice that this result implies Proposition 6.2 provided we prove also the convergence of the second
correlator W;/]’VB, see (6.8) and Section 6.2.1.

Hereafter we will drop the index [, but all our results will remain true both for 8 =1 and 8 = 2.

The proof of Proposition 6.4 is based on Schwinger-Dyson’s equation and a priori concentration of
measures’ properties, which depend on differentials acting on the space .Z of Laurent polynomial in
letters {u,... ,ud,ufl7 e ,ugl, a,...,aq,b1,...,bp}. Recall that o/ % denotes the Laurent polyno-
mial with degree zero, that is the linear span of words in {aj,...,aq,b1...,bn}. We now introduce
some notation.

e The non-commutative derivative with respect to the i-th variable u; is defined by its action on
monomials of .Z:

(6.6) Oip = Z P1ui ® p2 — Z p1©u; 'pa.
P=Pp1u;p2 p=p1u; 'pa
e The cyclic derivative with respect to wu; is defined as the endomorphism of . which acts on
monomials according to

Dip:= Y poprui— »_  u; 'papr.
P=p1U;p2 p=p1u; 'p2
We can think about D; as D; = m o 0; with m(p ® q) := ¢p for all p,q € . We will denote
m(p® q) = ¢"p.
Note that D; appears naturally when differentiating the trace of a polynomial. More precisely,
if we let w;(t) = uj for j # i and u;(t) = w;e!® then, for any Laurent polynomial p and any
tracial state 7, we have

Gl (pu(t)) = (Pip(u(0))B).

As we shall apply it to differentiate quantities of the form Tr®"V(U(t)), let us introduce the
following notation: for p € Z®" with p = p;1 @ po ® --- ® p, and a tracial state 7, we set

Dirp = i(lﬁ T(pj)>Dipk< ﬁ T(Pj)> :

k=1 Vj=1 j=k+1
Hence, if B is a anti-symmetric matrix (that is B = —B*) and U;(t) = Ujetti=iB,
d, 1. o 1
$‘t:0ﬁTr V(U(t)) = NTIA(BD@%TrV) .

o We will consider linear transformations

T: ($®k17 H ’ Hfl,C) - ('iﬂ@kz’ H ) Hfz,C)

mapping between the various tensor powers of .Z. A linear transformation T : Z®k1 5 ¥®k2
is (&1, &2; ¢)-continuous if and only if there exists a constant C' such that
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[TP1® - @pry Meae ClP1 @ -+ @ Py lley ¢

for all monomials p1 ® -+ ® p, € £®¥. The operator norm of T, denoted || T|l¢, &.¢, can be

calculated by considering the smallest constant C' for which the above inequality holds.
Allowing different instances of the £&-norm on the source and target of our linear maps is

useful for the following reason: certain linear transformations that we will need to deal with

are not (&,&; ¢)-continuous for any £ > 1, but are (&1, &2; ¢)-continuous, and even contractive,

if the ratio /& is large enough. When &; = & we simplify the notation by putting only one

index &.

e Recall that for v a multilinear form on Z%®*, we set

Vl|ge = max |v(p
¥lec = max 1v(p)

1314
denotes the set of linear maps from (Z%*,|| - [¢¢) into C. Also, if . is a vector subspace of

(L% || - |lec), then L(.#) is the set of linear forms on . (if . = £, we simply denote it
by L£). One can check that Elg’?/, Elgc, and L£(.¥) are Banach spaces (see for instance |[GN14,
Proposition 7] to see that | - [|¢,¢ is a vector space norm on £®*, and in fact an algebra norm).

We denote by 7T§k< the subset of tracial states on (L%, || - |l¢¢).

The basis of the Schwinger-Dyson equation is the following equation:

and denote by £ the set of linear maps from (L5 || - Jlec) into (LEF || - |lec), and L‘,’gc

Lemma 6.5. Let V be a self-adjoint polynomial, p € £, and i € {1,...,d}. Then

14+ 15—

(6.7) E lTmzaiTr(aip)Jr ~

1 1 ~
¥ N Tr(,Di,]{[T&"Vp):| =11 E |:NT1"(m © 8zp):| )

N
where E denotes the expectation under QEN (see (6.5)).

Proof. We focus on the case § = 1, the proof for § = 2 is similar and detailed in [GN14] in the case
r = 1. This equation is derived by performing an infinitesimal change of variable U; + U;(t) := U;e!?i,
where D; is a N x N matrix with real entries such that D} = —D;, and writing that for any polynomial
function p € £ and any k¢ € {1,...,N}

d
a‘tzo /p(Ul(t), e Ud(t), Uik(t), ce U;(t),Al, oL Ag, By, .. Bm)ké dQKN(Ul(t), ce, Ud(t)) =0.

Taking D; := 1,—;(A(k,¢) — A(¢,k)), with A(k,¢) the matrix with zero entries except at (k, ) where
the entry equals one, and summing over k, ¢ € {1,..., N}, yields

1 1 1 . 1 1 -
E {NTr ® N’I‘r(@-p) + NTY<(Di,%TrV - (Di%TrV) )p)] =N [NTr(m o 8¢p)] .

The last thing to check is that (D, 1,V)* = =D, 1, V. Indeed, it is enough to check it for r = 1.
7N 7N
Then, for all 7 and p € .Z we have

Dip=Y (p.q)Dig= Y (p,q) [ > paui— > ufqaql],

q=q1uiq2 q=q1u}q2

D) =3 (p.a) [— Y owgg+ Y qi‘q;ui]z—(Dip)*-
q=q1uiq2 q=q1u; g2

Since V is self-adjoint, the proof is complete. O
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Equation (6.7) can be reinterpreted as a relation between the “correlators” W,:/  defined as (see also

(6.4))

d d V—l—Ll 4otk
W}XN(Plan-,pk) a dt —|ty=0,... t)= —olog I, Nl’l NPk
(6.8)
d V+ +..+
=t 'tz om0y TP ),

Notice that here the p;’s belong to .Z, but we can identify them with p; ® 197~ € £®". Observe that
we can always write the following expansion

s T
[ [T 1v00)] = [[Wilo) + S Wit T Wikia) + Ra(ane..a)
j=1 j=1 j#k (#5k

where Ry (q1,...,¢q) is a sum of product of correlators, each of which contains either a correlator of
order at least 3, or two correlators of order 2. We define

(6.9)

Sv.p = Ji;ZW, QI®"‘®Qr>Z[< 11 T(%)) Digip@q+ Y < 11 T(%)) 7(Dig; p) 4m @qk

k#j = M#k,j m#j#Ek MFk,j,m
Using this expansion, we can rewrite (6.7) as follows.

Corollary 6.6. Let V be a self-adjoint polynomial, p € £, and i € {1,...,d}. Then the first
Schwinger-Dyson equation reads

N
1
W1N(m 0 0;p) — N2 W;/N(aip) -

1 1
NWYN ® *WYN(@'P) + WYN(D@%WWVP)

r>2

1,3 1 : 1 % %
= WQN(S&%WYNP) + 5 BWin, -, Wey 1 p),
where R is a sum (independent of N ) of product of correlators of polynomials extracted from p and V,
each of which contains either a correlator of order at least 3, or two correlators of order 2.

To derive asymptotics from the Schwinger-Dyson equations we shall use a priori upper bounds on
the correlators WX - The next result (proved in Appendix 8) is a direct consequence of concentration
of measures and states as follows:

Lemma 6.7. Let py,...,pr be monomials in £. Then there exists a finite constant Cy, independent
of N and the p;’s, such that for k > 2
k
Wiy (1, - o)l < Cr [ [ degu(pi), W) < N.
i=1

In particular |[WYxllee < Cr(maxps1 €90k is finite for all € > 1, > 1, and k > 2, whereas
IMIvW)llec < N for any €,¢ > 1.

We now deduce the expansion of W}y up to order O(N~2), and of WYy up to O(N~1).

As N='W/y(p) is bounded by 1 for all p € ., we deduce that N~'W/} has limit points. Let 7
be such a limit point. As N~1WJ},(9;p) goes to zero for any polynomial p € £ (see Lemma 6.7),
we deduce from the Schwinger-Dyson equation (see Corollary 6.6) that the limit point 7 satisfies the
limiting Schwinger-Dyson equation

(6.10) TR 7(0;p) + (1 + 13=1)7(D;;Vp) =0 Vpe Z.

Hereafter we denote
Vg i=(1+1p=1)V,
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and we show uniqueness of the solutions to such an equation whenever 7 restricted to &7 % is prescribed,
|7]l1,1 <1, and ||V||¢¢ is small enough. In our application 71 := 7|4 will simply be given by 74, the

non-commutative distribution of (Ay,...,Ag, B1,...,Bm). It could also be given by its limit, if any,
but we prefer to take it dependent on the dimension V.
To show uniqueness, we apply the above equation to p; = D;q and sum over i € {1,...,d}. We will

use that (see [GN14, Proposition 10])

(6.11) T®r<zd:8ﬂ>iq) = 7(Dg) +r®r(§d: AiQ)v

i=1 =1
where:
e D is the degree operator: Dp := degy(p) p
e A; that acts on monomials according to
Aip:=0Dip— Y ppui®@l— Y  1@u; popi,
P=p1U;P2 p=p1u; 'p2

that is,

(6.12) Ajp= Z ( Z q1u; @ q2u; — Z G ® Q2>

P=P1UiP2  P2P1U=q1U;q2U; p2p1ui=qw;1qzui
-1 -1
— @ ®@q2 — U Ou; g2,
p=p1u[1p2 u;lpzm :ujlqluiqz u[1p2p1=u[1q1u[1qz

where the sum is over all possible decompositions as specified.

We write in short A := Zle A, , and we rewrite equation (6.10) as
1
(6.13) T<(D+2TT+PYB)q> =0

where T, and Pyﬂ are the following operators:

e T. arises as the analogue of the Laplacian:
T, :=(d®7+7®Id)A.

e The operator Pyﬂ is the dot product of the cyclic gradient of Vg with the cyclic gradient of p:

d
\Y
Pr’p:=D;Vs-Dp=) Di:Vs Dip
i=1
More generally, for linear forms 71, ..., 7,1 on .Z, we define
v d r j—1
Py = ZZZ(V&GH ® - ®gr) (H Tk(Qk)) Diq; - Dip < H Ti—1(qk )
i=1 j=1 k=1 k=j+1
When r > 2, we also define a companion operator QT1 ey tO Pﬁ, Tt

QP —Z Z Z Ve, 1 ® - ®QT>< H Tklkﬂ(%)) Tj-1,-.(Dig; - Dip) qe -

i=1 1<j<t<r ke{j,tye
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We set IT' (resp. II) to be the orthogonal projection onto (resp. onto the complement of) the algebra
o/ B generated by {a1,...,aq,b1,...,by}. For any linear transformation T with domain ., we define
its degree regularization by

T:=TD},
where D is the degree operator defined above. It is understood that the domain of the regularized
operator T is restricted to (& %’)L. We recall that, for our applications, we assume that the restriction
of 7 to &/ A is given and equal to 71, therefore

T=7ll+ 71l
Hence, we can see (6.13) as a fixed point equation for 7 € L¢ ¢ given by
(6.14) Flr;m,Vg] =0, T|waz = 11,
where

F:Lee x (T(AB) |- llo) x (L7711 llec) =Lec
is given by F[r; 7, Vg] := G[rIl + 7 IT'; V3] with

1 _
(6.15) Glr;Vgl(q) =7 <(|d + §TT + PYﬁ)Hq> Vqge Lee, 7€ Ley

When V =0 and 7 € T (o7 %), the equation F[r;71,0] = 0 has a unique solution T{)(’)Tl since the mo-
ments of 7 are defined recursively from those of 7;. In this case, 7 is the non-commutative distribution
of ({a;, u;, u!}1<i<d, {bjti<j<m) so that (a1,...,aq4,b1,...,bp) has law 71, and is free from the d free
unitary variables ({u;, u]}1<i<q), see [Voi91] and [AGZ10, Theorem 5.4.10].

Observe that we know that solutions exist in 7 (/%) as limit points of N~1WY, (which is tight
in any L¢ ¢ by Lemma 6.7); we shall prove uniqueness of such solutions for V' small by applying ideas
similar to those of the implicit function theorem.

To state our result precisely, for £ > 1 and ¢ > 1 we define

(6.16) Sec(V) = ({i‘l) +Y (Vs @ ®q) (Z degU(qj)> [Z gdegu<q4>cdegA,B<qe>} .
j=1 =1

Observe that for £ > &y with &y sufficiently large so that (508_1) < 2(1+malx{2m}),

for all a € [—ay, ap).

if ||V||¢ ¢ is finite one
can choose ag small enough so that d¢ ¢(aV) < m
Lemma 6.8. Assume that there exist ( > 1 and & > 1 such that
(6.17) bec(V) < Hnla1><{27“}
Then, for any law 7 € T (/' B), there exists a unique solution Tlv()’Tl €T NLec to

Fl-;m,V3]=0
such that 7|y = 71 and ||T||11 < 1. Moreover the map T (/' HB) > 11 — Tlvo’ﬁ € Tec is Fréchet

differentiable at all orders, and its derivatives Dngvo,n satisfy, for any vi,..., v € Le(A B),

0V,
1D g™ s - vl ¢ < Cecllvalle - Ilvellc
for some finite constant Cg¢ ¢ 4. Finally,
. -1 v .
A [N Wy =gl = 0.

Before proving Lemma 6.8, we need the following technical result.

Lemma 6.9. Let £ > 1,£ > 1 and ¢, > 1. Then the following hold:
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° Letfeﬁgc~ and € > € and ¢ > C. Then

= £
(6.18) I Tellec < 8lIfllge——=-

€—=¢)

o Letfy,....f,_1 € L. Then, for any V € ZL7. self-adjoint and any €, > 1, we have
&¢

(6.19) HPfl, o H 160l c[IMVal 2.

with

IMVsl[lgceci= D [{Va a1 @ @)

Z degU gdegU q])cdegA B 11])5217&] degyr(g; CZ’# degp(q:)

o Letfy,....f.—1 € L. Then, for any V € "%ET,C self-adjoint and any €, > 1 with € < € and
¢ < ¢, we have

r—1
—V,
(620) HQflﬁj...,f,‘,l HE,C <

j=1

with

IMVallle e gini= D (Va1 @ @ )| Y Eize doB0(0) (2uine 08,5000 degy () ¢ AoBr (90) B ae)
i

o Letfy,....f, € L, and for V € .,?%TC self-adjoint set
(6.21) SK,...,fT,QP = Z(V7 QR Q¢

d
Z [( H fe1k<,g1j<4(qé)> (Lj<kDigqj - Dip @ qk + le<jqk ® Diq; - Dip)
ke

+ Z < H f€—1k<e—1s<e—1m<e(%)> fr—Q(Din 'Dip) qs @ qr| -

s#j,k MFEk,j,s

Then, we have

v - IIkaI
j=1

where

Vsl ceco = TIMVallle cec + IMVallle o
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Proof. The proof of (6.18) is done by considering term by term the norm of 1 ® fA;p. For instance, if
p has degree d; in u; and v, and d = deg;(p), we have

> > quf(gu) . <|Ifllee > > |

P=p1uip2 p2P1U;=q1U;G2U1 ’ P=p1uip2 p2P1U;=q1U;q2U1

d—1
< il fllg 3 € E1rgionasts) <

p=0

e

where we used that > 5 and ¢1,go have degree smaller than d — 1. Proceeding for each term similarly
(and noting a degree reduction of each terms) yields the claim, after summing over 7 and dividing by
d. More details are given in [GN14, Proposition 17| in the case ( = 1.

We prove next (6.19). Take p a monomial in (&7 %)L. Then, with €,¢; = %1,

dogy ( ZZ Ve, 1 ®- ®%>i<ﬁﬂc(q}c)> Dig; - zp< H fr—1(qx )H

deg ZZI Vi, 1 ® - ®gr \i(}cﬂl i (ax ) <k§1|fk+1(qk)|>
D SEED S [

eﬂ_—l 2 1 5J 1, —le=—1.2 1 1.1
q;= q]ul q‘2p p up

a5 q;u; 7= PP Uy
T r—1 _ _
< S 0 @ @l 30 TT Il ) €5 tori0) st
j=1 k=1

x degy;(g;) 38u (P)desu (4)) cdega 5 (P)+dega, ()

=V
HPle,...,fr,lpH&C = '

£

where we have used that &, C > 1, that the degree of u EJ‘_lqquu <= tu, 1“_1p2p1u16 1 is at most

degyr(p) + degyr(g5) in the w;’s (and similarly in the a;’s and bi 5) and that the sum contained at most
degy(p) x deg(g;) terms. We thus obtain (6.19).

To prove (6.20) we note that HQf1 - Dllec is equal to
- lmm ZEas @q»z( [T e )i Dsar IT )|
egU 045 M1<k<j-1 jH1<k<r &¢
) =)
r—1 ~
< Z Vo, 1 ® - ® qy)] Z (H ka%@) £Xize degy (@) +degy (p)
A0 k=1

x (2o degp(di)tdega 5 (p) degyr(q;) gdegy (ar) cdegp(ar)

< Vsl ¢ g collpllec,

where we used in the last line that £ < € and ¢ < ¢. The bound (6.22) is analogous and left to the
reader. g

Proof of Lemma 6.8. Following the implicit function theorem, let us consider F' as a function from

X xY toV, with X 1= L(AB)¢ x L and Y := L( B¢ . (Here L(o/ BF) is the set of linear

functionals over o7 %1. Even though &/ %= is not an algebra, this is a well defined Banach space once
equipped with [| - [¢¢.)
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Recall that F' has a unique solution Tfo on the subset of X given by T (&7 #) x {0}, given by the law
of free variables, as discussed above. To show that this unique solution extends to a neighborhood of
T (o/ B) x {0}, it is enough to check that F is differentiable along the variable 7 € Y, and its derivative
is a Banach space isomorphism from £(&/ #1)e ¢ into L(o/ B+)¢ at (11,0). But this is clear as for
any q € of B+,

DF[r;11,V3](1;0)(q) := lim 1 (F[T +ep;m, Vg — Flrym, Vg]) (q)

e—0 €

S(Ca )Y

where Id + IIT 0m is invertible, as a triangular operator. Hence, by the implicit function theorem

there exists a umque solution of F(7;71,Vp) for ||V3|¢,c small enough and ke € T(o/ #). However, for
further use we shall prove again this result “by hand”. For this, if 7 and 7" are two solutions of (6.14)
we see that § := 7 — 7/ satisfies

(6.23) 5((Id+EY,)p) =0 @5 (Ap+RYsp)
where
E'7"/77'1 =11 [TTH+71H’ + PTH+T1H’ + QTH+T1H/:| )

and

1
R}_f(; = —/ SMT/+S§SdS, SV’T ZS
0

where S&T is defined in (6.9). Indeed, this follows by the identity 7@ 7 — 7' @7 =7+ 75— ®9
and the expansion

1
=V, —V d
T(PT%+71H’p) B T/(PT’ﬂHJrTlH’p) = /0 ds % ((T + 86)( (r’ +56)H+T1H/p)>

=0 < /0 1 ds (H [52/;{3’+55)H+T1H’ + QE?’+S6)H+71H’:|p)>
=4 (H [ﬁ‘r/lﬂﬂnn' + G‘T/fHTlH,}p) +o®0 </01 ds /Sl dJH(SVJurm;p))

=4 <H |:§7‘{I@I+T1H/ +6Z€I+Tln,}p) +o®0 </01 dUJH(SVJurm;p)) ;

which proves the desired formula noticing that § = 6 o I1.

We next claim that Id +ZY , is invertible and with bounded inverse in (A B)*, || - |lec). We begin
by noticing that (6.18), (6. 19) and (6.20) imply the following: if 7,71 € 7, as 7Il + 711" is a tracial
state which has | - ||;.1 norm bounded by 1, we have (by taking £ = ¢ = 1)

< < ({i:l) =d¢c(V)

(see (6.16)). Therefore, since d¢ (V) < 1 (by (6.17)), it follows that Id + =V

(LA B)F), || - |lec), with inverse bounded by (1 — ¢ (V).
By (6.18) and because

(6.24) + MVl [le ¢ 1.4

1=
=T,T1

s

- is invertible on

7"+ 8611 < 1,

— 16
0@ 0 (Ap)| =16(Tsp)| < e llleclpllec
and we find similarly by (6.22) that for &, > 1, since ||p[[1,1 < [[p[le,c,
16 @ 3(RY5(p))
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It follows from (6.24) and (6.23) that

max{2, 7}
Olee < ——=0e.c(M)|6]lec,
10]le.c 1= 6e (V) ec(V)0lec

and recalling (6.17) we conclude that ||d||¢ = 0, that is 7 = 7’ as desired.

We denote Tlv "1 our unique solution. Notice that if 7y is not necessarily a tracial state, but an

element of %  which still satisfies ||71[1 < 1 and such that |7 — 70|l < € for some 7 € T (o B)

with € small enough, then the very same argument as before shows that there exists a unique TV Yin

O
a small neighborhood of 710 " solving (6.7).
By the implicit function theorem, since the function F' is smooth, the solution 7_1\/0,71 is smooth both

in V and 71. For v1,...,vp € L¢ ¢, we denote by DETST’{1 the ¢-th derivative of 7'3/1 ! with respect to 7,
which is given by
V,T d d VT + (1)
DZToJl[Vl’ V) = dal " deg ——le1=0,....c0= 0[011 Eey},
and is defined inductively by the formula, valid for all ¢ € (&7 %)+
1_Vim =V _ 1= Vs AVs
(625)  D'ryT]((1d +HTOV1,T1)q) = v <n EE—— T 1H,}q> :

where we use the simplified notation HVV o= =

Iland K ={1,...,¢},

. . Vi .
-, - Hence, if we denote in short D;7 := DMl A8 [y, €
To1 Tor 71 ’

— 1 A
(6.26) DgT <<Id - :TVOVI,Tl)q) =-3 > DiT®@Dy7(Ap)

IUJ=K
I,J#0
a 1%
— Y 1 ® Doy m(Bp) — Liavi ® vy (33 (Bp) — > 01(Py,....0,9);
i=1 eie{DJiT}
Ut <i<rJi=K, J1 70,5
where in the last term we sum over all choices of 6; in the set D T, where Dyt =vy if |J;] =1, and

Dy =7 if J; = 0. From this formula and the invertibility of Id + = Vn’ we deduce by induction that
for all ¢ satisfying (6.17) and for all £ € N, there exists a finite constant Cg¢ ¢ ¢ such that

- velle-

HDZTX)T1 V1, .., ] H5

Finally, we apply the above uniqueness result with 7 := TI{‘VB, that is, to the non-commutative
distribution of (Ai,..., Aq, B1,...,Bn), see Proposition 6.2. Indeed, by the discussion after Lemma
6.7, any limit point of N *1W1V N € L¢ ¢ satisfies the limiting Schwinger-Dyson equation, so this lemma

N
ensures that this limit is unique and that NV _1W¥ v converge to Tlvd 4B which concludes the proof. [
N

In order to simplify the notation, we use 719 to denote TIVO’TAB . We next develop similar arguments
to expand W Iy as a function of N~ L Let us first consider the first error term and rewrite the
first Schwinger-Dyson equation by taking P = D;p in Corollary 6.6. Then, summing over i, we get
oN = WYN — N1,

151

1 .
(6.27) o ((1d + T +Poly + Q1)) =~ Wi (Bp) — W (Bp) + R (p).

where

d
A= Zﬁl o (92"DiD71

=1
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and Ry (p) contains the terms which are at least quadratic in éx, or depending on cumulants of order
greater or equal to 2 :

Ry (p) == =On(Tn-15,D)

- %ZZZW&CH ®--®q) »  Oon(Digy DD 'p) <H5N(Cb >< II Win( )
ik

IC{1,....,r}\k jel jEe(IUEk)e
[T]>1

1

- WZZ<V57Q1®---®%«>
)
k
X Z W|‘;1‘N<IDZQH 'DiD_1p7 QJ7.7 c Il\{il})HWHdN(ans S I@)v
11UIQU---I}CZ{L...,T},k‘ST*l (=2

where in the above sum at least one set I; has at least two elements.
In order to control the right hand side of (6.27) we use the following estimate (compare with [GN14,
Proposition 18]):

Lemma 6.10. For any ( > 1 and & > &, the operator A is a bounded mapping from ((/ B)*:, |||le, )
into (L% |ley.c). Moreover A is a bounded mapping from (L (o B)L), || - lle,.c) into (L, || - lesc)-

The proof of this result simply follows using (6.12): using that formula and noticing that there exists
a constant Cg, ¢, > 1 such that n&y < Cg, ¢, &7 for all n > 0, one deduces that, for any monomial p,

d d
1Aplle, ¢ < degy (p)&a™0 P cdeean® < O 6] cdean® = C ¢ lplle, ¢

The proof for A is similar.
Next, we prove the following convergence result for dy:

Lemma 6.11. Assume there exist £&o < & and > 1, both for £ =& and for & = &,
1
dec(V) < ——— .
ec(V) < 1+ max{2,r}
Then, for any p € Z¢, ¢ we have
-1
lim 5N( ) = 13-1710 (A (ld + TT10 + PTlo + QTw) p) =: 711(10) ,

N—oo

and N||6n — T11|¢, ¢ s uniformly bounded in N.

Proof. First notice that for £ = & or £ = &, our hypothesis ensures that

Vs

U = 1d 4 Try + Po + QL

T10

is invertible in % ¢ with norm smaller than (1 — 8¢ ¢(V))~! (see the proof of Lemma 6.8). Therefore,
it follows from (6.27) that, for p € (o7 %),

W (A1) - oWl (BO0H) ) + R () 7))

We next bound each term separately. For the first one, we get

(6.28) (5N<p) =

HA( 7'10) lpH£27C

X V

WlN

1A ey 0. 1Y) ey clpller -

~ Va «_ 1
el ol < |3
&2,¢

HN &2,¢
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A similar bound holds for the second term. For Ry, note first that (6.18) with é = &9 yields

108 (Tx-16,p)| < 8N—1§1§_2

& H6N||627C||5N”€1»C pH{hC

and noticing that similar bounds hold for the other terms in Ry, we obtain

1

1
lovllenc < | W] Wiy

-1
] Pl

oo ) wio
ro(1+ @) ylovle

where we bounded the last term using Lemma 6.7. Since N~1||dn|l¢,.c — O (see Lemma 6.8), for N
sufficiently large we can reabsorb the last term and deduce that ||dn|l¢, ¢ is bounded.

Moreover, this implies also that the last term is of order N~!. In addition, the second one is of
order N=! by Lemma 6.7. Hence, going back to (6.28) we see that the first term in the right hand

side converges towards the desired limit by Lemma 6.8, provided A(¥ TIO) 'p € %, ¢, which is true as
soon as p € Z¢, ¢ (see Lemma 6.10).

Finally, to prove the last statement, it is enough to notice that the above reasoning implies that
10N ||¢s,¢c is bounded for some &3 € (£2,&1) (notice that the assumption on d¢, ¢ still holds for &3 close
enough to & or & by continuity of 6_¢) so that the previous arguments (in particular the fact that
Wg/ v and Ry are bounded) imply that there exists a finite constant C' such that

Non — mulle ¢ < CH5NH53 gHAH§3,g1,g H m10) 1’ 1. +C

which concludes the proof. (|

8, 0w

5NH§1,C7

The second order correction to WY v depends on the limit of W;/ n that we now derive by using
the second Schwinger-Dyson equation. The latter is simply derived from the first Schwinger-Dyson
equation (see Lemma 6.5) by changing the potential V into V + t¢ ® 1"~! and differentiating with
respect to ¢t at ¢ = 0. This results into the equation, valid for all p,q € &,

E [(Trq — E[Trq)) <]1VTr ® %Tr(@ip) + %Tr((pi%ﬂm p)ﬂ

1415

TN

E[TH(Dia) )] = B (Trq ~ E[Tr ) (T 0 0)

We next rearrange the above expression in terms of correlators WX ~N» k= 1,2, replace p by D;p, and
sum over ¢, to deduce the second Schwinger-Dyson equation:

1+15-— A Vg \—
WQVN(q’p) = _TﬁWYN (sz( 7'10) lp) + Ry <(\I’Tlﬁo) 1p> )
where Ry only depends on correlators of order greater than or equal to 3, or on N to a power greater
than or equal to 3. We can therefore see that Ry will be negligible provided (¥ T10) 1p belongs to a
space in which all the previous convergences hold. This allows us to prove the following lemma:

Lemma 6.12. Let ¢ > 1. Assume there exist 1 < &3 < & < & such that, for & = £1,&9, €3,

1
e (V)< ——m——.
ec(V) 1+ max{2,r}
Then, for any p,q € Z¢, ¢ we have
. Vi \—
i Wan(p,q) = —(1+15= 1)7'10<P7-10(\1]7'1ﬂo) 11)) =:720(p, ),
—00

and N||\Wyx — Ta0lle, ¢ is uniformly bounded in N.
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We can finally derive the correction of order one for WY N by going back to the first Schwinger
equation. Indeed if we denote (52 =N (VV1 N — N7i0 — 711), the first Schwinger-Dsyon equation reads

53:(WEp) = 152165 (Ap) — W% + on @ 6x1(SVp + Ap) + B (p),

where Ry (p) depends of correlators of order 3 or higher, which are negligible by Lemma 6.7, and SV
is defined in (6.21). Then, arguing as previously, we infer the following result:

Lemma 6.13. Assume there exist 1 < 4 < &3 < &9 < &1 such that, for £ = £1,&9,&3,&4,

1
%V < T (e}

Then

lim 6% (p) = mu1 (AWr)7'p) = [r20 + 711 @ 7] (A7) '+ S (W) 7p) = mia(p)

N—oo
and N |63 — Ti2lle, ¢ is uniformly bounded in N.
This concludes the proof of Proposition 6.4. We can now prove Proposition 6.2 and Lemma 6.3.
6.2. Proof of Proposition 6.2 and Lemma 6.3. We first show that the free energy is a function

of the correlators, and then that the correlators only depend on {L¥ (xz)}g>0 1<i<d and TB Finally,
we deduce the large N expansion of the free energy as well as its smoothness.

6.2.1. The free energy in terms of the correlators. Recalling the definition of free energy, (6.5), and
(6.4), it holds

FN@V(Al,...,Ad,Bl,...,B ) logINaV

B

_ N / VYN (VY du + 7 (r — 1)N2 / Y WYY 2(V) du + Ray
0

where Ry has terms either with two cumulants of order 2, or a cumulant of order greater or equal
to 3. By Lemma 6.7 (note that it applies uniformly in u € [—ag, ag], for some ag universally small),
this latter term is at most of order 1/N, and is therefore negligible. Moreover, using Corollary 6.8 and
Lemmas 6.12 and 6.13, we find that

a a a 1
FYV(A1,...,Aq, By,..., Bp) = N2/ fg;du+N/ f{‘du+/ f;du+0<N>
0 0 0
with
f§ = (g ) (vV),
(6.29) fit=rrt @ (g )TNV,
f=r(r = D[ + 1] @ (g ) V),
where we have used that V' is symmetric and such that ||[V||¢, ¢ is finite for & big enough, so that
e, c(uV) < (1 4+ max{2,r})~! provided u € [—ap,ao] with ag sufficiently small. In particular this

implies that, for ag small enough and any 1 < & < & < & < &1, &g, ¢(uV) < (1 + max{2,7})! for all
u € [—ag, ag), so that the previous lemmas apply. Hence, we deduce the following:
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Lemma 6.14. Let |V||¢, ¢, be finite for some & large enough and i > 1. Then there exists ag > 0
so that, for a € [—ag, ag), uniformly on Hermitian matrices {A;}1<i<a and {B;}i<i<m whose operator
norm is bounded by 1, we have

2
N,aV _ 1
F3V(Ay,...,Aq, By, ..., By) = l§0jN2 lFf”+O<N

with Ff = [ fl*du and f* given by (6.29).
6.2.2. The correlators as functions of {Lfv}lgigd and Tg. Let us define the space
P = {Q(ulalufl, . ..udadugl,bl, cobe) s Qe Clxy, ... g, b, ,bm)}.

As the functions F* only depend on the restriction to P of 7, 74V, 714, and 73" for u € [—a, a], we
shall first prove that the latter only depend on
1 i\ ’ N
My p = {N Z (a3)": £2>0, 1§z§d}U{7’B}.

1<j<N

. 7'01V |p depends only on M p. We start by showing that 7'01 can be defined inductively, as is the
case when V = 0, since it depends analytically on the potential V in the following sense.

Lemma 6.15. Let p € £ and V be a potential such that, for some € > 1 and ( > 1,

1
Oec(V) < ——— .
ec(V) < 1+ max{2,r}
Then, for all a € [—1,1], the solution T{; Voof
(6.30) T 7(0ip) + a(l + 1g=1)7(D; - Vp) = 0.

1s uniquely defined. Moreover we have the decomposz’tion
7_10 = Z a
n>0
with 7\ € Le ¢ satisfying |7y |le.c < CoD™, where {Cy}n>0 denote the Catalan numbers and D is a

positive constant.

Proof. This result can be seen to be a Consequence of the implicit function theorem. However we will
need soon additional informations on the 7, and therefore give a proof “by hand”.
By uniqueness of solutions it is enough to show that there exists a solution to (6.30), or more

precisely of (6.13), which is analytic in a. Let us therefore look for such a solution and write 7%V (p) :=
> on>0a" Ty V(p). We then find that 7%V satisfies (6.13) if and only if
(6.31) 7/ (p)+ Y T @1y (MAp)=— > 7¥ @7y ,(ITAp)
k=0,n 0<k<n
d r
*Z(V»(h ® - ®qr) ZZ Z <HT/<; qj ) 74, (Dige - DD~ 'p)
=1 £=1 S ki=n—1 “j#(

As A splits monomials p into simple tensors ¢; ® g2 each of whose factors has degree strictly smaller
than that of p, we see that there exists a unique solution to this equation. Moreover, we prove by
induction that there exists finite constant &, D > 0 such that, if C,, denote the Catalan numbers, then

I llec < CuD"
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Indeed, for n = 0, we simply have the law of free variables bounded by 1, so that the result is clear.
Using the inductive hypothesis until n — 1 to bound the right hand side in (6.31), and (6.18) to bound
the second term in the left hand side of (6.31), we deduce that

8 n
P DR

4 prt Z WV, 1 ® - @ q)| (Z degql->CZ,- degA,B(Qi)(é‘)EdegU‘h’ Z H Ck,

> ki<n—1

(1= dec(V)ll7y lle <

Using that Zogkgn CCh_ = Chq1 < 4C,, we find recursively
Z H Ckl < Cn+7"—1 < 47«71071-

S ki<n—11<i<r
Thus we can bound the last term by 4"~*C,, D"1|||V|||¢, which implies that
Il < Cu D"

provided D is chosen sufficiently large. Since C,, < 4", this implies that 7@V = Y >0 a™tY is absolutely
converging provided |a| < 1/(4D) and it satisfies (6.30), so 7% = 7" as desired. O

We finally show that 7,'|p only depends on M A,B- Again, we can argue by induction. As already
mentioned, this is clear when n = 0 as 7} is the law of free variables. Also, if p € P and deg(p) = 0
then p depends only on by, ..., bs, and therefore 7 only depends on Tg for all n > 0. Thus, by the
inductive hypothesis, we can assume that the result is true for T,y (p) when k <n —1and p € P, and
for 7V (p) when p € P and deg(p) < /.

To show that this property propagates we shall use the fact that (6.31) can be seen as an induction
relation where all monomials belong to P. To this end, first note that {7, },,>0 are tracial, that is

7o (pa) =7, (ap)  Vp,gEP.
Indeed this property is clear as it is satisfied by 7%V, and {7} },,>¢ are derivatives of 7" with respect
to a.

Next, observe that D~! keeps P stable. Moreover, if p = Q ({uiaiu;l}lgigm) where () is a monomial,
then
Dip= Y (e '@qu—u ' gaua),

Q=q17:iq2
so that, up to cyclic symmetry, D;p - D;q € P for each ¢ and ¢ C P. (Heie and in the sequel, cyclic
symmetry is just the action of exchanging pq into gp.) We also show that A maps P into P ® P up to
cyclic symmetry. Indeed, it follows from (6.12) that, for p € P,

Aip = Z ( Z agu; ' qru; @ agu; g

-1 -1 -1 -1
p=p1uia;u; p2 aiU; P2P1U;=a;U; q1u;a;u; q2u;

-1
- E ajU; ~ QLU0 Q q2 — a; & pap1 — P2p1 @ a;
aiUflpzplUz‘:aiuflCI1U¢a¢u;1tI2ui
—1
- E q1 @ a;u; ~qauia;

—1 —1 —1
u; P2PIUA=U;  q1UGU;  G2Uid;

+ Z u[lqwiai ® u;quuiai)

-1 -1 -1
U, P2p1ui@;=u; q1uiaiu; quia;

so that, up to cyclic symmetry, A;p € P® P for all i € {1,...,m} and p € P.
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Hence, by induction we see that T,Y restricted to P only depends on the restriction of {Tk‘;/ te<n—1
to P, therefore to the restriction of 7'8/ to P. Since we have already seen that 7'3/ | only depends on
My g, the conclusion follows.

° Tflv depends only on My p. A direct inspection shows that A maps P into P up to cyclic
symmetry. Indeed, A =3, A; with

Ap= Y ( 3 wlguiatu gy,

-1 -1 -1 -1
p=pi1uia;u; p2 a;U; P2p1U;=a;u; q1uia;u; qau;

-1 -1 —1_ % x —1
- E U; “QoUiGiU; QUG — U, “P1PaUiQ; — Q;U; “P2pP1U;
aiu;1p2plui:aiu;1q1Uz‘az‘u;lq2ui
-1 _x* -1
- g a;U;  goUiQiU,; q1U;

-1 —1 -1
U, P2P1UG;=U;  q1UiaiU;  q2Uid;

—1
+ g a;u,; QQQIUiai> .
uy  paprusai=u; tqruiasu] tqauia;

aV

Moreover, the previous considerations showed that W2/

maps P into P for a small, therefore

\4 V(A V-1
1 (p) = Loty (D) ()
only depends on Tf(y |p. Since we just checked that the latter only depends on My g, this proves the
result.

o rg(}/ depends only on M g. By Lemma 6.12

v \% V p4
T;O (\1170'_10])7 Q) = _(1 + 1521) 7_10,0 (Pq—fg/p)u
aV

and recalling that 7} expands in a convergent series in a, we see that so does 751 . We only need
to check that the operators which appear in the equation defining 7'2‘3/ keeps P stable. But we have
already seen that both operators A and PV keeps P stable, hence 7'2‘3/ (p, q) only depends on My p and
it is in fact a convergent series in such elements.

o 7 depends only on My . By Lemma 6.13
iy (Uhp) = 11t (Ap) = 55" + 1 @ i 1(Ap +5""%p) ,
from which we see that 71} (p) is a convergent series in a (recall that we already proved that & (p), 784 (p)
and 75 (p) are convergent series in a). So the main point is to prove that, up to cyclic symmetry,

Ap + gavﬁp € P ® P whenever p € P.

We already proved that this is the case for Ap, so we focus on S*8p. We notice that it is the sum
of two parts: one is linear over tensors of two monomials appearing in the decomposition of aV, and
as aV € P®" this part clearly belongs to P®?; the other part is linear over tensors of one monomial
appearing in the decomposition of aV' (which therefore belongs to P) and D;p - D;q; with ¢; appearing
in the decomposition of aV' (which we have seen belongs to P up to cyclic symmetry). Hence also this
second part satisfies the desired property, which concludes the proof.

6.2.3. Smoothness of the functions Fa, I, Fy. By Lemma 6.14 and the discussion in the previous sub-
section, we know that
2

1
R =S N 1) 40 ),
=0
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where the functionals E§, FY, F§ depend on {L H<i<q and on TB through the asymptotic correlators
{ruV o Jo<g<o and 2. We finally prove that they are smooth functions of these measures.
Recall the notation (6.3). We show that:

Lemma 6.16. There exists & > 1 large enough such that the following holds: let V' have finite || - ||¢ ¢
norm for some & > & and ¢ > 1. Then there exists ag > 0 such that, for all a € [—ag,ao], F* is

Fréchet differentiable (-times for all £ € N, and if v; = (V... I/d,T]) € P([-1,1))% x T(%), we have
DZFla(levv e ,LéV’TéV)[yl, v < Cglal HV1HC e HWHC'

Moreover, the derivative D, F¢ (LY, .. Ld ,TH) = DES(LY, .. Ld, ,TH0,...,0,6,,0...,0] of F in
the direction of the measure LY is afunctwn on the real line with ﬁmte |-[lc norm for anyk € {1,...,d}.
As a consequence, it is of class C* in an open neighborhood of [—1,1].

Proof. First, fix & sufficiently large so that all previous results apply. By the previous section it

is enough to show that {7’19 Yo<g<o and 73 depend smoothly on ({LY}1<i<q,75), uniformly with

respect to u € [—a,a]. Indeed, by (6.29), F§ is the integral of (714 )*"(V') over u € [0,a]. We have
N

seen in Lemma 6.8 that 74’ B = TOIVTAB is ¢-times Fréchet differentiable. Moreover, we have also seen

that, once restricted to P, it depends only on {L;N}lgigd and Tg, and not the full distribution TI{‘VB.

As a consequence, the smoothness of 7 o1 Virie as a function of 7%, g becomes a smoothness as a function

of the probability measures {L H<i<a and TB The fact that DF{§ is C* is a direct consequence of
formulas (6.25) and (6.26). For instance, if we denote by Dy the derivative along LY, and II}, is the
projection onto the algebra generated by {ay}, for any p € Z¢ - NP we have

- -1
(632) DkT(Y,lTl[ ] = _Hk |:TTH+T1H' + PTH+71H’ + QTH+T H’} (ld + :‘7‘_/‘/7"1) pe P’
01
where we use the fact (see Lemma 6.2) that
— =V, =V, -1
[TTH-l—TlH/ + Pfrl[j[—i—nl_[’ + Q’rl[i[—i—nﬂ’} (Id += V‘fl) (P) cP

so that once we project it on &7 % we get only polynomials either in the a; or in the b;’s, and hence
differentiating in the direction of L{CV we only keep those in ay.
The same argument holds for F}* and F, since also 74, 7", and 7% are smooth and only depend

on {LiN}lgz’Sd and Tg. ]

7. LAW OF POLYNOMIALS OF RANDOM MATRICES

Let us consider the equation
Y, =X; +aFi<X1,---,Xd,Bl,--~,Bm)

with Xi,..., Xy, (resp. Bi,...,By,) self-adjoint operators with norm bounded by £ (resp. () and
F; smooth functions (eventually polynomial functions) on such operators. We assume that F; are
self-adjoint and that F; = )" 8/¢, where the sum is over monomials in X;’s and B;’ with total degree
degy(q) (resp. degg(q)) in X1,..., X4 (resp. in By,...,By). We also assume that for ¢ > 1 and ¢
large enough

1Fillec =Y |87| ¢toex (@) desn(@)
By the implicit function theorem, see [GS14, Corollary 2.4], for any fixed &, ¢ there exist A < A’ < ¢
such that for a small enough (e.g., so that A + |a|||Fi||¢ ¢ < A’) there exist analytic functions G;, with
|Gilla,c = O(lal), satistying

Xi=Yi+GM,...,Yq, B1,...,Bn),

for all operators Y; whose norm is bounded by A.
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To be precise, notice that [GS14] only consider the case where the B;’s are constant, but the proof
extends readily to the case where some additional fixed matrices B; are present, as it is based on a
fixed point argument showing that the sequence

X' =V XM =Y, —aFy(X},..., X}, By,...,By)
is Cauchy for || - ||a¢ provided a is small enough. Since the closure C(x1,...,24;b1,...,bm)a,c of

the space of polynomials under || - [|a¢ is complete, it follows that the sequence {X'},cn con-
verges in this space for all 1 < ¢ < d. This construction also shows that there exist functions

G; € Clzy,...,xq;b1,. .., bm>'|‘HA’C satisfying the desired properties.
We next consider the law Pg of the random matrices

YN = XN +aF(xY,... xY,BY, ... BY)

for d independent GUE matrices Xi', ..., Xév and m deterministic matrices Bi¥,..., BY. Our goal in
this section is to show that the law of YV, ... ,YdN satisfies our previous hypotheses.

First, notice that by Lemma 3.3 applied to the current situation where the equilibrium density is
the semicircle law, see (2.10), the matrices XZ-N have norms bounded by 3 with probability greater than
1 — e N, Hence, if we fix £ = 4 and F; € C(x1,...,24;b1,...,bm)ec We see that, with probability
greater than 1 — e~V for a small enough we have

X{N:Y;N+Gi(Y1N7"-7YdN7B{V""’BVZX)’

|-
for some G; € C(x1,...,x4;b1,.. .,bm>" lac with3< A< A <&
Therefore, up to an error of order e~“V in the total variation norm, we have

PY@ayy,...,dy}]) = LN (VNG Y BY W BY))
N
x JacG(VN, .. Y, BY, ..., B [ avi¥
)

where Jac G(YlN, e ,YdN,B{V7 ..., BY) denotes the Jacobian of the change of variable X; = Y; +
G;(Y1,...,Yy, By,...,By,). It turns out that in the case f = 2

log JacG (Y{",..., Y, BY,..., BY) = Trg(Tr ® Tr(log(ld + JG)))
where Tr is the trace over N x N matrices, Try is the trace over d x d matrices, and
(T Gijrtit,s = Oy g Gs(if) = (0:Gs)inytj i,k € {1,...,N}, s,t € {1,....d},
where §; denotes the non-commutative derivative over polynomial of self-adjoint variables defined as
op:= Y, ©19q.
P=q1Y:q2

Indeed, the above formula follows from the fact that 5tp lives in the tensor product space (in other
words, on the algebra of left multiplication tensored with the right multiplication) and

Oy n (k) Gs(if) = (0:G 8Dk (i5) = (01Gs )ikt
where Ay is the matrix with null entries except at position ¢k where there is a one (here A ® BfC =
ACB).
As G is small for a small enough (at least when restricted to matrices with universally bounded

operator norm), the singularity of the logarithm is away from our support of integration and we
deduce that the law of YlN yenn ,YdN can be approximated in the total variation distance by

Zl N Tr (Y], YN BN L BNATy@Tr Fo(Y{,....YN,BN . .BY) H inN
N
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for two smooth functions F; and F», belonging respectively to the closure of C(z1,...,24,b1,...,bm)
and C(z1,...,24,b1, ..., by)®? with respect to the norms | - ||¢ ¢, where
1Pollec ==Y [(Fa1 @ @)llarlleclazllec
491,92

whenever F' =) . (F,q1 ® ¢2)q1 ® g2 and the sum runs over monomials. This proves the result when
8 =2.
Next, we consider the random matrices
YN = XN aF(X{,.. . XY, BN ... BY)

for d independent GOE matrices (X{V,..., X év ) and m deterministic symmetric matrices BY,..., BN.
The Jacobian is slightly changed and reads

(jG)ij,kE;t,s = (éth)ik,éj + (étGS)if,k:j i?j? k7 le {17 s 7d}7
where the second term comes from the fact that dx, Xy does not vanish (as in the complex case)
but is equal to one. Notice that can write the second term as E(éth), where ¥ acts on basic tensor
product by
Y(A® B)ikj = AieBy;.
Considering the logarithm of the determinant of (I + JG), we see that it expands in moments of JG
as

-1 n+1
logdet(I + JG) = TrgTr ® Trlog(I + JG) = Z (71TrdTr @ Tr(JG)"
n>1
n+1
= Z —TrgTr® Tr(VG + 2(VG))"

n>1

with VGij kets = (éth)ik:,Zj- When expanding the above moments, it turns out that the moments
with an odd number of 3 result into the trace of a single polynomial, whereas even numbers result
with tensor products of two traces. For instance, when n =1,

TryTr @ Tr(X2 Z Z ath )ijji = Z Tr(m 8,5Gt

whereas TryTr @ Tr((VG)) =, Zij(ath)imj. Hence, also in this case there exist convergent series
F1, Fp such that

logJacG(Yl,.. LYy By, ... ,Bm) =Tr® Tr Fy + Tr [

1
:ﬁ@ﬂ(%+—4m®w+M®m»

2N

and we conclude as before.

8. APPENDIX: CONCENTRATION LEMMA

In this section we prove Lemma 6.7. As already mentioned, it follows from standard results on
concentration of measure.
Indeed, thanks to Gromov, it is well known that the groups

SU(N) :={U € UN):det(U) =1},  SO(N):= O(N) N SU(N)

can be seen as submanifolds of the set of N x N matrices that have a Ricci curvature bounded below
by B(N +2)/4 — 1, see e.g. |[AGZ10, Theorem 4.4.27| and [AGZ10, Corollary 4.4.31]. In particular,
this implies concentration of measure under the Haar measures on these groups. To lift this result to
Q‘é N let us first notice that, by definition, the potential V' is balanced, in the sense that it is invariant
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under the maps U; — Ujewﬂ' for any 0; € [0,2m), being a sum of words each one containing the same
number of letters U; and U;. Recalling that Qg’ y is a measure on O(N) (resp. U(N)) when g =1
(resp. B = 2), it follows that, for any balanced polynomial P,

Q‘B/,N(‘TF(P) - Qf n(Tx(P))| > 5) = @XN(‘TT(P) — Qp N (Te(P))| = 5)7

where @‘B/N is the restriction of @,‘6{,N to SO(N) (resp. SU(N)) when 8 =1 (resp. 8 = 2).
On the other hand, if P is a word which is not balanced and we write U; has U; = et Uj with [7]- in

SU(N), then Tr P(U) = ¢Tr P(U) for some # which is a linear combination of the 6;. As ; follows
the uniform measure on [0, 27], we deduce that Qg’ ~(Tr(P)) = 0. Hence, if P is not balanced,

Qv (| T(P) = QY (Tr(P)) | 2 6) = QF (| Tx(P)] 2 ).

Therefore in both cases we can use concentration inequalities on the special groups.

We then notice that N'™"Tr®*"V has a bounded Hessian, going to zero when ||[V|l¢ goes to zero.
Hence, we can use Bakry-Emery criterion to conclude that, for any § > 1, if ||V[|¢¢ is small enough
then

2

5
(8.1) Q};/,NOTL"(P) — QY y(Tx(P))| > 5) < 9¢ sPIE”

where || P||z is the Lipschitz constant of TrP, which can be bounded as

d
IPIZ < sup > 7(|DiP(uj,u}, a)))

u]-,u;,a]- i—
where the supremum is taken over all unitary operators w;, all operators a; with norm bounded by 1,
and all tracial states 7. Note that if P is a word we simply have || P||z < degy(p), and more in general

IPllz <) (P, q)| degy(q) < CellPlles,

where Ck is a finite constant so that s < C¢ &® for all s € N. Therefore, thanks to (8.1) we deduce that,
for any monomials ¢, ..., g,

k k
(52) @Y (TT (10000~ QY x(Ta0)) ) | < G T destar).
=1 =1
As correlators can be decomposed as the sum of products of such moments, it follows that for any

words q1,...,q; and any £ > 1

k k
Wik (a1, )| < Cr [ ] degir(ae) < Cr(Ce)* T llaelle,
=1 =1

which concludes the proof of Lemma 6.7.
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