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Abstract. For any set Ω of non-negative integers such that {0, 1} ⊆ Ω and {0, 1} 6= Ω, we
consider a random Ω-k-tree Gn,k that is uniformly selected from all connected k-trees of (n+k)

vertices where the number of (k + 1)-cliques that contain any fixed k-clique belongs to Ω. We

prove that Gn,k, scaled by (kHkσΩ)/(2
√
n) where Hk is the k-th Harmonic number and σΩ > 0,

converges to the Continuum Random Tree Te. Furthermore, we prove the local convergence of

the rooted random Ω-k-tree G◦n,k to an infinite but locally finite random Ω-k-tree G∞,k.

Keywords: partial k-trees, Continuum Random Tree, modified Galton-Watson tree

1. Introduction and main results

A k-tree is a generalization of a tree and can be defined recursively: a k-tree is either a complete
graph on k vertices (= a k-clique) or a graph obtained from a smaller k-tree by adjoining a new
vertex together with k edges connecting it to a k-clique of the smaller k-tree (and thus forming a
(k+ 1)-clique). In particular, a 1-tree is a usual tree. (Note that the parameter k is always fixed.)
Subgraphs of k-trees are called partial k-trees; see Figure 1.1.
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Figure 1.1. a 2-tree (left), a partial 2-tree (middle) and an Ω-2-tree (right)
where Ω = {0, 1, 2}.

A partial k-tree is an interesting graph from an algorithmic point of view since many NP-hard
problems on graphs have polynomial, in fact usually linear, dynamic programming algorithms
when restricted to partial k-trees for fixed values of k [7, 57, 35]; such NP-hard problems include
maximum independent set size, minimal dominating set size, chromatic number, Hamiltonian
circuit, network reliability and minimum vertex removal forbidden subgraph [6, 11]. Several graphs
which are important in practice [45], have been shown to be partial k-trees, among them are

(1) Trees/ Forests (partial 1-trees)
(2) Series parallel networks (partial 2-trees)
(3) Outplanar graphs (partial 2-trees)
(4) Halin graphs (partial 3-trees); see [34].

However, other interesting graph classes like planar graphs or bipartite graphs are not partial k-
trees. On the other hand, partial k-trees are very interesting from a combinatorial point of view,
although the enumeration of partial k-trees for general k is still missing. The number of k-trees,
which are “saturated” partial k-trees, has been counted in various ways; see [9, 51, 27, 16, 37, 38,
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28, 29, 31]. As usual a graph on n vertices is called labelled if the integers from {1, 2, . . . , n} have
been assigned to its vertices (one-to-one) and two labelled graphs are considered to be different if
the corresponding edge sets are different.

In this paper, we introduce a subset of connected labelled k-trees, called Ω-k-trees as a first
attempt to approach the profile of connected labelled partial k-trees by using the enumeration
of labelled k-trees. In what follows, without specifying otherwise, we assume that Ω-k-trees are
all labelled and a random Ω-k-tree is uniformly selected from the class of labelled Ω-k-trees with
(n+ k) vertices.

Definition 1 (Ω-k-tree). For any set Ω of non-negative integers which contains 0, 1 and at least
one integer greater than 1, an Ω-k-tree is a connected k-tree satisfying that the number of (k+ 1)-
cliques that contain any fixed k-clique belongs to the set Ω.

A rooted Ω-k-tree is an Ω-k-tree rooted at a k-clique. If Ω = N0 = {0, 1, 2, . . .}, an N0- k-tree is
a k-tree. See Figure 1.1 for an example of Ω-2-tree. We remark that it is necessary to allow 0 ∈ Ω
since by the construction of k-trees, a k-clique is the smallest k-tree. We also need the condition
1 ∈ Ω because otherwise any k-tree, other than a single k-clique, is infinite, and we ignore the case
Ω = {0, 1} so that the k-trees are not trivial.

Darrasse and Soria [16] showed a Rayleigh limiting distribution for the expected distance be-
tween pairs of vertices in a random k-tree, as it is known for usual trees and, thus, for 1-trees.
Inspired by this results, we expect that a random Ω-k-tree with (n+ k) vertices, after scaling the
distances to the root by 1/

√
n, converges to the Continuum Random Tree multiplied by a deter-

ministic scaling factor. For k = 1 and Ω = N0 = {0, 1, 2, . . .}, this is true by a result of Aldous.
Actually Aldous has proved in a series of seminal papers [2, 3, 4] that a critical Galton-Watson
tree conditioned on its size has the Continuum Random Tree (CRT) as its limiting object – and
random 1-trees are a special case (with a Poisson offspring distribution), if the variance of the
progeny is finite. The concept Continuum Random Tree was also introduced by Aldous [2, 3, 4]
and further developed by Duquesne and Le Gall [21, 22, 23].

Since Aldous’s pioneering work on the Galton-Watson trees, the CRT has been established as the
limiting object of a large variety of combinatorial structures [36, 55, 52, 53, 14, 41, 10, 15, 50, 12].
A key idea in the study of these combinatorial objects is to relate them to trees endowed with
additional structures by using an appropriate bijection. In the present case of Ω-k-trees, we encode
them as so-called (k,Ω)-front coding trees via a bijection due to Darrasse and Soria in [16], which
was originally used to enumerate k-trees and to recursively count the distance between any two
vertices in a random k-tree. Furthermore, in order to build a connection between the distance of
two vertices in a random Ω-k-tree and the distance of two vertices in a critical Galton-Watson
tree, we need to introduce the concept of a size-biased enriched tree. This is adapted from the
size-biased Galton-Watson tree which was defined by Kesten [44], used by Lyons, Pemantle and
Peres in [48], by Addario-Berry, Devroye and Janson in [1], and was further generalized to the
size-biased R-enriched trees by Panagiotou, Stufler and Weller in [53]. Our enriched tree is slightly
different to the size-biased R-enriched tree and we use their ideas in [55, 56] where an important
step is to relate the distance between two vertices in a random graph to the distance between two
blocks in a random size-biased R-enriched tree.

When we analyze Ω-k-trees, it turns out that it is convenient to consider the number of hedra
instead of the number of vertices as the size of an Ω-k-tree; we adopt the notions from [31]. A
hedron is a (k + 1)-clique in an Ω-k-tree, and by definition an Ω-k-tree with n hedra has (n + k)
vertices. A front of a k-tree is a k-clique.

Our first main result establishes the weak convergence of a random k-tree to the CRT with
respect to the Gromov-Hausdorff distance.

Theorem 1. Let Gn,k be the class of labelled Ω-k-trees with n hedra and denote by Gn,k a random
Ω-k-tree that is uniformly selected from the class Gn,k. Then

(Gn,k,
kHkσΩ

2
√
n
dGn,k

)
d−→ (Te, dTe)
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holds with respect to the Gromov-Hausdorff metric. Here Hk = 1 + 1/2 + . . . + 1/k denotes the
k-th Harmonic number and σΩ is a positive constant. If Ω = N0, the constant σN0 equals 1.

In particular this shows that the diameter as well as the expected distance of two vertices in
a random Ω-k-tree Gn,k are of order

√
n and they have up to a constant scaling factor the same

limiting distribution as random 1-trees. The constant kHk has also a natural explanation. In the
proof of Theorem 1 we will partition an Ω-k-tree into rooted blocks that constitute subsets of the
same distance to the root of the Ω-k-tree, and kHk is actually the expected length of the path
from the selected good node in a block to the root of this block. Instead of the class Gn,k we could
equivalently also consider the class of Ω-k-trees with n hedra that are rooted at a fixed labelled
front. In Subsection 2.2 below we will argue that the two models are equivalent and hence our
results apply to both.

We recall that (partial) 1-trees are just trees and partial 2-trees are series-parallel graphs. In
both cases it is known [4, 52] that the CRT appears as the scaling limit (if we scale by c/

√
n for

some positive constant c). We conjecture that the CRT also arises as the scaling limit of partial
k-trees for larger k.

Conjecture 1. Let PT n,k be the class of all connected labelled partial k-trees and let PTn,k be
a uniformly chosen random graph from PT n,k. Then PTn,k converges toward the CRT in the
Gromov-Hausdorff sense for every k ≥ 1, after rescaling the metric by a factor ck/

√
n for some

constant ck > 0.

At the moment this property seems to be out of reach since there is no precise asymptotic
analysis of partial k-trees if k ≥ 3. Nevertheless Theorem 1 is a strong indication that such a
property should hold. For example, if we delete o(

√
n) edges from a random Ω-k-tree we (usually)

do not destroy the connectivity and also the distance function might be slightly affected but not
more than o(

√
n). Thus, if we construct partial k-trees in that way we still observe a scaling limit

of the above form.

Theorem 1 describes the asymptotic global metric properties of random k-trees, but gives
little information about asymptotic local properties. Hence we provide a second limit theorem
that establishes the local weak convergence of the random Ω-k-tree Gn,k toward an infinite but
locally finite Ω-k tree G∞,k. This type of convergence describes the asymptotic behaviour of
neighborhoods around a randomly chosen front.

Theorem 2. Let Gn,k be the class of labelled Ω-k-trees with n hedra and denote by G◦n,k a random
Ω-k-tree that is uniformly selected from the class Gn,k and then rooted at a uniformly at random
chosen front. Then, as n tends to infinity, the random graph G◦n,k converges in the local-weak
sense toward a front-rooted infinite Ω-k-tree G∞,k, that is,

G◦n,k
d−→ G∞,k.

Our proof of Theorem 2 builds on the classical local convergence of simply generated trees
toward a modified Galton–Watson tree. See for example Theorem 7.1 in Janson’s survey [39],
which unifies some results by Kennedy [43], Aldous and Pitman [5], Grimmett [33], Kolchin [46],
Kesten [44], Aldous [3], Jonsson and Stefánsson [42] and Janson, Jonsson and Stefánsson [40].

A result similar to Theorem 2 is known for partial 2-trees since series-parallel graphs belong
to the family of subcritical graph classes [56, 30]. Therefore we can also formulate the following
conjecture.

Conjecture 2. The random labelled partial k-tree PTn,k converges in the local-weak sense for
every k ≥ 1. That is, the neighborhoods of a random front in PTn,k converge weakly toward the
neighborhoods of a front-rooted infinite partial k-tree PT∞,k as n→∞.

The plan of the paper is as follows. In Section 2 we recall the combinatorial background for
Ω-k-trees, introduce the Boltzmann sampler – a method of generating efficiently a uniform random
combinatorial object, describe Darrasse and Soria’s algorithm on computing the distances between
two vertices in an Ω-k-tree, present Aldous’s result on the convergence of critical Galton-Watson
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trees to the CRT Te, and recall the notion of local convergence. In Section 3 we prove our first
main result – Theorem 1, and in Section 4 our second main result – Theorem 2.

2. Combinatorics, Boltzmann Samplers and Graph Limits

Let Ω ⊂ N0 denote a set of non-negative integers which contains 0, 1 and at least one integer
greater than 1. We will review the generating function approach from [16] to count the number
Park,Ω(n) of Ω-k-trees. The key ingredient to count the number Park,Ω(n) is a bijection between
rooted Ω-k-trees and (k,Ω)-front coding trees; see [16].

Definition 2 ((k,Ω)-front coding tree). For any set Ω of non-negative integers which contains
0, 1 and at least one integer greater than 1, a (k,Ω)-front coding tree of size n is a tree T consisting
of (kn+ 1) white nodes and n black nodes which satisfies:

(1) T is rooted at a white node, every white node has only black nodes as children and every
black node has only k white nodes as children.

(2) The number of black children of the white root belongs to the set Ω and the number of
black children of any other white node belongs to the set {i | i+ 1 ∈ Ω, i ≥ 0}.

(3) The white root of T is labeled by a k-subset A of [n+ k] = {1, 2, . . . , n+ k} and the black
nodes are labeled by the integers from the set [n+ k]−A such that for every white node,
the subtrees stemming from its black children are not ordered between themselves.

The labels on the white root and black nodes determine the labels on the rest white nodes. We
start from the white root and recursively label other white nodes. For every white node, we label
it with a set {r1, . . . , ri−1, r, ri+1, . . . , rk} if the white node is the i-th child (from left to right) of a
black node labeled by r and the white parent of this black node is labeled with the set {r1, . . . , rk}.

If the white root of a (k,Ω)-front coding tree has precisely one black child, we call it reduced
(k,Ω)-front coding tree.

We first list all important notations of Ω-k-trees and (k,Ω)-front coding trees that are necessary
in our argument.

(1) Gn,k: the class of labelled Ω-k-trees with n hedra.
(2) Gn,k: a random Ω-k-tree that is uniformly selected from the class Gn,k.
(3) G◦n,k: a random Ω-k-tree Gn,k that is rooted at a uniformly chosen front.

(4) G�n,k: the class of labelled Ω-k-trees with n hedra that are rooted at a fixed front {1, 2, . . . , k}.
(5) G•n,k: the class of labelled Ω-k-trees with n hedra that are rooted at a fixed front {1, 2, . . . , k}

and this root front is contained in only one hedron.
(6) Cn,k: the class of (k,Ω)-front coding trees of size n that are rooted at a white node
{1, 2, . . . , k}.

(7) Cn,k: a random (k,Ω)-front coding tree that is uniformly selected from Cn,k.
(8) Bn,k: the class of reduced (k,Ω)-front coding trees of size n that are rooted at a white

node {1, 2, . . . , k}.
(9) Bn,k: a random reduced (k,Ω)-front coding tree that is uniformly selected from Bn,k.

(10) G•n,k: a random Ω-k-tree that uniquely corresponds to Bn,k under the bijection ϕ where
the bijection ϕ will be shown in subsection 2.1. This is equivalent to uniformly choose a
random Ω-k-tree from the class G•n,k.

(11) G�
n,k: a random Ω-k-tree that uniquely corresponds to Cn,k under the bijection ϕ. This is

equivalent to uniformly choose a random Ω-k-tree from the class G�n,k.

2.1. A one-to-one correspondence ϕ. We recall that a rooted Ω-k-tree is an Ω-k-tree rooted
at a front (or equivalently a k-clique). For the case Ω = N0, we simply call a (k,N0)-front coding
tree a k-front coding tree. By Definition 2, a k-front coding tree is a bipartite tree of black and
white nodes which is rooted at a white node and where every black node has precisely k successors.
We will present a one-to-one correspondence

ϕ : G�n,k → Cn,k
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when Ω = N0, that is, a one-to-one correspondence ϕ between rooted k-trees and k-front coding
trees. The bijection ϕ holds for any Ω-k-tree when we specify the outdegrees of the white nodes
in the corresponding (k,Ω)-front coding tree.

The correspondence ϕ will be built in a way that black nodes in a k-front coding tree correspond
to hedra in a k-tree. Every black node also gets a label which is equal to the label of one of the
vertices of the corresponding hedron. A white node in a k-front coding tree corresponds to a front
of the k-trees and is labelled by the set {a1, a2, . . . , ak} of labels of the corresponding front. A
black node connects with a white node if the corresponding hedron contains the corresponding
front and the label of the black node is just the label of the vertex that is not contained in the front.
Thus, if we start with the root front of the k-tree we can recursively build up a corresponding
k-front coding tree; see Figure 2.1.
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Figure 2.1. When Ω = {0, 1, 2, 3}, an Ω-2-tree rooted at a front whose vertices
are labelled by 1, 2 (left) and the corresponding (2,Ω)-front coding tree Cn,2 rooted
at a white node labelled by {1, 2} (middle); finally the derived black tree Tn
consists just of only black nodes of Cn,2 (right).

With the help of this correspondence ϕ, the problem of counting the Ω-k-trees with n hedra
is reduced to count the corresponding (k,Ω)-front coding trees with n black nodes. We use the
notation ◦-rooted (k,Ω)-front coding trees if the white root node has a fixed label and use the
notation ◦− • (k,Ω)-front coding tree if the white root of a reduced (k,Ω)-front coding tree has a
fixed label.

Let G�k be the class of Ω-k-trees rooted at a fixed front {a1, a2, . . . , ak}, furthermore let Ck be
the class of the (k,Ω)-front coding trees and Bk be the class of ◦ − • (k,Ω)-front coding trees. In
fact, the correspondence ϕ also establishes the relation ϕ : G�k → Ck. Furthermore, every (k,Ω)-
front coding tree can be identified as a set of ◦−• (k,Ω)-front coding trees with the outdegree set
Ω, which leads to the relation

Ck = SetΩ(Bk).(2.1)

In terms of exponential generating functions (where the size is always the number of black nodes),
we thus get

Ck(x) =
∑
i∈Ω

(Bk(x))i

i !
.(2.2)

We recall that Cn,k is a random (k,Ω)-front coding tree that is uniformly selected from the (k,Ω)-
front coding trees of size n. We denote by Ln,k one of the largest ◦ − • (k,Ω)-front coding trees
that is contained in Cn,k and denote by Ln,k the size of Ln,k. By employing a unified analytic
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framework given by Xavier Gourdon [32], from (2.1) we can prove that for any sufficiently small
ε such that ε > 0, one has

P[n− Ln,k ≥ nε]→ 0.(2.3)

Now we continue to decompose the ◦ − • (k,Ω)-front coding tree. Let C◦k be the class of ◦-rooted
(k,Ω)-front coding trees that are contained in the ◦− • (k,Ω)-front coding trees. Then every tree
from C◦k can be identified as a set of ◦ − • (k,Ω)-front coding trees with the outdegree set Ωout of
the white nodes where Ωout = {i | i+ 1 ∈ Ω, i ≥ 0}. Moreover, every ◦− • (k,Ω)-front coding tree
can be decomposed into a k-tuple of ◦-rooted (k,Ω)-front coding trees. This yields the following
specification:

Bk = {•} ∗ Seqk(C◦k) and C◦k = SetΩout(Bk).(2.4)

In terms of exponential generating functions, one gets

Bk(x) = x · C◦k(x)k and C◦k(x) =
∑
i+1∈Ω
i≥0

(Bk(x))i

i !
.(2.5)

In particular Bk(x) satisfies

(2.6) Bk(x) = x(
∑
i+1∈Ω
i≥0

(Bk(x))i

i !
)k.

Consequently there exists a unique positive dominant singularity ρk,Ω of Bk(x) such that∑
i+1∈Ω
i≥1

(ki− 1)

i !
(Bk(ρk,Ω))i = 1 and Bk(ρk,Ω) <∞.(2.7)

It follows immediately from (2.2) and (2.5) that Ck(ρk,Ω) < ∞ and C◦k(ρk,Ω) < ∞. We set
bk,Ω(n) = n![xn]Bk(x) and ck,Ω(n) = n![xn]Ck(x) which counts the number of ◦-rooted (k,Ω)-
front coding trees of n black nodes and the root ◦ has a fixed label {a1, a2, . . . , ak}. Since there

are
(
n+k
k

)
ways to choose the root {a1, a2, . . . , ak}, the number of Ω-k-trees having n hedra that

are rooted at a front is

(kn+ 1)Park,Ω(n) =

(
n+ k

k

)
ck,Ω(n),(2.8)

and Park,Ω(n) can be derived from (2.8) for any specific Ω. One can analyze the asymptotic
behaviors of bk,Ω(n) and ck,Ω(n) from (2.6); see [18, 26], which yields

bk,Ω(n) ∼ d1n
−3/2n!(ρk,Ω)−n and ck,Ω(n) ∼ d2n

−3/2n!(ρk,Ω)−n(2.9)

for some positive constants d1, d2. Together with (2.8) this leads to

Park,Ω(n) ∼ d2 n
n+k−2

k · k!
(ρk,Ω)−n.

Furthermore, one can also estimate the number Uk,Ω(n) of unlabeled Ω-k-trees.

Uk,Ω(n) ∼ d3n
−5/2(τk,Ω)−n

where d3 is a positive constant and τk,Ω is the dominant singularity of Ak(z) that is given by

Ak(z) = z
∑
k∈Ω

∑
λ`k

(kAk(z))λ1

λ1!

(kAk(z2))λ2

λ2!2λ2
· · · (kAk(zk))λk

λk!kλk
,(2.10)

in which λ ` k is a partition of k and by λi we denote the number of parts in λ with length i. The
dominant singularity z = τk,Ω is the unique solution of (2.10) and

1

k
= z

∑
k∈Ω

∑
λ`k
λ1≥1

(kAk(z))λ1−1

(λ1 − 1)!

(kAk(z2))λ2

λ2!2λ2
· · · (kAk(zk))λk

λk!kλk
.
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For the case Ω = N0, the number Uk,N0
(n) of unlabeled k-trees is estimated in [19].

Remark 1. If Ω = N0, it was shown in [9, 51, 27, 16] that the number Park,N0(n) of N0- k-trees
having n hedra is given by

(2.11) Park,N0
(n) =

(
n+ k

k

)
(kn+ 1)n−2,

thus, asymptotically by Park,N0
(n) ∼ nk(kn)n−2e1/k(k!)−1 as n → ∞. By applying the Lagrange

inversion formula on (2.6) for the case Ω = N0, we obtain that the number of ◦ − • (k,N0)-front
coding trees with n black nodes where the root ◦ has a fixed label {a1, a2, . . . , ak}, is

bk,N0
(n) = n! [xn]Bk(x) = (n− 1)![xn−1] exp(knx) = (kn)n−1(2.12)

and the number of ◦-rooted (k,N0)-front coding trees with n black nodes where the root ◦ has a
fixed label {a1, a2, . . . , ak} is

ck,N0
(n) = n! [xn]Ck(x) = (n− 1)![xn−1] exp((kn+ 1)x) = (kn+ 1)n−1.(2.13)

In view of (2.13), the closed formula (2.11) for Park,N0
(n) is proved. It follows from (2.6) that the

dominant singularity of Bk(x) for the case Ω = N0 is ρk,N0 = (ek)−1 and Bk(ρk,N0) = k−1; see
[16, 19] for details.

2.2. Reduction of Theorem 1. We reduce Theorem 1 to the scaling limit of a random rooted
Ω-k-trees where the root front has vertices labelled by 1, 2, . . . , k.

Since any Ω-k-tree with n hedra has the same number, (kn+1), of fronts, it makes no difference
whether we root Gn,k at a uniformly at random chosen front, or if we select an element from the
class G◦n,k uniformly at random. From (2.8) and the bijection ϕ we find that for all g ∈ G◦n,k and
c ∈ Cn,k we have

P[G◦n,k = g] =

(
n+ k

k

)−1

P[Cn,k = c] =

(
n+ k

k

)−1

P[G�
n,k = ϕ−1(c)],

which means that the probability to uniformly choose a front-rooted Ω-k-tree is equal to the prob-
ability to first uniformly choose a rooted Ω-k-tree from G�n,k and then replace the label {1, 2, . . . , k}
on the root by a uniformly chosen k-subset of [n]. Since the relabeling will not change the distance
of two vertices in the graph and will not change the probability to choose an Ω-k-tree of a given
shape, without loss of generality we can fix the labeling of the root front and consider the random
Ω-k-tree G�

n,k. That is, it suffices to prove Theorem 1 for the random Ω-k-tree that is uniformly

selected from G�n,k. This is equivalent to uniformly choose a (k,Ω)-front coding tree Cn,k from

Cn,k and consider the corresponding random Ω-k-tree G�
n,k = ϕ−1(Cn,k).

We can further reduce Theorem 1 to the scaling limit of a random rooted Ω-k-tree such that
the root front is contained in only one hedron. That is, a random rooted Ω-k-tree that uniquely
corresponds to a ◦−• (k,Ω)-coding tree from Bk. We put this in Section 3 after we introduce the
Gromov-Hausdorff metric in subsection 2.5.

Since Bk has a proper recursive specification (2.5), these random objects can be constructed
(or sampled) by a so-called Boltzmann sampler ΓBk(x).

2.3. Boltzmann Sampler. Boltzmann samplers provide a way to efficiently generate a combi-
natorial object at random. They were introduced by Duchon, Flajolet, Louchard and Schaeffer
[20] and were further developed by Flajolet, Fusy and Pivoteau [25]. Here we refer the readers to
their papers [20, 25] for a detailed description of the Boltzmann samplers. We just mention that
the Boltzmann sampler ΓM(x) is a random generator which chooses an object c ∈M with prob-
ability P(ΓM(x) = c) = x|c|/(M(x)|c|!), where M(x) denotes the exponential generating function
of c ∈ M and the parameter x > 0 ist such that 0 < M(x) < ∞. An important property of
Boltzmann samplers is that they generate objects conditioned on output size n uniformly.
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More precisely we will describe a Boltzmann sampler ΓBk(x) with parameter x = ρk,Ω (which is
possible since Bk(ρk,Ω) <∞). We denote by ξ◦ the random variable with probability distribution

P[ξ◦ = i] =
1

C◦k(ρk,Ω)

(Bk(ρk,Ω))i

i !
if i ∈ Ωout and P[ξ◦ = i] = 0 otherwise.(2.14)

Lemma 3. The following recursive procedure ΓBk(ρk,Ω) terminates almost surely and draws a
random ◦−• (k,Ω)-front coding tree according to the Boltzmann distribution with parameter ρk,Ω,
i.e., any ◦ − • (k,Ω)-front coding tree of size n is drawn with probability ρnk,Ω/(n!Bk(ρk,Ω)).

ΓBk(ρk,Ω): x1 ← a black node •
for i := 1→ k

x2 ← a single white node ◦
merge x2 into x1 by adding an edge • − ◦
m← ξ◦ and m ∈ Ωout

F ← an m-tuple (ΓBk(ρk,Ω), . . . ,ΓBk(ρk,Ω)),
drop the labels
merge F into x1 by connecting x2 to the roots of F

x1 ← label the black nodes of x1 uniformly at random
return x1

Remark 2. Boltzmann sampler can be compiled automatically from combinatorial specifications.
In the present case of Ω-k-trees, the specification given in (2.4) involves product ∗ and SetΩout ,
consequently we need the rules of Seqk and SetΩout for the inductive construction of Boltzmann
sampler ΓF (x) and ΓC◦k(x), which are

Construction Generator
F = Seqk(C◦k) return the k-tuple (ΓC◦k(x), · · · ,ΓC◦k(x)) relabeled uniformly at random.
C◦k = SetΩout(Bk) m← ξ◦ and m ∈ Ωout, return the m-tuple (ΓBk(x), . . . ,ΓBk(x))

relabeled uniformly at random.

For the case Ω = N0, we have Ck = C◦k = Set(Bk) and from (2.14) it follows that ξ◦ is Poisson
distributed with parameter Bk(ρk,N0

) = k−1 where ρk,N0
= (ek)−1.

Note that (k,Ω)-front coding trees satisfy the specification (2.5), but they do not represent the
distance relation in the Ω-k-trees; see Figure 2.1. Since we have fixed the label on the white root
◦, which is {1, 2, . . . , k}, the labels on the black nodes of ΓBk(ρk,Ω) determine the corresponding
labels on the other white nodes.

2.4. Ω-k-tree distance algorithm. For a random (k,Ω)-front coding tree Cn,k, G�
n,k is the cor-

responding Ω-k-tree under the bijection ϕ−1 : Cn,k → G�n,k in subsection 2.1. So G�
n,k is rooted at

the front {1, 2, . . . , k}.
We use the notation (im, jk−m) to represent the sequence of length k that has m occurrences of

i and (k−m) occurrences of j. Here we shall consider the distances to the vertex 1 in an Ω-k-tree
G�
n,k. Darrasse and Soria [16] provided an algorithm to calculate the distances to the vertex 1

in an Ω-k-tree G�
n,k by marking the distances on the corresponding (k,Ω)-front coding tree Cn,k,

which is similar to the algorithm given by Proskurowski in [54]. Note that every black node of the
(k,Ω)-front coding tree is related to a vertex of the corresponding Ω-k-tree via its label, and the
vertices that label a white node of the (k,Ω)-front tree represent k vertices that constitute a front
of the corresponding Ω-k-tree. We recall Darrasse and Soria’s algorithm.

Algorithm 1: Distances in an Ω-k-tree
Input: a (k,Ω)-front coding tree C and

a sequence (ai)
k
i=1 = (0, 1k−1)

Output: an association table (vertex, distance)
p := min{ai}ki=1 + 1 and A = ∅
for all sons v of the root C do

A := A ∪ {(v, p)}
for i := 1→ k do
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A← A∪ the recursive call on the i-th son
of v and (a1, . . . , ai−1, p, ai+1, . . . , ak)

return A

If we implement this algorithm on the (2,Ω)-front coding tree (middle) in Figure 2.1, we get a
distance table marked on every black node in Figure 2.2. The distance sequences on the white
nodes help us to recursively mark the distances on the black nodes.

Remark 3. Based on this distance algorithm, Darrasse and Soria used the generating function
approach to show a Rayleigh limiting distribution for the expected distances between pairs of vertices
in a random k-tree; see [16].

1, 2

6

6, 2 1, 6

5

5, 6 1, 5

3

3, 6 1, 3

4, 6 3, 4

7

7, 3 1, 7

8

8, 7 1, 8

49

9, 6 5, 9

10

10, 9 5, 10

0, 1

1

1, 1 0, 1

1

1, 1 0, 1

1

1, 1 0, 1

2, 1 1, 2

1

1, 1 0, 1

1

1, 1 0, 1

22

2, 1 1, 2

2

2, 2 1, 2

Figure 2.2. When Ω = {0, 1, 2, 3}, a (2,Ω)-front coding tree (left) and the cor-
responding distance table on every black node (right).

2.5. Gromov-Hausdorff convergence and the CRT. Let e = (et)0≤t≤1 denote the Brownian
excursion of duration one. Then this (random) continuous function e induces a pseudo-metric on
the interval [0, 1] by

de(u, v) = e(u) + e(v)− 2 inf
u≤s≤v

e(s)

for u ≤ v. This defines a metric on the quotient Te = [0, 1]/∼ where u ∼ v if and only if
de(u, v) = 0. The corresponding random pointed metric space (Te, de, r0(Te)), where r0(Te) is the
equivalence class of the origin, is the Continuum Random Tree (CRT). We will simply use Te
to denote the CRT. Recall that the isometry classes of (pointed) compact metric spaces K(K•),
where a pointed compact space is a triple (X, d, r), where (X, d) is a metric space and r ∈ X is a
distinguished element, constitute a Polish space with respect to the (pointed) Gromov-Hausdorff
metric dGH.

We shall briefly introduce the Gromov-Hausdorff metric and refer the readers to [13, 24] for a full
description of this metric. Given two compact metric spaces (X, d2) and (Y, d2), a correspondence
between X and Y is a subset R ⊂ X × Y such that for any x ∈ X, there is a y ∈ Y with
(x, y) ∈ R and conversely for any y ∈ Y , there is an x ∈ X with (x, y) ∈ R. The distortion of the
correspondence is defined as follows:

dis(R) = sup{|d1(x1, x2)− d2(y1, y2)| : (x1, y1), (x2, y2) ∈ R}.(2.15)

Given two pointed compact metric spaces (X, d1, r1) and (Y, d2, r2), we define the Gromov-
Hausdorff distance between the pointed compact metric spaces (X, d1, r1) and (Y, d2, r2) by

dGH((X, d1, r1), (Y, d2, r2)) =
1

2
inf
R

dis(R)(2.16)
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where R ranges over all correspondences between X and Y such that r1 and r2 corresponds to each
other. The Gromov-Hausdorff metric of two compact spaces (X, d1) and (Y, d2) is then defined to
be (2.16) without r1, r2.

A pointed metric space (X, d1, r1) may be rescaled by multiplying the metric with a positive
constant a. We shall denote the rescaled space (X, ad1, r1) in the following simply by aX.

Let T be a Galton-Watson tree, we say T is critical if the offspring distribution ξ of T satisfies
Eξ = 1. In fact, T is almost surely finite if and only if Eξ ≤ 1. Let supp(ξ) = {m |P(ξ = m) > 0}
denote the support of ξ and define the span, denoted by span(ξ), as the greatest common divisor
of {m |m ∈ supp(ξ)}. If a Galton-Watson tree T is finite, then

|T | = 1 +
∑

v∈V (T )

d+
T (v) ≡ 1 mod span(ξ)(2.17)

where V (T ) is the vertex set of T and d+
T (v) represents the outdegree of v in T . The convergence

of a Galton-Watson tree Tn conditioned on size n (properly scaled) to Te is due to Aldous [4].

Theorem 4. Let Tn be a Galton-Watson tree conditioned on having n vertices, where Tn is critical
and the offspring distribution ξ of Tn has finite variance Var ξ = σ2. As n tends to infinity, Tn
with edges rescaled to length σ/(2

√
n) converges in distribution to the CRT, i.e.,

σ

2
√
n
Tn

d−→ Te in the metric space (K•, dGH).

The Galton-Watson tree conditioned on having n vertices is also called the conditioned Galton-
Watson tree. The conditioned Galton-Watson trees are essentially the same as the random simply
generated trees; see [17, 18].

2.6. Local convergence. Let X denote the collection of rooted graphs that are connected and
locally finite. Given two rooted graphs G∗ = (G, vG) and H∗ = (H, vH) from X, we define the
distance

d(G∗, H∗) = 2− sup{m∈N0 |Um(G∗)'Um(H∗)}

where Um(G∗) denotes the rooted subgraph of G induced by all vertices with graph-distance at
most m from the root-vertex vG, and Um(G∗) ' Um(H∗) represents that the two subgraphs are
isomorphic as rooted graphs. The distance d satisfies the axioms of a premetric and two elements
from X have distance zero from each other if and only if they are isomorphic as rooted graphs.
Hence d defines a complete and separable metric on the collection of all isomorphism classes of
graphs from X [13, 24].

A random rooted graph G∗n = (Gn, vn) from X converges in the local weak sense toward a
random element from G∗∞ = (G∞, v∞), denoted by

(Gn, vn)
d−→ (G∞, v∞),

if the corresponding isomorphism classes converge weakly with respect to this metric. This is
equivalent to requiring that for all fixed positive number r, and for all rooted graphs (G, v) it
holds that

lim
n→∞

P[Ur(Gn, vn) ' (G, v)] = P[Ur(G∞, v∞) ' (G, v)].(2.18)

3. Proof of Theorem 1

We recall that Cn,k is a random (k,Ω)-front coding tree of size n that is uniformly selected from
the class Cn,k and the size Ln,k of the largest ◦ − • (k,Ω)-front coding tree in Cn,k satisfies (2.3).
This implies that the Gromov-Hausdorff distance between Cn,k and Ln,k is bounded by nε with
high probability. If we choose ε = 1/4, it follows that

dGH(Ln,kn
−1/2,Cn,kn

−1/2)
p−→ 0.(3.1)

Let Bn,k denote a random ◦ − • (k,Ω)-coding tree that is uniformly chosen from all the ◦ − •
(k,Ω)-coding trees of size n, so in order to establish the convergence of rescaled Cn,k to Te, from
(3.1) it suffices to show that for the rescaled Bn,k.



GRAPH LIMITS OF RANDOM GRAPHS FROM A SUBSET OF CONNECTED k-TREES 11

First we generate the random ◦−• (k,Ω)-front coding tree by the Boltzmann sampler ΓBk(ρk,Ω).
Let Tn be the black tree obtained from Bn,k by replacing every edge • − ◦ − • by an edge • − •
which keeps the labels on the black nodes, consequently black trees are in bijection with ◦ − •
(k,Ω)-front coding trees; see Figure 2.1.

From the construction of the Boltzmann sampler ΓBk(ρk,Ω), it is clear that any black node
has k white children and the number of black children ξ◦ of the white node in Bn,k follows the
probability distribution (2.14). This implies, the black grandchildren ξ• of any black node has the
probability distribution

P[ξ• = i] = P[

k∑
j=1

ξ◦,j = i] and ξ◦,j
d
= ξ◦.(3.2)

Furthermore, (3.2) is exactly the offspring distribution of the black tree Tn, thus from (2.7) we
know that E ξ• = kE ξ◦ = 1 and Tn is a critical Galton-Watson tree with span gcd(Ωout) where
gcd(Ωout) denotes the greatest common divisor of the integers in Ωout.

We denote by G•n,k the Ω-k-tree that corresponds to the random (k,Ω)-coding tree Bn,k under

the bijection ϕ−1 : Bn,k 7→ G•n,k. For any two black nodes x, y in Bn,k, we set dBn,k
(x, y) =

distTn
(x, y), where dist denotes the usual graph theoretical distance. For the case k 6= 1, the

distance dBn,k
(x, y) of two black nodes x, y in Bn,k is different from the distance distG•

n,k
(x, y) of

x, y in the original Ω-k-tree G•n,k. In order to represent the distances distG•
n,k

(x, y) for any two

black nodes x, y in the tree Bn,k, we need to decompose Bn,k into blocks according to the distance
table from Algorithm 1. We implement the Algorithm 1 on the random tree Bn,k to have every
black node marked with a distance and every white node marked with a distance sequence. For
this random tree Bn,k, denote by Bi,n,k a subtree of Bn,k that we call an i-block :

(1) B1,n,k is rooted at the root and is induced by the root and all the black nodes that are in
distance one to the vertex 1.

(2) Bi,n,k, i ≥ 2, is rooted at a white node with distance sequence ((i − 1)k) and is induced
by this node and all its black descendants that have distance i to the vertex 1.

By construction, there is only one subtree B1,n,k in Bn,k, but there could be many subtrees Bi,n,k
of Bn,k for i 6= 1; see Figure 3.1. For any two black nodes x, y in Bn,k, let δBn,k

(x, y) = a−1 where
a is the minimal number of blocks necessary to cover the path connecting x and y. In particular
if x, y are in the same block of Bn,k, then δBn,k

(x, y) = 0. The following lemma will show that,
for any two black nodes x, y, the distance distG•

n,k
(x, y) is almost the same as the block-distance

δBn,k
(x, y).

(0, 1)

(1, 1)
(1, 1)

(1, 1)

(2, 2)

(2, 2)
(2, 2)

(3, 3)
(3, 3)

(0, 1)

(1, 1)
(1, 1)

(1, 1)

(2, 2)

(2, 2)
(2, 2)

(3, 3)
(3, 3)

1

1 1

2 2
3 3

4

1 1

Figure 3.1. A decomposition of a random (2,Ω)-front coding tree Bn,2 into
blocks Bi,n,2 (left) where the pair (a, b) of integers represents the distance sequence
on the root of a block. A spine (right) consists of selected good nodes in Bn,2.

Lemma 5. Let Bn,k denote the tree corresponding to the Boltzmann sampler ΓBk(ρk,Ω) condi-
tioned on having n black nodes, let G•n,k be the corresponding Ω-k-tree of Bn,k under the bijection

ϕ−1 : Bn,k 7→ G•n,k. Then for any two black nodes x, y in G•n,k,

(3.3) distG•
n,k

(x, y) = δBn,k
(x, y) + i where i ∈ {0, 1, 2, 3}.
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Proof. If x, y are in the same block, i.e., δBn,k
(x, y) = 0. If both of them are in a block B1,n,k,

then

distG•
n,k

(x, y) ≤ distG•
n,k

(x, 1) + distG•
n,k

(y, 1) = 2 = δBn,k
(x, y) + 2.

If both of them are in a block Bi+1,n,k for some i ≥ 1, recall that the root of Bi+1,n,k is a white
node with distance sequence (ik). Suppose the root of Bi+1,n,k has label {a1, a2, . . . , ak}, then
for x ∈ Bi+1,n,k, there exists an integer p such that distG•

n,k
(ap, x) = 1. Otherwise if for all

m ≤ k, distG•
n,k

(am, x) > 1. It follows that distϕ(Bn,k)(x, 1) > i+ 1, which contradicts to the fact

x ∈ Bi+1,n,k. Similarly, there is an integer q such that distB•
n,k

(aq, y) = 1. Consequently

distG•
n,k

(x, y) ≤ distG•
n,k

(ap, x) + distG•
n,k

(aq, y) + distG•
n,k

(aq, ap) = 3,

which implies (3.3).
If x, y are not in the same block, let b be the last common parent of x and y in Bn,k, then b must

be a black node. Let a1 (resp. b1) be the second black node on the path b− ◦ − a1 − · · · − ◦ − x
(resp. b−◦− b1− · · · − ◦− y) in Bn,k. Then one of the minimal paths connecting x and y in G•n,k
must pass node b. This is true because the Ω-k-tree corresponding to the subtree of Bn,k rooted
at a1 and the Ω-k-tree corresponding to the subtree of Bn,k rooted at b1 are completely disjoint
in G•n,k. This implies

distG•
n,k

(x, y) = distG•
n,k

(x, b) + distG•
n,k

(y, b).

Suppose x ∈ Bi+1,n,k, there must exist a black node v1 on the path b− ◦ − a1 − · · · − ◦ − x, such
that distG•

n,k
(x, v1) = 1 and v1 ∈ Bi,n,k. For the node v1, there exists a black node v2 on the path

such that v2 ∈ Bi−1,n,k and distG•
n,k

(x, v2) = 2. We continue this process until we reach a black

node vt such that vt and b are in the same block. Similarly, we can find a sequence of black nodes
w1, . . . , ws from different blocks such that ws and b are in the same block and distG•

n,k
(y, ws) = s.

It follows that

distG•
n,k

(x, b) + distG•
n,k

(y, b) = δBn,k
(x, b) + δBn,k

(y, b) + distG•
n,k

(vt, ws)

= δBn,k
(x, y) + distG•

n,k
(vt, ws).

Since vt and ws are in the same block, we have distG•
n,k

(vt, ws) ≤ 3 and the proof is complete. �

Lemma 5 allows us to transfer the distance distG•
n,k

(x, y) of two vertices x, y in a random Ω-k-

tree G•n,k to the distance δBn,k
(x, y) of two blocks in a random tree Bn,k. In order to prove the

convergence of G•n,k to the CRT Te, it is sufficient to prove that with high probability the difference

between mkδBn,k
(x, y) and distTn

(x, y) is uniformly small for all choices of x, y, where Tn is the
above conditioned critical Galton-Watson tree and mk is a constant. For this purpose we consider
the spine of a size-biased enriched tree, which was adapted from the size-biased Galton-Watson
tree. This idea has been used in studying the scaling limit of random graphs from subcritical
graph classes [52] and was further generalized to the random R-enriched trees [56].

In fact, the block-distance δBn,k
(v, 1) to the vertex 1 in the random tree Bn,k is not related to

the depth of v in Bn,k. It turns out that we have to choose a good black node νi from a block
Bi,n,k of the random tree Bn,k, such that they form a spine ν1, . . . , νm and δBn,k

(νi, 1) increases
as the depth of νi on this spine increases; see Fig 3.1 and 3.2.

We call a black node v in a (k,Ω)-front coding tree good if one of its white children has distance
sequence (ik) for some integer i ≥ 1. Let Bk denote the random (k,Ω)-front coding tree that is
generated by the above Boltzmann sampler so that Bn,k = (Bk : |Bk| = n). In the same way, let
Ci,k be a block of Bk which equals Bi,n,k if we condition Bk on size n. The next Lemma 6 will
enable us to construct a size-biased enriched tree.

Lemma 6. Suppose that i ≥ 1 and let ξk,i be the random variable counting the number of good
black nodes v in an i-block Ci,k in Bk. Then E ξk,i = 1.

Proof. The offspring ξ◦ of every white root in Bk follows probability distribution (2.14) and the
offspring of every black node in Bk is distributed as the sum of k independent and identically
distributed random variables ξ◦,i which are copies of ξ◦. The distance sequence on every white
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node of Bk determines if its children (black nodes) are good or not. We first compute E ξk,1.
Together with (2.7), the first generation of the white root of C1,k has

E(ξ◦) =
∑

i∈Ωout

i (C◦k(ρk,Ω))−1 (Bk(ρk,Ω))i

i!
= k−1(3.4)

expected number of black nodes. We assume that µ1 is a black node in the first generation, µ1 has
k white-node children in C1,k, among which (k− 1) white nodes have distance sequence (0k−2, 12)
and they have E ξk−1,1 expected number of good black descendants in Bk. One white-node child
has distance sequence (0k−1, 1) and it has E ξk,1 expected number of good black descendants in
Bk. It follows that E ξk,1 = k−1E ξk,1 + (1− k−1)E ξk−1,1 which implies E ξk,1 = E ξ2,1. It is easy
to compute E ξ2,1 by repeating the same procedure, which yields E ξk,1 = E ξ2,1 = 1. Similarly, we
can show for i 6= 1, E(ξk,i) = k−1 · k · E(ξk,1) = 1. �

(0, 1)

1

(1, 1)

1

(1, 1)
1

(1, 1)

22

2

(2, 2)

(2, 2)

2

3
(3, 3)

(2, 3)

(0, 1)

1

(1, 1)

1

(1, 1)
1

(1, 1)

22

2

(2, 2)

(2, 2)

2

3
(3, 3)

(2, 3)

(1, 1)

(0, 1)

(1, 1)

(0, 1)

Figure 3.2. A (2,Ω)-front coding tree B2 with good nodes drawn with black

dots (left) and a size-biased enriched tree B̂
(3)
2 with a spine consisting of selected

good nodes drawn with black squares (right).

We will next define a size-biased enriched tree B̂
(m)
k from a random (k,Ω)-front coding tree

Bk. This construction is adapted from [1], which is a truncated version of the infinite size-biased
Galton-Watson tree introduced by Kesten [44], Lyons, Pemantle and Peres [48]. The size-biased
Galton-Watson tree considered the distribution of offsprings in each generation of a Galton-Watson
tree, while our size-biased enriched tree considered the distribution of good nodes in every block

of Bk. Let ξ̂k,i be a random variable with the size-biased distribution

(3.5) P(ξ̂k,i = q) = q P(ξk,i = q).

The expected value E ξk,i = 1 in Lemma 6 guarantees that ξ̂k,i is a probability distribution on the
set N0 = {0, 1, 2, . . .}.

The size-biased enriched tree B̂
(m)
k is now defined as follows. It starts with a mutant block C1,k

which is rooted at a usual root (that has distance sequence (0, 1k−1)) and contains good nodes.

We now choose one of these good nodes (which number is distributed according to ξ̂k,1) and call it
heir (and also mutant). The block C2,k that is rooted at the child with distance sequence (1k) of
this heir will be the next mutant block, where we again assume that it has at least one good node.
All other blocks that are adjacent to C1,k are normal. We again choose one of the good nodes of

the mutant block C2,k (which number is distributed according to ξ̂k,2) and proceed inductively to
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choose mutant blocks and heirs till Cm,k. All other blocks stay normal. We denote the heir in the

m-th mutant block Cm,k by h. The path from the root to h is called spine of B̂
(m)
k ; see Figure 3.2.

The probability that a given mutant block contains q good nodes and one of them is chosen as

heir is, see (3.5), q−1P(ξ̂k,i = q) = P(ξk,i = q). For any given random (k,Ω)-front coding tree T ,
let Tα denote the tree T with a fixed spine α of block-depth m. Then the probability

(3.6) P(B̂
(m)
k = Tα, with α as a spine) = P(Bk = T ).

This shows, once the spine is fixed, that the probability that the size biased tree B̂
(m)
k equals Tα

is the same as the probability of generating T . In fact, (3.6) is true for any fixed spine α; see
Eq.(3.2) in [1]. We will need (3.6) to build a connection between mkδBn,k

(x, y) and dBn,k
(x, y)

with high probability in Lemma 7.

Lemma 7. Let Bn,k be the class of ◦ − • (k,Ω)-front coding trees of size n such that the white
root has label {1, 2, . . . , k} and Bn,k ∈ Bn,k is uniformly selected at random. Let mk = kHk. Then
for all s > 1 and 0 < ε < 1/2 with 2εs > 1, we have for all black nodes x, y in Bn,k such that x is
an ancestor of y, that one of these two properties

δBn,k
(x, y) ≥ logs(n) and |dBn,k

(x, y)−mkδBn,k
(x, y)| ≤ δBn,k

(x, y)1/2+ε,(3.7)

δBn,k
(x, y) < logs(n) and dBn,k

(x, y) ≤ logs+2(n)(3.8)

holds with high probability.

Proof. Suppose the opposite of (3.7) is true, that is, there exist black nodes x, y in Bk such that
x is an ancestor of y and they satisfy

δBk
(x, y) ≥ logs(|Bk|) and |dBk

(x, y)−mkδBk
(x, y)| > δBk

(x, y)1/2+ε.(3.9)

We will denote by F1 the set of triples (Bk, x, y) (with x, y in Bk) that satisfy (3.9). Thus we just
have to show that P((Bk, x, y) ∈ F1

∣∣|Bk| = n) = o(1) as n tends to infinity.
Recall that Bn,k is a random (k,Ω)-front coding trees generated by the Boltzmann sampler

ΓBk(ρk,Ω) with n black nodes. Thus, in combination of Lemma 3 and the universal analytic
solution of functional equations; see Theorem 2.19 in [18], it holds that for a positive constant
σ2

Ω = kVar ξ◦,

P[Bn,k] = P[|ΓBk(ρk,Ω)| = n] =
bk,Ω(n)ρnk,Ω
n!Bk(ρk,Ω)

∼ n−3/2

σΩ

√
2π

as n→∞.(3.10)

We apply (3.6) on the random (k,Ω)-front coding tree Bn,k with a spine that connects x to y. The
block-depth of this spine is at least logs n by assumption (3.9), which leads to

P[(Bk, x, y) ∈ F1

∣∣|Bk| = n] ≤ P[Bn,k]−1
n−1∑

m=logs n

P[(B̂
(m)
k , x, y) ∈ F1 and |B̂(m)

k | = n]

∼ σΩ

√
2πn3/2

n−1∑
m=logs n

P[(B̂
(m)
k , x, y) ∈ F1 and |B̂(m)

k | = n](3.11)

as n → ∞. Here the length of the spine in B̂
(m)
k is distributed as the sum of m independent

random variables ζ1,k, ζ2,k, . . . , ζm,k where each ζi,k is distributed as the length of the path from
the selected good node in some block Ci,k to the root of this block. We have for k ≥ 2, the
probability generating functions of random variables ζi,k are

E zζ1,k =

k−1∏
i=1

iz

k − iz
where i 6= 1 and E zζi,k = z · E zζ1,k .

(We just have to extend the proof idea of Lemma 6.) For the case k = 1, every ζi,1 is distributed
with probability P[ζi,1 = 1] = 1. As an immediate consequence, ζi,k has finite exponential moments
for every i, k and E[ζi,k] = kHk, E[ζ1,k] = kHk−1 for k ≥ 2, i 6= 1 and Hk is the k-th Harmonic
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number. For the case k = 1 we have E[ζi,1] = 1 for every i. We set mk = kHk for k ≥ 1.
Furthermore, the assumption in (3.9) implies

P[(B̂
(m)
k , x, y) ∈ F1 and |B̂(m)

k | = n] ≤ P[|
m∑
i=1

ζi,k −m ·mk| > m1/2+ε].(3.12)

By applying the deviation inequality (see [1, 52, 53]) on the random variables ζ1,k, ζ2,k, . . . , ζm,k,
we get for some positive constant c̄1 and m ∈ [logs n, n− 1],

P[|
m∑
i=1

ζi,k −m ·mk| > m1/2+ε] ≤ 2 exp(−c̄1(log n)2sε) = o(n−5/2).

Together with (3.11) and (3.12), we can conclude that P[(Bk, x, y) ∈ F1

∣∣|Bk| = n] = o(1).
Now we turn to suppose the opposite of (3.8) is true, i.e., there exist black nodes x, y in Bk

such that x is an ancestor of y. They satisfy

(3.13) δBk
(x, y) < logs(|Bk|) and dBk

(x, y) > logs+2(|Bk|).
We use the notation F2 to represent the set of triples (Bk, x, y) (with x, y in Bk) that satisfy (3.13).
Again from (3.11) and from the deviation inequality, we obtain for some positive constant c̄2,

P[(Bk, x, y) ∈ F2

∣∣|Bk| = n] ≤ σΩ

√
2πn3/2

logs n∑
m=1

P[(B̂
(m)
k , x, y) ∈ F2 and

∣∣B̂(m)
k | = n]

≤ σΩ

√
2πn3/2

logs n∑
m=1

P[

m∑
i=1

ζi,k > logs+2 n]

= O(n3/2)(logs n) exp(−c̄2 log2s+4(n)) = o (1)

and the proof is complete. �

Now we are ready to prove our first main result.

Proof of Theorem 1. It follows from Lemma 7 that with high probability

|dBn,k
(x, y)−mkδBn,k

(x, y)| ≤ δBn,k
(x, y)1/2+ε + logs+2(n)

holds for any fixed s and ε such that 0 < ε < 1
2 and 2εs > 1, and holds for all black nodes x, y

where x is an ancestor of y in the random (k,Ω)-front coding tree Bn,k. For any two black nodes
µ, ν in Bn,k, let α be the last common ancestor of µ and ν (α could be a white node of Bn,k), then

|dBn,k
(µ, ν)−mkδBn,k

(µ, ν)| ≤ δBn,k
(µ, α)1/2+ε + δBn,k

(ν, α)1/2+ε + 2 logs+2(n)

≤ 2H(Bn,k)1/2+ε + 2 logs+2(n),(3.14)

where H(Bn,k) is the height of random tree Bn,k. We recall that dBn,k
(µ, ν) = distTn

(µ, ν). It is
clear that H(Bn,k) = H(Tn) and consequently, (3.14) rewrites to

|distTn(µ, ν)−mkδBn,k
(µ, ν)| ≤ 2H(Tn)1/2+ε + 2 logs+2(n).

The tree Tn contains all black nodes of Bn,k and it is a critical conditioned Galton-Watson tree.
By applying the tails for the height of Tn; see Theorem 1.2 in [1] and left-tail upper bounds for
the height in [1], we obtain the Gromov-Hausdorff distance

dGH(n−1/2Tn, n
−1/2mkBn,k) ≤ 1

2
max
µ,ν
|n−1/2distTn(µ, ν)− n−1/2mkδBn,k

(µ, ν)|

≤ n−1/2H(Tn)1/2+ε + n−1/2 logs+2(n)
p−→ 0.

Namely, for any fixed ε, the probability of the event dGH(n−1/2Tn, n
−1/2mkBn,k) ≤ ε converges

to 1 as n tends to infinity. Since ξ◦ has probability distribution (2.14), for any specific degree
set Ω, the variance of the offspring distribution in the first generation of the random tree Tn is
σ2

Ω = kVar ξ◦. Then it follows from Theorem 4 that

σΩTn
2
√
n

d−→ Te in the metric space (K•, dGH).
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Hence from the convergence of Gromov-Hausdorff distance and with the help of Lemma 5, we get
mkσΩ

2
√
n
Bn,k

d−→ Te and
mkσΩ

2
√
n
G•n,k

d−→ Te

where G•n,k is the corresponding rooted Ω-k-tree of Bn,k under the bijection ϕ−1 : Bn,k 7→ G•n,k. In
the beginning of Section 3 and in subsection 2.2 we know that it suffices to prove Theorem 1 for
the random k-tree G•n,k that is uniformly selected from G•n,k. This indicates

mkσΩ

2
√
n
G◦n,k

d−→ Te and
mkσΩ

2
√
n
Gn,k

d−→ Te where mk = kHk.

In particular, if Ω = N0, then σN0 = k ·Var(ξ◦) = 1 where ξ◦ is Poisson distributed with parameter
k−1. The proof of Theorem 1 is complete. �

4. Proof of Theorem 2

In this section, we are going to construct an infinite Ω-k-tree G∞,k that is rooted at a front
of distinguishable vertices. We then establish the convergence of G◦n,k toward this random graph

in the sense, that for each fixed integer ` ≥ 0 the front-rooted sub-(k,Ω)-tree U`(G
◦
n,k) that is

induced by all vertices with distance at most ` from the marked front, converges in distribution
to the corresponding sub-(k,Ω)-tree U`(G∞,k) of the limit object.

By the discussion in Subsection 2.2, the random Ω-k-tree G◦n,k is up to relabeling distributed

like the Ω-k-tree G�
n,k that is rooted at a fixed front with labels from 1 to k. Hence we only

need to study the neighborhoods of the root-front. If we distinguish any fixed vertex of the
marked front in G�

n,k, for example the vertex with label 1, and also distinguish a fixed vertex of
the marked front in G∞,k, then our limit may be interpreted as a classical local weak limit of a
sequence of vertex-rooted random graphs as discussed in Subsection 2.6. This may be justified by
the following two arguments. First, as rooted graphs, all k possible vertex-rootings of G�

n,k are
identically distributed, and we shall see below that the same is true for the limit G∞,k. Second, the
`-neighborhood of a vertex of any front-rooted Ω-k-tree is always a subgraph of the `-neighborhood
of the marked front, and hence the weak convergence of the neighborhoods of the front implies
the weak convergence of the neighborhoods of the vertices.

ψ

Figure 4.1. The construction of (k,Ω)-front coding trees out of plane trees where
the outdegree of each vertex is a multiple of k, illustrated for the special case
k = 2.

The strategy of the proof is as follows. We may generate the random Ω-k-tree G�
n,k by applying

the bijection ϕ−1 : Cn,k → G�n,k to the random (k,Ω)-front coding tree Cn,k. This random coding

tree may be generated by conditioning a Boltzmann sampler ΓCk(ρk,Ω) on producing a coding
tree with n black vertices. We observe that any ordered tree of white vertices where the outdegree
of any vertex is a multiple of k may be interpreted as a (k,Ω)-front coding tree by adding black
vertices in a canonical way. Here different plane trees may correspond to the same unlabelled
(k,Ω)-tree, but this will not be an issue. We may use this construction in order to formulate a
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coupling of the Boltzmann sampler ΓCk(ρk,Ω) with a Galton–Watson tree T◦ that has a modified
root-degree. If we condition this locally modified Galton–Watson tree on having (kn+ 1) vertices,
then the result Tn,◦ corresponds, up to relabeling, to the (k,Ω)-front coding tree Cn,k. By the
similar arguments as for the classical local convergence of simply generated trees, the random tree
Tn,◦ converges weakly toward an infinite plane tree T∞,◦ that may be interpreted as a (k,Ω)-
coding tree C∞,k and consequently also as a front-rooted Ω-k-tree G∞,k. The final step in the

proof is to deduce local convergence of the random Ω-k-tree G�
n,k from this convergence of random

trees.
The construction of a (k,Ω)-front coding tree ψ(T ) out of a plane trees T , where the outdegree

of each vertex is a multiple of k, is straight-forward. We canonically partition the offspring set
of each vertex v of T into an ordered list of groups G1(v), G2(v), . . . of k consecutive vertices.
The edges between v and its offspring are then deleted, and for each group Gi(v) we add a black
offspring vertex ui(v) to v and add further edges such that Gi(v) is the offspring set of ui(v). This
construction is illustrated in Figure 4.1.

We may now use this to formulate a coupling of Boltzmann distributed (k,Ω)-front coding trees
with a modified Galton–Watson tree. Similar as in Remark 2, a Boltzmann sampler ΓCk(ρk,Ω)
is given by starting with a white root, and connecting it with the roots of a random number η◦
of independent ◦ − • (k,Ω)-front coding trees where each is sampled according to an independent
call to the Boltzmann sampler ΓBk(ρk,Ω) from Lemma 3. The distribution of η◦ is given by

P(η◦ = i) =
1

Ck(ρk,Ω)

(Bk(ρk,Ω))i

i!

for all i ∈ Ω. Recall that the sampler in Lemma 3 starts with a black node with k white nodes
as offspring. Each of the white nodes receives black offspring according to an independent copy
of the random number ξ◦, whose distribution is given in (2.14). Then the sampler recurs, that
is, any black node in the youngest generation receives k white vertices as offspring, each of which
receives a random number (possibly zero) of black offspring, and so on.

Let T◦ denote a modified Galton–Watson tree, where each vertex receives offspring according
to an independent copy of ξ := kξ◦, except for the root, which receives offspring according to
η := kη◦. The order in which the recursion takes place in ΓBk(ρk,Ω) and ΓCk(ρk,Ω) does not
matter, hence the (k,Ω)-coding tree ψ(T◦) is up to relabeling distributed like the (k,Ω)-coding
tree ΓCk(ρk,Ω). Moreover, if we let Tn,◦ denote the tree T◦ conditioned on having (kn+1) vertices,
then ψ(Tn,◦) is distributed like the random (k,Ω)-front coding tree Cn,k.

Note that (3.4) implies that E[ξ] = 1, and both ξ and η have finite exponential moments. We
define the size-biased versions of these offspring distributions by

P(ξ̂ = i) = iP(ξ = i) and P(η̂ = i) = iP(η = i)/E[η].

Let T∞,◦ denote the following random infinite (but locally finite) plane tree. There are two types
of non-root vertices, mutant and normal. The root receives offspring according to η̂, and one of
its sons is selected uniformly at random and declared mutant, whereas the others are normal.
Normal vertices receive offspring according to an independent copy of ξ, all of which are normal.

Mutant vertices receive offspring according to an independent copy of ξ̂, among which one is
selected uniformly at random and declared mutant, whereas the others are normal. Hence T∞,◦
is an infinite plane tree with a distinguished path that starts at the root and traverses the mutant
vertices. We call this path the spine of T∞,◦.

We describe the convergence of the random tree Tn,◦ toward the limit tree T∞,◦ using a slight
modification of the arguments in Janson’s survey [39]. For each plane tree T and each integer
h ≥ 0 let T [h] denote the tree obtained by cutting away all vertices with height larger than h.

Lemma 8. For any integer h ≥ 0, it holds that T
[h]
n,◦

d−→ T
[h]
∞,◦.

Proof. It suffices to show for each plane tree T with height h that

lim
n→∞

P(T
[h]
n,◦ = T ) = P(T

[h]
∞,◦ = T ).(4.1)
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As T∞,◦ has infinite height, this already implies that H(Tn,◦) ≥ h occurs with probability tending

to 1, and consequently T
[h]
n,◦

d−→ T
[h]
∞,◦. In order to check (4.1), let d1, . . . , dt denote the depth-first-

search ordered list of the degrees of all vertices in the pruned tree T [h−1]. Moreover, let (ξi)i∈N
denote a family of independent copies of ξ. Set N = kn+1 and D = d1 + · · ·+dt. The probability

P(|T◦| = N,T
[h]
◦ = T ) is given by

P(η = d1)

 t∏
j=2

P(ξ = dj)

P(D +

N∑
j=t+1

ξj = N − 1, D +

m∑
j=t+1

ξj ≥ m for all t < m < N).(4.2)

A classical combinatorial observation, also called the cycle lemma, states that for any sequence
x1, . . . , xs ≥ −1 of integers satisfying

∑s
i=1 xi = −r for some r ≥ 1, there are precisely r integers

1 ≤ u ≤ s such that the cyclically shifted sequence x
(u)
i = x1+(i+u) mod s satisfies

∑`
i=1 x

(u)
i > r

for all 1 ≤ ` ≤ s− 1; see for example [39, Lem. 15.3]. Consequently, (4.2) may be simplified to

D − t+ 1

N − t
P(η = d1)

 t∏
j=2

P(ξ = dj)

P(D +

N∑
j=t+1

ξj = N − 1).(4.3)

The tree T has precisely (D− t+1) vertices with height h. Hence the event T
[h]
∞,◦ = T corresponds

to precisely (D − t + 1) possible outcomes for the first (h + 1) levels of T∞,◦, depending on the
location for the unique spine vertex with height h. Each has the same probability given by

E[η]−1P(η = d1)

t∏
j=2

P(ξ = dj).

Thus, P(T
[h]
∞,◦ = T ) = (D − t+ 1)E[η]−1P(η = d1)

∏t
j=2 P(ξ = dj) and (4.2) becomes

P(|T◦| = N,T
[h]
◦ = T ) = P(T

[h]
∞,◦ = T )

E[η]

N − t
P(D +

N∑
j=t+1

ξj = N − 1).

The central local limit theorem for the sum of independent identically distributed random integers
yields that

P(D +

N∑
j=t+1

ξj = N − 1) = (1 + o(1))
k gcd (Ωout)√

2πNVar[ξ]

and consequently

P(|T◦| = N,T
[h]
◦ = T ) = (1 + o(1))P(T

[h]
∞,◦ = T )n−3/2E[η] gcd (Ωout)√

2πkVar[ξ]
.(4.4)

Let d(o) denote the root-degree of T◦. It holds, since ζ has finite exponential moments, that
P(η ≥ log(n)2) is exponentially small. Hence, using the cycle lemma and central local limit theorem
in an identical fashion as above, it follows that

P(|T◦| = N) = o(n−3/2) +

log(n)2∑
d=1

P(η = d)
d

N − 1
P(d+

N∑
j=2

ξj = N − 1)

= (1 + o(1))n−3/2E[η]
gcd (Ωout)√
2πkVar[ξ]

,

which, together with (4.4), implies (4.1) and we are done. �

We are now finally in the position to complete the proof of our second main theorem.

Proof of Theorem 2. Let ` be an integer and let G be an arbitrary finite unlabelled Ω-k-tree that
is rooted at a front. We claim that there exist an integer L ≥ 0, that depends on both ` and G,
and a set E of finite plane trees, such that any plane tree T , that corresponds to a (k,Ω)-front
coding tree ψ(T ) and hence to a front-rooted Ω-k-tree G(T ) := ϕ−1(ψ(T )), has the property
U`(G(T )) = G if and only if T [L] ∈ E.



GRAPH LIMITS OF RANDOM GRAPHS FROM A SUBSET OF CONNECTED k-TREES 19

This is certainly sufficient for deducing Theorem 2, as by Lemma 8 it then follows that

lim
n→∞

P(T
[L]
n,◦ ∈ E) = P(T

[L]
∞,◦ ∈ E)

and consequently

lim
n→∞

P(U`(G
◦
n,k) = G) = P(U`(G∞,k) = G)

with G∞,k denoting the Ω-k-tree corresponding to T∞,◦.
The reason why there exist such an integer L and the set E is rather subtle. To each plane tree

T we may associate a unique sequence of increasing subtrees T0, T1, . . . of T that all contain the
root-vertex of T and have the property G(Ti) = Ui(G(T )) for all i. Of course, the tree T` may,
in general, have arbitrarily large height. However, in order to satisfy G(T`) = G, the tree T` may
not have more vertices, than the number of fronts in G. In particular, the height of T` is bounded
by the number of fronts of G. Hence there exists a finite integer L such that for any plane tree T
we may decide whether U`(G(T )) = G by only looking at T [L]. �
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[40] S. Janson, T. Jonsson and S. Ö. Stefánsson, Random trees with superexponential branching weights, J. Phys.

A: Math. Theor., 44 (2011), 485002.
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