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On 4-reflective complex analytic planar billiards

Alexey Glutsyuk ∗†‡
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Abstract

The famous conjecture of V.Ya.Ivrii [14] says that in every billiard
with infinitely-smooth boundary in a Euclidean space the set of periodic
orbits has measure zero. In the present paper we study its complex ana-
lytic version for quadrilateral orbits in two dimensions, with reflections
from holomorphic curves. We present the complete classification of 4-
reflective complex analytic counterexamples: billiards formed by four
holomorphic curves in the projective plane that have open set of quadri-
lateral orbits. This extends the previous author’s result [7] classifying
4-reflective complex planar algebraic counterexamples. We provide
applications to real planar billiards: classification of 4-reflective germs
of real planar C4-smooth pseudo-billiards; solutions of Tabachnikov’s
Commuting Billiard Conjecture and the 4-reflective case of Plakhov’s
Invisibility Conjecture (both in two dimensions; the boundary is re-
quired to be piecewise C4-smooth). We provide a survey and a small
technical result concerning higher number of complex reflections.
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1 Introduction

The famous V.Ya.Ivrii’s conjecture [14] says that in every billiard with
infinitely-smooth boundary in a Euclidean space of any dimension the set
of periodic orbits has measure zero. As it was shown by V.Ya.Ivrii [14], his
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conjecture implies the famous H.Weyl’s conjecture on the two-term asymp-
totics of the spectrum of Laplacian [28]. A brief historical survey of both
conjectures with references is presented in [9, 10].

For the proof of Ivrii’s conjecture it suffices to show that for every k ∈ N
the set ot k-periodic orbits has measure zero. For k = 3 this was proved in
[2, 22, 23, 27, 29]. For k = 4 in dimension two this was proved in [9, 10].

Remark 1.1 Ivrii’s conjecture is open already for billiards with piecewise-
analytic boundaries, and we believe that this is its principal case. In the
latter case Ivrii’s conjecture is equivalent to the statement saying that for
every k ∈ N the set of k-periodic orbits has empty interior.

Besides the traditional real billiards, where each ray hitting the boundary
is reflected back to the same side, it is interesting to study the so-called
pseudo-billiards (introduced in Section 5), where some reflections change
the side. Pseudo-billiards naturally arise, e.g., in the invisibility theory. One
can ask the following question analogous to Ivrii’s Conjecture: classify those
pseudo-billiards that have an open (positive measure) set of periodic orbits.
This question is closely related, e.g., to Plakhov’s Invisibility Conjecture
[17, conjecture 8.2] and Tabachnikov’s Commuting Billiard Conjecture [25,
p. 58], which is related to the famous Birkhoff Conjecture on integrable
billiards [24, p. 95].

It appears that planar Ivrii’s conjecture and all its analogues for pseudo-
billiards have the same complexification stated and partially studied in [7,
8] and recalled below. This is the problem to classify all the so-called k-
reflective complex planar analytic billiards: those collections of k complex
analytic curves in CP2 for which the corresponding billiard has an open set
of k-periodic orbits. Its studying presents a unifying approach to the original
Ivrii’s conjecture and all its above-mentioned analogues altogether.

In the present paper we solve the complex classification problem com-
pletely for k = 4 (Theorem 1.7, the main result). As an application, we pro-
vide the complete classification of germs of C4-smooth real planar pseudo-
billiards having open set of quadrilateral orbits (Subsections 5.1, 5.2). As
applications of the latter result, we give solutions of Tabachnikov’s Commut-
ing Billiard Conjecture and the 4-reflective Plakhov’s Invisibility Conjecture,
both in two-dimensional piecewise C4-smooth case (Subsections 5.3, 5.4).

The classification of analytic 4-reflective germs of pseudo-billiards fol-
lows almost immediately from the main complex result. The proof of the
classification of smooth pseudo-billiards is also done by complex methods
and is based on the theory of Cartan’s prolongations of Pfaffian systems.
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It is analogous to Yu.G.Kudryashov’s arguments from [10, section 2] reduc-
ing the piecewise C4-smooth case of 4-reflective Ivrii’s Conjecture to the
piecewise-analytic case.

The state of art of the classification problem of k-reflective complex
billiards in the general case is presented in Section 6 together with small
new technical results (Theorem 6.7 and Corollary 6.8).

Basic definitions and statement of main result are given below.

1.1 Main result: classification of 4-reflective complex ana-
lytic planar billiards

To recall the complexified Ivrii’s conjecture and state the main result, let
us recall some basic definitions contained in [7, section 1]. The complex
plane C2 with affine coordinates (z1, z2) is equipped with the complexi-
fied Euclidean metric. It is the standard complex-bilinear quadratic form
dz2

1 + dz2
2 . This defines the notion of symmetry with respect to a complex

line, reflections with respect to complex lines and more generally, reflections
of complex lines with respect to complex analytic (algebraic) curves. The
symmetry is defined by the same formula, as in the real case. More details
concerning the complex reflection law are given in Subsection 2.3.

Remark 1.2 The geometry of the complexified Euclidean metric is some-
what similar to that of its another real form: the pseudo-Euclidean metric.
Billiards in pseudo-Euclidean spaces were studied, e.g., in [6, 15].

Definition 1.3 A complex projective line l ⊂ CP2 ⊃ C2 is isotropic, if ei-
ther it coincides with the infinity line, or the complexified Euclidean quadratic
form vanishes on l. Or equivalently, a line is isotropic, if it passes through
some of two points with homogeneous coordinates (1 : ±i : 0): the so-called
isotropic points at infinity (also known as cyclic (or circular) points).

Convention 1.4 Everywhere below by an irreducible analytic curve in
CPn we mean a non-constant CPn- valued holomorphic function on a con-
nected Riemann surface.

Definition 1.5 [7, definition 1.3] A complex analytic (algebraic) planar bil-
liard is a finite collection of irreducible complex analytic (algebraic) curves
a1, . . . , ak ⊂ CP2 that are not isotropic lines; set ak+1 = a1, a0 = ak. A k-
periodic billiard orbit is a collection of points Aj ∈ aj , Ak+1 = A1, A0 = Ak,
such that for every j = 1, . . . , k one has Aj+1 6= Aj , the tangent line TAjaj
is not isotropic and the complex lines Aj−1Aj and AjAj+1 are symmetric
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with respect to the line TAjaj and are distinct from it. (Properly saying, we
have to take points Aj together with prescribed branches of curves aj at Aj :
this specifies the line TAjaj in unique way, if Aj is a self-intersection point
of the curve aj .)

Definition 1.6 [7, definition 1.4] A complex analytic (algebraic) billiard
a1, . . . , ak is k-reflective, if it has an open set of k-periodic orbits. In more
detail, this means that there exists an open set of pairs (A1, A2) ∈ a1 × a2

extendable to k-periodic orbits A1 . . . Ak. (Then the latter property auto-
matically holds for every other pair of neighbor mirrors aj , aj+1.)

Problem (Complexified version of Ivrii’s conjecture). Classify
all the k-reflective complex analytic (algebraic) billiards.

Theorem 1.7 A complex planar analytic billiard a, b, c, d is 4-reflective,
if and only if it has one of the three following types:

1) one of the mirrors, say a is a line, c = a, the curves b and d are
symmetric with respect to the line a and distinct from it, see Section 5,
Fig.7;

2) the mirrors are distinct lines through the same point O ∈ CP2, the
pair of lines (a, b) is transformed to (d, c) by complex rotation around O,
i.e., a complex isometry C2 → C2 fixing O with unit Jacobian, see Section
5, Fig.8;

3) a = c, b = d, and they are distinct confocal conics, see Section 5,
Fig.9–12.

Remark 1.8 Theorem 1.7 in the algebraic case is given by [7, theorem
1.11], which implies the 4-reflectivity of billiards of types 2) and 3). The
proof of 4-reflectivity of billiards of type 1) repeats the proof in the algebraic
case, see [7, example 1.7].

1.2 The plan of the proof of Theorem 1.7

Theorem 1.7 is obviously implied by the two following theorems.

Theorem 1.9 Every 4-reflective complex planar analytic billiard with at
least one algebraic mirror has one of the above types 1)–3).

Theorem 1.10 Let in a complex planar analytic 4-reflective billiard no mir-
ror be a line. Then all the mirrors are algebraic curves.
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Theorems 1.9 and 1.10 are proved in Subsection 3.4 and Section 4 re-
spectively.

Remark 1.11 Theorem 1.7 is local and can be stated for a germ of 4-
reflective analytic billiard: a collection of irreducible germs of analytic curves
(a,A), (b, B), (c, C), (d,D) in CP2 such that the quadrilateral ABCD lies
in an open set of quadrilateral orbits of the corresponding billiard.

For the proof of Theorem 1.7 we study the maximal analytic extensions of
the mirrors. These are analytic curves parametrized by abstract connected
Riemann surfaces, which we will denote by â, b̂, ĉ, d̂. The latter are called
the maximal normalizations, see the corresponding background material in
Subsection 2.2. We represent the open set of quadrilateral orbits as a subset
in â× b̂× ĉ× d̂ and will denote it by U0. Its closure

U = U0 ⊂ â× b̂× ĉ× d̂

in the usual topology is an analytic subset with only two-dimensional irre-
ducible components. It will be called the 4-reflective set, see [7, definition
2.13 and proposition 2.14]. The complement U \U0 consists of the so-called
degenerate quadrilateral orbits: quadrilaterals ABCD satisfying the reflec-
tion law that have either a pair of coinciding neighbor vertices, or a pair
of coinciding adjacent edges, e.g., an edge tangent to a mirror through an
adjacent vertex, or an isotropic tangency vertex.

One of the main ideas of the proof of Theorem 1.7 is similar to that from
[9, 10, 7]: to study the degenerate orbit set U \U0. This idea itself together
with basic algebraic geometry allowed to treat the algebraic case in [7]. One
of the key facts used in the proof was properness (and hence, epimorphicity)
of the projection U → â× b̂ to the position of two neighbor vertices. In the
algebraic case the properness is automatic (follows from Remmert’s Proper
Mapping Theorem [11, p.34]), but in the general analytic case under consid-
eration it isn’t. We prove that the above projection is indeed proper in the
analytic case. The most part of the proof of Theorem 1.7, and in particular,
the proof of properness are based on studying restricted versions of Birkhoff
distribution, which was introduced in [2]. All the Birkhoff distributions are
briefly described below; more details are given in Subsection 2.7.

Definition 1.12 Let M be an n-dimensional (real or complex) analytic
manifold. Let D be a d-dimensional analytic distribution on M , i.e., D(x) ⊂
TxM is a d-dimensional subspace for every x ∈ M and the map x 7→ D(x)
is analytic. Let l ≤ d. An l-dimensional surface S ⊂ M is said to be an
integral surface for the distribution D, if TxS ⊂ D(x) for every x ∈ S.
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Consider the projectivization of the tangent bundle TCP2:

P = P(TCP2).

It is the space of pairs (A,L): A ∈ CP2, L ⊂ TACP2 is a one-dimensional
subspace. The space P is three-dimensional and it carries the standard
two-dimensional contact distribution H: the plane H(A,L) ⊂ T(A,L)P is

the preimage of the line L ⊂ TACP2 under the derivative of the bundle
projection P → CP2. The product Pk carries the product distribution Hk.
Let R0,k ⊂ Pk denote the subset of points ((A1, L1), . . . , (Ak, Lk)) such that
for every j one has Aj ∈ C2 ⊂ CP2, Aj±1 6= Aj , the lines AjAj−1, AjAj+1

are symmetric with respect to the line Lj , and the three latter lines are
distinct and non-isotropic. The above product distribution induces the so-
called Birkhoff distribution Dk on R0,k, see [2]. It is well-known [2] that
for every analytic billiard a1, . . . , ak the natural lifting to Pk of any analytic
family of its k-periodic orbits A1 . . . Ak with Lj = TAjaj lies in R0,k and is
tangent to Birkhoff distribution. In particular, if the billiard is k-reflective,
then the lifting to R0,k of an open set of its k-periodic orbits is an integral
surface of Birkhoff distribution.

We will study the following restricted versions Da and Dab of Birkhoff
distribution that correspond respectively to 4-reflective billiards a, b, c, d
with one given mirror a (or two given mirrors a and b). The products â×P3

and â× b̂×P2 admit natural inclusions to P4 induced by parametrizations
â → a, b̂ → b. Let Ma ⊂ â × P3, Mab ⊂ â × b̂ × P2 denote the closures
of the corresponding pullbacks of the set R0,4. The distributions Da, Dab
are the pullbacks of the Birkhoff distribution D4 on R0,4. They are 3- and
2-dimensional singular analytic distributions on Ma and Mab in the sense
of Subsection 2.6. For every billiard as above the natural lifting to â × P3

(â× b̂×P2) of any open set of its quadrilateral orbits lies in Ma (Mab) and is
an integral surface of the corresponding distribution Da (respectively, Dab).

The proof of Theorem 1.7 is split into the following steps.
Step 1. Case of two neighbor algebraic mirrors. In this case it is easy to

show that all the mirrors are algebraic (Proposition 2.1 in Subsection 2.1).
This together with [7, theorem 1.11] implies that the billiard under question
is of one of the types 1)–3), see Remark 1.8.

From now on we consider that no two neighbor mirrors are algebraic.
Step 2. Preparatory description of the complement U \U0. In Subsection

2.4 we study degenerate quadrilaterals ABCD ∈ U \ U0 with a pair of
coinciding neighbor vertices, say A = D, analogously to the arguments from
[10, p.320]. Under mild additional assumptions, in particular, B,C 6= A =
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D, we show that the other mirrors b and c are special curves called triangular
spirals centered at A. Namely, they are phase curves of algebraic line fields
on CP2: the so-called triangular line fields centered at A introduced in the
same subsection (Proposition 2.19). One of the key arguments used in the
proof of Theorem 1.7 is Proposition 2.21, which says that every triangular
spiral with at least two distinct centers is algebraic, provided that the line
through the centers is not isotropic. In Subsections 2.3 and 2.5 we recall
the results of [7, subsections 2.1, 2.2] on partial description of degenerate
quadrilaterals in U \U0 with either an isotropic tangency vertex, or an edge
tangent to a mirror through an adjacent vertex.

Step 3. Properness of the projection U → â × b̂ (Section 3, Corollary
3.4). To prove it, we study the Birkhoff distribution Dab and prove its non-
integrability in Subsections 3.1–3.3. Moreover, we show that the closure
in Mab of the union of its integral surfaces (if any) is a two-dimensional
analytic subset in Mab (Lemma 3.1 and Corollary 3.2.) In the proof of the
latter statement and in what follows we use Proposition 2.38 from Subsection
2.6. It deals with an m-dimensional singular analytic distribution, a given
union of m-dimensional integral surfaces and the minimal analytic set M
containing the latter union. Proposition 2.38 states that the restriction to
M of the distribution is m-dimensional and integrable. Proposition 2.38 is
a key tool for the whole paper.

The set U is identified with either the above two-dimensional analytic
subset in Mab, or a smaller analytic subset. This together with Proper
Mapping Theorem implies properness of the projection U → â × b̂ (Corol-
lary 3.4). The proof of Lemma 3.1 is done by contradiction. The contrary
would imply the existence of at least three-dimensional invariant irreducible
analytic subset M ⊂ Mab where the distribution Dab is integrable. Then a
complement M0 ⊂M to a smaller analytic subset is saturated by open sets
of quadrilateral orbits of 4-reflective billiards a, b, c, d with variable mirrors
c = c(x) and d = d(x), x ∈M0. We treat separately two cases:

- some of the projections of the setM to the space of triples (A(x), B(x), G(x)),
G = C,D, is not bimeromorphic.

- both latter projections are bimeromorphic.
The first case will be treated in Subsection 3.2. We show that there exist

x, y ∈ M0 projected to the same vertices A, B, D = D0 but with distinct
tangent lines TD0d(x) 6= TD0d(y), D0 being not a cusp1 of the curves d(x)

1Everywhere in the paper by cusp we mean the singularity of an arbitrary irreducible
singular germ of analytic curve, not necessarily the one given by equation x2 = y3 + . . .
in appropriate coordinates.
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and d(y), the projection to (A,B,D) being a local submersion at x, y. We
then deduce that the billiard d(y), d(x), c(x), c(y) is 4-reflective (as in [7,
proof of lemma 3.1]), and the mirror c(x) is a triangular spiral with center
D0 (Proposition 2.19, Step 2). Then we slightly deform y with fixed vertices
A and B to a point y′ so that the corresponding mirror d(y′) intersects
d(x) at a point D1 6= D0. We get analogously that the curve c(x) is a
triangular spiral with two distinct centers D0 and D1. This implies that
c(x) is algebraic (Proposition 2.21, Step 2). Similarly, we show that c(y) is
algebraic, fixing y and deforming x. Hence, the mirror d(x) of the 4-reflective
billiard d(y), d(x), c(x), c(y) is algebraic, as are c(x) and c(y) (Proposition
2.1, Step 1). Similarly, a and b are algebraic, as are c(x) and d(x). The
contradiction thus obtained implies that the first case is impossible.

In the second case we show (in Subsection 3.3) that for an open set of
points x ∈M0 the mirrors c(x) and d(x) are lines. Hence, the curves a and
b are algebraic, by Step 1, – a contradiction. Finally, none of the above cases
is possible. The contradiction thus obtained will prove Lemma 3.1.

Step 4. Case of one algebraic mirror, say a: proof of Theorem 1.9 (Sub-
section 3.4). Properness of the projection U → â × b̂ (Step 3) implies
properness of the projection U → b̂ (algebraicity). Therefore, the preimage
in U of every point B ∈ b̂ is a compact holomorphic curve. This immediately
implies that the mirror c is algebraic and there are two possibilities:

- either all the mirrors are algebraic, and we are done;
- or the projection of the above preimage to the position of the point D

is constant for every B.
In the latter case we show that a = c is a line and the mirrors b, d 6= a

are symmetric with respect to it: the billiard has type 1). This will prove
Theorem 1.9.

From now on we consider that no mirror is algebraic. We show that this
case is impossible. This will prove Theorem 1.10 and hence, Theorem 1.7.

Step 5. Case of intersected mirrors, say a and b intersect at a point
A. Under the additional assumption that A is regular and not an isotropic
tangency point for both a and b we show that a = c (Corollary 3.5 proved in
Subsection 3.5). The set U contains a non-empty at most one-dimensional
compact analytic subset of quadrilaterals AACD (properness of projection,
Step 3). For the proof of Corollary 3.5 we show in Subsection 3.5 that this is
a discrete subset in U consisting of quadrilaterals with all the vertices coin-
ciding with A. Indeed, otherwise, if the above subset were one-dimensional,
this would immediately imply that some of the mirrors c or d is algebraic,
– a contradiction.
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Step 6. Proof of Theorem 1.10. To do this, we study the three-dimensional
Birkhoff distribution Da on the 6-dimensional analytic set Ma. We fix a con-
nected component of the open set of quadrilateral orbits of the billiard a,
b, c, d. It is an integral surface of the distribution Da, which we will de-
note S. We consider the minimal analytic subset M ⊂ Ma containing S,
which is irreducible (easy to show), and study the restriction DM to M of
the distribution Da. We treat two separate cases: 1) dimDM = 2 (Sub-
section 4.1); 2) dimDM = 3 (Subsection 4.3). In the two-dimensional Case
1) we show that there exists an open subset V ⊂ M saturated by integral
surfaces of the distribution DM that correspond to 4-reflective billiards a,
b(x), c(x), d(x) with b(x) intersecting a (easily follows from transcendence
of the curve a). We then deduce that either the mirror b(x) is a line for all
x ∈ V (and hence, for all x regular for both M and DM ), or the mirror c(x)
coincides with a for all x as above. This basically follows from Corollary
3.5, Step 5. The first subcase is impossible, since then the mirror b of the
initial transcendental billiard would be a line, – a contradiction. In the sec-
ond subcase the projection νC(M) of the whole variety M to the position
of the vertex C lies in a. For a generic A ∈ â we consider its preimage
WA ⊂ M under the projection νa : M → â, which is a projective alge-
braic variety. It follows that the projection νC(WA) lies in a transcendental
curve a, while it should be an algebraic subset in CP2 (Remmert’s Proper
Mapping and Chow’s Theorems). Hence, νC(WA) is discrete. On the other
hand, it cannot be discrete, whenever b is neither a line, nor a conic, by
[7, proposition 2.32]. The contradiction thus obtained shows that Case 1)
is impossible. The three-dimensional Case 2) is treated analogously, but
it is more technical. The existence of two-dimensional integral surfaces as
above of a three-dimensional distribution DM is not automatic. Its proof is
based on Cartan–Kuranishi–Rashevskii involutivity theory of Pfaffian sys-
tems. The corresponding background material is recalled in Subsection 4.2.

2 Preliminaries

2.1 Case of two neighbor algebraic mirrors

Proposition 2.1 Let in a 4-reflective billiard a, b, c, d the mirrors a and
b be algebraic curves. Then all the mirrors are algebraic.

Proof By symmetry, it suffices to prove algebraicity of the mirror c. Fix a
quadrilateral orbit A0B0C0D0. Consider the family of quadrilateral orbits
ABCD with fixed D = D0. They are locally parametrized by the line

10



l = AD, which lies in the space CP1 of lines through D. The point A
depends algebraically on l, since a is algebraic. Similarly, the line AB,
and hence, the point B depend algebraically on l, since a, b are algebraic
and AB is symmetric to l with respect to the line TAa. Analogously, the
line BC, which is symmetric to AB with respect to the line TBb, depends
algebraically on l. The line DC also depends algebraically on l, being the
reflected image of the line l with respect to the fixed line TDd. Finally, the
variable intersection point C = BC ∩DC should also depend algebraically
on l. Hence, c is algebraic. The proposition is proved. 2

2.2 Maximal analytic extension

Recall that a germ (a,A) ⊂ CPn of analytic curve is irreducible, if it is the
image of a germ of analytic mapping (C, 0)→ CPn.

Definition 2.2 [8, definition 5] Consider two holomorphic mappings of con-
nected Riemann surfaces S1, S2 with base points s1 ∈ S1 and s2 ∈ S2 to
CPn, fj : Sj → CPn, j = 1, 2, f1(s1) = f2(s2). We say that f1 ≤ f2, if
there exists a holomorphic mapping h : S1 → S2, h(s1) = s2, such that
f1 = f2 ◦ h. This defines a partial order on the set of classes of Riemann
surface mappings to CPn up to conformal reparametrization respecting base
points.

The following proposition is classical, see the proof, e.g., in [8].

Proposition 2.3 [8, proposition 2]. Every irreducible germ of analytic
curve in CPn has maximal analytic extension. In more detail, let (a,A) ⊂
CPn be an irreducible germ of analytic curve. There exists an abstract
connected Riemann surface â with base point Â ∈ â (which we will call
the maximal normalization of the germ a) and a holomorphic mapping
πa : â→ CPn, πa(Â) = A with the following properties:

- the image of germ at Â of the mapping πa is contained in a;
- πa is the maximal mapping with the above property in the sense of

Definition 2.2.
Moreover, the mapping πa is unique up to composition with conformal

isomorphism of Riemann surfaces respecting base points.

Corollary 2.4 Let M be a complex manifold, and let f : M → CPn be a
non-constant holomorphic mapping. Let U ⊂ M be an irreducible analytic
subset, and let the restriction f |U have rank one on an open subset. Let
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x ∈ U be a regular point, A = f(x); then the image of the germ f : (U, x)→
CPn is an irreducible germ (a,A) of analytic curve. Let πa : â → a be its
maximal normalization. Let Û be the normalization of the analytic set U
(see [5, p.78]), πU : Û → U be the natural projection (which is invertible
on the regular part of U). Then there exists a unique holomorphic lifting
F : Û → â such that f ◦ πU = πa ◦ F .

Proof For every point y ∈ Û and any point z ∈ Û close enough to y
there exists an analytic curve in Û through y and z. This together with
Proposition 2.3 (applied to the latter curves) and Hartogs’ and Osgood’s
Theorems imply the corollary. 2

2.3 Complex reflection law

The material presented in this subsection is contained in [7, subsection 2.1].
We fix an Euclidean metric on R2 and consider its complexification:

the complex-bilinear quadratic form dz2
1 + dz2

2 on the complex affine plane
C2 ⊂ CP2. We denote the infinity line in CP2 by C∞ = CP2 \ C2.

Definition 2.5 The symmetry C2 → C2 with respect to a non-isotropic
complex line L ⊂ CP2 is the unique non-trivial complex-isometric involution
fixing the points of the line L. It extends to a projective transformation of
the ambient plane CP2. For every x ∈ L it acts on the space CP1 of lines
through x, and this action is called symmetry at x. If L is an isotropic line
through a finite point x, then a pair of lines through x is called symmetric
with respect to L, if it is a limit of symmetric pairs of lines with respect to
non-isotropic lines converging to L.

Lemma 2.6 [7, lemma 2.3] Let L be an isotropic line through a finite point
x. A pair of lines (L1, L2) through x is symmetric with respect to L, if and
only if some of them coincides with L.

Convention 2.7 For every irreducible analytic curve a ⊂ CP2 and a point
A ∈ â the local branch aA of the curve a at A is the germ of curve
πa : (â, A) → CP2, which is contained in a. By TAa we denote the tangent
line to the local branch aA at πa(A). Sometimes we idendify a point (subset)
in a with its preimage in the normalization â and denote both subsets by
the same symbol. In particular, given a subset in CP2, say a line l, we set
â∩ l = π−1

a (a∩ l) ⊂ â. If a, b ⊂ CP2 are two irreducible analytic curves, and
A ∈ â, B ∈ b̂, πa(A) 6= πb(B), then for simplicity we write A 6= B and the
line πa(A)πb(B) will be referred to, as AB.

12



Definition 2.8 A triple of points BAD ∈ (CP2)3 satisfies the complex re-
flection law with respect to a given line L through A, if one of the following
statements holds:

- either B,D 6= A, the line L is non-isotropic and the lines AB, AD are
symmetric with respect to L;

- or B,D 6= A, the line L is isotropic and some of the lines AB, AD
coincides with L;

- or A coincides with some of the points B or D.

Definition 2.9 Let a1, . . . , ak ⊂ CP2 be an analytic (algebraic) billiard,
and let â1, . . . , âk be the maximal normalizations of its mirrors. Let Pk ⊂
â1 × · · · × âk denote the subset corresponding to k-periodic billiard orbits.
The set Pk is contained in the subset Qk ⊂ â1 × · · · × âk of (not necessarily
periodic) k-orbits: the k-gons A1 . . . Ak such that for every 2 ≤ j ≤ k−1 one
has Aj 6= Aj±1, the line TAjaj is not isotropic and the lines AjAj−1, AjAj+1

are symmetric with respect to it and distinct from it. Let U0 = Int(Pk)
denote the interior of the subset Pk ⊂ Qk. Set

U = U0 ⊂ â1 × . . . âk : the closure is taken in the usual product topology.

The set U will be called the k-reflective set.

Proposition 2.10 [7, proposition 2.14]. The k-reflective set U is an an-
alytic (algebraic) subset in â1 × · · · × âk. The billiard is k-reflective, if
and only if the k-reflective set U is non-empty; then each its irreducible
component is two-dimensional. If the billiard is k-reflective, then for every
point A1 . . . Ak ∈ U each triple Aj−1AjAj+1 satisfies the complex reflection
law from Definition 2.8 with respect to the line TAjaj, and each projection
U → âj × âj+1 is a submersion on an open dense subset in U .

Addendum. For every k-reflective billiard the latter projections U →
âj × âj+1 are local biholomorphisms on the set of those k-periodic orbits
whose vertices are not cusps of the corresponding mirrors.

The addendum follows from definition.

2.4 Triangular algebraic line fields and spirals

Here we deal with a 4-reflective complex analytic billiard a, b, c, d whose
4-reflective set U contains a quadrilateral ABCD with coinciding vertices
A = D. We show (Proposition 2.19) that under mild genericity assumptions
(implying, e.g., that ABCD is not a single-point quadrilateral) either the
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mirrors b and c are conics, or they are so-called triangular spirals centered at
A: phase curves of algebraic line fields invariant under the rotations around
A. We show (Proposition 2.21) that every triangular spiral with two distinct
centers is algebraic.

To define triangular spirals and state the above-mentioned results, we in-
troduce yet another restricted Birkhoff distribution on the space of “framed
triangles with fixed vertex”. Let us fix a point A ∈ C2 (take it as the origin)
and a non-trivial complex isometry H ∈ SO(2,C) \ Id fixing A. Recall that
P = P(TCP2), and H is the standard contact plane field on P, see Subsec-
tion 1.2. Namely, for every x = (B,L) ∈ P, where B ∈ CP2, L ⊂ TBCP2

is a one-dimensional subspace, the plane H(x) ⊂ TxP is the preimage of
the line L under the differential of the bundle projection P → CP2. Con-
sider the product P2 equipped with the four-dimensional algebraic distri-
bution H2 = H ⊕ H. Let TA,H ⊂ CP2 × CP2 denote the subset of pairs
(B,C) such that B,C 6= A, B 6= C, the lines AB, AC are distinct, non-
isotropic and AC = H(AB). Let M0

A,H ⊂ P2 denote the subset of those
pairs ((B,LB), (C,LC)), for which (B,C) ∈ TA,H , the lines LB, LC are non-
isotropic, the lines AB, BC are symmetric with respect to the line LB; AC,
BC are symmetric with respect to the line LC ; AB 6= LB, AC 6= LC . Set

MA,H = M0
A,H ⊂ P

2 : the closure in the usual topology.

This is a three-dimensional projective algebraic variety, and M0
A,H ⊂MA,H

is its Zariski open and dense subset.

Proposition 2.11 The variety M0
A,H is smooth and transversal to the dis-

tribution H2.

Proof The smoothness is obvious. The restriction ν : M0
A,H → TA,H of the

bundle projection P2 → (CP2)2 is a local diffeomorphism, by construction.
For every x = ((B,LB), (C,LC)) ∈ M0

A,H the subspace H2(x) ⊂ Tx(P2) is

the preimage of the direct sum LB⊕LC ⊂ T(B,C)(CP2)2 under the differential
of the bundle projection. Thus, it suffices to show that for every (B,C) ∈
TA,H the space T(B,C)TA,H is transversal to LB ⊕ LC . Here LB, LC are
arbitrary lines such that AB and BC are symmetric with respect to the line
LB and AC, BC are symmetric with respect to the line LC .

For every (B,C) ∈ TA,H finitely punctured lines AB × C and B × AC
are contained in TA,H , by definition. We identify AB and AC with the
corresponding one-dimensional subspaces in TBCP2 and TCCP2 respectively.
Thus, AB ⊕ AC ⊂ T(B,C)TA,H and AB ⊕ AC is transversal to LB ⊕ LC in
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T(B,C)(CP2×CP2), since AB 6= LB and AC 6= LC by definition. This proves
the proposition. 2

Corollary 2.12 For all x ∈M0
A,H the intersections

DA,H(x) = H2(x) ∩ TxM0
A,H

are one-dimensional and form an algebraic line field on M0
A,H .

Proof The transversal variety M0
A,H and distribution H2 in the ambient

six-dimensional space P2 have dimensions 3 and 4 respectively. Hence, the
intersections of their tangent spaces are one-dimensional. The algebraicity
of the line field DA,H is obvious. 2

The next proposition shows that the line field DA,H has an algebraic
first integral: an appropriate holomorphic branch of squared perimeter of
triangle. To define the latter branch, let us introduce the following definition.

Definition 2.13 Let A,B,C ∈ C2, B 6= A,C, and let the lines AB, BC
be non-isotropic. Let L be a symmetry line of the pair of lines AB, BC.
The symmetry σ : AB → BC with respect to the line L is an isometry with
respect to the complexified Euclidean metric. For every line l = AB,BC
the complex distance function l → C, x 7→ |Bx| = dist(B, x) has two affine
branches that differ by sign. Let us choose those affine distance functions
on the lines AB, BC for which |Bσ(x)| ≡ −|Bx|. We then say that the
distances |BA| = |AB|, |BC| = |CB| calculated with respect to the above
affine distance functions are L-concordant.

Remark 2.14 The L-concordant distances are well-defined up to simulta-
neous change of sign. Their ratio |AB||BC| is uniquely defined.

Example 2.15 Let in the above conditions A,B,C ∈ R2, and let |AB|,
|BC| be the Euclidean distances. Then |AB|, |BC| are L-concordant, if
L is the exterior bisector of the angle ∠ABC. Otherwise L is the interior
bisector and |AB|, −|BC| are L-concordant, see Figure 1.

Take an arbitrary point ((B,LB), (C,LC)) ∈M0
A,H . We identify the lines

LB and LC with the corresponding projective lines in CP2. Let us normalize
the distances |AB|, |BC|, |CA| to make |AB| and |BC| LB-concordant and
|BC|, |CA| LC-concordant. The perimeter P = |AB| + |BC| + |CA| thus
constructed is well-defined up to sign, and its square P 2 is a well-defined
holomorphic function on M0

A,H , see Figure 1.
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Figure 1: Concordant lengths in the real case: here P = |AB|+ |BC|−|AC|.

Proposition 2.16 The above squared perimeter P 2 is a first integral of the
line field DA,H . The space MA,H , the line field DA,H and P 2 are invariant
with respect to the complex rotation group SO(2,C) fixing A.

Proof The invariance follows from construction. The statement saying
that P 2 is a first integral is a complexification of the classical statement on
the real perimeter and the real Birkhoff distribution, see, e.g., [2, section 2].
Its proof is analogous to that in the real case. The proposition is proved. 2

Proposition 2.17 Let P 2 : M0
A,H → C be the squared perimeter function

from the above proposition. Let p ∈ C, Sp be an irreducible component of the
level set {P 2 = p} in M0

A,H . The projections νG : Sp → CP2 to the position
of the vertex G = B,C have discrete preimages, and thus, are submersions
on Zariski open dense subsets. The restriction to Sp of the line field DA,H
is sent by each projection to an SO(2,C)-invariant (multivalued) algebraic
line field on CP2 depending on the choice of G and called triangular line
field centered at A with parameters H, p.

Proof The contrary to the discreteness of preimages of the projection, say
νB would imply constance of the perimeter on a one-parameter family of
triangles ABC with fixed vertices A and B, fixed line AC = H(AB) = L
and variable C ∈ L. This is obviously impossible. The algebraicity and
invariance of the projected line field obviously follow from the algebraicity
and invariance of the surface Sp and submersivity. 2

Definition 2.18 A triangular spiral centered at A is a complex orbit of a
triangular line field centered at A, see Fig.2a).
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Proposition 2.19 2 Let (a,A), (b, B), (c, C), (d,D) be irreducible germs of
analytic curves in CP2 forming a 4-reflective analytic planar billiard in the
following more general sense than in Remark 1.11: the quadrilateral ABCD
is contained in the 4-reflective set U , cf. Remark 1.11. Let the mirror germs
a and d intersect: A = D. Let B,C 6= A, AB 6= TAa, TBb, AC 6= TDd, TCc,
and let the lines AB, TAa, TDd, TBb, TCc be not isotropic. If AB 6= AC,
then the mirrors b and c are triangular spirals centered at A. Otherwise, if
AB = AC, then the mirrors b and c are conics: complex circles centered at
A, see Fig.2.

A=D

B

b

 C

c
a

A=D

d

          a) triangular spirals                                             b) complex circles

B

 C

b
ca

 d

Figure 2: Family of degenerate orbits with A = D: the mirrors b and c are
either spirals, or conics

Proof There exists an irreducible germ Γ ⊂ U of analytic curve at ABCD
parametrized by local small complex parameter t and consisting of quadri-
laterals ABtCtDt with fixed vertex A: AB0C0D0 = ABCD. Let us fix it.
One has Dt ≡ D = A. This follows from the fact that Dt is found as a
point of intersection of the curve d with the line Lt symmetric to ABt with
respect to the tangent line TAa. Indeed, the line L0 is transverse to TDd,
as is AC, by assumption and since L0 and AC are symmetric with respect
to the line TDd. Therefore, the intersection point Dt ∈ Lt ∩ d identically
coincides with D = D0. Let H denote the composition of symmetries with
respect to the tangent lines, first TAa, then TDd. Thus, H ∈ SO(2,C) fixes
A and H(ABt) = ACt for every ABtCtD ∈ Γ. We take A as the origin.

2Real triangular spirals were introduced in [10, p.320], where a real version of Propo-
sition 2.19 was proved. Our proof of Proposition 2.19 is analogous to arguments from loc.
cit.
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Case 1): AB 6= AC. Then B 6= C and the germ Γ is embedded into
M0
A,H via the mapping t 7→ ((Bt, TBtb), (Ct, TCtc)), by construction and

non-isotropicity condition. Its image is a phase curve of the line field DA,H ,
analogously to discussions in [2] and [10, p.320]. This together with Propo-
sition 2.17 implies that the projection Γ→ CP2 to the position of each one
of the vertices B and C sends Γ to a triangular spiral centered at A, see
Fig.2a). Hence, b and c are triangular spirals.

Case 2): AB = AC. Then H = ±Id and ABt ≡ ACt. Note that at least
one of vertices, either Bt, or Ct varies, since Γ is a curve. To treat the case
under consideration, we use the following remark.

Remark 2.20 There exist no k-reflective analytic planar billiard such that
some its two neighbor mirrors coincide with the same line: such a billiard
would have no k-periodic orbits in the sense of Definition 1.5 (cf. [7, proof
of corollary 2.19]).

Subcase 2a): Bt ≡ Ct 6≡ const. This implies that b = c and the line ABt
is tangent to b at variable point Bt, as in loc. cit. Therefore, b = c = AB,
which is impossible by the above remark. Hence, this subcase is impossible.

Subcase 2b): Bt 6≡ Ct. Without loss of generality we consider that
B 6= C. Thus, for every t small enough the points A, Bt and Ct are distinct
and lie on the same line. Note that TBb, TCc 6= AB = AC, by the condition
of the proposition. Hence, TBtb, TCtc ⊥ ABt for all t. This implies that
Bt, Ct 6≡ const and b, c are complex circles centered at A, see Fig.2b). This
proves Proposition 2.19. 2

Proposition 2.21 Let a planar analytic curve be a triangular spiral with
respect to two distinct centers, and let the line through them be non-isotropic.
Then it is algebraic.

Proof A triangular spiral is a phase curve of a triangular algebraic line
field. The latter field is invariant under complex rotations: the isometries
fixing the center of the spiral with unit Jacobian. Suppose the contrary: the
spiral under consideration is not algebraic. Then the corresponding line field
is uniquely defined: two algebraic line fields coinciding on a non-algebraic
curve (which is Zariski dense) coincide everywhere. Thus, the latter line field
is invariant under complex rotations around two distinct centers, and the
line through the centers is not isotropic. The latter rotations generate the
whole group of complex isometries of C2 with unit Jacobian. Thus, the line
field is invariant under all of them, which is impossible. The contradiction
thus obtained proves the proposition. 2
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2.5 Tangencies in k-reflective billiards

Here we recall the results of [7, subsection 2.2].
We deal with k-reflective analytic planar billiards a1, . . . , ak in CP2. Let

U ⊂ â1×· · ·× âk be the k-reflective set. The results of loc.cit. presented be-
low concern degenerate quadrilaterals in U\U0: limits A1 . . . Ak of k-periodic
orbits such that for a certain j with aj being not a line the tangent line TAjaj
and the adjacent edges Aj±1Aj collide to the same non-isotropic limit. Then
the limit vertex Aj will be called a tangency vertex. Proposition 2.23 shows
that the latter cannot happen to be the only degeneracy of the limit k-gon.
Its Corollary 2.26 presented at the end of the subsection concerns the case,
when k = 4. It says that if the tangency vertex is distinct from its neighbor
limit vertices, then its opposite vertex should be either also a tangency ver-
tex, or a cusp with a non-isotropic tangent line. Proposition 2.25 extends
Proposition 2.23 to the case, when some subsequent mirrors coincide and
the corresponding subsequent vertices of a limiting orbit collide.

Definition 2.22 A point of a planar irreducible analytic curve is marked,
if it is either a cusp, or an isotropic tangency point. Given a parametrized
curve πa : â → a, a point A ∈ â is marked, if it corresponds to a marked
point of the local branch aA, see Convention 2.7.

Proposition 2.23 [7, proposition 2.16] Let a1, . . . , ak and U be as above.
Then U contains no k-gon A1 . . . Ak with the following properties:

- each pair of neighbor vertices correspond to distinct points, and no
vertex is a marked point;

- there exists a unique s ∈ {1, . . . , k} such that the line AsAs+1 is tangent
to the curve as at As, and the latter curve is not a line, see Fig.3.

Remark 2.24 A real version of Proposition 2.23 is contained in [10] (lemma
56, p.315 for k = 4, and its generalization (lemma 67, p.322) for higher k).

Proposition 2.25 [7, proposition 2.18] Let a1, . . . , ak and U be as at the
beginning of the subsection. Then U contains no k-gon A1 . . . Ak with the
following properties:

1) each its vertex is not a marked point of the corresponding mirror;
2) there exist s, r ∈ {1, . . . , k}, s < r such that a = as = as+1 = · · · = ar,

As = As+1 = · · · = Ar, and a is not a line;
3) For every j /∈ R = {s, . . . , r} one has Aj 6= Aj±1 and the line Aj−1Aj

is not tangent to aj at Aj, see Fig.4.
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Figure 3: Impossible degeneracy of simple tangency: s = k.
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Figure 4: Coincidence of subsequent vertices and mirrors: r = k.

Corollary 2.26 [7, corollary 2.20] Let a, b, c, d be a 4-reflective analytic
billiard, and let b be not a line. Let U ⊂ â× b̂× ĉ× d̂ be the 4-reflective set.
Let ABCD ∈ U be such that A 6= B, B 6= C, the line AB = BC is tangent
to the curve b at B and is not isotropic. Then

- either AD = DC is tangent to the curve d at D, πa(A) = πc(C), a = c
and the corresponding local branches coincide, i.e., aA = cC (see Convention
2.7): “opposite tangency connection”, see Fig.5a);

- or D is a cusp of the local branch dD and the tangent line TDd is not
isotropic: “tangency–cusp connection”, see Fig.5b).
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Figure 5: Opposite degeneracy to tangency vertex: tangency or cusp.

2.6 Singular analytic distributions

Here we recall definitions and properties of singular analytic distributions.
The author believes that the material of the present subsection is known to
specialists, but he did not find it in literature.

Definition 2.27 Let W be a complex manifold, n = dimW , Σ ⊂ W be a
nowhere dense closed subset, m < n. Let D be an analytic field of codi-
mension m vector subspaces D(y) ⊂ TyW , y ∈ W \ Σ. We say that D is a
singular analytic distribution of codimension m (dimension n−m) with the
singular set Σ = Sing(D), if it extends analytically to no point in Σ and
each x ∈ W has a neighborhood U where there exists a finite collection Ω
of holomorphic 1-forms such that D(y) = {v ∈ TyW | Ω(v) = 0} for every
y ∈ U \ Σ. (This generalizes the definition of a codimension one singular
holomorphic foliation [4, p.11]. A similar definition in smooth case can be
found in [13, p.8].)

Remark 2.28 Every k-dimensional singular analytic distribution on a com-
plex manifold W is defined by a meromorphic3 section of the Grassmanian

3Recall that a mapping V → W of complex manifolds (or analytic sets in complex
manifolds) is meromorphic, if it is well-defined and holomorphic on an open and dense
subset in V , and the closure of its graph is an analytic subset in V×W , see Convention 2.31.
It is well-known that if W is compact and V is irreducible, then the set of indeterminacies
of every meromorphic mapping V → W is contained in the union of the singular set of
V (which has codimension at least two in V , if V is normal) and an analytic subset in V
of codimension at least two. A mapping is bimeromorphic, if it is meromorphic together
with its inverse.

21



k-subspace bundle Grk(TW ) of the tangent bundle TW , and vice versa:
each meromorphic section defines a k-dimensional singular analytic distri-
bution. Its singular set is an analytic subset in W of codimension at least
two, being the indeterminacy locus of a meromorphic section of a bundle
with compact fibers.

Example 2.29 Let M be a complex analytic manifold, N ⊂ M be a con-
nected complex submanifold, D be a (regular) analytic distribution on M .
The intersection D|N (x) = TxN ∩ D(x) with x ∈ N has constant and min-
imal dimension on an open and dense subset N0 ⊂ N . The subspaces
D|N (x) ⊂ TxN form a singular analytic distribution D|N on N that is called
the restriction to N of the distribution D. Its singular set is contained in the
complement N \N0: the set of those points x, where the above dimension is
not minimal. The restriction to N of a singular analytic distribution D on
M with N 6⊂ Sing(D) is defined analogously; it is also a singular analytic
distribution on N whose singular set is contained in the union of the inter-
section Sing(D) ∩ N and the set of those points x ∈ N , where the above
dimension dim(D|N (x)) is not minimal.

Example 2.30 Let D be a singular analytic distribution on a complex man-
ifold W . Let M be another connected complex manifold, and let φ : M →W
be a non-constant holomorphic mapping such that φ(M) 6⊂ Sing(D). For
every x ∈M set

φ∗D(x) = (dφ(x))−1(D(φ(x)) ∩ dφ(x)(TxM)) ⊂ TxM.

The subspaces φ∗D(x) form a singular analytic distribution on M called
the pullback distribution. In the case, when φ is an immersion on an open
and dense subset, the dimension of the distribution φ∗D equals the minimal
dimension of the above intersection.

Convention 2.31 Let W be a complex manifold, M ⊂ W be an analytic
subset. Everywhere below for simplicity we say that a subset N ⊂ M is
analytic, if it is an analytic subset of the ambient manifold W .

Definition 2.32 Let W be a complex manifold, M ⊂W be an irreducible
analytic subset, and let D be a singular analytic distribution on W , M 6⊂
Sing(D). There exists an open and dense subset of those points4 x ∈Mreg

4Everywhere below for an analytic set M by Mreg (Msing) we denote the set of its
smooth (respectively, singular) points
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regular for D, for which the intersection D|M (x) = D(x)∩TxM has minimal
dimension. Then we say that the subspaces D|M (x) form a singular analytic
distribution D|M on M . It is regular on an open dense subset M0

reg ⊂
Mreg. Its singular set M \ M0

reg is the union of the set Msing and the
set of those points x ∈ Mreg where the distribution D|M does not extend
analytically. The distribution D|M is also called the restriction to M of the
distribution D. The restriction of a singular analytic distribution D|M to an
irreducible analytic subset V ⊂ M , V 6⊂ Sing(D|M ) is a singular analytic
distribution on V defined analogously: it coincides with D|V . In the case,
when the analytic set M is a union of several irreducible components, the
restriction of the distribution D to each component will be referred to, as a
singular distribution on M (which may have different dimensions on different
components).

Example 2.33 The Birkhoff distribution Dk introduced at the end of Sec-
tion 1 extends to a singular analytic distribution on the closure R0,k ⊂ Pk.

Definition 2.34 An integral l-surface of a singular analytic distribution D
on an analytic variety5 M is a holomorphic connected l-dimensional surface
S ⊂ M lying outside the singular set of D such that TxS ⊂ D(x) for every
x ∈ S. An m-dimensional singular analytic distribution is integrable, if there
exists an integral m-surface through each its regular point.

Remark 2.35 The singular set of a singular analytic distribution is always
an analytic subset in the ambient variety (see Convention 2.31), as in Remark
2.28. In general an integral surface is not an analytic set. Indeed, a generic
linear vector field on CP2 has transcendental orbits. Hence, they are not
analytic subsets in CP2, by Chow’s Theorem [11, p.167].

Definition 2.36 Let M be an irreducible analytic subset in a complex man-
ifold V . A p-dimensional intrinsic singular analytic distribution on M is a
meromorphic section D : M → Grp(TV )|M of the Grassmanian bundle (see
Footnote 3) such that D(x) ⊂ TxM for regular points x ∈ M where D is
holomorphic.

Remark 2.37 Each singular analytic distribution is an intrinsic one. Con-
versely, each intrinsic singular analytic distribution is transformed to a usual

5Everywhere below by analytic variety we mean an analytic subset in a complex man-
ifold
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singular analytic distribution by a bimeromorphic mapping. Namely, con-
sider the bundle projection π : Grp(TV ) → V and the graph Γ of the
section D (which is an analytic subset in Grp(TV )). Let F be the tau-
tological distribution on Grp(TV ): for every λ ∈ Grp(TV ) the subspace
F(λ) ⊂ TλGrp(TV ) is the preimage of the subspace λ ⊂ Tπ(λ)V under the
differential dπ(λ). The restriction F|Γ is a singular holomorphic distribution
transformed to D by the bimeromorphic projection π : Γ→M .

Proposition 2.38 Let an m-dimensional (intrinsic) singular analytic dis-
tribution D on an analytic subset N in a complex manifold have at least
one m-dimensional integral surface. Given an arbitrary union S of m-
dimensional integral surfaces, let M ⊂ N denote the minimal analytic subset
in N containing S. Then the restriction D|M is an integrable m-dimensional
singular analytic distribution.

Proof It suffices to prove the proposition for a true singular analytic dis-
tribution, locally defined as kernel field of a system of holomorphic 1-forms
(Remark 2.37). The set {x ∈ M0

reg | D(x) ⊂ TxM} coincides with all of
M0
reg, since it contains S ∩M0

reg and its closure is an analytic subset in M .
Similarly, the set of those points in M0

reg where the distribution D|M sat-
isfies the Frobenius integrability condition coincides with all of M0

reg, since
it contains S and its closure is an analytic subset in M . Thus, D|M is an
m-dimensional integrable distribution. The proposition is proved. 2

2.7 Birkhoff distributions and periodic orbits

Here we recall the definition and basic properties of Birkhoff distribution and
its restricted versions. Consider the space P = P(TCP2), which consists
of pairs (A,L), A ∈ CP2, L being a one-dimensional subspace in TACP2.
Its natural projection to CP2 will be denoted by Π. The standard contact
structure is the two-dimensional analytic distribution H on P given by the
dΠ-pullbacks of the lines L:

H(A,L) = (dΠ(A,L))−1(L) ⊂ T(A,L)P.

The distribution Hk = ⊕kj=1H is the 2k-dimensional product distribution on

Pk. Recall that R0,k ⊂ Pk is the subset of k-tuples ((A1, L1), . . . , (Ak, Lk))
such that for every j = 1, . . . , k one has Aj ∈ C2 = CP2 \ C∞, Aj 6=
Aj±1, the lines AjAj−1, AjAj+1 are symmetric with respect to the line
Lj , and the three latter lines are distinct and non-isotropic. This is a 2k-
dimensional smooth quasiprojective variety. The Birkhoff distribution Dk is
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the restriction to R0,k of the product distribution Hk:

Dk(x) = TxR0,k ∩Hk(x) for every x ∈ R0,k. (2.1)

This is a k-dimensional analytic distribution. It is the complexification of
the real Birkhoff distribution introduced in [2]. For every two irreducible
analytic curves a, b ⊂ CP2 with maximal normalizations πa : â → CP2,
πb : b̂→ CP2 we will denote

Pa = â× P3; Pab = â× b̂× P2.

We consider the natural embeddings ηa : Pa → P4, ηab : Pab → P4:

ηa(A, (B,LB), (C,LC), (D,LD)) = ((πa(A), TAa), (B,LB), (C,LC), (D,LD)),

ηab(A,B, (C,LC), (D,LD)) = ((πa(A), TAa), (πb(B), TBb), (C,LC), (D,LD)).

Remark 2.39 The critical points of the mappings ηa (ηab) are contained
in the sets Cuspa ⊂ Pa, Cuspab ⊂ Pab of those points for which A (A or
B) is a cusp of the corresponding curve (see Footnote 1 in Section 1). The
mappings ηa and ηab are immersions outside the sets Cuspa and Cuspab.

Consider the subsets

M0
a = η−1

a (R0,4) \ Cuspa ⊂ Pa, M0
ab = η−1

ab (R0,4) \ Cuspab ⊂ Pab, (2.2)

Ma = M0
a ⊂ Pa; Mab = M0

ab ⊂ Pab :

the closures are taken in the usual topology. The subsets Ma ⊂ Pa and
Mab ⊂ Pab are obviously analytic. The restricted (pullback) Birkhoff dis-
tributions Da on M0

a and Dab on M0
ab respectively are the pullbacks of the

Birkhoff distribution D4:

Da(x) = (dηa(x))−1(D4(ηa(x)) ∩ dηa(x)(TxM
0
a )) ⊂ TxM0

a , x ∈M0
a ; (2.3)

Dab(x) = (dηab(x))−1(D4(ηab(x)) ∩ dηab(x)(TxM
0
ab)) ⊂ TxM0

ab, x ∈M0
ab.
(2.4)

They extend to singular analytic distributions on Ma and Mab respectively
in the sense of Subsection 2.6. For example, Da is the restriction to Ma of
the distribution T â⊕H3 on Pa = â× P3. One has

dimMa = 6, dimDa = 3; dimMab = 4, dimDab = 2.
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Definition 2.40 (complexification of [10, definition 14]) Let k ∈ N. A k-
gon A1 . . . Ak ∈ (CP2)k is said to be non-degenerate, if for every j = 1, . . . , k
(we set Ak+1 = A1, A0 = Ak) one has Aj ∈ C2 = CP2 \ C∞, Aj+1 6= Aj ,
Aj−1Aj 6= AjAj+1 and the line AjAj+1 is not isotropic. We will call the
complex lines AjAj±1 the edges adjacent to Aj .

Remark 2.41 The above sets R0,k, M
0
a , M0

ab are projected to the sets of
non-degenerate k-gons (quadrilaterals). A periodic billiard orbit in the sense
of Definition 1.5 is non-degenerate, provided that its vertices lie in C2, its
edges are non-isotropic and every two adjacent edges are distinct. The k-
reflective set U of a k-reflective billiard contains an open and dense subset
U1 ⊂ U of those non-degenerate orbits whose vertices are not marked points
(see Definition 2.22) of the corresponding mirrors.

Definition 2.42 (cf. [10, definition 16]) Consider some of the above Birkhoff
distributions, let us denote it D, and let M denote the underlying manifold
(e.g., R0,k, M

0
ab,...) carrying D. Consider the projections of the manifold

M to the positions of vertices of the k-gon (quadrilateral). A subspace
E ⊂ D(x), x ∈M , is said to be non-trivial, if the restriction to E of the dif-
ferential of each above projection has positive rank. (Then the rank equals
one.) An integral surface of the same distribution is non-trivial, if its tangent
planes are non-trivial.

For every analytic billiard a, b, c, d there exist natural analytic mappings
Ψa : â× b̂× ĉ× d̂→ Pa, Ψab : â× b̂× ĉ× d̂→ Pab:

Ψa(ABCD) = (A, (B, TBb), (C, TCc), (D,TDd));

Ψab(ABCD) = (A,B, (C, TCc), (D,TDd)). (2.5)

Proposition 2.43 Let a, b, c, d be a 4-reflective billiard. The mappings
Ψa, Ψab send the subset U1 ⊂ U (see Remark 2.41) to M0

a , M0
ab, and the

images of its connected components are non-trivial integral surfaces of the
restricted Birkhoff distributions Da and Dab respectively. Vice versa, each
non-trivial integral surface of any of the latter distributions is the image of
an open set of quadrilateral orbits of a 4-reflective billiard a, b, c, d with
given mirror a (respectively, given mirrors a and b).

The proposition is the direct complexification of an analogous result from
[2] and Yu.G.Kudryashov’s lemmas [10, section 2, lemmas 17, 18].

Everywhere below for every x ∈M0
ab ⊂ Pab = â× b̂× P2 we denote

la = la(x) = A(x)D(x), lb = lb(x) = B(x)C(x).
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Remark 2.44 The lines la and lb depend only on (A,B) = (A(x), B(x)):
these are the lines symmetric to AB with respect to the lines TAa and TBb
respectively. Sometimes we will write la = la(A,B), lb = lb(A,B).

For every x ∈ M0
ab (x ∈ M0

a ) the corresponding lines LG, G = (B, )C,D,
will be denoted by LG(x). The projections to the positions of vertices will
be denoted by

νa : Pa → â, νab : Pab → â× b̂,

νG : Pa,Pab → CP2, x 7→ G(x) for G = B,C,D (respectively, G = C,D).

Remark 2.45 The above projections νa and νab are proper and epimorphic.
The corresponding preimages of points are compact and naturally identified
with projective algebraic varieties.

Proposition 2.46 The planes of the Birkhoff distribution Dab on M0
ab are

non-trivial, and hence, so is each its integral surface.

Proof Suppose the contrary: there exists an x ∈M0
ab such that the differ-

ential of some of the above projections, say νa vanishes identically on Dab(x).
We consider only the case of projection νa: the cases of other projections
are treated analogously. Then the kernel

K(x) = Ker(dνb|Dab(x)) ⊂ Dab(x)

is at least one-dimensional subspace. The vertices A(x) = νa(x) ∈ â, B(x) =
νb(x) ∈ b̂ are not cusps, since x ∈M0

ab by assumption. The line functions la,
lb have zero derivatives along K(x), as do the vertices A, B. The derivative
along K(x) of at least one of the vertices C or D, say D is not identically
zero. Then dνD(K(x)) = la(x) 6= LD(x), since D ∈ la and la has zero
derivative. Thus, dνD(Dab(x)) 6⊂ LD(x), – a contradiction to the definition
of the distribution Dab. The proposition is proved. 2

3 Non-integrability of the Birkhoff distribution Dab
and corollaries

3.1 Main lemma, corollaries and plan of the proof

In the present section we prove the following lemma on the non-integrability
of the two-dimensional Birkhoff distribution Dab and corollaries.
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Lemma 3.1 For every pair of analytic curves a, b ⊂ CP2 distinct from
isotropic lines that are not both lines the corresponding Birkhoff distribution
Dab is non-integrable. Moreover, there is no three-dimensional irreducible
analytic subset M ⊂Mab (see Convention 2.31) such that M ∩M0

ab 6= ∅ and
the restriction Dab|M is two-dimensional and integrable.

Corollary 3.2 In the conditions of Lemma 3.1 the union of all the inte-
gral surfaces of the Birkhoff distribution Dab in M0

ab is contained in a two-
dimensional analytic subset in Mab.

Proof The minimal analytic subset M ⊂ Mab containing all the inte-
gral surfaces is tangent to Dab, and the distribution Dab is integrable there
(Proposition 2.38). Hence, dimM = 2, by Lemma 3.1. This proves the
corollary. 2

Remark 3.3 In the case, when a and b are lines, the statements of Lemma
3.1 and the corollary are false. In this case there exists a one-parametric
family of 4-reflective billiards a, b, c, d of type 2) from Theorem 1.7. The
corresponding open sets of quadrilateral orbits form a one-parametric family
of integral surfaces of the distribution Dab. They saturate an open and dense
subset in a three-dimensional analytic subset in Mab.

Let Ψ = Ψab : â× b̂× ĉ× d̂→ Pab be the mapping from (2.5).

Corollary 3.4 Let a, b, c, d be a 4-reflective complex planar analytic bil-
liard, and let U be the 4-reflective set. Then the image Ψ(U) ⊂ Pab is a two-
dimensional analytic subset lying in Mab. The natural projection U → â× b̂
is a proper epimorphic mapping.

Proof In the case, when both a, b are algebraic, the curves c, d are also
algebraic (Proposition 2.1), and the statements of the corollary follow im-
mediately. Thus, without loss of generality we consider that some of the
curves a, b is not algebraic. It suffices to prove the first statement of the
corollary. Then its second statement, which is equivalent to the properness
and the epimorphicity of the analytic set projection νab : Ψ(U) → â × b̂,
follows from the properness of the projection Pab → â × b̂ and Remmert’s
Proper Mapping Theorem [11, p.34]. The image Ψ(U) lies in Mab, which
follows from definition. Recall that U1 ⊂ U denote the open and dense
subset of non-degenerate orbits whose vertices are not marked points. Let
S ⊂ Pab denote the minimal analytic subset containing Ψ(U1), which obvi-
ously contains Ψ(U). Each its irreducible component is two-dimensional, as
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is U1, by Corollary 3.2 and since Ψ(U1) is a union of integral surfaces of the
distribution Dab, see Proposition 2.43. The projections νC , νD : S → CP2

to the positions of the vertices C and D have rank one on an open dense
subset, and νC(S) ⊂ c, νD(S) ⊂ d: this holds on Ψ(U1), and hence, on
each irreducible component of the set S. Let Ŝ denote the normalization of
the analytic set S, and πS : Ŝ → S denote the natural projection. The
above projections lift to holomorphic mappings νĝ : Ŝ → ĝ, g = c, d:

νG ◦ πS = πg ◦ νĝ on Ŝ (Corollary 2.4). This yields an “inverse” map-

ping Ψ−1 = (νab ◦ πS)× νĉ × νd̂ : Ŝ → â× b̂× ĉ× d̂. Its image is contained
in U , by its analyticity (Proposition 2.10) and since the image U1 of the set
Ψ(U1) (lifted to Ŝ) lies in U . This together with the inclusion Ψ(U) ⊂ S
implies that Ψ(U) = S and proves the corollary. 2

Corollary 3.5 Let a, b, c, d be a 4-reflective planar analytic billiard, and
none of the mirrors a, b be a line. Let a and b intersect at a point A
represented by some non-marked points in â and b̂. Then a = c and a 6= b.

At the end of the section we prove Theorem 1.9 and Corollary 3.5. Both
of them will be used further on in the proof of Theorem 1.10.

Plan of the proof of Lemma 3.1. Recall that a and b are not both
lines. In the case, when they are both algebraic curves, there exist at most
unique analytic curves c and d such that the billiard a, b, c, d is 4-reflective,
and if they exist, they are algebraic (Proposition 2.1 and Theorem 1.7 in the
algebraic case, see Remark 1.8). Thus, the only integral surfaces of the dis-
tribution Dab are given by the open set of its quadrilateral orbits, by Propo-
sitions 2.43 and 2.46. Moreover, the latter orbit set is a Zariski open dense
subset in a projective algebraic surface. This immediately implies the state-
ment of Lemma 3.1. Everywhere below we consider that some of the curves
a or b is transcendental and prove the lemma by contradiction. Suppose the
contrary to Lemma 3.1: there exists a three- or four-dimensional irreducible
analytic subset M ⊂ Pab contained in Mab such that M ∩M0

ab 6= ∅ and the
restriction DM to M0 = M ∩M0

ab of the distribution Dab is two-dimensional
and integrable. (In the second case M = Mab.) The complement

Σ0 = M \M0 = M \M0
ab ⊂M (3.1)

is an analytic subset of positive codimension in M , and M0 is dense in M .
Thus, every x ∈M0 where DM is regular is contained in an integral surface,
and the latter is formed by quadrilateral orbits of a 4-reflective billiard a, b,
c(x), d(x) (Propositions 2.43 and 2.46). We show that there exists an x ∈M0
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such that the corresponding mirrors c(x), d(x) are algebraic. This together
with Proposition 2.1 implies that a and b are algebraic. The contradiction
thus obtained will prove Lemma 3.1.

For the proof of Lemma 3.1 we study the projections of the set M to the
positions of three vertices (A,B,D): set

νab,D : x 7→ (A(x), B(x), D(x)); MD = νab,D(M) ⊂ â× b̂× CP2.

Analogous projections and spaces are defined with D replaced by C.

Remark 3.6 The images MC = νab,C(M), MD = νab,D(M) are irreducible

analytic subsets in â× b̂×CP2, by Remark 2.45, Remmert’s Proper Mapping
Theorem and irreducibility of the variety M .

In Subsections 3.2 and 3.3 respectively we treat the following cases:
- some of the projections νab,C , νab,D is not bimeromorphic (see Footnote

3 in Subsection 2.6);
- both latter projections are bimeromorphic.
In what follows, we denote Σ1 ⊂M0 the subset of points x such that
- either x is a singular point of the variety M ,
- or it is a singular point of the distribution DM ,
- or the restriction to DM (x) of the differential dνab(x) has rank less than

two,
- or x is a critical point of the projection νab,D: a point where the rank

of differential is not maximal,
- or its image under the latter is a singularity of the image,
- or the differential of the projection νD : M0

ab → CP2: y 7→ D(y)
vanishes on the distribution plane DM (x),

- or one of the three latter statements holds with D replaced by C.
Let Σ0 be the same, as in (3.1). Set

Σ = Σ0 ∪ Σ1 ⊂M. (3.2)

This is an analytic subset in Pab that has positive codimension in M . Its
complement in M is contained in M0 and dense in M .

Remark 3.7 For every point x ∈M \Σ the corresponding germs (g,G(x))
of mirrors g = a, b, c(x), d(x), G = A,B,C,D, are regular, and the points
G(x) are not isotropic tangency points. This follows from the definition of
the set Σ0 ⊂ Σ (for the mirrors a and b) and from the two last conditions
in the definition of the set Σ1 ⊂ Σ (for the mirrors c(x) and d(x)). The
projection νab : S → â× b̂ of each integral surface S of the distribution DM
in M \ Σ is a local diffeomorphism, by the Addendum to Proposition 2.10.
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3.2 Case of a non-bimeromorphic projection

Here we prove Lemma 3.1 in the case, when some of the projections νab,C ,
νab,D, say νab,D is not bimeromorphic. Its proof is based on the following
proposition.

Proposition 3.8 Let Σ be the same, as in (3.2). For every two points x, y ∈
M \Σ projected to the same (A,B) ∈ â× b̂ such that either (C(x), LC(x)) 6=
(C(y), LC(y)), or (D(x), LD(x)) 6= (D(y), LD(y)), the billiard c(x), d(x),
d(y), c(y) is 4-reflective.

Proof The proof of the proposition repeats the final argument from [7,
proof of lemma 3.1].

Case (i): C(x) 6= C(y) and D(x) 6= D(y). Each billiard a, b, c(z),
d(z), z = x, y has two-dimensional family of quadrilateral orbits A′B′CzDz

close to ABC(z)D(z) where Cz = Cz(A
′, B′), Dz = Dz(A

′, B′) depend
analytically on parameters (A′, B′) ∈ â × b̂ (the Addendum to Proposition
2.10). The corresponding quadrilaterals CxDxDyCy are periodic orbits of
the billiard c(x), d(x), d(y), c(y), by definition and reflection law, see Fig.6,
and depend analytically on parameters (A′, B′). Therefore, the billiard c(x),
d(x), d(y), c(y) is 4-reflective.

B
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  c(x)

   c(y)

d(x)

d(y)

   b

D

   D
                      x

 C

C        x

      y

       y

A        
     

Figure 6: The 4-reflective billiard c(x), d(x), d(y), c(y): open set of quadri-
lateral orbits CxDxDyCy.
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Case (ii): D(x) = D(y) = D0 but LD(x) = TD(x)d(x) 6= LD(y) =
TD(y)d(y) (the same case with D replaced by C is symmetric). Let us show
that one can achieve the inequalities of Case (i) by deforming x and y as
orbits of fixed billiards. The mirrors d(x) and d(y) intersect transversely at
D0. Therefore, deforming (A,B), one can achieve that the line la = la(A,B)
intersects d(x) and d(y) at two distinct points close to D0. This lifts to
deformation of x and y along their integral surfaces (the last statement of
Remark 3.7), and we get new x, y with νab(x) = νab(y) and D(x) 6= D(y).
One has (C(x), LC(x)) 6= (C(y), LC(y)): otherwise, one would have l =
C(x)D(x) = C(y)D(y), hence D(x) = D(y) = la ∩ l, – a contradiction.
Hence, one can achieve that C(x) 6= C(y) via small deformation, by the
above argument. This reduces us to Case (i) and proves the proposition. 2

Proposition 3.9 Let the projection νab,D : M → MD be not bimeromor-
phic. Then up to interchanging C and D, there exists an open and dense
subset of points z ∈MD for which there exist

x, y ∈M \ Σ with νab,D(x) = νab,D(y) = z, LD(x) 6= LD(y)

such that the projection νab,D is a local submersion at both x and y.

Proof The non-bimeromorphicity implies that there exists an open and
dense subset of points z = (A,B,D) ∈ MD for which there exist x, y ∈
ν−1
ab,D(z) \ Σ, x 6= y such that the projection νab,D is a local submersion at

both x and y. In the case, when LD(x) 6= LD(y) for at least some x, y, z as
above, the statement of the proposition follows immediately. Now suppose
the contrary: there exists an open and dense subset of points z ∈MD such
that for every x, y ∈ ν−1

ab,D(z)\Σ, x 6= y one has LD(x) = LD(y) = LD. Then
C(x) = C(y), since the point C(x) = C(y) is found as the intersection point
of two lines depending only on z and not on x or y: the line BC symmetric
to AB with respect to the line TBb; the line DC symmetric to AD with
respect to the line LD. Therefore, νab,C(x) = νab,C(y), but LC(x) 6= LC(y),
since x 6= y. Hence, the statement of the proposition holds with D replaced
by C. The proposition is proved. 2

Let us fix arbitrary x, y as in Proposition 3.9. Set

D0 = D(x) = D(y), (A,B) = νab(x) = νab(y).

Claim 1. The curves c(x), c(y) are either both triangular spirals cen-
tered at D0, or both conics: complex circles centered at D0.

32



Proof The germ at C(x)D0D0C(y) of billiard c(x), d(x), d(y), c(y) is
4-reflective (Proposition 3.8). It satisfies the non-isotropicity and line non-
coincidence conditions of Proposition 2.19, since x, y correspond to non-
degenerate quadrilaterals. For example, the tangent line to a mirror through
each vertex is non-isotropic and distinct from the adjacent edges, by non-
degeneracy. This together with Proposition 2.19 implies the claim. 2

Corollary 3.10 The mirrors c(z) and d(z) are algebraic for z = x, y.

Proof It suffices to prove that the mirrors c(z), z = x, y, are both algebraic:
then so are d(z), by 4-reflectivity of the billiard c(x), d(x), d(y), c(y) and
Proposition 2.1. Suppose the contrary: say c(x) is not algebraic. Take
an arbitrary y′ ∈ M \ Σ close to y with D1 = D(y′) ∈ d(x), D1 6= D0,
LD(y′) = TD1d(y′) 6= TD1d(x), so that the line D0D1 is non-isotropic (as is
TD0d(x)). It exists, since the projection νab,D is a local submersion at y and
LD(y) 6= LD(x). Deforming x along its integral surface of the distribution
DM one can achieve that (A,B) = νab(x) = νab(y

′) (Remark 3.7), and then
D(x) = D1. The billiard c(x), d(x), d(y′), c(y′) is 4-reflective, by Proposition
3.8, and its 4-reflective set contains a degenerate quadrilateral C1D1D1C2

close to C(x)D0D0C(y). This together with Proposition 2.19 implies that
c(x) is a triangular spiral centered at D1, as in Claim 1. Thus, c(x) is a
triangular spiral with two distinct centers D0 and D1. Hence, it is algebraic,
by Proposition 2.21. The contradiction thus obtained proves the corollary.

2

Thus, the 4-reflective billiard a, b, c(x), d(x) has two neighbor algebraic
mirrors c(x) and d(x). Hence, a and b are also algebraic, by Proposition 2.1.
This contradicts the non-algebraicity assumption and proves Lemma 3.1.

3.3 Case of bimeromorphic projections

Here we prove Lemma 3.1 in the case, when both projections νab,C , νab,D are
bimeromorphic. To do this, we show that for every x ∈M \Σ both mirrors
d(x) and c(x) are lines. We then get a contradiction as above.

It suffices to prove the above statement for the mirrors d(x) only. We
first show (the next proposition) that the lines LD(x) ⊂ TD(x)CP2 locally
depend only on D(x) and form a holomorphic line field. Afterwards we
show (Proposition 3.12) that the restriction of the latter line field to each
projective line is tangent to a pencil of lines through the same point. This
easily implies that its integral curves are lines (Proposition 3.13).
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There exists an open and dense subset of points x ∈ M \ Σ where the
germ of projection νD : y 7→ D(y) is a submersion. Indeed, the contrary
would imply that d = νD(M \ Σ) is a curve. Therefore, D(y) is locally
determined by (A,B) = (A(y), B(y)) as a point of intersection la(A,B) ∩
d, hence dimMD = 2. But dimMD = dimM ≥ 3, by assumption and
bimeromorphicity, – a contradiction. Consider the analytic subset Σab ⊂
â × b̂ of those pairs (A,B), for which either πa(A) = πb(B), or some of
the lines TAa or TBb is isotropic. Note that dimMD = 3 = dimM , by the
latter inequality and since D ∈ la(A,B) for every (A,B,D) ∈ MD with
(A,B) /∈ Σab. Increasing the ”exceptional set” Σ, we will assume that νD is
a submersion on all of M \ Σ. Its level sets in M \ Σ are thus holomorphic
curves.

Proposition 3.11 Every x ∈M \Σ has a neighborhood V = V (x) ⊂M \Σ
such that the lines LD(y), y ∈ V depend only on D(y) and thus, form a
holomorphic line field ΛD on a neighborhood W ⊂ CP2 of the point D(x).

Proof Let V be a neighborhood of the point x regularly fibered by local
level curves of the submersion νD. For every y ∈ V there exists a holomor-
phic curve γ(y) ⊂ V that corresponds exactly to the family of quadrilateral
orbits of the billiard a, b, c(y), d(y) with fixed vertex D = D(y). The line
LD = LD(y) = TD(y)d(y) obviously remains constant along the curve γ(y).
On the other hand, the curve γ(y) should obviously coincide with the level
curve {νD = D(y)}. This proves the proposition. 2

Proposition 3.12 The restriction to each projective line of the field ΛD
from Proposition 3.11 is tangent to a pencil of lines through the same point.

Proof For every (A,B) ∈ (â× b̂)\Σab denote by FDA,B = A×B×la(A,B) '
C the fiber over (A,B) of the set MD. The fiber FCA,B of the set MC is
defined analogously. The projections νab,G, G = C,D and the mappings
ν−1
ab,D : MD → M , RDC = νab,C ◦ ν−1

ab,D : MD → MC are bimeromorphic.

Hence, the indeterminacies of the mapping ν−1
ab,D (which include those of

RDC) form an analytic subset, whose complement to the projection preimage
of the set Σab has codimension at least two, i.e., dimension at most one
(Footnote 3 in Subsection 2.6). The image of its projection to â × b̂ is an
analytic subset Ind of dimension at most one (Proper Mapping Theorem).
Set Reg = (â × b̂) \ (Σab ∪ Ind); it is an open and dense subset in â × b̂.
Then for every (A,B) ∈ Reg the following statements hold:
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- there exists an invertible holomorphic (hence Möbius) mapping TA,B :
la(A,B)→ lb(A,B) for which

RDC(A,B,D) ≡ (A,B, TA,B(D)); (3.3)

- the restriction to la(A,B) of the line field ΛD is holomorphic and hence,
the projective lines ΛD(y), y ∈ la(A,B), form a rational curve ΓA,B ⊂ CP2∗.

The former statement follows from bimeromorphicity by definition. The
global holomorphic family of lines ΛD(y) depending on y ∈ la(A,B) '
FDA,B ⊂ MD from the latter statement is given by the holomorphic inverse

ν−1
ab,D : FDA,B →M : y 7→ (A,B, (C(y),ΛC(y)), (D(y),ΛD(y))).

It suffices to prove the statement of Proposition 3.12 for an open set of
projective lines, e.g., for all the lines la(A,B), (A,B) ∈ Reg. Suppose the
contrary: for some (A,B) ∈ Reg the restriction to la = la(A,B) of the line
field ΛD is not tangent to a pencil of lines, i.e., the curve Γ = ΓA,B has
degree at least two. Note that the family of lines

λ(D) = DTA,B(D), D ∈ la = la(A,B)

is a rational curve λ ⊂ CP2∗ parametrized by D ∈ la.
Claim 1. The curve λ has degree at least three.

Proof Let Q denote the intersection point of the infinity line C∞ ⊂ CP2

with non-isotropic line la; thus, Q 6= I1,2. Let us take a point P ∈ C∞ \
{Q, I1, I2} and a finite line l through P . There are two symmetry lines
of the pair of lines la, l. They intersect the infinity line at distinct points
E1, E2 ∈ C∞ depending only on P : Ej = Ej(P ). For a generic P ∈ C∞
for every j = 1, 2 there are at least two distinct points Dj , D

′
j ∈ la such

that the projective lines ΛD(Dj), ΛD(D′j) pass through Ej = Ej(P ), since
degΓ ≥ 2. Either the four points D1, D′1, D2, D′2 are distinct, or at most two
of them coincide: the latter happens exactly in the case, when, ΛD(Q) =
C∞ ⊃ {E1, E2}; then D1 = D2 = Q. This implies that there are always
at least three distinct points D1, D2, D3 ∈ la such that each line ΛD(Di),
i = 1, 2, 3, passes through some of the points Ej ; thus, P ∈ λ(Di). The
corresponding points λ(Di) ∈ CP2∗ of the curve λ lie in the projective line
P ∗, by construction. This proves the claim. 2

Claim 2. The curve λ has degree at most two.
Proof Let X denote the point of intersection of the lines la and lb, Y =
TA,B(X) ∈ lb. For every point C ∈ lb\{Y } the curve λ intersects the dual line
C∗ in at most two points with multiplicity 1: at the points λ(T−1

A,B(C)) and
may be λ(X) (if λ(X) = lb). The fact that in the latter case the multiplicity
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of the intersection point λ(X) equals one follows from the assumption that
C 6= Y : the lines λ(D) with D close to X asymptotically focus at Y 6= C
and are transverse to la. This proves the claim. 2

Claims 1 and 2 contradict each other. This proves Proposition 3.12. 2

Proposition 3.13 The phase curves of the line field ΛD form a pencil of
projective lines through the same point.

Proof Suppose the contrary: some phase curve S is not a line. Consider
a projective line L = ΛD(P ) tangent to S at some point P . Then for every
Q,R ∈ L, Q 6= R, close to P and distinct from it the projective lines ΛD(Q)
and ΛD(R) are distinct from the line L = ΛD(P ) and intersect each other at
a point outside the line L. Therefore, the lines of the restriction to L of the
field ΛD are not tangent to a pencil of lines through the same point. The
contradiction thus obtained to Proposition 3.12 proves Proposition 3.13. 2

Proposition 3.13 applied to both ΛC and ΛD implies that for every x ∈
M \ Σ the mirrors c(x) and d(x) are lines. Hence, a and b are algebraic
(Proposition 2.1), – a contradiction. Lemma 3.1 is proved.

3.4 Case of one algebraic mirror. Proof of Theorem 1.9

In the present subsection we consider that a, b, c, d is a 4-reflective analytic
planar billiard, and the mirror a is algebraic. Without loss of generality we
consider that the curves b and d are transcendental: in the opposite case
Theorem 1.9 follows immediately from Proposition 2.1 and [7, theorem 1.11].
As it is shown below, Theorem 1.9 is implied by the following proposition.

Proposition 3.14 In the above conditions the mirror c is also algebraic.

Proof The projection νb : U → b̂ of the 4-reflective set U is proper and
epimorphic, by Corollary 3.4 and since a is algebraic. This implies that
for an open and dense set of points B ∈ b̂ the preimage ν−1

b (B) ⊂ U is
a compact analytic curve with non-constant holomorphic projection to ĉ.
Hence, ĉ is compact and c is algebraic. The proposition is proved. 2

Now let us prove Theorem 1.9. Fix a non-marked point B ∈ b̂ as in
the above proof and a one-dimensional irreducible component ΓB of the
compact analytic curve ν−1

b (B) ⊂ U . Its image νD(ΓB) ⊂ d ⊂ CP2 is either
an algebraic curve, or a single point (Proper Mapping and Chow Theorems).
The former case is impossible, since d is non-algebraic. Hence, for an open
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and dense set of points B ∈ b̂ the projection of the curve ΓB to the position
of the vertex D is constant and is determined by B. Thus, there exists a
mapping b̂→ d̂, B 7→ DB, defined on an open set V ⊂ b̂ such that for every
fixed B ∈ V and variable A ∈ â the lines AB and ADB are symmetric with
respect to the tangent line TAa. This implies that either a is a line and B,
DB are symmetric with respect to a for every B ∈ b̂, or a is a conic with
one-dimensional family of foci pairs (B,DB), see [7, proposition 2.32]. The
latter case being obviously impossible, the curves b, d are symmetric with
respect to the line a. Applying the above argument to the algebraic mirror
c instead of a, we get that B and DB are symmetric with respect to the line
c. Thus, the above pairs (B,DB) are symmetric with respect to both lines
a and c, by construction. Therefore, a = c 6= b, d, and the billiard is of type
1) from Theorem 1.7. Theorem 1.9 is proved.

3.5 Intersected neighbor mirrors. Proof of Corollary 3.5

In the conditions of Corollary 3.5 no mirror is a line, by Theorem 1.9 and
since a, b are not lines. Without loss of generality we consider that each
mirror is transcendental, since otherwise, a = c and a 6= b, by Theorem 1.9.
Let U be the 4-reflective set. Its projection to â×b̂ is proper and epimorphic,
by Corollary 3.4.

Claim 1. a 6= b.
Proof Suppose the contrary: a = b. Then U contains a one-parametric
analytic family T of quadrilaterals AACD with variable A, C, D, by the
above epimorphicity statement. A generic quadrilateral in T is forbidden
by Proposition 2.25. The contradiction thus obtained proves the claim. 2

The projection preimage in U of the pair (A,A) ∈ â× b̂ is a non-empty
compact analytic subset Γ ⊂ U of dimension at most one.

Case 1): dimΓ = 1. Then at least one of the curves ĉ, d̂, say ĉ is a com-
pact Riemann surface, – a contradiction to our non-algebraicity assumption.
Thus, this case is impossible.

Case 2): dimΓ = 0: Γ is a finite set.

Claim 2. Every quadrilateral AACD ∈ Γ is a single-point quadrilateral:
the mirrors c and d pass through the same point A; πc(C) = πd(D) = πa(A).
Proof Suppose the contrary: say, πc(C) 6= πa(A). The projection U →
â × b̂ is open on a neighborhood of the point AACD, since it contracts
no curve to (A,A) by assumption. Therefore, each converging sequence
(Ak, Bk) → (A,A) lifts to a converging sequence AkBkCkDk → AACD
in U . Let us take two sequences (Akj , B

k
j ) → (A,A), j = 1, 2, with lines
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AkjB
k
j converging to different limits for j = 1, 2; this is possible, since a 6= b.

We get two sequences of quadrilaterals AkjB
k
jC

k
jD

k
j converging to the same

quadrilateral AACD. On the other hand, the lines Bk
jC

k
j symmetric to

AkjB
k
j with respect to the tangent lines TBk

j
b converge to two distinct limits

Hj , j = 1, 2, by assumption and since A is not a marked point of the curve
b. The lines H1 6= H2 pass through the same two points πa(A) 6= πc(C), by
construction. The contradiction thus obtained proves the claim. 2

Thus, Γ is a finite set of points corresponding to the single-point quadri-
lateral AAAA. Fix one of them and denote it AAAA: the corresponding
vertices C ∈ π−1

c (A) and D ∈ π−1
d (A) will be denoted by A. One has c 6= d,

as in Claim 1. The projection U → ĉ× d̂ is open on a neighborhood of the
point AAAA, as in the above discussion. Let γ ⊂ ĉ × d̂ be an irreducible
germ at (A,A) of analytic curve consisting of pairs (C ′, D′) with variable
C ′ and D′ for which C ′ ∈ TD′d. The germ γ lifts to an irreducible germ γ̃
of analytic curve through AAAA in U . The curve γ̃ consists of quadrilat-
erals A′B′C ′D′ ∈ U for which B′, D′ 6≡ C ′ (Proposition 2.25). Therefore,
A′ ≡ C ′, by Corollary 2.26 and since A is not a marked point of the mirror
b. Hence, a = c. Corollary 3.5 is proved.

4 Algebraicity: proof of Theorem 1.10

Theorem 1.7, and thus, Theorem 1.10 are already proved in the case, when
at least one mirror is algebraic (Theorem 1.9). Here we prove Theorem 1.10
in the general case by contradiction. Suppose the contrary: there exists a
4-reflective billiard a, b, c, d with no algebraic mirrors. We study Birkhoff
distribution Da on the space Ma and consider its non-trivial integral surface
S formed by a connected open set of quadrilateral orbits of the billiard.
Recall that Ma ⊂ Pa is a six-dimensional analytic subset, and Da is a
singular three-dimensional distribution on Ma, see Subsection 2.7. Set

M = the minimal analytic subset in Ma containing S.

This is an irreducible analytic subset in Pa, by definition, see Convention
2.31. The intersections

DM (x) = Da(x) ∩ TxM, x being a smooth point of the variety M,

induce a singular analytic distribution DM on M , for which S is an integral
surface. This is either two- or three-dimensional distribution, since dimS =
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2 and dimDa = 3. The cases, when dimDM = 2, 3, will be treated separately
in Subsections 4.1 and 4.3 respectively.

The methods of proof in both cases are similar. We show that an open
set of points x ∈ M lie in integral surfaces corresponding to 4-reflective
billiards a, b(x), c(x), d(x) with regularly intersected mirrors a and b(x).
Then either b(x) is a line, or c(x) = a, by Corollary 3.5. We then show that
either νC(M) ⊂ a, or the mirror b of the initial billiard is a line. We get a
contradiction in both subcases. In the case, when dimDM = 3, the proof
uses Cartan–Kuranishi–Rashevskii involutivity theory of Pfaffian systems.
The corresponding background material will be recalled in Subsection 4.2.

The proof of the existence of the above integral surfaces is based on
the following key proposition and corollary. They deal with the natural
projection νa : Pa → â and its restriction to M , which are proper and
epimorphic. For every A ∈ â the projection preimage

WA = ν−1
a (A) ∩M

is a projective algebraic set.

Proposition 4.1 There exists a complement â0 ⊂ â to a discrete subset in
â such that for every A ∈ â0 the projection νB : WA → CP2 is epimorphic.

Proof For every A ∈ â the image of the projection νB : WA → CP2

is either the whole projective plane, or an algebraic subset of dimension
at most one (Remmert’s Proper Mapping and Chow’s Theorems). Either
νB(WA) = CP2 for all but a discrete set of points A (and then the statement
of the proposition obviously holds), or it is at most one-dimensional algebraic
set for an open and dense set Q of points A ∈ a, by analyticity. The latter
case cannot happen, since otherwise for every non-marked A ∈ νa(S) ∩ Q
the set νB(WA ∩ S) would be an open subset in the non-algebraic curve b
that simultaneously lies in at most one-dimensional algebraic set νB(WA),
– a contradiction. This proves the proposition. 2

Corollary 4.2 For every open dense subset N ⊂ M whose complement
M \N ⊂M is an analytic subset there exists an open dense subset âN ⊂ â
such that for every A ∈ âN the intersection νB(WA ∩ N) ∩ a contains the
πa- image of an open dense subset in â: a complement to a discrete subset.

Proof Let â0 be the same, as in Proposition 4.1. There exists an open dense
subset âN ⊂ â0 such that for every A ∈ âN the subset WN

A = WA∩N ⊂WA

is open and dense, since the complement M \N is an analytic subset and all
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the WA are hypersurfaces. Then for the same A the subset WA \WN
A ⊂WA

is algebraic, since it is analytic (as is M \ N) and by Chow’s Theorem.
Therefore, the complement CP2\νB(WN

A ) is contained in an algebraic subset
in CP2 of positive codimension (Proposition 4.1 and Chevalley–Remmert
and Chow’s Theorems). Its πa-preimage is at most discrete, since a is non-
algebraic. This implies the statement of the corollary. 2

4.1 Case of two-dimensional distribution

In the present section we consider that dimDM = 2. Then the distribution
DM is integrable, by Proposition 2.38.

We keep the previous notations νa, νG, G = B,C,D for the projections
to the positions of vertices. Let M0

reg ⊂M ∩M0
a denote the subset of points

regular for both M and DM , cf. Definition 2.32. Set

M ′ = {x ∈M0
reg | dνa(x), dνG(x) 6≡ 0 on DM (x) for G = B,C,D}. (4.1)

The set M ′ contains the integral surface S, since S is non-trivial. It is an
open and dense subset in M , and its complement Σ = M \M ′ is analytic.

Remark 4.3 The integral surface of the distribution DM through each
point x ∈ M ′ is non-trivial, by (4.1). The germ of its image under each
one of the projections νG, G = B,C,D, is a germ of analytic curve at its
non-marked point. The regularity of germ follows by definition from the
inequalities in (4.1). The non-isotropicity of tangent line to the germ fol-
lows from the definition of the distribution DM and non-degeneracy of the
quadrilateral corresponding to x. Thus, the above integral surface corre-
sponds to an open set of quadrilateral orbits of a 4-reflective billiard a, b(x),
c(x), d(x) (Proposition 2.46), and the above germs are germs of mirrors at
non-marked points.

For every A ∈ â set W 0
A = WA ∩M ′.

Proposition 4.4 There exists an open subset V ⊂M ′ of those x for which
the mirrors a and b(x) intersect at some point non-marked for both their
local branches.

Proof There exists an open dense subset â′ ⊂ â such that for every A ∈ â′
the intersection νB(W 0

A) ∩ a contains a regular disk α ⊂ a without marked
points for α (Corollary 4.2). Fix α and an x0 ∈ M ′ ∩ ν−1

B (α). The point
νB(x0) ∈ b(x0)∩α is a non-marked point of the corresponding local branches
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of the curves b(x0) and α (Remark 4.3). The latter branches are distinct,
by Corollary 3.5. Therefore, there exists a neighborhood V = V (x0) ⊂ M ′

such that for every x ∈ V a regular branch of the curve b(x) intersects α
at a non-marked point for both curves (Remark 4.3 and analyticity of the
foliation by integral surfaces). This proves the proposition. 2

In Proposition 4.4 for every x ∈ V either c(x) = a, or b(x) is a line, by
Corollary 3.5. Hence some of the latter statements holds for all x ∈M ′, by
analyticity. The mirror b(x) cannot be a line for all x, since the mirror b of
the initial billiard is not algebraic by assumption. Hence, νC(M) ⊂ a. Let
us show that this is impossible. To do this, we use the next proposition.

Proposition 4.5 For every analytic billiard a, b, c, d with a non-algebraic
mirror b in every one-parametric family of quadrilateral orbits ABCD with
fixed non-isotropic vertex A 6= I1, I2 the vertex C is non-constant.

Proof If C ≡ const, then b would be either a line, or a conic, by [7,
proposition 2.32], – a contradiction. 2

Suppose, by contradiction, that νC(M) ⊂ a. Fix an A ∈ â such that
πa(A) is not an isotropic point at infinity and there exists a one-parametric
family of quadrilateral orbits ABCD of the initial billiard a, b, c, d with the
given vertex A. The subset νC(WA) ⊂ CP2 is non-discrete, by Proposition
4.5. On the other hand, it is an algebraic subset in CP2 (Remmert’s Proper
Mapping and Chow’s Theorems). It lies in a transcendental curve a. Hence,
it is discrete. The contradiction thus obtained proves Theorem 1.10.

4.2 Background material: Phaffian systems and involutivity

Everywhere below in the present subsection whenever the contrary is not
specified, F is a k-dimensional analytic distribution on an analytic manifold
M , F(x) ⊂ TxM are the corresponding subspaces.

Definition 4.6 [21, p.290] Let k, l ∈ N, k ≥ l, and let F be as above. A
Pfaffian system Fk,l is the problem to find l-dimensional analytic integral
surfaces of the k-dimensional distribution F .

Definition 4.7 [21, p.298] An m-dimensional integral element of the distri-
bution F is an m-dimensional vector subspace Em(x) ⊂ F(x) such that for
every 1-form ω on the ambient manifold vanishing on the subspaces of the
distribution F its differential dω vanishes on Em(x).
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Definition 4.8 [21, p.300] A Pfaffian system Fk,l is in involution (or briefly,
involutive), if for every x ∈M , p < l each p-dimensional integral element in
TxM is contained in some (p+ 1)-dimensional integral element.

Example 4.9 A tangent subspace to an integral surface is an integral sub-
space. Every Pfaffian system defined by a Frobenius integrable distribution
is involutive.

Remark 4.10 For every p-dimensional integral element Ep(x) the set of
ambient (p + 1)-dimensional integral elements Ep+1(x) ⊃ Ep(x) either is
empty, or consists of a unique integral element, or is a projective space:
a pencil of (p + 1)-dimensional subspaces through Ep(x), which saturate a
linear subspace containing Ep(x), see [21, formula (58.13), p.299].

Definition 4.11 [21, p.306] Let F be an analytic distribution on a con-
nected manifold. A p-dimensional integral element Ep(x) is said to be
nonsingular, if the space of ambient (p + 1)-dimensional integral elements
Ep+1(x) ⊃ Ep(x) has minimal dimension.

Theorem 4.12 (a version of Cauchy–Kovalevskaya Theorem; implicitly con-
tained in [21, section 60]). Let an analytic Pfaffian system Fk,l on a man-
ifold M be involutive. Let p ≤ l, Γ ⊂ M be a (p − 1)-dimensional ana-
lytic integral surface such that all its tangent spaces be nonsingular (p− 1)-
dimensional integral elements. Then for every x ∈ Γ there exists a germ of
p-dimensional integral surface through x that contains the germ of Γ at x.

Definition 4.13 [12, p.188]. A subset N of a complex manifold V is called
analytically constructible, if each point of the manifold V has a neighborhood
U such that the intersection N ∩ U is a finite union of subsets defined by
finite systems of equations fj = 0 and inequalities gi 6= 0; fj and gi are
holomorphic functions on U .

Recall that for a singular analytic distribution DM on an irreducible
analytic subset M in a complex manifold V by M0

reg ⊂ M we denote the
open and dense subset of points regular both forM andDM ; the complement
M \M0

reg ⊂ V is an analytic subset.

Proposition 4.14 Let DM be a singular analytic distribution on an irre-
ducible analytic subset M in a complex manifold V . Its nonsingular one-
dimensional integral elements form an open dense subset in the projectivized
bundle P(TMreg) that is an analytically constructible subset in P(TV ).
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Proof Fix a point x0 ∈ M . Let f1, . . . , fr be holomorphic functions on a
neighborhood U = U(x0) ⊂ V that define M : M ∩U = {f1 = · · · = fr = 0},
TxM = Ker(df1(x), . . . , dfr(x)) for every x ∈ Mreg ∩ U . Let ω1, . . . , ωs be
holomorphic 1-forms on U that define a singular analytic distribution whose
restriction to M∩U coincides with DM . A non-zero vector v ∈ TV generates
a non-singular integral element, if and only if its base point x = x(v) lies in
M0
reg, (dfi)(v) = 0 for i = 1, . . . , r, ωj(v) = 0 for j = 1, . . . , s and the system

of (r + s) 1-forms dfi(x), iv(dωj)(x), i = 1, . . . , r, j = 1, . . . , s has maximal
rank. This implies the statements of the proposition. 2

Remark 4.15 For every singular analytic distribution F on an analytic set
M in a complex manifold V the set of its two-dimensional integral elements
(integral planes) is an analytically constructible subset in Gr2(TV )|M . The
proof of this statement is analogous to the above proof of Proposition 4.14.
Therefore, its image under the projection to M is also analytically con-
structible (Chevalley–Remmert Theorem).

Proposition 4.16 Every three-dimensional singular analytic distribution
F on an irreducible analytic variety M satisfies one of the two following
incompatible statements:

1) either the corresponding Pfaffian system F3,2 on M0
reg is involutive;

2) or there exists a proper analytic subset Σ ⊂M such that
a) either for every x ∈M \Σ the space F(x) contains no integral plane;
b) or for each x ∈M \Σ the space F(x) contains a unique integral plane.

Proof If F(x) contains some two distinct integral planes P1, P2, then it
contains a pencil of integral planes through the line L = P1 ∩ P2, which
saturate the whole three-dimensional space F(x), by Remark 4.10. Thus,
each F(x) either is a union of integral planes, or contains a unique integral
plane, or contains no integral planes. This together with Remark 4.15 and
Chevalley–Remmert Theorem easily implies that M0

reg is a disjoint union of
three analytically constructible subsets of points x ∈M where F(x) satisfy
respectively one of the three latter statements. One of them contains a
complement to a proper analytic subset Σ ⊂ M . Therefore, either F(x) is
a union of integral planes for all x ∈M \ Σ (and hence, for all x ∈M0

reg by
analyticity) and the Pfaffian system F3,2 is involutive, or some of statements
a) or b) of Proposition 4.16 holds. This proves Proposition 4.16. 2
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4.3 Case of three-dimensional distribution

Here we consider that dimDM = 3. The subcase, when the Pfaffian sys-
tem (DM )3,2 is non-involutive, is reduced to the two-dimensional case by
Proposition 4.16. Indeed, the image of the projection to M of the set of
integral planes is analytically constructible, by Remark 4.15, and contains
the integral surface S. Therefore, it contains an open dense complement to
an analytic subset in M , since M is the minimal analytic set containing S.
Hence, if the system is not involutive, then there exists a proper analytic
subset Σ ⊂ M such that for every x ∈ M \ Σ the space F(x) contains a
unique integral plane (Proposition 4.16). The latter integral planes form a
two-dimensional intrinsic singular analytic distribution on M , by Definition
2.36 and Remark 4.15. Then we apply the arguments from Subsection 4.1 to
the latter two-dimensional distribution instead of DM . Thus, without loss
of generality we consider that the Pfaffian system (DM )3,2 is involutive.

Corollary 4.2 easily implies the next proposition and corollary, which
state that there exist a connected open subset V ⊂M0

reg, a regular analytic
hypersurface Va ⊂ V , νB(Va) ⊂ a, and an analytic field L of one-dimensional
nonsingular integral elements in DM on V whose all complex orbits intersect
Va transversely (plus a mild genericity condition (4.2)). The germ through
every x ∈ V of complex orbit is included into an integral surface of the
distribution DM , by Theorem 4.12. Condition (4.2) implies that the integral
surface is non-trivial, and hence, corresponds to an open set of quadrilateral
orbits of a 4-reflective billiard a, b(x), c(x), d(x). If x ∈ Va, then the mirrors
a and b(x) intersect at νB(x), and we deduce that either c(x) = a, or b(x)
is a line (Corollary 3.5). This easily implies that either νC(M) ⊂ a, or the
image under the projection νB of every analytic curve tangent to DM is a
line. We show that none of the latter cases is possible. The contradiction
thus obtained will prove Theorem 1.10.

Let M ′ ⊂M0
reg be the subset from (4.1) defined for our three-dimensional

distribution DM . It is open, dense and the complement M\M ′ is analytic, as
at the same place. By definition, dνa, dνG 6≡ 0 on DM (x) for every x ∈M ′.

Proposition 4.17 There exist an x ∈ M ′ and a one-dimensional nonsin-
gular integral element Lx ⊂ DM (x) such that νB(x) ∈ a and

(dνa(x))(Lx) 6= 0, (dνG(x))(Lx) 6= 0 for every G = B,C,D; (4.2)

the line (dνB(x))(Lx) is transverse to TνB(x)a. (4.3)

Proof Let Q̃ denote the set of one-dimensional nonsingular integral el-
ements Lx ⊂ DM (x), x ∈ M ′, satisfying (4.2). Let Q ⊂ M ′ denote its
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projection to M . The sets Q̃ and Q are analytically constructible subsets
in P(TPa) and M . They are open and dense subsets in P(DM ) and M
respectively. The two latter statements follow from definition, Proposition
4.14 and Chevalley–Remmert Theorem. The intersection νB(Q) ∩ a con-
tains a regularly embedded disk α ⊂ a without isotropic tangent lines, and
Va = ν−1

B (α) ∩Q is a hypersurface (Corollary 4.2).

Claim. DM (x) 6⊂ TxVa for an open dense set of points x ∈ Va.

Proof Suppose the contrary: each germ of integral curve (and hence, sur-
face) of the distribution DM through each point in Va lies in Va. Fix an
x ∈ Va, a nonsingular integral element Lx ⊂ DM (x) satisfying (4.2), a germ
of integral curve Γ tangent to Lx and a germ of integral surface Ŝ containing
Γ (given by Theorem 4.12). The surface Ŝ lies in Va, is non-trivial by (4.2),
and hence, represents an open set of quadrilateral orbits of a 4-reflective bil-
liard with two coinciding non-linear mirrors a = b(x). But the latter billiard
cannot exist by Corollary 3.5. This proves the claim. 2

For every x ∈ Va such that DM (x) 6⊂ TxVa a generic one-dimensional
integral element Lx ⊂ DM (x) is nonsingular and satisfies conditions (4.2),
(4.3). This proves the proposition. 2

Corollary 4.18 There exist an open subset V ⊂ M ′, a regularly embedded
disk α ⊂ a without isotropic tangent lines, an analytic hypersurface Va ⊂ V
with νB(Va) ⊂ α and an analytic line field L on V contained in DM and
transverse to Va such that the lines of the field L are nonsingular integral ele-
ments satisfying inequalities (4.2) and each its complex orbit in V intersects
Va.

The corollary follows immediately from the proposition and openness of
the set of nonsingular integral elements satisfying (4.2).

Proposition 4.19 Let V , Va and L be as in the above corollary. Then there
are two possible cases:

Case 1): νC(V ) ⊂ a;
Case 2): the projection νB sends complex orbits of the field L to lines.

Proof For every x ∈ V the germ of the orbit of the field L through x lies in
a germ of integral surface of the distribution DM (Theorem 4.12). The latter
surface is non-trivial by the inequalities from (4.2), and hence, is given by an
open set of quadrilateral orbits of a 4-reflective billiard a, b(x), c(x), d(x). If
x ∈ Va, then the mirrors a and b(x) intersect at the point B(x) = νB(x), and
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the latter is not marked for their corresponding local branches. This follows
from construction and the inequalities from (4.2). Hence, for every x ∈ Va
either c(x) = a, or b(x) is a line (Corollary 3.5). Each orbit of the field L
intersects Va, by assumption. Hence, either the projection νC sends it to
a, or the projection νB sends it to a line. One of the two latter statements
holds for all the orbits, by analyticity. This proves the proposition. 2

Now for the proof of Theorem 1.10 it suffices to show that none of the
cases from the above proposition is possible.

Case 1): νC(V ) ⊂ a. Then νC(M) ⊂ a, and we get a contradiction, as
at the end of Subsection 4.1. Hence, Case 1) is impossible.

Case 2): νC(M) 6⊂ a. Let V and L be the same, as in the above corollary.
Let us deform L. The set of line fields L satisfying the conditions of the
corollary is open in the space of line fields contained in the distribution DM .
This together with the corollary implies that for every line field L contained
in DM the projection νB sends each its complex orbit to a line. This is
equivalent to say that each analytic curve in M0

reg tangent to DM is sent
to a line by νB. In particular, this holds for every one-parametric family of
quadrilateral orbits lifted to M of the initial billiard a, b, c, d with variable
B ∈ b. This implies that the curve b is a line. The contradiction thus
obtained proves Theorem 1.10. The proof of Theorem 1.7 is complete.

5 Applications to real pseudo-billiards

In Subsection 5.1 we introduce and classify the germs of 4-reflective C4-
smooth real planar pseudo-billiards. The proof of the classification Theorem
5.6 is presented in the same subsection (analytic case) and in Subsection 5.2
(smooth case). In the same Subsection 5.2 we prove Theorem 5.8 showing
that there are no C4-smooth pseudo-billiards with only two skew reflection
laws at some neighbor mirrors and a positive measure set of 4-periodic orbits.
In Subsections 5.3, 5.4 we present applications of Theorems 5.6 and 5.8 re-
spectively to Tabachnikov’s Commuting Billiard Conjecture and 4-reflective
Plakhov’s Invisibility Conjecture.

5.1 Classification of real planar 4-reflective pseudo-billiards

Here by real smooth (analytic) curve in R2 or RP2 we mean the image of
either R, or S1 under a locally non-constant smooth (analytic) mapping to
R2 (respectively, RP2). A smooth (analytic) germ of curve is given by a
smooth (analytic) germ of immersion (R, 0)→ R2 ((R, 0)→ RP2).
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Definition 5.1 [7, remark 1.6] Let a line L ⊂ R2 and a triple of points
A,B,C ∈ R2 be such that B ∈ L, A,C /∈ L and the lines AB, BC are
symmetric with respect to the line L. We say that the triple A, B, C and
the line L satisfy the usual reflection law, if the points A and C lie on the
same side from the line L. Otherwise, if they are on different sides from the
line L, we say that the skew reflection law is satisfied.

Example 5.2 In every planar billiard orbit each triple of consequent ver-
tices satisfies the usual reflection law with respect to the tangent line to the
boundary of the billiard at the middle vertex.

Definition 5.3 (cf. [7, definition 6.1]) A real planar pseudo-billiard is a col-
lection of k curves a1, . . . , ak ⊂ R2 called mirrors with a prescribed reflection
law on each curve aj : either usual, or skew. Its k-periodic orbit is a k-gon
A1 . . . Ak, Aj ∈ aj , such that for every j = 1, . . . , k one has Aj 6= Aj±1,
AjAj±1 6= TAjaj and the lines AjAj−1, AjAj+1 are symmetric with respect
to the tangent line TAjaj so that the triple Aj−1, Aj , Aj+1 and the line
TAjaj satisfy the reflection law corresponding to aj . Here we set ak+1 = a1,
Ak+1 = A1, a0 = ak, A0 = Ak. A real pseudo-billiard is called (piecewise)
analytic/smooth, if so are its curves. A germ of real pseudo-billiard is a col-
lection of k germs of curves (aj , Aj) with prescribed reflection laws for which
the marked k-gon A1 . . . Ak is a k-periodic orbit. A germ of pseudo-billiard
is called k-reflective, if the set of its k-periodic orbits has non-empty interior:
contains a two-parameter family including A1 . . . Ak. A (germ of) pseudo-
billiard is called measure k-reflective, if the set of its k-periodic orbits has
positive two-dimensional Lebesgue measure. This means that in the set of
k-orbits A1 . . . Ak that satisfy the corresponding reflection laws at Aj for all
j 6= 1, k the set of k-periodic ones (i.e., those satisfying the reflection laws
at A1, Ak) has positive two-dimensional Lebesgue measure.

Remark 5.4 A k-reflective pseudo-billiard is automatically measure k-reflective.
In the analytic case measure k-reflectivity is equivalent to k-reflectivity. The
interior points of the set of k-periodic orbits will be called k-reflective orbits,
cf. definition 6.1 in loc. cit. The complexification of each k-reflective planar
analytic pseudo-billiard is a k-reflective complex billiard.

Convention 5.5 Given two germs of smooth curves (a,A), (c, C) in R2 ⊂
RP2, we say that a = c, if they lie in the same analytic curve in RP2.

Theorem 5.6 A germ of C4-smooth real planar pseudo-billiard (a,A), (b, B),
(c, C), (d,D) is 4-reflective, if and only if it has one of the following types:
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1) a = c is a line, the curves b, d 6= a are symmetric with respect to it;
2) a, b, c, d are distinct lines through the same point O ∈ RP2, the line

pairs (a, b), (d, c) are transformed one into the other by rotation around O
(translation, if O is an infinite point), see Fig.8;

3) a = c, b = d, and they are distinct confocal conics: either ellipses, or
hyperbolas, or ellipse and hyperbola, or parabolas.

In every 4-reflective orbit the reflection law at each pair of opposite ver-
tices is the same; it is skew for at least one opposite vertex pair.

Addendum 1. In every pseudo-billiard of type 1) from Theorem 5.6
each quadrilateral orbit ABCD has the same type, as at Fig.7. It is sym-
metric with respect to the line a, and the reflection law at A, C is skew. The
reflection law at B, D is either usual at both, or skew at both.

Addendum 2 [7, addendums 2, 3 to theorem 6.3]. In pseudo-billiards
of types 2), 3) the 4-reflective orbits have the same types, as at Fig.8–12.

Remark 5.7 The main result of paper [10] (theorem 2) concerns usual real
planar billiards with piecewise C4 boundary; the reflection law is usual. It
implies that the quadrilateral orbit set has empty interior. This statement
also follows from the last statement of Theorem 5.6.

            a=c                                                                a=c

B

C

D

b

d

A
C A

  B

 D

 b

 d

Figure 7: 4-reflective pseudo-billiards symmetric with respect to a line mirror

Here we prove Theorem 5.6 for analytic pseudo-billiards. The general
smooth case will be treated in the next subsection. We also prove the follow-
ing theorem there, which will be applied to Plakhov’s Invisibility Conjecture.

Theorem 5.8 There exist no measure 4-reflective C4-smooth planar pseudo-
billiard with exactly two skew reflection laws at a pair of neighbor mirrors.
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Figure 8: 4-reflective pseudo-billiards on two positively-isometric line pairs

b=d

A

B

C
D

a=c

      
          

Figure 9: A 4-reflective pseudo-billiard on confocal ellipses

Proof of Theorem 5.6 (analytic case) and Addendum 1 (smooth
case). The analytic pseudo-billiard under question being 4-reflective, its
complexification is obviously 4-reflective, by Remark 5.4. This together with
Theorem 1.7 implies that it has one of the above types 1)–3) (up to cyclic
renaming of the mirrors). The 4-reflectivity of pseudo-billiards of types 2), 3)
and the classification of open sets of their quadrilateral orbits and reflection
law configurations was proved in [7, section 6]. The 4-reflectivity of pseudo-
billiards of type 1) is obvious. Addendum 1 (symmetry of the vertices B
and D) follows from the fact that they are intersection points of symmetric
pairs of lines, by definition. 2

5.2 Analytic versus smooth: proofs of Theorems 5.6 and 5.8

The proofs of Theorems 5.6 and 5.8 in the smooth case given here are anal-
ogous to the arguments from [10, section 2] due to Yu.G.Kudryashov. We
start them with the following simple fact.
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a) Skew law at a, usual at b.         b) Skew law at both a and b.        c) Skew law at  b, usual at a. 
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Figure 10: Open sets of orbits on confocal hyperbolas: three types

   C

a

b
ab

b                              b

a) Skew law at both mirrors.     b) Usual law at a, skew law at b.

A
 
 B

 C BDD

A

Figure 11: Open sets of orbits on confocal ellipse and hyperbola: two types

Proposition 5.9 For every k ∈ N there exist no measure k-reflective real
C3-germ of pseudo-billiard with odd number of skew reflection laws.

Proof Reflections from curves act on the space of oriented lines in R2,
which is a two-dimensional oriented manifold. Skew reflections change the
orientation, and the usual ones don’t. Therefore, a composition of odd
number of skew reflections and a number of usual ones (in any order) is a
local diffeomorphism changing the orientation. Hence, it cannot be equal to
the identity on a set of positive measure. This proves the proposition. 2

The proposition implies that the only possible reflection law configura-
tions for a potential measure 4-reflective C4 pseudo-billiard are the following:

1) all the reflection laws are usual;
2) the reflection laws are skew only at some pair of neighbor mirrors;
3) all the reflection laws are skew;
4) the reflection laws are skew only at some pair of opposite mirrors.

Remark 5.10 Configuration 1) is already forbidden: the proof of its im-
possibility is implicitly contained in [10]. The proof of Theorem 5.6 given
below does not use this result. Configuration 2) is already forbidden in the
analytic case, by the last statement of Theorem 5.6 proved in this case.
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one with usual law, 

a

C B

D
 A

A

B C

D

b a
b

  
a) Co−directed parabolas: 

the other one with skew law

b) oppositely directed parabolas:
skew law at both of them. 

Figure 12: Open set of orbits on confocal parabolas: one type

Definition 5.11 ([10, definition 14], Yu.G.Kudryashov). Let k ≥ 3. A
k-gon A1 . . . Ak in R2 is non-degenerate, if for every j = 1, . . . , k (we set
Ak+1 = A1, A0 = Ak) one has Aj+1 6= Aj and Aj−1Aj 6= AjAj+1. The
subset of degenerate k-gons in R2k = (R2)k will be denoted by Σ = Σk.

Remark 5.12 A real non-degenerate k-gon is a complex non-degenerate
k-gon in the sense of Definition 2.40.

To each configuration 1)–4) we put into correspondence a distribution
D4
α on R8 \Σ constructed below: the Birkhoff distribution corresponding to

the chosen reflection laws. To define it, set

Ψk = {±1}k, Ψ±k = {α = (α1, . . . , αk) ∈ Ψk |
∏
j

αj = ±1}.

For every k ∈ N, α ∈ Ψk and every non-degenerate k-gon A1 . . . Ak in R2 we
consider the following collection of lines LAj = LAj (α) through Aj :

- the line LAj is the exterior bisector of the angle ∠Aj−1AjAj+1 if αj = 1;
- the line LAj is its interior bisector if αj = −1.
We will briefly call the configuration ((A1, LA1), . . . , (Ak, LAk

)) α-framed.
We identify each line LAj with the corresponding one-dimensional subspace

in TAjR2. For every x = A1 . . . Ak ∈ R2k \ Σ set

Dkα(x) = ⊕kj=1LAj (α) ⊂ TxR2k.

The latter subspaces define an analytic distribution Dkα on R2k \ Σ. The
above reflection law configurations 1)–4) correspond to D4

α with α ∈ Ψ+
4 .

We show that all Dkα with α ∈ Ψ+
4 naturally embed to the complex

Birkhoff distribution Dk on one and the same irreducible component R+
0,k
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of the variety R0,k ⊂ Pk = (P(TCP2))k (the next proposition). We study
the two-dimensional Pfaffian problem for the complex distribution D4 on
R+

0,4: to find its two-dimensional integral surfaces. We study its first and
second Cartan jet prolongations. (Basic theory of Cartan prolongations may
be found in [3, 16, 21]; the background material used in the proofs will be
recalled below.) We show (the next two lemmas) that each second prolon-
gation is a two-dimensional distribution outside a union of two subvarieties
Λ0, Λ1. The latter union consists of the quadrilaterals symmetric with re-
spect to some of the diagonals A1A3 or A2A4 with LA1 = LA3 = A1A3

(respectively, LA2 = LA4 = A2A4). We then deduce that each C4-smooth
non-trivial integral surface of the distribution D4

α should be either analytic
or contained in the above set of symmetric quadrilaterals. Therefore, the
pseudo-billiard under question should have one of the types 1)–3), by the
analytic case of Theorem 5.6 proved in the previous subsection. This will
prove Theorem 5.6 in the C4 case. For the proof of Theorem 5.8 we show
that the existence of a measure 4-reflective pseudo-billiard with reflection
law configuration 2) implies the existence of a 4-reflective analytic one. This
will be deduced from the above-mentioned lemmas and Kudryashov’s results
from [10]. But 4-reflective analytic pseudo-billiards with reflection law con-
figuration 2) are forbidden by the last statement of Theorem 5.6, analytic
case. The contradiction thus obtained will prove Theorem 5.8.

Now let us pass to the proofs.
Consider the k-dimensional complex Birkhoff distribution Dk on the 2k-

dimensional smooth quasiprojective variety R0,k ⊂ Pk = (P(TCP2))k in-
troduced at the beginning of Subsection 2.7. For every α ∈ Ψk there is a
natural embedding

jα : R2k \ Σ→ R0,k : jα(A1 . . . Ak) = ((A1, LA1(α)), . . . , (Ak, LAk
(α))).

One has (jα)∗Dkα ⊂ Dk, and the latter image is a field of totally real sub-
spaces in the corresponding spaces of the complex distribution Dk.

Proposition 5.13 For every k ≥ 3 the variety R0,k consists of two ir-
reducible components R±0,k. Each R±0,k contains the union of all the im-

ages jα(R2k \ Σ) with α ∈ Ψ±k . The component R+
0,k consists exactly of

those configurations ((A1, LA1), . . . , (Ak, LAk
)) for which the complex lengths

|AjAj+1|, j = 1, . . . , k can be simultaneously normalized so that for every j
the lengths |Aj−1Aj |, |AjAj+1| are LAj -concordant, see Definition 2.13.

Remark 5.14 The above collection of lengths |A1A2|, . . . , |AkA1| (if exists)
will be called concordant. It is unique up to simultaneous change of sign.
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Proof The projection of the variety R0,k to the space of k-gons has 2k

preimages: at each vertex Aj we can choose a symmetry line LAj between
the lines AjAj±1 in two ways; the two symmetry lines are orthogonal.

Claim. For every j = 1, . . . , k every configuration ((A1, LA1), . . . , (Ak, LAk
)) ∈

R0,k is connected by path in R0,k to the same configuration with simultane-
ously changed lines LAj , LAj+1.

Proof Let us identify the complex infinity line C∞ with the space of com-
plex lines through the point Aj . Its complement C∗ = C∞ \ {I1, I2} to
the isotropic points has fundamental group Z. Consider a closed path
φ : [0, 1] → C∗ starting at the line AjAj+1 and disjoint from the line
AjAj−1 that represents its generator. This yields a closed path ψ(t) =
A1 . . . AjA

t
j+1Aj+2 . . . Ak in the space of non-degenerate complex k-gons (in

the sense of Definition 2.40): Atj+1 = φ(t) ∩ Aj+1Aj+2, A0
j+1 = Aj+1. The

line LAj = LAj (0) deforms into a family LAj (t) of symmetry lines be-
tween the lines AjAj−1 and φ(t) that is analytic along the path ψ. One
has LAj (1) 6= LAj (0). Indeed, let zj−1, zj(t), zj+1(t) denote the points of
intersection of the infinity line with the lines AjAj−1, LAj (t), AjA

t
j+1 = φ(t)

written in the standard affine coordinate z on C∞: z(I1) = 0, z(I2) = ∞.

One has zj+1(t) =
z2j (t)

zj−1
, by symmetry and [7, proposition 2.4, p.249]. The

point zj(t) makes half-turn around zero, by the latter formula and since
zj+1(t) makes one turn by assumption. Hence, LAj (1) 6= LAj (0). We sim-
ilarly consider the deformation LAj+1(t) = LAt

j+1
of the line LAj+1 and get

LAj+1(1) 6= LAj+1 . The claim is proved. 2

The claim implies that any two configurations ((A1, LA1), . . . , (Ak, LAk
))

and ((A1, L
′
A1

), . . . , (Ak, L
′
Ak

)) in R0,k with even number of pairs of different
lines LAj 6= L′Aj

are connected by path in R0,k. Therefore, the variety R0,k

consists of at most two irreducible components R±0,k, each of them contains

the images jα(R2k \ Σ) for all α ∈ Ψ±k . Each real (1, . . . , 1)-framed con-
figuration has a concordant collection of real lengths (Example 2.15). The
existence of concordant complex length collection is invariant under contin-
uous deformations in R0,k, which follows from definition. Therefore, each
configuration from the component R+

0,k has a concordant length collection.
On the other hand, each real (1, . . . , 1,−1)-framed configuration has no con-
cordant length collection, which follows from Example 2.15. Hence, this is
true for every configuration from the component R−0,k, and R+

0,k 6= R
−
0,k.

Proposition 5.13 is proved. 2
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The arguments below are analogous to Yu.G.Kudryashov’s arguments
from [10, section 2] on the Cartan prolongations of the Birkhoff distributions.

In what follows the restriction of the distribution D4 to the component
R+

0,4 will be denoted D4
+. Consider the complex Pfaffian system D4,2

+ : the

problem to find two-dimensional integral surfaces of the distribution D4
+.

For every x ∈ R+
0,4 let l1(x), . . . , l4(x) denote the corresponding concordant

collection of lengths lj = |AjAj+1|. The lengths being defined up to simul-
taneous change of sign, their ratios are single-valued holomorphic functions
on R+

0,4. Set

Λ = {l1l3 = l2l4} ⊂ R+
0,4,

Λ0 = {x ∈ R+
0,4 | A1(x)A2(x)A3(x)A4(x) is symmetric with respect

to the line A1(x)A3(x) = LA1(x) = LA3(x)},

Λ1 = {x ∈ R+
0,4 | A1(x)A2(x)A3(x)A4(x) is symmetric with respect

to the line A2(x)A4(x) = LA2(x) = LA4(x)}.

Remark 5.15 One has Λ0,Λ1 ⊂ Λ. Indeed, if x ∈ Λ0, then l4(x) = −l1(x),
l2(x) = −l3(x), by symmetry and length concordance (Definition 2.13).
Hence, l1(x)l3(x) = l2(x)l4(x) and x ∈ Λ. For every x ∈ Λ0 the lines LA2(x),
LA4(x) are symmetric with respect to the line LA1(x), since the symme-
try respects concordance of lengths and transforms the LA2(x)-concordant
lengths l1(x), l2(x) to the LA4(x)-concordant lengths −l4(x), −l3(x). Similar
statement holds for x ∈ Λ1 and LA1(x), LA3(x).

Recall that an integral plane E (see Definition 4.7) of the distribution
D4

+ is non-trivial, if for every j the restriction dAj |E is not identically zero.
Let I2 = I2(D4

+) ⊂ Gr2(D4
+) denote the subset of integral planes; it is

algebraic, since so is D4
+. By I0

2 ⊂ I2 we denote the Zariski open subset of
the non-trivial integral planes. A point of the space I0

2 is a pair (x,E), where
x ∈ R+

0,4, E ⊂ D4
+(x) is a non-trivial integral plane. Let πgr : I0

2 → R
+
0,4

denote the standard projection. The subspaces

F3(x,E) = (dπgr)
−1(E) ⊂ T(x,E)I0

2

form a (singular) analytic distribution F3 on I0
2 . Set

J2 = I0
2 \ π−1

gr (Λ) ⊂ I0
2 .
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Lemma 5.16 The projection πgr : J2 → R+
0,4 \ Λ is a regular fibration by

holomorphic curves. The restriction to J2 of the distribution F3 is regular
and three-dimensional. For every y ∈ J2 the corresponding subspace F3(y)
contains a unique integral 2-plane Ẽ(y) of the distribution F3. The planes
Ẽ(y) form a two-dimensional analytic distribution on J2.

Lemma 5.17 The restriction to Λ \ (Λ0∩Λ1) of the distribution D4
+ has at

most one non-trivial integral 2-plane at each point.

The two lemmas are proved below. In their proofs we use the notations
introduced in [10, subsection 2.5.1, p.297]6. The analytic extensions to R+

0,4

of the complexified 1-forms θj , νj from loc. cit. are regular and double-
valued: well-defined up to sign. The forms ν1, . . . , ν4 yield a coordinate
system on the subspaces of the distribution D4

+, as in loc. cit. The tangent
functions tj from loc. cit. are holomorphic single-valued on R+

0,4. Let us
show this in more detail. Recall that for a real convex quadrilateral A1 . . . A4

equipped with its exterior bisectors LAj one has tj = tan∠(L⊥Aj
, AjAj+1).

Let z be the above standard affine coordinate on C∞: z(I1) = 0, z(I2) =∞.
Let zj , wj denote respectively the z- coordinates of the intersection points
L⊥Aj
∩ C∞, AjAj+1 ∩ C∞. It follows from definition that

tj =
i(zj − wj)
zj + wj

.

The latter formula defines the analytic extension of the functions tj to R+
0,4.

One has zj 6= ±wj on R+
0,4. Indeed, otherwise either AjAj+1 = L⊥Aj

, or
AjAj+1 = LAj ; in both cases AjAj−1 = AjAj+1, which is impossible by
non-degeneracy. Thus, tj are non-vanishing holomorphic functions on R+

0,4.

Proof of Lemma 5.16. The real Pfaffian system D4,2
α corresponding

to the usual real Birkhoff distribution D4
α, α = (1, . . . , 1), was studied by

Yu.G.Kudryashov in [10, subsection 2.5]. The proof of the statement of
the lemma for the integral planes of the system D4,2

α is presented in [10,
subsection 2.5.4, pp. 299-300]. The calculations presented there extend
analytically to all of R+

0,4 \ Λ and apply without changes. 2

Proof of Lemma 5.17. Kudryashov’s calculations in [10, p.298] extended
analytically to complex domain show that for every x ∈ R+

0,4 each non-trivial

integral plane E2 ⊂ D4
+(x) has a basis of the following type:(
0 l1 η −l4
l1 0 −l2 η′

)
; ηη′ = l2l4 − l1l3;

6The edge lengths denoted by Lj in [10] are denoted here by lj .
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the two raws represent vectors in D4
+(x) written in the coordinates given by

the forms νj from loc. cit. Let x ∈ Λ \ (Λ0 ∩Λ1). Then ηη′ = l2l4− l1l3 = 0.
Thus, either η = 0, or η′ = 0.

Case 1): η′ = 0. Then the inclusion E2 ⊂ TxΛ implies that

t3(l1 + l4)η = l1(t2 − t4)(l3 + l4), (5.1)

see [10, p.299, subsection 2.5.3]. Les us suppose the contrary: there exist
at least two different non-trivial integral planes in TxΛ. Or equivalently,
equation (5.1) in η has more than one solution. Recall that tj , lj 6= 0.
Therefore, l4 = −l1. Hence, l3 = −l2, since l1l3 = l2l4. The first equality
l4 = |A1A4| = −l1 = −|A1A2| implies that the points A2, A4 are symmetric
with respect to the line LA1 , by length concordance, see Definition 2.13.
Similarly, the points A2, A4 are symmetric with respect to the line LA3 .
Finally, the quadrilateral A1A2A3A4 is symmetric with respect to the line
LA1 = LA3 and hence, x ∈ Λ0, – a contradiction.

Case 2): η = 0. We similarly get that x ∈ Λ1, – a contradiction. Lemma
5.17 is proved. 2

Remark 5.18 As it was shown in loc.cit., an integral plane E2 ⊂ TxΛ may
exist only for x from an algebraic subset in Λ. For example, in the case,
when η′ = 0, it exists only if t1(x) = t3(x).

Remark 5.19 The distributions D4
+|Λj , j = 0, 1, are three-dimensional.

One can easily show that the restriction to Λj of the Pfaffian system D4,2
+ is

involutive. Each its complex integral surface is an open set of quadrilateral
orbits of a 4-reflective complex billiard of type 1): if, say, j = 0, then
a1 = a3 is a line, the curves a2 and a4 are symmetric with respect to it.
Similar statement holds for smooth integral surfaces.

Corollary 5.20 Let α ∈ Ψ+
4 , S ⊂ R8\Σ be a non-trivial C3-smooth integral

surface of the distribution D4
α. Let in addition S ∩ j−1

α (Λ0 ∩ Λ1) = ∅. Then
the set of analyticity points of the surface S is open and dense in S.

Proof The image jα(S) ⊂ R+
0,4 is a totally real integral surface of the

complex distribution D4
+. The subset (S \ j−1

α (Λ))∪ Int(S ∩ j−1
α (Λ)) ⊂ S is

open and dense. Hence, it suffices to prove the corollary in each one of the
two following separate cases: jα(S) ∩ Λ = ∅; jα(S) ⊂ Λ \ (Λ0 ∪ Λ1).

Case 1): jα(S) ∩ Λ = ∅. The complex span of each tangent plane to
jα(S) is a complex integral plane of the distribution D4

+. Therefore, jα(S)
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lifts to a totally real C2-smooth integral surface S̃ ⊂ J2 of the distribution Ẽ
from Lemma 5.16. Let M ⊂ J2 denote the minimal complex analytic subset
containing S̃. The restriction to M of the distribution Ẽ is two-dimensional
and integrable (cf. Proposition 2.38). Without loss of generality we can and
will assume that S̃ is contained in the regular part of the analytic set M .
Then S̃ is contained in a complex analytic integral surface of the distribution
Ẽ on M and coincides with its intersection with the real part of the variety
I2. Therefore, S̃ is real analytic, and hence, so is S.

Case 2): jα(S) ⊂ Λ \ (Λ0 ∩ Λ1). Let M ⊂ Λ \ (Λ0 ∪ Λ1) denote the
minimal complex analytic subset that contains jα(S). Recall that for every
x ∈ Λ \ (Λ0 ∪ Λ1) there exists at most one non-trivial integral plane at
x of the restriction D4

+|Λ (Lemma 5.17). The union of the latter integral
planes is an analytic subset in Gr2(TR+

0,4)|Λ\(Λ0∪Λ1) with proper projection
to Λ \ (Λ0 ∪ Λ1). Its image under the latter projection contains M , since
it contains jα(S) and is analytic (Proper Mapping Theorem). Therefore,
for every y ∈ M there exists a unique integral plane in D4

+|Λ(y). The
restriction to M of the singular distribution formed by the latter planes is
two-dimensional and integrable (cf. Proposition 2.38). Afterwards without
loss of generality we assume that jα(S) lies in the regular part of the set
M and deduce that S is analytic, as in the above case. Corollary 5.20 is
proved. 2

Proof of Theorem 5.6, C4-smooth case. Fix a germ of C4-smooth 4-
reflective pseudo-billiard a1, a2, a3, a4. It has an open set S of quadrilateral
orbits, which is a germ of C3-smooth non-trivial integral surface of a real
distribution D4

α at a point p ∈ R8 \Σ. One has α ∈ Ψ+
4 , by Proposition 5.9.

Case 1): the complement S\j−1
α (Λ0∪Λ1) is non-empty. Let us show that

S is analytic at p. This will imply that the above pseudo-billiard is of type
either 2), or 3) (Theorem 5.6, analytic case). Suppose the contrary. Then
the open subset of analyticity points in S contains a connected component
W 6⊂ j−1

α (Λ0 ∪ Λ1) with non-empty boundary, by Corollary 5.20. Fix a
boundary point x ∈ ∂W and a path ψ ⊂ W going to x such that for every
j one has Aj(y) 6= Aj(x) for y ∈ ψ arbitrarily close to x. The surface S is
not analytic at x. The subset W is an open set of quadrilateral orbits of an
analytic pseudo-billiard. The latter is not of type 1), sinceW 6⊂ j−1

α (Λ0∪Λ1).
Hence, it is of type either 2) or 3): its mirrors are either all lines, or all
confocal conics. Thus, the mirrors aj are analytic at Aj(y), y ∈ ψ and
some of them, say a2 is not analytic at A2(x) = limy→x;y∈ψ A2(y). Let us
show that this is impossible. To do this, let us fix a y ∈ ψ close to x with
A1(y) 6= A1(x). Consider the smooth deformation of a quadrilateral orbit
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A1(y)A2(y)A3(y)A4(y) with fixed A1. That is, the family of quadrilateral
orbits Q(s) = As1A

s
2A

s
3A

s
4 depending on the angle parameter s = ∠As2A

s
1A

s
4,

As1 = A1(y), s0 = ∠A2(y)A1(y)A4(y), As0j = Aj(y).

Let (s−, s+) be the maximal interval of analyticity of the family of quadri-
laterals Q(s) as a function of s. For some of s±, say s+, some vertices A

s+
j

should be singular points of the corresponding mirrors and coincide with
Aj(x), by definition. At least two points A

s+
j should be singular, see [10,

lemma 41 and its proof, pp. 305–306]. If two neighbor vertices are singular,
e.g., A

s+
2 = A2(x), A

s+
3 = A3(x), then A1(y) = A1(x): A1(y) is the point

of intersection close to A1(x) of the curve a1 with the line A1(x)A2(x) sym-
metric to A2(x)A3(x) with respect to the line TA2(x)a2. This contradicts
the assumption A1(y) 6= A1(x). The contradiction thus obtained shows that
A
s+
2 = A2(x) and A

s+
4 = A4(x) are singular.

Let a0
j ⊂ aj denote the arcs saturated by the vertices Aj(y), y ∈ ψ.

Recall that the arcs a0
j are analytic, and they are either all lines, or all

confocal conics, see the above discussion. The above statement implies that
for A = A(y) ∈ a0

1 the lines AA2(x), AA4(x) are symmetric with respect to
the line TAa

0
1. Hence, this is true for every A ∈ a0

1, by analyticity. Therefore,
a0

1 is either the symmetry line between the points A2(x), A4(x), or a conic
with foci at them [7, proposition 2.32]. In the case, when a0

j are confocal

conics, the conic a0
2 would contain its own focus A2(x), – a contradiction. In

the case, when they are lines, they should intersect at one point (the pseudo-
billiard is of type 2)). This implies that the lines a0

2, a0
4 are symmetric with

respect to the line a0
1, as are A2(x), A4(x), and hence, the pseudo-billiard is

of type 1), – a contradiction. Hence, S is analytic.
Case 2): jα(S) ⊂ Λj for some j = 0, 1. Then we obviously get a pseudo-

billiard of type 1) (see Remark 5.19).
Case 3): jα(S) ⊂ Λ0 ∪ Λ1, jα(p) ∈ Λ0 ∩ Λ1 and both complements

S\j−1
α (Λj), j = 0, 1, are non-empty. Let us show that this case is impossible.

Suppose the contrary: the latter assumptions hold. Then p corresponds to a
rhombus with interior bisectors. Some of germs of mirrors aj , j = 2, 4 at the
points Aj(p) is not a line, since otherwise, a2 = a4 and we obviously get that
jα(S) ∈ Λ1, – a contradiction. The similar statement holds for the mirrors
a1 and a3. Finally, some two germs of neighbor mirrors, say a1 and a2 are
not lines. The billiard under question being 4-reflective, the surface S con-
tains a point q corresponding to a 4-reflective orbit A1(q)A2(q)A3(q)A4(q)
with A1(q) ∈ a1, A2(q) ∈ a2 being points of non-zero curvature with non-
orthogonal tangent lines. Hence, the latter quadrilateral is not a rhombus
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and thus, jα(q) is contained in only one set Λj , j = 0, 1. Hence, the germ at
q of the surface S should consist of quadrilateral orbits of a pseudo-billiard
of type 1) (see Case 2)). Thus, at least one of the neighbor mirror germs
(a1, A1(q)), (a2, A2(q)) should be a line, while they both have non-zero cur-
vature. The contradiction thus obtained proves Theorem 5.6. 2

Proof of Theorem 5.8. Suppose the contrary: there exists a C4-smooth
pseudo-billiard where only some two neighbor mirrors, say a1, a2 have skew
reflection law and the set of 4-periodic orbits has positive Lebesgue measure.
In more detail, consider the set S of its 3-edge orbits A1A2A3A4: the reflec-
tion law is required only at A2, A3 but not necessarily at A1, A4. This is
a two-dimensional non-trivial C3-smooth surface, which contains a positive
measure set of 4-periodic orbits. Thus, S is a C3-smooth pseudo-integral
surface (in terms of [10, definition 13, p.291]) of the analytic distribution
D4
α, α = (−1,−1, 1, 1). Note that j−1

α (Λ) = ∅. Indeed, for every quadrilat-
eral A1A2A3A4 ∈ R8 \Σ consider the concordant lengths lj = |AjAj+1| with
respect to the interior bisectors at A1, A2 and the exterior bisectors at A3,
A4. The lengths lj , j = 2, 3, 4 have the same signs, while l1 has opposite
sign, see Example 2.15. Therefore, the equality l1l3 = l2l4 defining Λ is
impossible. Hence, S ∩ j−1

α (Λ) = ∅. This together with Lemma 5.16 and
[10, theorem 28, p.295] implies that D4

α has an analytic non-trivial integral
surface. Therefore, there exists an analytic 4-reflective pseudo-billiard with
exactly two skew reflection laws at some neighbor mirrors, – a contradiction
to the last statement of Theorem 5.6. Theorem 5.8 is proved. 2

5.3 Application 1: Tabachnikov’s Commuting Billiard Con-
jecture

The following theorem solves the piecewise C4-smooth case of S.Tabachnikov’s
conjecture on commuting convex planar billiards [25, p.58]. It deals with
two billiards in nested convex compact domains Ω1 b Ω2 b R2, set a = ∂Ω1,
b = ∂Ω2. We consider that both a and b are piecewise C4-smooth. For every
Ωj consider the corresponding billiard transformation acting on the space of
oriented lines in the plane. It acts as identity on the lines disjoint from Ωj .
Each oriented line l intersecting Ωj is sent to its image under the reflection
from the boundary ∂Ωj at its last intersection point x with ∂Ωj in the sense
of orientation: the orienting arrow of the line l at x is directed outside Ωj .
The reflected line is oriented by a tangent vector at x directed inside Ωj .
This is a continuous dynamical system if the boundary ∂Ωj is smooth and
piecewise-continuous (measurable) otherwise.
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It is known that confocal elliptic billiards commute [24, p.49, corollary
4.6]. The next theorem shows that the converse is also true.

Theorem 5.21 Let two nested planar convex piecewise C4-smooth Jordan
curves be such that the corresponding billiard transformations commute.
Then they are confocal ellipses.

In the proof of Theorem 5.21 we use the next commutativity criterion.

Proposition 5.22 Let a, b ⊂ R2 be nested convex Jordan curves, as at
the beginning of the subsection. The corresponding billiard transformations
commute, if and only if each pair (A,B) ∈ a × b extends to a quadrilateral
orbit ABCD of the pseudo-billiard a, b, a, b as at Fig.9: the reflection law
is usual at b and skew at a; only one of the segments AB, BC intersects the
domain bounded by the curve a, if both ambient lines intersect it.

The proposition follows from definition.
Proof of Theorem 5.21. The interior of the set of quadrilateral orbits
from the proposition contains an open and dense subset of those quadrilater-
als ABCD for which the germs of curves a, b at the vertices are C4-smooth
and form a 4-reflective pseudo-billiard. The latter has thus some of types
1)–3) from Theorem 5.6. It cannot be of type 1) with germs (b, B), (b,D)
lying on the same line and (a,A), (a,C) being symmetric with respect to
it (see Addendum 1). This is impossible by convexity and the obvious in-
clusion ABCD ⊂ Ω2. Therefore, either (a,A), (a,C) lie in the same line
and the pseudo-billiard is of type 1), or its has type 2) or 3). This implies
that the curve a contains an open dense union of analytic pieces, each of
them being either a line segment, or an arc of conic. In what follows the
reflections from the curves a, b acting on the space of oriented lines will be
denoted by σa and σb respectively.

Case 1): some analytic arc a′ of the curve a is a conic. Then the above
germs of pseudo-billiards with A ∈ a′ have type 3). Thus, the curve b
contains an open dense union of analytic arcs lying in conics confocal to a′.

Subcase 1a): the curve a = a′ is analytic, and hence, is an ellipse. Note
that the tangent lines to b are disjoint from a and hence, from the focal
segment, by convexity. This implies that each conical piece of the curve b
is not a hyperbola, and thus, is an ellipse. Recall that b is a finite union of
C4-smooth arcs. Each smooth arc b′ is elliptic. Indeed, consider an auxiliary
function on R2: the sum of distances of a variable point to the foci of a′. It
is constant on b′: it is smooth on b′ and locally constant on an open dense
union of confocal elliptic subarcs; hence it has zero derivative on b′, and b′ is
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elliptic. Thus, b is a finite chain of adjacent confocal elliptic arcs. Therefore
b is an ellipse: the above sum of distances is continuous on b and constant
on each arc, and hence, on all of b.

Subcase 1b): some boundary point A of the analytic arc a′ is singular,
the curve a is not analytic at A. Fix A and a subarc b′ of a conical arc of the
curve b such that for every B ∈ b′ the interval (A,B) intersects a, the line
AB is distinct from the lines TAa

′, T⊥A a
′, and the line Λ = Λ(B) symmetric

to AB with respect to TAa intersects the curve b at its analyticity points.
Let us orient the line L = AB from B to A. Consider the one-parametric
analytic family of lines L∗ = L∗(B) = σ−1

b (L). We orient the line Λ so that
Λ = σa(L). We claim that all the lines L∗ pass through the same point
of the curve a. Indeed, the mapping σa ◦ σb = σb ◦ σa is singular at each
L∗, since Λ = σa(L) = σa ◦ σb(L∗), σb is regular (that is, a local analytic
diffeomorphism) at L∗ and σa is singular at L = σb(L

∗), as is A. On the
other hand, σb is regular at σa(L

∗), since Λ = σb ◦ σa(L∗) and σ−1
b is a local

analytic diffeomorphism at Λ: the points of intersection Λ ∩ b are regular
and transversal (by convexity). Therefore, σa is singular at L∗, as is σb ◦σa.
Hence, either all the lines L∗ pass through the same singular point A′ of
the curve a (the set of its singular points is totally disconnected), or they
are tangent to a. In the latter case one has σb ◦ σa(L∗) = σb(L

∗) = L,
while σa ◦σb(L∗) = σa(L) 6= L, since L 6= TAa

′, (TAa
′)⊥, – a contradiction to

commutativity. Hence, the tangency case is impossible, and the lines L∗ pass
through the same point A′. Therefore, b′ is a conical arc confocal to a′ with
foci A, A′. Thus, the conic a′ contains its own focus A, – a contradiction.

Case 2): the curve a is a convex polygon. For every its vertex A each
line through A intersecting a C4-smooth arc b′ of the curve b is reflected
from b′ to a line through another vertex A′ of the polygon a, as in the above
discussion. This implies that each C4-smooth arc b′ is a conic with foci A,
A′. Finally, each vertex of the polygon a is a focus of each C4-smooth arc of
the curve b. Therefore, a has at most two vertices and cannot be a convex
polygon. The contradiction thus obtained proves Theorem 5.21. 2

5.4 Application 2: planar Plakhov’s Invisibility Conjecture
with four reflections

This subsection is devoted to Plakhov’s Invisibility Conjecture: the analogue
of Ivrii’s conjecture in the invisibility theory [17, conjecture 8.2]. We recall it
below and show that in planar case it follows from a conjecture saying that no
finite collection of germs of smooth curves can form a measure k-reflective
billiard for appropriate “invisibility” reflection law. Both Plakhov’s and
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Ivrii’s conjectures have the same complexification, see [8, subsection 5.2,
proposition 8]. We prove the C4-smooth case of planar Plakhov’s Invisibility
Conjecture for four reflections as an immediate corollary of Theorem 5.8.

Definition 5.23 [17, chapter 8] Consider a perfectly reflecting (may be dis-
connected) closed bounded body B in a Euclidean space. For every oriented
line (ray) R take its first intersection point A1 with the boundary ∂B and
reflect R from the tangent hyperplane TA1∂B. The reflected ray goes from
the point A1 and defines a new oriented line, as in the previous subsection.
Then we repeat this procedure. Let us assume that after a finite number k
of reflections the output oriented line coincides with the input line R and
will not hit the body any more. Then we say that the body B is invisible
for the ray R, see Fig.13. We call R a ray of invisibility with k reflections.

    2

   R

R

B
B

A
   1

   

     

A
     k

      
 

 A

Figure 13: A body invisible for one ray.

Invisibility Conjecture (A.Plakhov, [17, conjecture 8.2, p.274].) There
exist no body with piecewise C∞ boundary for which the set of rays of invis-
ibility has positive measure.

Remark 5.24 As is shown by A.Plakhov in his book [17, section 8], there
exist no body invisible for all rays. The same book contains a very nice sur-
vey on invisibility, including examples of bodies invisible in a finite number
of (one-dimensional families of) rays. See also papers [1, 18, 19, 20] for more
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results. The Invisibility Conjecture is equivalent to the statement saying
that for every k ∈ N there are no measure k-reflective bodies, see the next
definition. It is open even in dimension 2.

Definition 5.25 (cf. [8, subsection 5.2, definition 12]) A body B with
piecewise-smooth boundary is called measure k-reflective, if the set of invis-
ibility rays with k reflections has positive measure.

Definition 5.26 (cf. [8, subsection 5.2, definition 13]) A (germ of) real
planar smooth pseudo-billiard a1, . . . , ak is called measure k-invisible, if it
is measure k-reflective for skew reflection law at a1, ak and usual law at the
other mirrors aj : the set of its k-periodic orbits for the above reflection law
(called k-invisible orbits, see Fig.14) has positive Lebesgue measure.

    a
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A
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 a
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R

a
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        k

Figure 14: A k-invisible k-gon: skew reflection law at A1 and Ak.

Proposition 5.27 Let k ∈ N and B ⊂ R2 be a body with piecewise-smooth
boundary, and no collection of k germs of its boundary form a measure k-
invisible smooth pseudo-billiard. Then B is not measure k-reflective.

Proposition 5.27 is implicitly contained in [17, section 8].

Theorem 5.28 There are no measure 4-reflective bodies in R2 with piece-
wise C4-smooth boundary.
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Proof The existence of a measure 4-reflective body as above implies the
existence of a measure 4-invisible planar C4-smooth pseudo-billiard (Propo-
sition 5.27). This is a measure 4-reflective planar C4-smooth pseudo-billiard
with skew reflection law at some pair of neighbor vertices and usual reflection
law at the other vertices. This contradicts Theorem 5.8. 2

6 General case of complex k-reflective billiards:
state of art

First let us recall the next conjecture and partial positive results from [8].
Conjecture A [8, p.295]. There are no k-reflective complex analytic

(algebraic) planar billiards for odd k.

Theorem 6.1 [8, p.295]. There are no 3-reflective complex analytic planar
billiards.

Theorem 6.2 [8, p.295]. For every odd k there are no k-reflective complex
algebraic planar billiards whose mirrors avoid isotropic points at infinity.

Conjecture B. For every k ≥ 3 there are no k-reflective complex ana-
lytic planar billiards a, . . . , a with all the mirrors coinciding with the same
irreducible analytic curve a ⊂ CP2.

Recently a positive result was proved by the author (paper in prepara-
tion) for every irreducible algebraic curve a that either is smooth, or satisfies
a mild condition on either singularities, or tangential correspondence.

Definition 6.3 A combination of complex analytic billiards α = (a1, . . . , al),
β = (b1, . . . , bm) is a billiard α ◦s β = (a1, . . . , as, b1, . . . , bm, as+1, . . . , al),
s ∈ {1, . . . , l}. For every collection of analytic curves δ = (d1, . . . , dt) in CP2

distinct from isotropic lines the billiard

α ◦s,δ β = (a1, . . . , as, d1, . . . , dt, b1, . . . , bm, dt, . . . , d1, as+1, . . . , al)

will be called a combination with mirror adding of the billiards α and β.
(The previous combination corresponds to δ = ∅.)

Definition 6.4 Let α = (a1, . . . , al), β = (b1, . . . , bm) be complex planar
billiards such that for some 1 ≤ s < min{l,m}, one has aj = bm−j+1 for
j = 1, . . . , s. Then the billiard α◦[1,s]β = (as+1, . . . , al, b1, . . . , bm−s) is called
a combination with mirror erasing of the billiards α, β.
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Remark 6.5 For every l- and m-reflective billiards α, β and s, t, δ as in
Definition 6.3 the billiard α ◦s,δ β is (l +m+ 2t)-reflective, provided that

(E) it has a periodic orbitA1 . . . AsD1 . . . DtB1 . . . BmDt . . . D1As+1 . . . Al
for which A1 . . . Al and B1 . . . Bm are respectively l- and m-reflective orbits
of the billiards α and β: interior points of the set of l- (m-) periodic orbits.

For every l- and m-reflective billiards α = (a1, . . . , al), β = (b1, . . . , bm)
and 1 ≤ s < min{l,m} the billiard α ◦[1,s] β is (l +m− 2s)-reflective, if

(E’) there exist l- and m-reflective orbits A1 . . . Al, B1 . . . Bm of bil-
liards α and β respectively such that Aj = Bm−j+1 for 1 ≤ j ≤ s and
As+1 . . . AlB1 . . . Bm−s is a periodic orbit of the combination α ◦[1,s] β.

Known k-reflective complex analytic planar billiards.
I. 4-reflective billiards of types 1)–3) from Theorem 1.7.
II. Billiards that are obtained from them by subsequent combinations

(with mirror adding or erasing); each subsequent combination should satisfy
the above condition (E) (respectively, (E’)).

Example 6.6 The billiards of type II include the following ones:
- Every billiard αl = (a, bl−1, . . . , b1, a, b

∗
1, . . . , b

∗
l−1), where a is a line, bj ,

b∗j are symmetric with respect to the line a, that has at least one symmetric
2l-periodic orbit. Its 2l-reflectivity is obvious. It is obtained by subsequent
combinations with mirror erasing of 4-reflective billiards of type 1): on each
step we combine billiards αj and βj = (b∗j , a, bj , a) erasing one mirror a,
which is the last mirror a in βj identified with the first one in αj .

- Every billiard formed by an even number of complex confocal conics,
some of them coincide and each conic is taken even number of times; no two
neighbor mirrors coincide. It is obtained by subsequent combinations (usual
ones and those with mirror erasing) of 4-reflective billiards of type 3).

- Every billiard formed by an even number of non-isotropic complex lines
such that the product of the corresponding symmetries is the identity. It
is obtained by subsequent combinations (usual ones and those with mirror
erasing) of 4-reflective billiards of type 2). This easily follows from the
complexification of [26, theorem 1.B, p.3].

The next small technical results, which generalize Corollary 3.4, might be
useful in studying the general case. They are immediate consequence of the
results of Section 3. To state them, consider a complex k-reflective billiard
a1, . . . , ak. For every j = 1, . . . , k let us introduce the corresponding space
of (k − 2)- orbits: collections A1 . . . Aj−1Aj+2 . . . Ak ∈

∏
i 6=j,j+1 âi, Ai ∈ âi,

such that for every i 6= j − 1, j, j + 1, j + 2 one has Ai 6= Ai±1, the lines
AiAi±1 are symmetric with respect to the line TAiai and the three latter
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lines are distinct and non-isotropic. (In the case, when j = k, we replace
j + s by s, s = 1, 2.) The closure of set of the latter (k − 2)- orbits is an
analytic subset Vj ⊂

∏
i 6=j,j+1 âi that has only two-dimensional irreducible

components. Let U ⊂ â1×· · ·× âk denote the k-reflective set, see Subsection
2.3. For every j = 1, . . . , k let Pj denote the product projection

Pj : â1 × · · · × âk →
∏

r 6=j,j+1

âr, Uj = Pj(U) ⊂ Vj .

Theorem 6.7 Let a1, . . . , ak be a k-reflective complex analytic planar bil-
liard. Let U ⊂ â1 × · · · × âk be its k-reflective set. For every j = 1, . . . , k
the set Uj = Pj(U) is analytic: a union of irreducible components of the set
Vj. The projection Pj : U → Uj is proper and bimeromorphic.

Proof Without loss of generality we prove the theorem for the pair of
neighbor indices 1, k: j = k.

1) Properness and analyticity. Let us show that the mapping Pk :
U → Vk is proper: then Uk is analytic by Proper Mapping Theorem.

1a) Case, when a1, ak are algebraic: the above statements are obvious.
1b) Case, when some of them, say ak is not algebraic. The properness

will be deduced from Corollary 3.2. To do this, we consider the space

P1,k = â2 × . . . âk−1 × P2

equipped with the distribution

H1,k = T â2 ⊕ · · · ⊕ T âk−1 ⊕H⊕H,

where P = P(TCP2), H is the standard contact plane field on P, see Subsec-
tion 2.7. A point of the space P1,k is a tripleA2 . . . Ak−1, (A1, LA1), (Ak, LAk

),
where LAj ⊂ TAjCP2 is a one-dimensional subspace. Let R1,k ⊂ P1,k denote
the analytic variety defined by the conditions that for every j = 1, . . . , k one
has Aj ∈ C2 = CP2 \ C∞, Aj 6= Aj±1, the lines AjAj±1 are symmetric with
respect to the line TAjaj if 2 ≤ j ≤ k−1 (the line LAj if j ∈ {1, k}), the three
lines AjAj±1, TAjaj (respectively, LAj ) are distinct and non-isotropic. In
addition, it is required that Aj be not cusps of the curves aj for j 6= 1, k. The
set R1,k is an analytically constructible smooth variety, and its closure R1,k

is an analytic set. The distribution H1,k induces a two-dimensional analytic
distribution D1,k on R1,k that extends to a singular analytic distribution on
R1,k. An open dense subset U1 ⊂ U lifts to the union of non-trivial inte-
gral surfaces of the distribution D1,k, as in Proposition 2.43. Let M ⊂ P1,k
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denote the minimal analytic subset containing all the non-trivial integral
surfaces.

Suppose the contrary: the mapping Pk : U → Vk is not proper. Then
dimM ≥ 3: if dimM = 2, then Pk is proper, as in the proof of Corollary 3.4.
In what follows we fix some at least three-dimensional irreducible component
of the set M and denote by M the latter component. The restriction DM to
M of the distribution D1,k is two-dimensional and integrable, by Proposition
2.38. As in Subsection 3.1, there exists an analytic subset Σ ⊂M with dense
complement M0 = M \ Σ ⊂ M such that DM is analytic on M0 and its
integral surface through each x ∈ M0 represents an open set of k-periodic
orbits of a k-reflective billiard a1(x), a2, . . . , ak−1, ak(x). Some integral
surface, which we will denote by S, represents a family of k-periodic orbits
of the initial billiard. The projection µ1,k : M → â2 × · · · × âk−1 is proper,
and the image N = µ1,k(M

0) ⊂ Vk is a purely two-dimensional analytically
constructible subset, by Chevalley–Remmert Theorem.

Claim 1. There exists an open subset of points x ∈ M0 such that the
billiard a1, a1(x), ak(x), ak is 4-reflective.
Proof Fix x1 ∈ S and x2 ∈M0 \ {x1} with p = µ1,k(x1) = µ1,k(x2). There
exist neighborhoods Y = Y (p) ⊂ N , X1 = X1(p) ⊂ S, X2 = X2(x2) ⊂
M0 \X1 such that µ1,k projects X1 and each integral surface of the distri-
bution DM |X2 diffeomorphically onto Y (let us fix them). Fix an arbitrary
x ∈ X2, let S̃(x) denote the integral surface of the distribution DM |X2

through x. Each y = A2 . . . Ak−1 ∈ Y lifts to two points in X1 and S̃(x),
which correspond to k-periodic orbits A1 . . . Ak and A′1A2 . . . Ak−1A

′
k of the

billiards a1, . . . , ak and a1(x), a2, . . . , ak−1, ak(x) respectively. The quadri-
laterals A1A

′
1A
′
kAk corresponding to generic y ∈ Y form a two-parametric

family of 4-periodic orbits of the billiard a1, a1(x), ak(x), ak, and the latter
is 4-reflective, as in the proof of Proposition 3.8. 2

The above claim yields at least one-dimensional family of 4-reflective
billiards with two fixed neighbor mirrors a1, ak, since dimM ≥ 3. The curves
a1, ak are not both algebraic, by assumption. This contradicts Corollary 3.2
(or Theorem 1.7) and thus, proves properness of the projection Pk : U → Vk.

2) Bimeromorphicity. Suppose the contrary: the proper analytic
set projection Pk : U → Uk = Pk(U) is not bimeromorphic. This means
that its inverse has at least two distinct holomorphic branches on an open
subset in the analytic set Uk. In other words, each A2 . . . Ak−1 from an
open subset in Vk extends to two distinct k-periodic orbits A1A2 . . . Ak−1Ak,
A′1A2 . . . Ak−1A

′
k. Then the two-dimensional family of quadrilateralsA1A

′
1A
′
kAk

(depending on generic A2 . . . Ak−1) are 4-periodic orbits of the billiard a1,
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a1, ak, ak with coinciding neighbor mirrors, as in [7, proof of lemma 3.1].
Hence, the latter billiard is 4-reflective, – a contradiction to Corollary 3.5
(or Theorem 1.7) forbidding 4-reflective billiards with coinciding neighbor
mirrors. Theorem 6.7 is proved. 2

Corollary 6.8 Let a1, . . . , ak be a k-reflective complex analytic planar bil-
liard. The subsequent (k−2)- orbit correspondence Pj+1 ◦P−1

j : Uj → Uj+1,
A1 . . . Aj−1Aj+2 . . . Ak 7→ A1 . . . AjAj+3 . . . Ak is bimeromorphic. Its graph
is projected epimorphically onto both Uj and Uj+1. If it contracts a curve,
then the latter is compact and the mirror aj+2 is algebraic.
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Géométriques, Actualités Sci. Ind., No. 994, Hermann et Cie., Paris, 1945.

[4] Cerveau, D., Feuilletages holomorphes de codimension 1. Réduction
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