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Local limits of large Galton–Watson
trees rerooted at a random vertex

Benedikt Stufler∗

Abstract

We discuss various forms of convergence of the vicinity of a uniformly at
random selected vertex in random simply generated trees, as the size tends
to infinity. For the standard case of a critical Galton–Watson tree condi-
tioned to be large the limit is the invariant random sin-tree constructed by
Aldous (1991). In the condensation regime, we describe in complete gen-
erality the asymptotic local behaviour from a random vertex up to its first
ancestor with large degree. Beyond this distinguished ancestor, different
behaviour may occur, depending on the branching weights. In a subregime
of complete condensation, we obtain convergence toward a novel limit tree,
that describes the asymptotic shape of the vicinity of the full path from a
random vertex to the root vertex. This includes the case where the offspring
distribution follows a power law up to a factor that varies slowly at infinity.

1 Introduction

The study of the asymptotic local behaviour of the vicinity of the fixed root
vertex of random trees has received considerable attention in recent literature.
Jonsson and Stefánsson [14] described a phase transition between an infinite spine
case and a condensation setting for large Galton–Watson trees with a power-
law offspring distribution. A third regime for random simply generated trees
with superexponential branching weights was studied by Janson, Jonsson and
Stefánsson [13]. The asymptotic shape of large simply generated trees as their
size tends to infinity was later described in complete generality by Janson [12].
Abraham and Delmas [2, 3] classified the limits of conditioned Galton–Watson
trees as the total number of vertices with outdegree in a given fixed set tends to
infinity. Limits of Galton–Watson trees having a large number of protected nodes
where established by Abraham, Bouaziz, and Delmas [1]. The asymptotic shape
of conditioned multi-type Galton–Watson trees was studied by Stephenson [17],
Abraham, Delmas, and Guo [4], and Pénisson [16].
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1 INTRODUCTION 2

Clearly considerable effort and progress is being made in understanding local
limits of random trees that describe the asymptotic behaviour near the fixed root
vertex, and for random simply generated trees even a complete classification is
available. As for the question of the asymptotic shape of the vicinity of a random
vertex, Aldous [5] studied in his pioneering work asymptotic fringe distributions
for general families of random trees. For the case of critical Galton–Watson trees,
he established, at least when the offspring distribution has finite variance, con-
vergence of the tree obtained by rerooting at a random vertex. A recent work by
Holmgren and Janson [10] studied fringe trees and extended fringe trees of models
of random trees that may be described by the family tree of a Crump–Mode–Jagers
branching process stopped at a suitable time, including random recursive trees,
preferential attachment trees, fragmentation trees and m-ary search trees.

Janson [12] distinguishes three types of simply generated trees, numbered I, II
and III, and for each the local limit exhibits a distinguishing characteristic. We
use this terminology in our study of the vicinity of a random vertex. In the type I
setting, the simply generated tree Tn is distributed like a critical Galton–Watson
tree conditioned on having n vertices. Thus the height of a random vertex in Tn
is typically large and extended fringe trees are typically small. In this regime, the
limit is given by the random sin-tree constructed by Aldous [5]. Here the word sin
refers to the fact that, like the Kesten tree, this tree has almost surely up to finite
initial segments only a single infinite path. When the offspring distribution has
finite variance, we may even verify total variational convergence of the extended
fringe subtree up to o(

√
n)-distant ancestors.

While trees in the type I regime usually have small maximum degree, the types
II and III are characterized by the appearance of vertices with large degree, which
may be viewed as a form of condensation. Specifically, type II simply generated
trees correspond to subcritical Galton–Watson trees with a heavy-tailed offspring
distribution, and type III simply generated trees have superexponential branching
weights such that no equivalent conditioned Galton–Watson tree exists. Our main
contribution is in this condensation setting, where contrary to the type I regime a
random vertex may be near to the root, and extended fringe trees may have size
comparable to the total number of vertices of Tn, as we are likely to encounter
an ancestor with large degree. This is also a mayor difference to the settings
addressed in the mentioned works by Aldous [5] and Holmgren and Janson [10].

We set up a compact space that encodes rooted plane trees that are centered
around a second distinguished vertex, and establish several limit theorems. For
arbitrary weight-sequences having type II or III, we establish a limit that describes
the vicinity of a random vertex up to and including its first ancestor with large
degree. Here large means having outdegree bigger than a deterministic sequence
that tends to infinity sufficiently slowly. The asymptotic shape of what lies beyond
this ancestor appears to depend on the branching weights. In a way, the vertex
with large degree obstructs the view to older generations.

We describe a novel limit object T ∗ given by random pointed plane tree, in
which the pointed vertex has random distance from its first ancestor with infinite
degree, and this ancestor again has a random number of ancestors with finite
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degree before the construction breaks off. For arbitrary weight-sequences, the
asymptotic probability for the vicinity of a random vertex of Tn to have a specific
shape that admits at most one single ancestor of large degree, but allows ancestors
with small degrees afterwards, coincides with the corresponding probability for
the tree T ∗. Our approach is based on a heavily modified depth-first-search to
explore the tree Tn. This yields information on how parts of a limit tree for the
complete vicinity, that is not truncated at the first large ancestor, must look, if the
simply generated tree Tn pointed at at a random vertex converges weakly (along a
subsequence). Note also that the compactness of the space, in which we formulate
our limits, guarantees the existence of such subsequences. Thus the obstruction by
the ancestor with large degree, that prevents us from seeing older generations, is
not a complete blockage. However, this is not yet sufficient to deduce convergence
in the space of pointed plane trees. In general, the tip of the backwards growing
spine, where the construction of T ∗ breaks off, may correspond to the root vertex
of Tn, but just as well to a second ancestor with large degree.

If the branching weights belong to a general regime of complete condensation,
we manage to surpass the blockage and deduce weak convergence toward T ∗.
There are two main steps involved. First, we show that convergence toward T ∗ is
in fact equivalent to weak convergence of the height of a random vertex in Tn to
the height of the pointed vertex in the tree T ∗, which in the type II regime is dis-
tributed like 1 plus the sum of two independent identically distributed geometric
random variables, and in the type III regime equals 1. In this case, the root of T ∗
really corresponds to the root of Tn. The second step verifies this property in the
case of complete condensation, where the maximum degree of Tn has the correct
order.

In particular, Kortchemski’s central limit theorem for the maximum degree [15,
Theorem 1] allows us to deduce convergence toward T ∗ in the general case of a
subcritical Galton–Watson tree conditioned on having n vertices, if the offspring
distribution ξ satisfies

P(ξ = k) = f(k)k−α

for a constant α > 2 and a function f that varies slowly at infinity. In the type
III regime where branching weights grow superexponentially fast, we consider the
specific case where

ωk = k!α

for α > 0. It is known that for these weights the maximum degree of Tn has order
n+ op(n), which may also be seen as complete condensation, see Janson, Jonsson,
and Stefánsson [13] and Janson [12, Example 19.36]. Thus here the tree T ∗ is also
the weak limit of the simply generated tree Tn pointed at a random vertex. There
are, however, also examples of superexponential branching weights that exhibit a
more irregular behaviour [12, Example 19.38], in which we are going to argue that
weak convergence toward T ∗ does not hold.
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Outline

In Section 2 we fix basic notations, and Section 3 is dedicated to recall necessary
background on simply generated trees. In Section 4 we describe the metric space
of rooted plane trees that are centered at a pointed vertex. This will be the
setting in which we formulate our limit theorems. In Section 5 we present our
main results, and in Section 6 their proofs.

2 Notation

We let N denote the set of positive integers and set N0 = N ∪ {0}. Throughout,
we usually assume that all considered random variables are defined on a common
probability space. The total variation distance between two random variables X
and Y with values in a countable state space S is defined by

dTV(X, Y ) = sup
E⊂S
|P(X ∈ E)− P(Y ∈ E)|.

A sequence of real-valued random variables (Xn)n≥1 is stochastically bounded, if
for each ε > 0 there is a constant M > 0 with

lim sup
n→∞

P(|Xn| ≥M) ≤ ε.

We denote this by Xn = Op(1). Likewise, we write Xn = op(1) if the sequence

converges to 0 in probability. We use
d−→ and

p−→ to denote convergence in
distribution and probability. A function

h : R>0 → R>0

is termed slowly varying, if for any fixed t > 0 it holds that

lim
x→∞

h(tx)

h(x)
= 1.

Given sets M and N , we let NM denote the set of all maps from M to N . We
also let N (N) denote the set of all finite sequences of elements from N .

3 Simply generated trees

We let w = (ωi)i≥0 denote a sequence of non-negative weights satisfying ω0 > 0
and ωk > 0 for at least one k ≥ 2. Given a plane tree T and a vertex v ∈ T we
let d+(v) denote its outdegree, that is, the number of offspring. Its height hT (v)
is its distance from the root-vertex. The weight of a plane tree T is defined by

ω(T ) =
∏
v∈T

ωd+T (v).
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The simply generated tree Tn with n vertices gets drawn from the set of all n-
vertex plane trees with probability proportional to its weight. Galton–Watson
trees conditioned on having a fixed number of vertices are encompassed by this
model of random plane trees. Of course, the tree Tn is only well-defined if there
is at least one plane tree with n vertices that has positive weight. We set

span(w) = gcd{i ≥ 0 | ωi > 0}.

As argued in [12, Corollary 15.6], n-sized trees with positive weight may only exist
for n ≡ 1 mod span(w), and conversely, they always exist if n is large enough
and belongs to this congruence class. We tacitly only consider such n throughout
this paper.

3.1 Three types of weight-sequences

Janson [12, Chapter 8] distinguishes three types of weight-sequences. The classi-
fication is as follows. Let ρφ denote the radius of convergence of the generating
series

φ(z) =
∑
k≥0

ωkz
k.

As argued in [12, Lemma 3.1], if ρφ > 0 then the function

ψ(t) = φ′(t)t/φ(t)

admits a limit
ν = lim

t↗ρφ
ψ(t) ∈]0,∞]

with the following properties. If ν ≥ 1, then there is a unique number τ with
ψ(τ) = 1 and we say the weight sequence w has type I. If 0 < ν < 1, then we
set τ := ρφ <∞ and say w has type II. If ρφ = 0, we say w has type III and set
ν = 0 and τ = 0.

The constant ν has a natural interpretation as the supremum of the means of
all probability weight sequences equivalent to w. The inclined reader may see [12,
Remark 4.3] for details.

3.2 An associated Galton–Watson tree

We define the probability distribution (πk)k on N0 by

πk = τ kωk/φ(τ). (3.1)

The mean and variance of the distribution (πk)k are given by

µ = min(ν, 1) (3.2)

and

σ2 = τψ′(τ) ≤ ∞. (3.3)
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We let ξ denote a random non-negative integer with density (πk)k, and T a Galton–
Watson tree with offspring distribution ξ. Note that if w has type III, then ξ = 0
almost surely and the tree T consists of a single deterministic vertex. As detailed
in [12, Section 4], if w has type I or II then the simply generated tree Tn is
distributed like the Galton–Watson tree T conditioned on having n vertices.

4 The space of pointed plane trees

4.1 Centering at a specified vertex

The offspring of each vertex in a plane tree is endowed with a linear order. We
usually imagine a planar embedding where the root is at the top and the offspring
of each vertex is ordered from the left to the right below it, ascendingly according
to the corresponding linear order. Thus the ”left-most” offspring is the minimum
of the order. This is of course purely a matter of taste. Some prefer their trees
to grow upwards, but regardless of the way for visualizing plane trees, we may
use terms like height and depth-first-search in their usual sense without risk of
confusion.

Traditionally, plane trees are encoded as subtrees of the Ulam–Harris tree.
The Ulam–Harris tree U∞ is an infinite plane tree with vertex set

V∞ = N(N)

given by the space of finite sequences of non-negative integers. Its root vertex
is the unique sequence ∅ with length zero, and the ordered offspring of a vertex
v are the concatenations (v, i) for i ≥ 1. Thus a plane tree is a subtree of the
Ulam–Harris tree that contains its root, such that the offspring set of each vertex
is an initial segment of the offspring of the corresponding vertex in U∞. Here
we explicitly allow trees with to have infinitely many vertices, and vertices with
countably infinite outdegree. If all outdegrees of a plane tree are finite, we say
that it is locally finite. The tree is finite, if its total number of vertices is.

Subtrees of the Ulam–Harris tree are however not an adequate form to rep-
resent the vicinity of a specified vertex in a plane tree. If this vertex does not
coincide with the root of the tree, then it has an ordered sequence of ancestors
and possibly also siblings that lie to the left and right of it. If we look at a ran-
dom vertex of the simply generated Tn, then it may happen that the number of
siblings to the left and/or right of it is asymptotically large, or that its distance
from the root vertex is large. A sensible space in which we may describe the limit
of the vicinity of the random vertex in Tn must hence contain trees with a center
that may have infinitely many ancestors, such that each may have infinitely many
siblings to the left and/or right of it, including the center vertex itself.

For this reason, we describe the construction of an infinite tree U•∞ that is
embedded in the plane and has a spine (ui)i≥0 that grows ”backwards”. That is
ui, is a parent of ui−1 for all i ≥ 1. Any vertex ui with i ≥ 1 has an infinite number
of vertices to the left and to the right of its distinguished offspring ui−1, and each
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of these ”non-centered” offspring vertices is the root of a copy of the Ulam–Harris
tree U∞. To conclude the construction, the start-vertex u0 of the spine also gets
identified with the root of a copy of U∞. We let V•∞ denote the vertex-set of the
tree U•∞.

A plane tree T together with a distinguished vertex v0 is called a pointed plane
tree, and may be interpreted in a canonical way as a subtree of U•∞. To do so, let
v0, v1, . . . , vk denote the path from v0 to the root of T . This way, any vertex vi
for i ≥ 1 may have offspring to the left and to the right of vi−1. Thus there is a
unique order-preserving and outdegree preserving embedding of T into U•∞ such
that vi corresponds to ui for all 0 ≤ i ≤ k.

4.2 Topological properties

Any plane tree T may be identified with its family of outdegrees

(d+
T (v))v∈V∞ ∈ NV∞0 ,

where we set N0 = N0 ∪ {∞}. We endow N0 with the one-point compactification
topology of the discrete space N0. Thus plane trees are elements of the compact

product space NV∞0 . It is not hard to see that the subspace

T ⊂ NV∞0

of all plane trees is closed.
Similarly, we may identify a pointed plane tree T • = (T, v0) with the corre-

sponding family of outdegrees (d+
T •(v))v∈V•∞ , such that

d+
T •(v) ∈ N0 = N0 ∪ {∞} (4.1)

for v /∈ {u1, u2, . . .}, and

d+
T •(ui) ∈ {∗} t (N0 × N0), i ≥ 1. (4.2)

Here the two numbers represent the number of offspring vertices to the left and
right of the distinguished son ui−1, and the ∗-placeholder represents the fact that
the vertex has no offspring.

Since N0 is a compact Polish space, so is the product N0×N0 and the disjoint
union topology on {∗} t (N0 × N0). Hence the space of all families (d+(v))v∈V•∞
satisfying

d+(v) ∈

{
N0 for v /∈ {u1, u2, . . .}
{∗} t (N0 × N0) for v ∈ {u1, u2, . . .}

is the product of countably many compact Polish spaces, and hence also compact
and Polish. The subset T• of all elements that correspond to trees is closed,
and hence also a compact Polish space with respect to the subspace topology.
Checking that T• is closed is straight-forward: If τ •n is a deterministic sequence
in the product space that converges toward a limit τ /∈ T•, then there is a vertex
v ∈ V•∞ with at least one offspring vertex v′ in U•∞ that is not an offspring of v
in τ . The same must then also hold for all τ •n with n sufficiently large, implying
that (τ •n)n is not a sequence T•. So, by contraposition, T• must be closed.
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5 The limit theorems

As discussed in Section 3 there is a probability distribution (πk)k associated to
the weight sequence w, with density given in (3.1). Let ξ be distributed according
to (πk)k and let T be a ξ-Galton–Watson tree. By Equation 3.2 it holds that

µ := E[ξ] ≤ 1.

We may consider the size-biased random variable ξ̂ with values in N0 and distri-
bution given by

P(ξ̂ = k) = kπk and P(ξ̂ =∞) = 1− µ.

For any tree T and any vertex v ∈ T we let f(T, v) denote the fringe-subtree of T
at v. That is, the maximal subtree of T that is rooted at the vertex v.

Throughout the following, we let v0 denote a uniformly at random selected
vertex of the simply generated plane tree Tn, that in the type I and II regime is
distributed like the Galton–Watson tree T conditioned on having n vertices.

5.1 The type I regime

If the weight-sequence w has type I, then ξ̂ < ∞ almost surely, and we define
the random tree T ∗ as follows. Let u0 be the root of an independent copy of the
Galton–Watson tree T . For each i ≥ 1, we let ui receive offspring according to
an independent copy of ξ̂. The vertex ui−1 gets identified with an uniformly at
random chosen offspring of ui. All other offspring vertices of ui becomes the root
of an independent copy of the Galton–Watson tree T .

Theorem 5.1. If the weight-sequence w has type I, then

(Tn, v0)
d−→T ∗

in the space T•.

Let T be a plane tree, v ∈ T a vertex, and k ≥ 0 an integer. If the vertex
v has a kth ancestor vk, then we may define the pointed plane Hk(T, v) as the
fringe tree f(T, vk) that is rooted at the vertex vk and pointed at the vertex v.
Here we use the term vertex in the graph-theoretic sense, since the coordinates of
the vertex v as node of the Ulam–Harris tree depend on whether we talk about
v ∈ T or v ∈ f(T, vk). If the vertex v has height hT (v) < k, we set Hk(T, v) = �
for some placeholder symbol �.

Theorem 5.2. Suppose that weight-sequence has type I and the offspring distribu-
tion ξ has finite variance. Let kn be an arbitrary sequence of non-negative integers
that satisfies kn/

√
n→ 0. Then

dTV(Hkn(Tn, v0), Hkn(T ∗, u0))→ 0

as n becomes large.
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5.2 Complete condensation in the type II regime

If the weight-sequence w has type II or III, then we construct T ∗ similarly as
in the type I case, letting u0 become the root of an independent copy of the
Galton–Watson tree T , and letting for i = 1, 2, . . . the vertex ui receive offspring
according to independent copy ξ̂i of ξ̂, where a randomly chosen son gets identified
with ui−1 and the rest become roots of independent copies of T . We proceed in
this way for i = 1, 2, . . . until it occurs for the first time i1 that ξ̂i1 = ∞. When
ξ̂1, . . . , ξ̂i1−1 < ∞ and ξ̂i1 = ∞, then ui1 receives infinitely many offspring to the
left and right of its son ui1−1. Each of these vertices (except ui1−1 of course)
gets identified with an independent copy of the Galton–Watson tree T . We then
proceed as before for i = i1, i1 + 1, . . ., such that ui receives offspring according to
an independent copy ξ̂i of ξ̂, with a random son being identified with ui−1 and the
rest becoming roots of independent copies of T , until it happens for the second
time i2 that ξ̂2 = ∞. When ξ̂i1 = ∞ = ξ̂i2 for i1 < i2 and ξ̂i < ∞ for all i < i2
with i 6= i1, then we stop the construction. The spine of the resulting tree is then
given by the ordered path u0, . . . , ui2−1.

Theorem 5.3. Suppose that the weight-sequence w has type II. If the maximum
degree ∆(Tn) satisfies

∆(Tn) = (1− µ)n+ op(n),

then it holds that
(Tn, v0)

d−→T ∗

in the space T•. In particular, this is the case when there is a constant α > 2 and
a slowly varying function f such that for all k

P(ξ = k) = f(k)k−α.

Here we make use of a result by Kortchemski [15, Theorem 1] who established
a central limit theorem for the maximum degree, that ensures that ∆(Tn) has the
correct order if the offspring distribution ξ has a power law up to a slowly varying
factor. There are also examples of offspring distributions with a more irregular
behaviour. Janson [12, Example 19.37] constructed a weight sequence such that
along a subsequence n = nk it holds that ∆(Tn) = op(n), and along another
subsequence several vertices with degree comparable to n exist. This may be seen
as incomplete condensation.

The proof idea of Theorem 5.3 is to deduce the asymptotic distribution of the
height hTn(v0) by localizing the vertex of Tn having maximum degree at a position,
that was also given in [15, Theorem 2] using results by Armendáriz and Loulakis [6]
concerning conditioned random walks having a subexponential jump distribution.
To do so, we employ results of Janson [12, Chapter 20] that (partially) use

∆(Tn) = (1− µ)n+ op(n),

but do not assume the offspring distribution to be subexponential. The following
main lemma, which characterizes convergence toward the tree T ∗ in terms of weak
convergence of the height hTn(v0), then finalizes the proof of Theorem 5.3.
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Lemma 5.4. If the weight-sequence w has type II or III, then the following three
conditions are equivalent.

1. (Tn, v0)
d−→T ∗ in T•.

2. hTn(v0)
d−→ hT ∗(u0).

3. lim supn→∞ P(hTn(v0) ≥ t) ≤ µk + k(1− µ)µk−1.

Note that hT ∗(u0) is distributed like 1 plus the sum of two independent identi-
cally distributed geometric random variables that assume an integer i with prob-
ability µi(1− µ).

5.3 Complete condensation in the type III regime

If the weight-sequence w has type III, then it holds that µ = 0 and almost surely
ξ = 0 and ξ̂ = ∞. Here the Galton–Watson tree T is always equal to a single
point. Hence the tree T ∗ is obtained by letting u1 have infinitely many offspring
to the left and right of u0, all of which (including u0) are leaves.

Proposition 5.5. If the weight-sequence w has type III, then the following claims
are equivalent.

1. (Tn, v0)
d−→T ∗ in T•.

2. hTn(v0)
p−→ 1.

3. The maximum degree ∆(Tn) satisfies ∆(Tn) = n+ op(n).

A general class of weight-sequences that demonstrate this behaviour is given by

ωk = k!α

with α > 0 a constant.

Here we have used that if ωk = k!α with α > 0 a constant, then it is known
[12, Example 19.36], that the largest degree in Tn has size n + op(n). But there
are also other examples that exhibit a more irregular behaviour. In [12, Example
19.38] a weight-sequence is constructed such that along a subsequence n = nk,
for each j ≥ 1 the jth largest degree Y(j) in Tnk satisfies Y(j) = 2−j with high
probability. This may be seen as incomplete condensation. It is clear that in this
case the limit of (Tn, v0), if it exists at all, must have a different shape than T ∗.
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5.4 Large nodes and truncated limits

Suppose that the weight sequences w has type II or type III. The limit theorems
in Subsections 5.2 and 5.3 work in settings of complete condensation, where the
maximum degree of the tree Tn satisfies

∆(Tn) = (1− µ)n+ op(n).

If we content ourselves with the vicinity of the vertex v0 up to and including
the first vertex having large degree, we may obtain a limit theorem in complete
generality. We are also going to construct a coupling to demonstrate how the
vertex with infinite degree in the limit corresponds to a vertex with large degree
in the simply generated tree Tn.

Janson [12, Lemma 19.32] showed that there is a deterministic sequence Ωn

that tends to infinity sufficiently slowly, such that for any sequence Kn →∞ with
Kn ≤ Ωn it holds that the numbers Nk of vertices with outdegree k in the tree Tn
satisfy∑

k≤Kn

kNk = µn+ op(n) and
∑
k>Kn

kNk = (1− µ)n+ op(n) (5.1)

Select any fixed sequence Ωn with this property, that additionally satisfies

Ωn = o(n). (5.2)

Let D̃n denote a random positive integer, that is independent from all previously
considered random variables, with distribution given by

D̃n
d
= (d+

Tn(o) | d+
Tn(o) > Ωn). (5.3)

We form the random tree T̄ ∗n in a similar manner as the random tree T̄ ∗. The
vertex u0 becomes the root of an independent copy of the Galton–Watson tree T .
For i = 1, 2, . . . the vertex ui receives offspring according to independent copy ξ̂i
of ξ̂, where a randomly chosen son gets identified with ui−1 and the rest become
roots of independent copies of T . We proceed in this way for i = 1, 2, . . . until
it occurs that ξ̂i = ∞. When ξ̂1, . . . , ξ̂i−1 < ∞ and ξ̂i = ∞, then ui receives D̃n

offspring vertices, such that a uniformly at random chosen one gets identified with
ui−1, and the rest get identified with the roots of independent copies of T . Rather
than continuing with the spine as in the construction of the tree T ∗, we stop at
this point, so that ui becomes the root of this tree.

Given a pointed tree T • = (T, v) and an ancestor a of v, we let f •(T •, a) denote
the fringe subtree of T at a that we consider as pointed at the vertex v. We refer
to f •(T •, a) as the pointed fringe subtree of the pointed tree T • at the vertex a.

Let v0 denote a uniformly at random selected vertex of the simply generated
tree Tn. Let H(Tn, v0,Ωn) denote the pointed fringe subtree of (Tn, v0) at the
youngest ancestor of v0 that has outdegree bigger than Ωn. If no such vertex exists
(which is unlikely to happen, as we are going to verify), set H(Tn, v0,Ωn) = � for
some fixed placeholder value �.
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Theorem 5.6. Suppose that the weight sequence w has type II or III. Let T̄ ∗
denote the pointed fringe subtree of the tree T ∗ at its unique vertex with infinite
degree. Then it holds that

H(Tn, v0,Ωn)
d−→T̄ ∗.

in the space T•.

The strength of this theorem is its generality, as we make no additional as-
sumptions on the weight-sequence at all. It is suitable for applications where it is
not necessary to look behind the large vertex.

We may still improve upon this. For each n, let T ∗n be constructed from T̄ ∗
by pruning at its root vertex such that its outdegree becomes D̃n. Of course we
have to select one of the D̃n ways of how much we prune from the left and right
so that the total outdegree becomes D̃n, and we choose an option uniformly at
random.

For each integer m ≥ 0 we let V̄ [m] ⊂ V•∞ denote the vertex set of the tree
obtained from U•∞ by deleting all vertices with distance larger than m from the
center vertex u0 and pruning so that the vertices ui, 1 ≤ i ≤ m have outdegree
(m,m) and the remaining vertices all have outdegree equal to m. The topology
on the subspace T•lf ⊂ T• of locally finite trees is induced by the metric

dT•lf (T
•
1 , T

•
2 ) = 1/ sup{m ≥ 0 | d+

T •1
(v) = d+

T •2
(v) for all v ∈ V̄ [m]}.

Theorem 5.7. Suppose that the weight sequence w has type II or III. For any
finite set of vertices x1, . . . , xr ∈ V•∞ it holds that

dTV((d+
H(Tn,v0,Ωn)(xi))1≤i≤r, (d

+
T̄ ∗n

(xi))1≤i≤r)→ 0.

Equivalently, there is a coupling of (Tn, v0) and T̄ ∗n such that

dT•lf (H(Tn, v0,Ωn), T̄ ∗n )
p−→ 0.

In Equation (20.4) and the subsequent paragraph of [12], Janson also argues
that if

∆(Tn) = (1− µ)n+ op(n),

then
dTV(∆(Tn), D̃n)→ 0.

Hence in the complete condensation regime, we may choose D̃n in the the coupling
of Theorem 5.7 such that D̃n = ∆(Tn) with probability tending to 1 as n becomes
large. This yields the asymptotic location of the vertex with maximum degree
with respect to the random vertex v0.

In a way, we could say that the ancestor of the random vertex v0 with large
degree in Tn blocks the view, if we are not in the complete condensation regime.
As we shall see in Lemma 6.1 and Lemma 6.2 it does not block it completely
though. Roughly said, for each fixed k ≥ 1 we obtain the asymptotic probability



6 PROOF OF THE MAIN RESULTS 13

for the event, that the pointed fringe subtree at the kth ancestor of the random
vertex v0 has a given shape that involves at most one large vertex on the spine.
This yields more information than Theorem 5.6 on how a limit tree T̄ must look,
if (Tn, v0) converges weakly (along a subsequence). (Note that the compactness
of the space T• guarantees the existence of such subsequences.) It also suggests
that if the center vertex of T̄ has almost surely at most one ancestor with infinite

degree, then it must already hold that T̄ d
= T ∗, but we leave it to the inclined

reader to pursue this line of thought further.

6 Proof of the main results

6.1 Preliminaries

6.1.1 Simply generated trees and balls in boxes

For any integers m,n ≥ 1 we may consider the balls-in-boxed model (Y
(m,n)
i )0≤i<n

that randomly draws a vector vector (y0, . . . , yn−1) of non-negative integers satis-
fying

n−1∑
i=0

yi = m

with probability proportional to ωy0 · · ·ωyn−1 . To shorten notation, we set

Yi = Y
(n−1,n)
i

for all i, as this will be the case that we will consider most of the time. This model
is related to the outdegree sequence (d0, . . . , dn−1) of the simply generated tree Tn
by

(d0, . . . , dn−1)
d
= ((Y0, . . . , Yn−1) |

∑̀
i=0

(Yi − 1) ≥ 0 for all 0 ≤ ` < n− 1). (6.1)

Here we may form the outdegree sequence according to depth-first-search order,
but many other form of vertex explorations are possible. In general, consider the
following family of algorithms, that order the vertices of finite deterministic plane
trees.

1. Take a plane tree T as input.

2. Let P denote the ordered list of visited vertices, that initially is empty. Let
Q denote the ordered queue of vertices that are scheduled to be visited next,
that we initialize with the root of T .

3. Move the first vertex v of the ordered queue Q to the end of the list P of
visited vertices. We then modify the queue Q of vertices that are scheduled
to be visited next so that it additionally contains all the sons of the vertex
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v in the tree T . We do so by a fixed rule, that may take into account the
current state of Q and P , and need not respect the previous order of vertices
in Q or the order of the offspring vertices of v.

4. We repeat the third step until the queue Q of scheduled vertices is empty.

If we order the vertices of the random tree Tn according to an algorithm of this
form, then the corresponding sequence of outdegrees satisfies Equation (6.1). This
degree of freedom will be crucial in our analysis of extended fringe subtrees of Tn
in the condensation regime.

A classical combinatorial result (see for example [12, Cor 15.4]) states that for
each vector (yi)0≤i≤n−1 of numbers yi ≥ −1 with

n−1∑
i=0

yi = −1 and
k∑
i=0

yi ≥ 0 for k < n− 1,

there is a unique cyclic shift

(z0, . . . , zn−1) = (yj mod n, yj+1 mod n, . . . , yj+n−1 mod n) (6.2)

by 0 ≤ j ≤ n− 1, such that for all 0 ≤ ` < n− 1 it holds that

∑̀
i=0

(zi − 1) ≥ 0.

Thus there is a coupling of the simply generated tree Tn with the balls-in-boxes
model (Y0, . . . , Yn−1) such that the degree sequence (d0, . . . , dn−1) of Tn is a random
cyclic shift of (Y0, . . . , Yn−1).

6.1.2 Large nodes near the root in the condensation regime

Suppose that the weight-sequence w has type II or type III. Let ξ denote the
offspring distribution defined in Section 3 and µ = E[ξ] ∈ [0, 1[ its first moment.
Let D̃n be the random non-negative integer defined in Equation (5.3). Consider
the random variable ξ̃ defined by

P(ξ̃ = k) = kP(ξ = k)

for k ∈ N, and
P(ξ̃ = �) = 1− µ

for some placeholder �. Janson [12, Chapter 20] defined the following modified
Galton–Watson tree T̂1n. There are normal and special vertices, and we start with
a special root. Each normal vertex receives offspring according to an independent
copy of ξ, all its sons are also normal. For any special vertex we consider an
independent copy of ξ̃. If it is a finite number, then we add accordingly many
offspring and declare a uniformly at random selected son as special. If it assumes
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the placeholder value �, then we add offspring according to D̃n, all of which are
normal. Thus the tree T̂1n comes with an almost surely finite spine whose tip v∗

satisfies
P(hT̂1n(v∗) = k) = µk(1− µ)

for all k ≥ 0. Janson [12, Theorem 20.2] showed that for any finite list of vertices
v1, . . . , v` ∈ V∞ it holds that

dTV((d+
Tn(vi))1≤i≤`, (d

+

T̂1n
(vi))1≤i≤`)→ 0 (6.3)

as n becomes large.
For each integer m ≥ 0 we let V [m] ⊂ V∞ denote the vertex set of the tree

obtained from U∞ by truncating at height m and pruned so that all out-degrees
are equal to m. That is, V [m] corresponds to all sequences of non-negative integers
with length at most m such that each element of the sequences less than or equal
to m. The topology on the space of locally finite plane trees is induced by the
complete metric

δ1(T, T ′) := 1/ sup{m ≥ 1 | (d+
T (v))v∈V [m] = (d+

T ′(v))v∈V [m]}.

The convergence (6.3) is equivalent to the existence of a coupling of the random
trees Tn and T̂1n such that

δ1(Tn, T̂1n)
p−→ 0. (6.4)

6.2 Convergence in the type I regime

We present a proof of Theorem 5.2, in which we make use of properties that are
characteristic of the type I regime, where extended fringe subtrees are typically
small and random verticess have typically large height. Theorem 5.1, which states
convergence of (Tn, v0) toward T ∗ if w has type I, follows directly from a general
observation, given in Lemma 6.1 below, that is valid for weight-sequences having
arbitrary type.

Proof of Theorem 5.2. Suppose that the weight sequence w has type I, and that
the offspring distribution ξ has finite variance σ2. By assumption it holds that
kn = n1/2tn for some sequence tn → 0. Without loss of generality, we may assume
that kn →∞.

For any k let Ek,n denote the set of all pairs (T, x) of a plane tree T hav-
ing at most ntn vertices and a vertex x having height hT (x) = k, such that
P(Hk(Tn, v0) = (T, x)) > 0. We are going to argue that as n ≡ 1 mod span(w)
becomes large

i) P(Hkn(Tn, v0) ∈ Ekn,n)→ 1,

ii) P(Hkn(T ∗, u0) ∈ Ekn,n)→ 1,

iii) sup(T,x)∈Ekn,n |P(Hkn(Tn, v0) = (T, x))/P(Hkn(T ∗, u0) = (T, x))− 1| → 0.
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This suffices, as i) and ii) imply that

dTV(Hkn(Tn, v0), Hkn(T ∗, u0)) =

o(1) + sup
H⊂Ekn,n

|P(Hkn(Tn, v0) ∈ H)− P(Hkn(T ∗, u0) ∈ H)|, (6.5)

and this expression converges to zero by iii).
We start with property i). The size of Hk(T ∗, u0) is given by the sum of

|H0(T ∗, u0)| d= |T | and the independent differences

|Hi(T ∗, u0)| − |Hi−1(T ∗, u0)| d=Sξ̂−1, i = 1 . . . k,

with ξ̂ the size-biased version of the offspring distribution ξ, and

Sm = X1 + . . .+Xm

a sum of independent copies (Xj)j of |T |. Hence we may bound |Hk(T ∗, u0)|
stochastically by SMk

with

Mk = Z1 + . . .+ Zk+1

the sum of k + 1 independent copies of ξ̂. By a general result for the size of
Galton–Watson forests, there is a constant C > 0 such that

P(Sm ≥ x) ≤ Cmx−1/2

for all m and x. See Devroye and Janson [8, Lem. 2.3] and Janson [11, Lem. 2.1].
We assumed that σ2 <∞, hence ξ̂ has a finite first moment. It follows that

P(SMk
≥ x) ≤ CE[Mk]x

−1/2 = C(k + 1)E[ξ̂]x−1/2.

Setting x = ntn and k = kn, it follows that |f(T (−∞), ukn)| ≤ ntn with probability
tending to one as n becomes large. This verifies i).

Property ii) is actually a consequence of properties i) and iii). Indeed, iii)
implies that

P(Hkn(Tn, v0) ∈ Ekn,n)− P(Hkn(T ∗, u0) ∈ Ekn,n)→ 0,

and by i) it follows that

P(Hkn(Tn, v0) ∈ Ekn,n)→ 1.

It remains to verify iii). Let (T, x) ∈ Ekn,n. Given Tn, there is a one to one
correspondence between the vertices v ∈ Tn with fringe subtree f(Tn, v) = T , and
the vertices v′ with Hkn(Tn, v′) = (T, x). Thus

P(Hkn(Tn, v0) = (T, x)) = P(f(Tn, v0) = T ). (6.6)
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The fringe subtree f(T ∗, ukn) is distributed like the modified Galton–Watson tree,
in which there are two types of vertices, normal and special, and we start with a
special root. Normal vertices vertices receive offspring according to an independent
copy of ξ and all of those are normal again. Special vertices receive offspring
according to an independent copy of ξ̂, and one of them is selected uniformly at
random and declared its heir. If the heir has height less than kn, then it is declared
special, and otherwise it becomes a normal vertex. Here the unique heir that is
not special corresponds to the vertex u0. The probability for a special vertex to
have ` offspring such that precisely the ith is selected as heir is given by

P(ξ̂ = `)/` = P(ξ = `).

Hence

P(Hkn(T ∗, u0) = (T, x)) = P(T = T ). (6.7)

Combining Equations (6.6) and (6.7) yields

P(Hkn(Tn, v0) = (T, x))/P(Hkn(T ∗, u0) = (T, x)) = P(f(Tn, v0) = T )/P(T = T ).

Remark 15.8, Equation (17.1) and subsequent equations in Janson’s survey [12]
yield that

P(f(Tn, vn) = Tk)/P(T = Tk) = P(Sn−|Hk| = 0)/P(Sn = −1)

with S` denoting the sum of ` independent copies of ξ − 1. Since (T, x) ∈ Ekn,n,
the tree T has at most ntn vertices. Consequently, the local limit theorem for
sums of lattice distributed random variables [9, Ch. 3.5] yields that uniformly for
all (T, x) ∈ Ekn,n as n ≡ 1 mod span(w) becomes large

P(Sn−|T | = 0)/P(Sn = −1) = (1 + o(1))
o(1) + span(w)√

2πσ2

o(1) + span(w)√
2πσ2

exp( −1
2nσ2 )

= 1 + o(1).

This verifies iii) and hence completes the proof.

6.3 General observations

We state two observations that are valid for weight sequences having arbitrary
type. The first describes the asymptotic probability to encounter small extended
fringe subtrees.

Lemma 6.1. Let v0 be a uniformly at random selected vertex of the simply gener-
ated plane tree Tn. Let T • be a pointed plane tree whose pointed vertex has height
h ≥ 0. Then the probability, that the pointed fringe subtree at the hth ancestor
vh of the random vertex v0 ∈ Tn is equal to the pointed tree T •, converges to the
probability, that the pointed fringe subtree of T ∗ at the spine vertex uh is equal ot
T •. That is, with T •n = (Tn, v0) it holds that

P(f •(T •n , vh) = T •)→ P(f •(T ∗, uh)).
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Here we consider T ∗ as pointed at the center u0. If we let V ⊂ V•∞ denote the
subtree of the modified Ulam–Harris tree U•∞ that corresponds to the pointed tree
T •, then this may be expressed by

P(d+
T •n (v) = d+

T •(v) for all v ∈ V )→ P(d+
T ∗(v) = d+

T •(v) for all v ∈ V ).

Here f •(·, ·) denotes the pointed fringe subtree as defined in Section 5.4. The
following result describes the asymptotic probability for extended fringe subtrees
containing an acestor with large degree.

Lemma 6.2. Let v0 be a uniformly at random selected vertex of the simply gener-
ated plane tree Tn. Let T • be a pointed plane tree whose pointed vertex has height
h ≥ 0. For all integers 1 ≤ k ≤ h and all sufficiently large ` we may consider
the event, that the outdegrees of the pointed fringe subtree of the hth ancestor of
the random vertex v0 ∈ Tn all agree with the outdegrees of T •, except for the kth
ancestor of v0, which is required to have at least ` offspring to the left and at least
` offspring to the right of its unique son that is also an ancestor of v0. As n
becomes large, this probability converges toward an expression that depends on `.
If we let ` tend to infinity, then this expression converges toward the probability,
that the outdegrees of the fringe subtree of T ∗ at the spine vertex uh agree with
the outdegrees of T •, except for uk, which must have outdegree (∞,∞). In other
words, uk is required to have an infinite number of offspring vertices to the left
and to the right of uk−1. Expressed in more formal words, let V ⊂ V•∞ denote the
subtree of U•∞ that corresponds to the tree T •. Then the event E(`, n) that

d+
T •n (v) = d+

T •(v)

for all v ∈ V \ {ui} and

d+
T •n (ui) ∈ {k, k + 1, . . .} × {k, k + 1, . . .}

satisfies

lim
`→∞

lim
n→∞

P(E(`, n)) =

P(d+
T ∗(v) = d+

T •(v) for all v ∈ V \ {uk}, d+
T ∗(uk) = (∞,∞)).

These results certainly deserve some explanation. If the weight sequence w has
type I, then Lemma 6.1 immediately yields weak convergence of (Tn, v0) toward
T ∗. This proves Theorem 5.1. Aldous [5] showed a similar form of convergence for
the case where w has type Iα, and Janson [12, Thm. 7.12] established convergence
of the fringe subtree at v0 for arbitrary weights. The proof of Lemma 6.1 uses this
result and various others from [12].

In the type II and III setting, the situation is more complicated and Lemma 6.2
is not sufficient to deduce convergence in T• for arbitrary weight-sequences. It is
intuitive, that a random vertex is only likely to be close to the root, if one of its
ancestors has large degree. Lemma 6.2 provides a description of what happens
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near a random root up to its first ancestor that has large degree. Beyond that,
we only obtain information on what happens in the case that the ancestors of this
ancestor have small degree. Since the space T• is compact, the sequence (Tn, vn)
clearly converges weakly toward a limit along a subsequence, and the distribution
of this limit must agree by Lemma 6.2 with T ∗ until the point where the spine
of T ∗ stops. However, at this location, we could encounter the root vertex of the
limit, but just as well a second ancestor with large degree.

Proof of Lemma 6.1. Let v0, v1, . . . be the directed path from v0 to the root of
Tn. Let T • = (T, v) be a pointed, finite plane tree and let h denote the height
of the vertex v in T . Consider the event that v0 has height at least h, and that
the pointed fringe subtree f •(T •n , vh) of T •n = (Tn, v0) is equal to T •. Given Tn,
there is a one to one correspondence between the vertices v with fringe subtree
f(Tn, v) = T and the vertices v′ whose h-th ancestor u has pointed fringe subtree
f •((Tn, v′), u) = T •. Thus,

P(f •(T •n , vh) = T •) = P(f(Tn, v0) = T ). (6.8)

Janson [12, Thm. 7.12] showed that

lim
n→∞

P(f(Tn, v0) = T ) = P(T = T ). (6.9)

The probability for the size-biased random variable ξ̂ to assume a value `, and
that a uniformly at random choice out of ` options yields a specific value `0, is
equal to the probability that ξ equals `. Thus

P(T = T ) = P(f •(T ∗, uh) = T •).

Combined with Equations (6.8) and (6.9) this yields that

lim
n→∞

P(f •(T •n , vh) = T •) = P(f •(T ∗, uh) = T •). (6.10)

The proves the first claim.

Proof of Lemma 6.2. Let T • = (T, v) denote a finite pointed plane tree, where the
pointed vertex is not equal to its root. Let k1, k2 be arbitrary non-negative integers
whose sum is larger than the maximum degree of the tree T . This assumption
will be crucial in the following argument.

Suppose that o is a vertex that lies on the path from the root to the pointed
vertex of T •, but is not equal to the pointed vertex. In order to not confuse the
three vertices, let us call the root of T the inner root, the pointed vertex of T •

the outer root, and the vertex o the middle root.
Let Ek1,k2(T •) denote the set of pointed plane trees obtained by connecting the

root vertices of k1 arbitrary plane-trees from the left to the middle root o of T •,
and k2 from the right. We are interested in the event that f •(T •n , vk) ∈ Ek1,k2(T •).
Let Ek1,k2(T ) denote the corresponding set where we forget about which outer-root
(the pointed vertex) we distinguished. Equation (6.8) yields

P(f •(T •n , vk) ∈ Ek1,k2(T •)) = P(f(Tn, v0) ∈ Ek1,k2(T )). (6.11)
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In order to study this asymptotic probability, we make us of a modified depth-first
search of the tree.

Traditional depth-first-search (DFS) lists the vertices of a plane tree by starting
with the root, and traverses in each step along the left-most previously unvisited
son. If no such son exists, we go to the parent of the current vertex and try again.
The process terminates with an ordered list of all vertices of the tree. Note that
at any time the search maintains an ordered list of vertices that it already visited,
and an ordered list Q of vertices that are scheduled to be visited next. Anytime
we visit a new vertex that is not a leaf, vertices are added to the front of the queue
Q of vertices that are to be visited next.

Let K be the sum of k1, k2 and the outdegree d+
T (o) of the middle root of

T . We may modify the DFS by treating vertices with out-degree K in a special
manner. When we encounter such a vertex, instead of putting all its offspring
in front of the queue Q, we put the (k1 + 1)th to (k1 + d+

T (o))th offspring to the
front of the queue Q, and the remaining offspring to the back. Thus, if none of
the fringe subtrees of the vertices we put to the front of the queue has a vertex
with degree K, we traverse next along the (k1 + 1)th son its entire fringe subtree,
and so on, until the (k1 + d+

T (o)) son and its entire fringe subtree. After this we
proceed with the remaining siblings of o.

As we assumed that K is larger than the maximum degree of T , this means
that if we search a tree T ′ from Ek1,k2(T ), the first |T | vertices in the resulting list
of ordered vertices correspond to the vertices of T , and their outdegrees are equal
to those in T , except for the vertex o, which has outdegree d+

T ′(o) = K.
We now proceed similarly as in the proof of Janson’s result [12, Thm. 7.12]

where classical DFS was used. Let d0, . . . , dn−1 denote the list of outdegrees in
the simply generated tree Tn according to the modified DFS-order. For any i ≥ n
we set di = di mod n. Let d̂0, . . . , d̂` denote the DFS-ordered list of outdegrees in
T , and let i0 denote the unique index that corresponds to the vertex o. Since K
is larger than the maximal outdegree of T , the vertices v of Tn with fringe-subtree
in Ek1,k2(T ) correspond bijectively to the indices 0 ≤ i ≤ n− 1 with

(d̂0, . . . , d̂i0−1, K, d̂i0+1, . . . , d̂`) = (di, di+1, . . . , di+`).

This explicitly includes the case, where i is so close to n−1 such that i+` > n−1.
It is not possible for a tree to have an ending segment in its list of vertices that is
equal to an initial segment of (K, d̂1, . . . , d̂`), because then the search of the tree
would have terminated with a non-empty queue Q of vertices that still need to be
visited.

Consider the balls-in-boxes model (Y0, . . . , Yn−1) from Equation (6.1). We set
Yi = Yi mod n for i ≥ n. For all 0 ≤ j ≤ n− 1 let Ij be the indicator for the event

(Yj, . . . , Yj+`) = (d̂0, . . . , d̂i0−1, K, d̂i0+1, . . . , d̂`).
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The sum
∑n−1

j=0 Ij is rotational invariant, hence it follows from Equation (6.2) that

P(f(Tn, v0) ∈ Ek1,k2(T )) = E[n−1

n−1∑
j=0

Ij] = E[I0]

= P((Y0, . . . , Y`) = (d̂0, . . . , d̂i0−1, K, d̂i0+1, . . . , d̂`)).

For ease of notation, we define

(d̄0, d̄1, . . . , d̄`) := (d̂i0 , d̂0, . . . , d̂i0−1, d̂i0+1, . . . , d̂`).

By exchangeability, it follows that

P(f(Tn, v0) ∈ Ek1,k2(T )) = P((Y0, . . . , Y`) = (K, d̄1, . . . , d̄`)).

Combining this with Equation (6.11) yields

P(f •(T •n , vk) ∈ Ek1,k2(T •)) = P((Y0, . . . , Y`) = (K, d̄1, . . . , d̄`)). (6.12)

Setting

E≥k1,≥k2 =
⋃

`1≥k1,`2≥k2

E`1,`2 ,

it follows that

P(f •(T •n , vk) ∈ E≥k1,≥k2(T •)) =
∑
r≥K

∑
`1+`2+d̄0=r
`1≥k1,`2≥k2

P((Y0, . . . , Y`) = (r, d̄1, . . . , d̄`))

=
∑
r≥K

(r −K + 1)P((Y0, . . . , Y`) = (r, d̄1, . . . , d̄`))

(6.13)

For any j ≥ 0, let Nj denote the number of indices 0 ≤ i ≤ n − 1 with Yi = j.
Conditioned on the Nj, the numbers Y0, Y1, . . . are obtained by placing N0 0’s, N1

1’s, . . . , in uniformly random order. So, as stated in [12, Eq. (14.44)], it follows
that for r ≥ K

P((Y0, . . . , Y`) = (r, d̄1, . . . , d̄`) | N0, N1, . . .) =
Nr

n

∏̀
i=1

Nd̄i − ci
n− i

(6.14)

with ci denoting the number of 1 ≤ j < i with d̄j = d̄i. Hence

P((Y0, . . . , Y`) = (r, d̄1, . . . , d̄`)) = E

[
Nr

n

∏̀
i=1

Nd̄i − ci
n− i

]

= E

[
Nr

n

∏̀
i=1

Nd̄i

n
+O

(
Nr

n2

)]
, (6.15)
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where the implicit constant in the O term does not depend on n or r. It follows
by Equation (6.13) that

P(f •(T •n , vk) ∈ E≥k1,≥k2(T •)) =

E

[∑
r≥K rNr

n

∏̀
i=1

Nd̄i

n
+ (1−K)

∑
r≥K Nr

n

∏̀
i=1

Nd̄i

n
+O

(
K
∑

r≥K rNr

n2

)]
.

It holds that ∑
j≥1

jNj = n− 1 and
∑
j≥0

Nj = n.

Hence

P(f •(T •n , vk) ∈ E≥k1,≥k2(T •)) =

E

[
n− 1−

∑
r<K rNr

n

∏̀
i=1

Nd̄i

n
+ (1−K)

n−
∑

r<K Nr

n

∏̀
i=1

Nd̄i

n

]
+O

(
K

n

)
.

By Janson’s result [12, Thm. 11.4] it holds for each fixed j as n becomes large
that

Nj/n
p−→P(ξ = j).

Thus, by dominated convergence, it follows that as n becomes large

P(f •(T •n , vk) ∈ E≥k1,≥k2(T •))→ (P(ξ̂ ≥ K) + (1−K)P(ξ ≥ K))
∏̀
i=1

P(ξ = d̄i).

(6.16)

Recall that the first moment of ξ is given by

µ = min(1, ν) ∈ [0, 1].

Clearly it holds that

P(ξ̂ ≥ K) + (1−K)P(ξ ≥ K) ≤ P(ξ ≥ K) + P(ξ̂ ≥ K)→ 1− µ

as K becomes large. As for a lower bound, we may write for every 0 < ε < 1

P(ξ̂ ≥ K) + (1−K)P(ξ ≥ K) ≥ P(ξ ≥ K) +
∑
k≥K

(k −K)P(ξ = k)

≥ P(ξ ≥ K) +
∑
k>K/ε

(1− ε)kP(ξ = k)

→ (1− ε)(1− µ)

as K becomes large. As ε > 0 was arbitrary, it follows that

P(ξ̂ ≥ K) + (1−K)P(ξ ≥ K)→ 1− µ



6 PROOF OF THE MAIN RESULTS 23

as K tends to infinity. Hence Equation (6.16) implies that for any sequences k1(r)
and k2(r) with k1(r) + k2(r)→∞ as r becomes large it holds that

lim
r→∞

lim
n→∞

P(f •(T •n , vk) ∈ E≥k1(r),≥k2(r)(T
•))→ (1− µ)

∏̀
i=1

P(ξ = d̄i).

Since

P(d+
T ∗(v) = d+

T •(v) for all v ∈ V \ {uk}, d+
T ∗(uk) = (∞,∞)) = (1−µ)

∏̀
i=1

P(ξ = d̄i),

this concludes the proof.

6.4 The limit theorems in the condensation regime

6.4.1 The type II regime

Proof of Lemma 5.4. Suppose that the weight-sequence w has type II or III. We
need to show that the following three statements are equivalent.

1. (Tn, v0)
d−→T ∗.

2. hTn(v0)
d−→ hT ∗(u0).

3. lim supn→∞ P(hTn(v0) ≥ k) ≤ µk + k(1− µ)µk−1 for all k ≥ 1.

It is clear that the first claims implies the second, since the height

h : T• → N0, (T, x) 7→ hT (x)

is a continuous functional on the space T•. The height hT ∗(u0) of the pointed
vertex in T ∗ is distributed like 1 plus the sum of two independent identically
geometric random variables with parameter µ. Thus the second claim implies the
third. The convergence in Lemma 6.2 immediately yields that for all t ≥ 1

lim inf
n→∞

P(hTn(v0) ≥ t) ≥ P(hT ∗(u0) ≥ t) = µk + k(1− µ)µk−1.

Hence the third claim implies the second. It remains to verify that the second
claim implies the first. Suppose that

hTn(v0)
d−→ hT ∗(u0). (6.17)

Since the space T• is compact, any sequence of random pointed plane trees has a
convergent subsequence. In particular, the sequence (Tn, v0) of converges toward
a limit object T̄ along a subsequence (nk)k. We are going to show that

T̄ d
= T ∗ (6.18)
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regardless of the subsequence. By standard methods [7, Thm. 2.2] this implies

(Tn, v0)
d−→T ∗.

By Equation (6.17) it holds that

hT̄ (u0)
d
= hT ∗(u0). (6.19)

Lemma 6.1 yields that for any finite tree T • = (T, x) ∈ T• with hT (u0) = k it
holds that

P(f •(T ∗, uk) = T •) = P(f •(T̄ , uk) = T •). (6.20)

By Lemma 6.2 we know furthermore that for any index 1 ≤ i ≤ k it holds that

P(d+
T ∗(ui) = (∞,∞), d+

T ∗(v) = d+
T •(v) for all v ∈ V \ {ui}) =

P(d+
T̄ (ui) = (∞,∞), d+

T̄ (v) = d+
T •(v) for all v ∈ V \ {ui}) (6.21)

with V ⊂ V•∞ denoting the subset corresponding to the vertices of T •.
We are going to show that Equations (6.19), (6.20) and (6.21) are sufficient to

verify that T̄ d
= T ∗. The first step is to verify that

(d+
T ∗(ui))i≥1

d
= (d+

T̄ (ui))i≥1 (6.22)

as random elements of the product space(
{∗} t (N0 × N0)

)N
.

For this, it is sufficient to verify that for all k ≥ 1

(d+
T ∗(ui))1≤i≤k

d
= (d+

T̄ (ui))1≤i≤k.

To this end, let
d1, . . . , dk ∈ {∗} t (N0 × N0)

be given, such that there exists an index 0 ≤ j ≤ k such that for all i > j it holds
that di = ∗. We are going to show that

P(d+
T ∗(ui) = di, 1 ≤ i ≤ k) = P(d+

T̄ (ui) = di, 1 ≤ i ≤ k). (6.23)

This suffices, as the set of indices i with d+
T ∗(ui) = ∗ must form a tail-segment

of (1, . . . , k), since T ∗ is a tree, and likewise for T̄ . Moreover, Equation (6.19)
implies that almost surely

d+
T̄ (u1), d+

T ∗(u1) 6= ∗.

Hence we may additionally assume that j ≥ 1.
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First, let us observe that

P(d+
T ∗(ui) = di, 1 ≤ i ≤ j) ≤ P(d+

T̄ (ui) = di, 1 ≤ i ≤ j). (6.24)

Indeed, the left-hand side is equal to zero unless di ∈ N0 × N0 for all 1 ≤ i ≤ j
with the exception of at most one index i0 for which we allow that di0 = (∞,∞).
If the di satisfy this property, we may argue as follows. We constructed the tree
T ∗ in a way such that for all vertices v ∈ V•∞ \ {u1, u2, . . .} the fringe-subtree
f(T ∗, v) is finite. Hence the event d+

T ∗(ui) = di, 1 ≤ i ≤ j is a countable disjoint
union of events of the form considered in Equations (6.20) and (6.21). That
is, if all di ∈ N × N for 1 ≤ i ≤ j, then Inequality (6.24) follows by applying
Equation (6.20) for countably many finite pointed trees T • ∈ T•. If di0 = (∞,∞)
for an index 1 ≤ i0 ≤ j, then Inequality (6.24) follows by applying Equation (6.21)
for countably many finite trees T • ∈ T• with d+

T •(ui0) = (0, 0).
Thus Inequality (6.24) holds. If we sum over all d1, . . . , dj ∈ N0 × N0, then

the left-hand side of (6.24) sums up to P(hT ∗(u0) ≥ j), and the right-hand side
to P(hT̄ (u0) ≥ j). But these two quantities are equal by Equation (6.19). Thus it
follows that already

P(d+
T ∗(ui) = di, 1 ≤ i ≤ j) = P(d+

T̄ (ui) = di, 1 ≤ i ≤ j) (6.25)

for all d1, . . . , dj ∈ N0 × N0.
If j = k, then Equation (6.25) is identical to Equation (6.23). Otherwise, if

1 ≤ j < k, then Equation (6.25) implies that

P(d+
T ∗(ui) = di, 1 ≤ i ≤ k)

= P(d+
T ∗(uj+1) = ∗, d+

T ∗(ui) = di for all 1 ≤ i ≤ j)

= P(d+
T ∗(ui) = di, 1 ≤ i ≤ j)−

∑
d∈N0×N0

P(d+
T ∗(uj+1) = d, d+

T ∗(ui) = di, 1 ≤ i ≤ j).

Of course, the same holds if we replace T ∗ by T̄ . It follows by Equation (6.25),
that the last expression is equal for T ∗ and T̄ . This verifies Equation (6.23), and
hence also Equation (6.22).

In order to verify that T ∗ d
= T̄ , we may proceed in a similar manner. Letting

d1, . . . , dk and 1 ≤ j ≤ k be as before, Equations (6.20), (6.21) and (6.22) imply
that

(f •(T ∗, uj) | d+
T ∗(ui) = di, 1 ≤ i ≤ j)

d
= (f •(T ∗n , uj) | d+

T̄ (ui) = di, 1 ≤ i ≤ j).

(6.26)

Indeed, if d1, . . . , dj are finite, then there are only countably many values that the
pointed fringe tree

T1 := (f •(T ∗, uj) | d+
T ∗(ui) = di, 1 ≤ i ≤ j)

may assume. By Equation (6.20) and (6.22), the tree

T2 := (f •(T ∗n , uj) | d+
T̄ (ui) = di, 1 ≤ i ≤ j)
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assumes each with the same probability as T1, so it follows that the tree T2 is also

supported on a countable set and T1
d
=T2. As for the other case, suppose that

di0 = (∞,∞) for a unique index 1 ≤ i0 ≤ j. For each ` ≥ 0 we may look at the
canonically ordered finite list L`(T1) of fringe subtrees at the sons v 6= u1, . . . , uj−1

of the ui for i 6= i0 and at the first ` siblings to the left and to the right of uj−1.
Again there are only countably many outcomes for L`(T1), as each of these fringe
trees must be finite. By Equations (6.21) and (6.22), the list L`(T2) assumes each
with the same probability. Hence L`(T2) is also supported on a countable set

and L`(T1)
d
=L`(T2). As this holds for arbitrary `, it follows that T1

d
=T2. Hence

Equation (6.26) holds.
Letting d1, . . . , dj range over all allowed values, it follows from Equations (6.22)

and (6.26) that

(f •(T ∗, uj) | hT ∗(u0) ≥ j)
d
= (f •(T ∗n , uj) | hT̄ (u0) ≥ j). (6.27)

In order to deduce that T ∗ d
= T̄ , we need to show that any Borel-measurable set

E ⊂ T• and any h ≥ 1 it holds that

P(f •(T ∗, uh) ∈ E , hT ∗(u0) = h) = P(f •(T ∗n , uh) ∈ E , hT̄ (u0) = h). (6.28)

Clearly it suffices to show this when E contains only trees T ∈ T• with hT (u0) = h.
In this case, it follows by Equation (6.27) that

P(f •(T ∗, uh) ∈ E , hT ∗(u0) = h)

= P(f •(T ∗, uh) ∈ E)− P(f •(T ∗, uh) ∈ E , hT ∗(u0) ≥ h+ 1)

= P(f •(T ∗, uh) ∈ E , hT ∗(u0) ≥ h)− P(f •(T ∗, uh) ∈ E , hT ∗(u0) ≥ h+ 1)

= P(f •(T̄ , uh) ∈ E , hT̄ (u0) ≥ h)− P(f •(T̄ , uh) ∈ E , hT̄ (u0) ≥ h+ 1)

= P(f •(T̄ , uh) ∈ E , hT̄ (u0) = h).

This verifies Equation (6.28) and hence completes the proof.

Proof of Theorem 5.3. Suppose that the weight sequences w has type II and that
the maximum degree ∆(Tn) has order

∆(Tn) = (1− µ)n+ op(n). (6.29)

By Kortchemski’s central limit theorem for ∆(Tn) [15, Theorem 1], we know that
this holds for example when ωk = f(k)k−αρ−kφ for a constant α > 2 and a slowly
varying function f . In order to show that

(Tn, v0)
d−→T ∗,

it suffices by Lemma 5.4 to show that

hTn(v0)
d−→ hT ∗(u0).
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Let D̃n denote the random integer defined in Equation (5.3) by

D̃n
d
= (d+

Tn(o) | d+
Tn(o) > Ωn).

for any fixed deterministic sequence Ωn that tends to infinity slowly enough such
that Equation (5.1) holds. Here o ∈ Tn denotes the root-vertex of the tree Tn.
Let T̂1n denote the modified Galton–Watson tree constructed in Subsection 6.1.2.
Janson [12, Equation (20.2)] argued that it follows from the assumption (6.29)
that

P(d+
Tn(o) = ∆(Tn)) = 1− µ+ o(1).

By Equations (5.1), (6.1) and (6.2) it holds that

P(d+
Tn(o) > Ωn) = 1− µ+ o(1).

Using Equation (5.2) it follows that

dTV(D̃n,∆(Tn))→ 0

as n becomes large. Thus, we may choose the coupling of Tn and T̂1n in (6.4) such
that

P(D̃n = ∆(Tn))→ 1 (6.30)

as n becomes large. For each k ≥ 0, let

`k : T→ N̄0,

denote the continuous map that sends a tree to its width at height k. It follows
by (6.4) that for each fixed k

|`k(Tn)− `k(T̂1n)| p−→ 0. (6.31)

The specified vertex v∗ with outdegree D̃n in the tree T̂1n has height h(v∗) given
by

P(h(v∗) = k) = µk(1− µ). (6.32)

If h(v∗) ≥ k, then `k(T̂1n) = Op(1) by the construction of T̂1n. If h(v∗) = k− 1− i
for i ≥ 0, then `k(T̂1n) is given by the Op(1) number of vertices that do not have
v∗ as ancestor, and the sum

`i(T1) + . . .+ `i(TD̃n)

of the D̃n independent ξ-Galton–Watson trees dangling from the vertex v∗. It
follows by (6.31) that

`k(Tn) = op(1) + `k(T̂1n)

= Op(1) +
k−1∑
i=0

1h(v∗)=k−1−i
(
`i(T1) + . . .+ `i(TD̃n)

)
. (6.33)
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It is elementary that for all i

E[`i(T1)] = µi. (6.34)

Equations (6.29) and (6.30) imply that

D̃n = (1− µ+ op(1))n. (6.35)

By Equations (6.33), (6.34), (6.35), and the law of large numbers, it follows that
`k(Tn)/n converges in distribution. As `k(Tn)/n ≤ 1 for all n, it follows by domi-
nated convergence and Equation (6.32) that

P(hTn(v0) = k) = E[`k(Tn)/n]

= o(1) +
k−1∑
i=0

P(h(v∗) = k − 1− i)µi(1− µ)

= o(1) + kµk−1(1− µ)2. (6.36)

It holds that
hT ∗(u0)

d
= 1 +G1 +G2

with G1 and G2 denoting two independent identically distributed geometric ran-
dom variables with parameter µ, such that

P(G1 = i) = (1− µ)µi.

Hence Equation (6.36) implies that

hTn(v0)
d−→ hT ∗(u0).

By Lemma 5.4 it follows that

(Tn, v0)
d−→T ∗

in the space T• of pointed plane trees.

6.4.2 The type III regime

Proof of Proposition 5.5. We need to show that the following three properties are
equivalent.

1. (Tn, v0)
d−→T ∗ in T•.

2. hTn(v0)
p−→ 1.

3. The maximum degree ∆(Tn) satisfies ∆(Tn) = n+ op(n).

It is clear that the first claim implies the second, and that the second claim
implies the third. If ∆(Tn) = n + op(n), then the vertex with largest degree is
with high probability the root [12, Equation (20.2)]. So in this case, it follows

that hTn(v0)
p−→ 1. Hence the third claim implies the second. By Lemma 5.4, it

also holds that the second claim implies the first.
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6.5 Truncated limits and large degrees

Proof of Theorem 5.6. Let T •n denote the tree Tn pointed at the uniformly at
random selected vertex v0, and let v0, v1, . . . denote the path from v0 to the root
of Tn. Suppose that the weight sequence w has type II or III. Let T • = (T, x)
denote a finite plane tree that is pointed at vertex different from its root, and let
k denote the height of the pointed vertex in T . The inner root of the tree T • will
be denoted by o.

For all k1, k2 ≥ 0 let Ek1,k2(T •) denote the set of pointed plane trees obtained
by connecting the root vertices of k1 arbitrary plane-trees from the left to the
vertex o of T •, and k2 from the right. As we argued in Equation (6.12), there is
an ordering d̄1, . . . , d̄` of the outdegrees of the vertices v 6= o of the tree T such
that with d̄0 = d+

T (o) it holds that

P(f •(T •n , vk) ∈ Ek1,k2(T •)) = P((Y0, . . . , Y`) = (k1 + k2 + d̄0, d̄1, . . . , d̄`)). (6.37)

For each n, let

En =
⋃

k1≥0,k2≥0
k1+k2+d̄0≥Ωn

Ek1,k2 .

Setting d̄0 = d+
T •(o), it follows that

P(H(Tn, v0,Ωn) ∈ En(T •)) =
∑
r≥Ωn

∑
k1+k2+d̄0=r

P((Y0, . . . , Y`) = (r, d̄1, . . . , d̄`))

=
∑
r≥Ωn

(r − d̄0 + 1)P((Y0, . . . , Y`) = (r, d̄1, . . . , d̄`))

(6.38)

By Equation (6.15), it follows that

P(H(Tn, v0,Ωn) ∈ En(T •)) =

E

[∑
r≥Ωn

rNr

n

∏̀
i=1

Nd̄i

n
+ (1− d̄0)

∑
r≥Ωn

Nr

n

∏̀
i=1

Nd̄i

n
+O

(
d̄0

∑
r≥Ωn

rNr

n2

)]
.

By Equation (5.1) we know that∑
r≥Ωn

rNr

n
= 1− µ+ op(1).

Janson’s result [12, Thm. 11.4] implies that for each fixed j

Nj

n

p−→P(ξ = j)

and hence for each fixed K∑
r≥K Nr

n
= 1−

∑
r<K Nr

n

p−→P(ξ ≥ K).
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Consequently, ∑
r≥Ωn

Nr

n
= op(1).

By dominated convergence, it follows that

P(H(Tn, v0,Ωn) ∈ En(T •))→ (1− µ)
∏̀
i=1

P(ξ = d̄i).

Let V ⊂ V•∞ denote the subset corresponding to the vertices of the tree T •. Recall
that the pointed vertex in T • has height k. It holds that

P(d+
T̄ ∗(v) = d+

T •(v) for all v ∈ V \ {uk}, d+
T̄ ∗(uk) = (∞,∞)) = (1−µ)

∏̀
i=1

P(ξ = d̄i).

It readily follows that

H(Tn, v0,Ωn)
d−→T̄ ∗

in the space T•.

Before proceeding with the proof of the main results, we make the following
observation.

Lemma 6.3. It holds that

D̃n ≤ (1− ν + o(1))n

with probability tending to 1 as n becomes large.

Proof. For each k ≥ 0, let `k : T→ N̄0 denote the continuous map that a sends a
tree to the number of its vertices with distance k from the root. In Equation (6.33)
we considered a coupling of Tn with the tree T1n and its tip of the spine v∗, and
observed that

`k(Tn) = Op(1) +
k−1∑
i=0

1h(v∗)=k−1−i
(
`i(T1) + . . .+ `i(TD̃n)

)
with T1, T2, . . . denoting independent ξ-Galton–Watson trees. As D̃n ≥ Ωn and
Ωn →∞, the law of large numbers yields

`i(T1) + . . .+ `i(TD̃n)

D̃n

p−→µi.

As n−1D̃n ≤ 1, it follows that for any fixed integer M it holds that

1 ≥ 1

n

M∑
k=1

`k(Tn) = op(1) +
D̃n

n

M∑
k=1

k−1∑
i=0

1h(v∗)=k−1−iµ
i (6.39)
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It is elementary that for each ε > 0 and each δ > 0 there is an integer M0 such
that

P

(
1− δ ≤ (1− µ)

M0∑
k=1

k−1∑
i=0

1h(v∗)=k−1−iµ
i ≤ 1

)
≥ 1− ε.

Thus
D̃n

(1− µ)n
≤ 1 + op(1).

In other words, there is a sequence tn → 0 such that

D̃n ≤ (1− µ+ tn)n

with probability tending to 1 as n becomes large.

Proof of Theorem 5.7. Let ε > 0 be given, and m ≥ 1 be arbitrarily large but
fixed. The height of the pointed vertex in T̄ ∗n is stochastically bounded. Hence
if M1 ≥ 1 is large enough, the probability for this height to be larger than M1 is
less than ε for all n.

The total size of the tree obtained by pruning T̄ ∗n at its vertex with large degree,
such that at most m trees to the left and right of its spine offspring remain, is
also stochastically bounded. Hence if M2 ≥ 1 is large enough the probability for
this size to be larger than M2 is at most ε for all n.

By Lemma 6.3, we know that there is a sequence tn = o(1) such that the
probability for the root-degree of T̄ ∗n to be larger than (1− ν + tn)n tends to zero
as n becomes large. By modifying tn for finitely many n we may also assume that
additionally this probability is less than ε for all n.

Let x1, . . . , xr ∈ V•∞ be given vertices, and let M3 denote the distance from
the center u0 to the youngest common ancestor of x1, . . . , xr.

LetM > M1,M2,M3 be a fixed constant. Let V ⊂ V•∞ correspond to the vertex
set of a pointed tree (T, x) with at most M vertices such that 1 ≤ hT (x) ≤ M
and the root o has at most m offspring vertices to the left and to the right of its
unique son that lies on the spine.

We are going to show that

sup
(k1,k2)

Ωn≤k1+k2≤(1−ν+tn)n

∣∣∣∣∣P(d+
T •n (v) = d+

T (v) for v ∈ V \ {o}, d+
T •n (o) = (k1, k2))

P(d+
T̄ ∗n

(v) = d+
T (v) for v ∈ V \ {o}, d+

T̄ ∗n
(o) = (k1, k2))

− 1

∣∣∣∣∣→ 0.

(6.40)

Note that the nominator and denominator are either both non-zero or both zero,
and we will tacitly only consider the case where this expression is well-defined. In
particular, this entails considering only trees T such that

P(ξ = d+
T (v)) > 0

for all vertex v ∈ V (T ) \ {o}. There are only finitely many choices for T and V .
Hence the limit (6.40) implies that

dTV((d+
H(Tn,v0,Ωn)(xi))1≤i≤r, (d

+
T̄ ∗n

(xi))1≤i≤r) ≤ 3ε
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for large enough n. As ε > 0 was arbitrary, this suffices to prove the claim.
It remains to verify the limit in (6.40). We may assume that n is large enough

such that Ωn > M . By Equation (6.37), we may order the outdegrees of T by
(d̄0, . . . , d̄`) such that d̄0 = d+

T (o) and for all k1, k2

P(d+
T •n (v) = d+

T (v) for v ∈ V \ {o}, d+
T •n (o) = (k1, k2))

= P((Y0, . . . , Y`) = (K, d̄1, . . . , d̄`)).

with
K = k1 + k2 + d̄0.

By the construction of T̄ ∗n it holds that

P(d+
T̄ ∗n

(v) = d+
T (v) for v ∈ V \ {o}, d+

T̄ ∗n
(o) = (k1, k2)) =

K−1(1− µ)P(D̃n = K)
∏̀
i=1

P(ξ = `).

Thus

P(d+
T •n (v) = d+

T (v) for v ∈ V \ {o}, d+
T •n (o) = (k1, k2))

P(d+
T̄ ∗n

(v) = d+
T (v) for v ∈ V \ {o}, d+

T̄ ∗n
(o) = (k1, k2))

=

KP(Y0 = K)

(1− µ)P(D̃n = K)
P((Y1, . . . , Y`) = (d̄1, . . . , d̄`) | Y0 = K)

(∏̀
i=1

P(ξ = `)

)−1

.

By Equation (5.3) and K ≥ Ωn it holds that

P(D̃n = K) = P(d+
Tn(o) = K)/P(d+

Tn(o) > Ωn).

For any integer k ≥ 0 it holds by the discussion in Section (6.1.1) and in particular
Equation (6.2) that

P(d+
Tn(o) = k) =

nk

n− 1
P(Y0 = k).

See also [12, Lemma 15.7]. Hence

P(D̃n = K) =
KP(Y0 = K)∑
k>Ωn

kP(Y0 = k)
.

It follows by Equation (5.1) that the term

KP(Y0 = K)

(1− µ)P(D̃n = K)
=

∑
k>Ωn

kP(Y0 = k)

1− µ
→ 1

does not depend on K at all and converges toward 1. Thus, in order to verify the
limit (6.40), it remains to show that

P((Y1, . . . , Y`) = (d̄1, . . . , d̄`) | Y0 = K)

(∏̀
i=1

P(ξ = `)

)−1

→ 1 (6.41)
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uniformly for all Ωn ≤ K ≤ (1− µ+ tn)n. Note that

P((Y1, . . . , Y`) = (d̄1, . . . , d̄`) | Y0 = K) =

P((Y
(n−1−K,n−1)

1 , . . . , Y
(n−1−K,n−1)
` ) = (d̄1, . . . , d̄`))

For ease of notation, let us set Y ′i = Y
(n−1−K,n−1)
i for all i and let N

(n−1−K,n−1)
k =

N ′k denote the number of indices with i with Y ′i = k. Similar as in Equation (6.14)
it holds that

P((Y ′1 , . . . , Y
′
` ) = (d̄1, . . . , d̄`) | N ′0, N ′1, . . .) =

∏̀
i=1

N ′
d̄i
− ci

n− i

with ci denoting the number of 1 ≤ j < i with d̄j = d̄i. It is elementary that∏̀
i=1

N ′
d̄i
− ci

n− i
= (1 +O(n−1))

∏̀
i=1

N ′
d̄i

n
.

with the implicit bound in the O(n−1) term not depending on K.
Recall that in Section 3.1 we defined φ(z) =

∑
k≥0 ωkz

k, ψ(z) = zφ′(z)/φ(z),
and a parameter τ . As the weight sequence (ωi)i has type II or III, it holds that
τ = ρφ is the radius of convergence of φ(z). In Section 3.2 we defined furthermore
P(ξ = k) = ωkτ

k/φ(τ) for all k. Janson [12, Theorem 11.6] gave the following
result. The function

τ : [0,∞[→ [0,∞], x 7→ sup{t ≤ ρ | ψ(t) ≤ x}.

is continuous. For x ≤ ν = µ it holds that τ(x) is the unique number with
ψ(τ(x)) = x, and for x > ν it holds that τ(x) = ρφ = τ . Furthermore, for each
fixed non-negative integer d it holds uniformly for all m ≤ n that

N
(m,n)
d

n
− ωdτ(m/n)d

φ(m/n)

p−→ 0.

We assumed that K ≤ (1− µ+ tn)n with tn = o(1). In particular,

(n− 1−K)/(n− 1) ∼ µ

uniformly for all K. Thus

τ((n− 1−K)/(n− 1)) ∼ τ

and consequently
N ′
d̄i

n
− P(ξ = d̄i)

p−→ 0

uniformly for all K. As P(ξ = d̄i) > 0 for all i, it follows by dominated convergence
that

P((Y ′1 , . . . , Y
′
` ) = (d̄1, . . . , d̄`))

(∏̀
i=1

P(ξ = `)

)−1

→ 1

uniformly for all K. This verifies Equation (6.41) and hence completes the proof.
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